CHAPTER II

HISTORICAL

1. Chemical Constituents of genus Ochna

Several compounds have been found in the genus *Ochna*. Flavonoids were the outstanding group, followed by steroids, benzenoids, anthraquinone derivatives and hydrocarbon derivatives. The data from literature review are shown in Table 1.

Table 1 Chemical constituents of genus Ochna

Plant species	Chemical constituent	Category	Part	Reference
Ochna afzelii	lophirone C (1)	biflavonoid	stem bark	Pegnyemb
	<u> (100000000</u>			et al., 2001
	isolophirone C (2)	biflavonoid	stem bark	Pegnyemb
	Ŭ.		30	et al., 2001
	dihydrolophirone C (3)	biflavonoid	stem bark	Pegnyemb
	(6	2		et al., 2001
O. atropurpurea	ochnaflavone (4)	biflavonoid	leaf	Khan,
	0.0000101		مرم	Siddiqui,
	UNLIBERY	N. I. I M	5 19	Ilyas, 1984
	palmitoleic acid (5)	fatty acid	seed	Ahmad
		-		et al., 1982
O. beddomei	afrormosin (6)	isoflavonoid	leaf	Jayaprakasam
				et al., 2000
	2,3-dihydro	biflavonoid	leaf	Jayaprakasam
	ochnaflavone (7)			et al., 2000

Table 1 Chemical constituents of genus Ochna (continued)

Plant species	Chemical constituent	Category	Part	Reference
O. beddomei (continued)	2,3-dihydro ochnaflavone 7- <i>O</i> - methyl ether (8)	biflavonoid	leaf	Jayaprakasam et al., 2000
	(-)-epicatechin (9)	flavonoid	leaf	Jayaprakasam et al., 2000
	kaempferol (10)	flavonoid	leaf	Jayaprakasam et al., 2000
	kaempferol 3- <i>O</i> -rhamnoside (11)	flavonoid glycoside	leaf	Jayaprakasam et al., 2000
	kaempferol 3- <i>O</i> -glucoside (12)	flavonoid glycoside	leaf	Jayaprakasam et al., 2000
	ochnaflavone (4)	biflavonoid	leaf	Jayaprakasam et al., 2000
	7-O- methyl tetrahydro ochnaflavone (13)	biflavonoid	leaf	Jayaprakasam et al., 2000
(taxifolin 3- <i>O</i> -rhamnoside (14)	flavonoid glycoside	leaf	Jayaprakasam et al., 2000
O. calodendron	calodendroside A (15)	flavoniod	stem bark	Messanga, Sondengam and Bodo, 2000
	calodendroside B (16)	fatty acid	stem bark	Messanga et al., 2001
	calodendroside C (17)	fatty acid	stem bark	Messanga et al., 2001

Table 1 Chemical constituents of genus *Ochna* (continued)

Plant species	Chemical constituent	Category	Part	Reference
O. calodendron	calodenin A (18)	biflavonoid	stem bark	Messanga
(continued)				et al., 1994
	calodenin B (19)	biflavonoid	stem bark	Messanga
				et al., 1994
	calodenin C (20)	dimeric	stem bark	Messanga
		proantho-		et al., 1998
		cyanidin		
	calodenone (21)	isobiflavo-	stem bark	Messanga
		noid		et al., 1992
	(+)-catechin (22)	flavonoid	root bark	Messanga
				et al., 2001
	chamaejasmine (23)	biflavonoid	root bark	Messanga
		1 2/62/-		et al., 2001
	β -sitosterol- β -D-	sterol	stem bark	Messanga
	glucoside (24)	glycoside		et al., 1992
	5,4'-dihydroxy-	isoflavonoid	stem wood	Messanga
	3'-methoxy-6,7-	ารพยา	กร	et al., 1998
	methylenedioxy			
จ ที่	isoflavone (25)	เหาวท	ยาล	2
9	5 -hydroxy-4'-methoxy-	isoflavone	stem wood	Messanga
	6,7-methylenedioxy			et al., 1998
	isoflavone (26)		8	
	lophirone A (27)	biflavonoid	stem bark	Messanga
				et al., 1992

Table 1 Chemical constituents of genus Ochna (continued)

Plant species	Chemical constituent	Category	Part	Reference
O. calodendron (continued)	lophirone C (1)	biflavonoid	stem bark	Ghogomu Tih, et al., 1989
(commuca)	lophirone K (28)	biflavonoid	stem bark	Messanga <i>et al.</i> ,
	ochnachalcone (29)	pentaflavo- noid	stem bark	Messanga et al., 2001
	quercetrin (30)	flavonoid	root bark	Messanga et al., 2001
	quercitrin (31)	flavonoid	stem bark	Messanga et al., 2001
O. integerrima	2",3"-dihydro- ochnaflavone (32)	biflavonoid	leaf	Likhitwitayawuid et al., 2000
	2",3"-dihydro- ochnaflavone 7"-O- methyl ether (33)	biflavonoid	leaf	Likhitwitayawuid et al., 2000
	6-γ,γ-dimethylallyl taxifolin 7- <i>O</i> -β-D-glucoside (34)	flavonoid glycoside	leaf	Likhitwitayawuid et al., 2000
O. jabotapita	isoorientin (35)	flavonoid	leaf	Nair, Ramesh and Subramanian, 1975
	orientin (36)	flavonoid glycoside	leaf	Nair, Ramesh and Subramanian, 1975

Table 1 Chemical constituents of genus Ochna (continued)

Plant species	Chemical constituent	Category	Part	Reference
O. jabotapita	vitexin (37)	flavonoid	leaf	Nair, Ramesh,
(continued)		glycoside		and
,				Subramanian,
				1975
O. mossambicensis	gentisic acid (38)	benzenoid	leaf	Griffiths,
				1959
O. obtusata	2,3-dihydro	biflavonoid	leaf	Rao et al.,
	ochnaflavone (7)			1997
	2,3-dihydro	biflavonoid	leaf	Rao et al.,
	ochnaflavone 7-O-			1997
	methyl ether (8)			
	kaempferol 3-O-	flavonoid	leaf	Rao et al.,
	glucoside (12)	glycoside		1997
	ochnaflavone (4)	biflavonoid	leaf	Rao et al.,
		- A		1997
	przewalskinone B	anthraquinone	stem bark	Sivaprakasam
	(39)	รพยา	าร	et al., 1997
	quercetin 3-O-	flavonoid	leaf	Rao et al.,
จหา	glucoside (40)	glycoside	ปาลย	1997
O. pulchra	acetylvisimione D	anthraquinone	root bark	Sibanda et al.,
	(41)		¥	1993
	3-O-geranylemodin-	anthraquinone	root bark	Sibanda et al.,
	anthrone (42)			1993
	(-)-ochnabianthrone	anthraquinone	root bark	Sibanda et al.,
	(43)			1990

Table 1 Chemical constituents of genus Ochna (continued)

Plant species	Chemical constituent	Category	Part	Reference
O. pulchra	vismione D (44)	anthraquinone	root bark	Sibanda et al.,
(continued)				1993
	vismione L (45)	anthraquinone	root bark	Sibanda et al.,
				1993
	vismione M (46)	anthraquinone	root bark	Sibanda et al.,
				1993
	ochnaflavone (4)	biflavonoid	leaf	Kamil et al.,
				1983
				Kamil et al.,
				1987
O. pumila	7"-O-methyl	biflavonoid	leaf	Kamil et al.,
	ochnaflavone (47)	0)))))))		1983
		44/60		Kamil et al.,
	(3)			1987
	7"-O-methyltetrahydro-	biflavonoid	leaf	Kamil et al.,
	amentoaflavone (48)			1987
	tetrahydroamentoflavone	biflavonoid	leaf	Kamil et al.,
	(49)			1987
O. squarrosa	campesterol (50)	steroid	entire	Purushothaman,
			plant	Sarada and
				Ablakrishnan,
				1980
	4′,7-di- <i>O</i> -methyl	biflavonoid	leaf	Okigawa and
	ochnaflavone (51)			Kawano, 1976

Table 1 Chemical constituents of genus Ochna (continued)

Plant species	Chemical constituent	Category	Part	Reference
O. squarrosa	isovitexin (52)	flavonoid	leaf	Mohammad
(continued)		glycoside		et al., 1982
	5-methoxyfurano	flavonoid	stem	Reddy, Kumar
	(2",3": 7,8) flavone			and
	(53)			Srimannarayana,
				1983
	ochnaflavone (4)	biflavonoid	leaf	Okigawa and
				Kawano, 1973
	4'-O-methyl	biflavonoid	leaf	Okigawa and
	ochnaflavone (54)			Kawano, 1976
	octacosan-1-ol (55)	long chained	Entire plant	Purushothaman,
	(<u>1966)</u>	alcohol		Sarada and
		4/4/4/4		Ablakrishnan,
	. 6			1980
	orientin (36)	flavonoid	leaf	Okigawa and
		glycoside		Kawano, 1976
	β-sitosterol (56)	steroid	heart wood	Rao and
	Q ,			Gunasekar, 1989
ন গ	oleanolic acid (57)	steroid	heart wood	Rao and
9				Gunasekar, 1989
	squarrosin (58)	isoflavonoid	heart wood	Rao and
			· ·	Gunasekar, 1989
	5,7,8-trimethoxy-3',4'-	isoflavonoid	root bark	Nia and
	methylenedioxy			Gunasekar, 1992
	isoflavone (59)			

Table 1 Chemical constituents of genus Ochna (continued)

Plant species	Chemical constituent	Category	Part	Reference
O. squarrosa	vitexin (37)	flavonoid	leaf	Mohammad
(continued)		glycoside		et al., 1982
	5, 3',4'-trimethoxy-6,7-	isoflavonoid	heart wood	Rao and
	methylenedioxy			Gunasekar, 1989
	isoflavone (60)			
	vitexin (37)	flavonoid	leaf	Mohammad
		glycoside		et al., 1982

2. Biological activity of compounds isolated from Ochna

Ochnaflavone (4), a biflavonoid found in many Ochna species e.g. O. atropurpurea, O. beddomei, O. obtusata, O. pumila and O. squarrosa, inhibited rat platelet phospholipase A₂ at IC₅₀ 3 μM (Chang et al., 1994). Lophirone A (27), a compound isolated from plants in the genera Lanceolata and Ochna, significantly inhibited inflammation of mouse ear which was induced by HHPA (12-O- hexadeca-noyl-16-hydroxyphorbol-13-acetate). It also inhibited both Ca²⁺ and phospholipid-dependent protein kinase C (PKC) activation by 12-O-tetradecanoylphorbol-13-acetate (TPA) at IC₅₀ 50 μM. Application of lophirone A 160 nmol reduced the number of tumors per mouse in an initiation-promotion experiment using dimethylbenz[a]anthracene (DMBA) 0.19 mumol and TPA 1.6 nmol on ICR mouse skin. (Murakami, et al., 1991).

3. Flavonoids with free radical scavenging activities

Flavonoids are widely distributed in plants. Over 4,000 structures have been identified. Some of them have long been recognized to possess anti-inflammatory, antioxidative, antiallergic, hepatoprotective, antithrombotic, antiviral and anticarcinogenic activities (Middleton, Kandaswami and Theoharides, 2000). Most interesting activity has been devoted to the antioxidative activity of flavonoids, which is due to their ability to reduce free radical formation and to scavenge free radicals (Pietta, 2000). Flavonoids as free radical scavengers have been grouped, as follows:

3.1 Flavone derivatives

The antilipid peroxidative effects of some flavones were investigated using CCl_4 -induced lipid peroxidation in rat microsomes. The active compounds were apigenin (61), gardenin D (62) and luteolin (63) with IC_{50} values of 79.1 \pm 0.8, 84.6 \pm 1.7 and 70.4 \pm 1.7 μ M, respectively (Cholbi, Paya and Alcaraz, 1991). Table 2 shows the results of luteolin (63), sorbalin (64), biacalin (65) in inhibiting lipid perooxidation which was induced by H_2O_2 , Fe^{2+} and $H_2O_2+Fe^{2+}$. Cirsimarin (66), 6-hydroxyluteolin (67), baicalein (68) exhibited antilipid peroxidative activity induced by Fe^{2+} and $H_2O_2+Fe^{2+}$. In another report apigenin (61) and scutellarein (69) inhibited $H_2O_2+Fe^{2+}$ induced lipid peroxidation while luteolin 7-O-glucoside (70) inhibited $H_2O_2+Fe^{2+}$ induced lipid peroxidation (Yokozawa *et al.*, 1997).

Table 2 $\,$ IC $_{50}$ ($\mu g/ml$) values of antilipid peroxidative flavones

Compound	Treatment				
	H ₂ O ₂	Fe ²⁺	H ₂ O ₂ + Fe ²⁺		
61	68.58 <u>+</u> 16.18	>500	>500		
63	16.84 <u>+</u> 2.17	2.64 <u>+</u> 0.04	1.18 <u>+</u> 0.01		
64	16.20 <u>+</u> 1.45	2.0 <u>+</u> 0.09	0.82 <u>+</u> 0.01		
65	>500	23.31 <u>+</u> 1.13	4.40 <u>+</u> 0.09		
66	100.07 <u>+</u> 13.49	46.32 <u>+</u> 6.8	6.76 <u>+</u> 0.41		
67	>500	287.20 <u>+</u> 57.04	14.58 <u>+</u> 0.33		
68	>500	316.71 <u>+</u> 31.55	16.58 <u>+</u> 1.06		
69	2.80 <u>+</u> 0.56	>500	>500		
70	>500	>500	125.07 <u>+</u> 17.68		

Flavones also showed ABTS⁺ cation scavenging activity, in comparison with trolox, a standard compound. The activity was expressed as the trolox equivalent antioxidative capacity value (TEAC) (Pietta, 2000), as shown in Table 3.

Table 3 Flavones as ABTS + cation scavengers

Compound	TEAC (mM)
apigenin (61)	1.45
luteolin (63)	2.09
luteolin 4'-glucoside (71)	1.74
chrysin (72)	1.43

2''-O-Glycosylisovitexin (73) from barley leaves, Hordium vulgare L. Var nudum Hook, showed activity against H_2O_2 + Fe^{2+} induced ethylinoleate oxidation at $100 \mu g/1.5 mg$ of ethyl linoleate (Osawa et al., 1992). Flavones from Ginkgo biloba have been studied for their antilipid peroxidation which was induced by t-butyl peroxide. Only luteolin (63) exhibited DPPH radical scavenging activity as shown in Table 4 (Joyeux et al., 1995).

Table 4 Antilipid peroxidation flavones from Ginkgo biloba

Compound	Concentration (µM)	MDA nm/10 ⁶ cell	DPPH, % decoloration 10 ⁻⁴ M
apigenin (61)	100	7.13 <u>+</u> 0.48	0
luteolin (63)	100	0.70 <u>+</u> 0.18	59
chrysin (72)	100	6.93 <u>+</u> 1.79	0
flavone (74)	100	11.11 <u>+</u> 0.32	. 0
acacetin (75)	100	6.97 <u>+</u> 0.51	0

3.2 Flavonol derivatives

Flavonols which inhibited CCl₄-induced lipid peroxidation were dasticetin (76), galangin (77), morin (78) and robinetin (79) with IC₅₀ values of 39.5±0.8, 68.9±1.3, 48.5±0.9 μM, 96.8±1.6 μM, respectively (Cholbi, Paya and Alcaraz, 1991). Yokozawa *et al.*, 1997 have studied several flavonols with antilipid peroxidative activity as shown in Table 5.

Table 5 Antilipid peroxidative activities of flavonols

Compound		Treatment	
	H ₂ O ₂	Fe ²⁺	H ₂ O ₂ + Fe ²⁺
rhamnetin (80)	18.06 <u>+</u> 4.44	0.96 <u>+</u> 0.07	0.73 <u>+</u> 0.01
hyperin (81)	49.56 <u>+</u> 8.69	2.94 <u>+</u> 0.03	1.09 <u>+</u> 0.05
oxyayanin A (82)	1.09±0.07	1.44 <u>+</u> 0.02	1.18 <u>+</u> 0.03
quercetin (83)	3.02 <u>+</u> 0.13	0.01 <u>+</u> 0.01	1.32 <u>+</u> 0.03
chrysosplenol B (84)	3.11 <u>+</u> 0.33	1.66 <u>+</u> 0.03	1.40 <u>+</u> 0.02
kaempferol (10)	51.33 <u>+</u> 5.54	3.55 <u>+</u> 0.11	4.23 <u>+</u> 0.06
isoquercitrin (40)	>500	56.02 <u>+</u> 4.63	5.03 <u>+</u> 0.12
chrysosplenol C (85)	>500	>500	10.34 <u>+</u> 0.79
quercitrin (31)	12.77 <u>+</u> 1.47	>500	20.56 <u>+</u> 0.86
tetramethylquercitin (86)	15.11 <u>+</u> 2.21	5.36 <u>+</u> 0.31	22.23 <u>+</u> 0.32
quercimeritrin (87)	253.31 <u>+</u> 99.60	>500	78.25 <u>+</u> 3.50
rutin (88)	22.74 <u>+</u> 6.09	>500	>500

Some flavonols have been tested for their free radical scavenging activities, and the results are shown as TEAC values in Table 6 (Pietta, 2000). Flavonol derivatives, from *Ginkgo biloba*, inhibited *t*-BuOOH-induced lipid peroxidation and showed DPPH radical scavenging activities as shown in Table 6 (Joyeux, *et al.*, 1995).

Table 6 TEAC values and antilipid peroxidative activities of flavonols

Compound	TEAC	Concentration	MDA	DPPH, % decoloration
	(mM)	(μ M)	nm/10 ⁶ cell	10 ⁻⁴ M
kaempferol (10)	1.34	50	11.12 <u>+</u> 0.19	37
galangin (77)	1.49	-	-	-

Table 6 TEAC values and antilipid peroxidative activities of flavonols (continued)

Compound	TEAC	Concentration	MDA	DPPH, % decoloration
	(mM)	(μ M)	nm/10 ⁶ cell	10 ⁻⁴ M
quercetin (83)	4.7	50	1.33 <u>+</u> 0.07	58
rutin (88)	2.42	-	-	-
myricetin (89)	-	50	0.48 ± 0.06	63
fisetin (90)		50	1.95 <u>+</u> 0.10	44

Many flavonol glycoside derivatives from Eucalyptus rostrata also inhibited peroxidation of rabbit erythrocyte as shown in Table 7 (Okamura et al., 1993).

Table 7 Antilipid peroxidative activities of flavonol glycosides from Eucalyptus rostrata

Compound	IC ₅₀ (μM)
kaempferol (10)	80
quercetin (83)	43
myricetin (89)	53
quercetin 4'-O-β-D-glucopyranoside (91)	162
quercetin 3-O-β-D-galactopyranoside (92)	151
quercetin 3-O-β-D-glucopyranoside (93)	216
myricetin 3-O-α-L-arabinopyranoside (94)	182
quercetin 3- O-α-arabinopyranoside-2"-gallate (95)	34
kaempferol 3- O-α-arabinopyranoside-2"-gallate (96)	65
quercetin 4'-O-β-D-glucopyranoside-6"-gallate (97)	26

5,6,7,4'-Tetrahydroxyflavonol 3-O-rutinoside (98) and kaempferol 3-O-neohesperidoside (99) from Daphniphyllum calycinum showed moderate activity against DPPH radical assay with IC₅₀ 43.2 μg/ml and 79.6 μg/ml, respectively (Gamez et al., 1998). The aerial part of Polygonum salicifolium gave many flavonol glycosides (100-105) that demonstrated scavenging properties toward 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in TLC autobiographic assay (Calis et al., 1999).

3.3 Flavanone derivatives

Eriodictyol (106) showed antilipid peroxidative effect in rat liver microsome induced by CCl₄ with IC₅₀ of 78.9±1.3 μM (Cholbi, Paya and Alcaraz, 1991). This compound (106) and several flavanone derivatives, including hesperetin (107), naringenin (108) and naringenin 7-rutinoside (109) exhibited ABTS^{-†} cation scavenging activities with TEAC values at 1.8, 1.4, 1.5 and 0.8 mM, respectively (Pietta, 2000).

3.4 Flavanonol derivatives

Taxifolin (110) inhibited CCl_4 -induced rat liver microsome lipid peroxidation at IC_{50} 100 mM (Cholbi, Paya and Alcaraz, 1991). TEAC values of taxifolin (110) and dihydrokaempferol (111) have been reported at IC_{50} 1.9 and 1.30 mM, respectively (Pietta, 2000).

3.5 Flavan derivatives

Catechin (112) exhibited antilipid peroxidative effect in rat liver microsome, induced by CCl₄ at IC₅₀ 87.1 \pm 1.7 μ M (Cholbi, Paya and Alcaraz, 1991).

The ABTS⁺ cation scavenging activities of (+)-catechin (21), (-)-epicatechin (9), (-)-epigallocatechin (113), (-)-epicatechin gallate (114) and (-)-epigallo- catechin gallate (115) have been shown as TEAC values at 2.4, 2.5, 3.8, 4.93 and 4.75 mM, respectively (Pietta, 2000).

Flavan derivatives isolated from *Celastrus orbiculatus*, (-)-epicatechin 5-O- β -D-glucosyl 3-benzoate (116) and (-)-epicatechin 3-benzoate (117) were found to be moderately active in the DPPH assay with IC₅₀ values of 25 and 17 μ g/ml while (-)-epicatechin (9) and (-)-epiafzalechin (118) showed more potent activities with IC₅₀ values of 8.5 and 7.5 μ g/ml (Hwang *et al.*, 2001).

Regarding isoflavan derivatives from *Glycyrrhiza glabra*, glabridin (119) showed potent inhibitory activity against Fe³⁺-ascorbate induced lipid peroxidation at IC₅₀ 3.5 μ M whereas 3'-O-hydroxy-4'-methylglabridin (120) exhibited antioxidative activity against Fe³⁺-ADP/NADPH dependent lipid peroxidation at IC₅₀ 0.4 μ M (Haraguchi, 2001).

3.6 Anthocyanidin derivatives

Anthocyanidin derivatives, such as cyanidin (121), cyanidin 3-rutinoside (122) and pelargonidin (123), showed ABTS.⁺ cation scavenging activities as TEAC values at 4.4, 3.2 and 1.3 mM (Pietta, 2000). The antilinoleic acid oxidative effects of cyanidin 3-*O*-β-D-glucoside (124), pelargonidin 3-*O*-β-D-glucoside (125), delphinidin 3-*O*-β-D-glucoside (126) isolated from *Phaseolus vulgaris* have been reported (Tsuda, *et al.*, 1994). The anthocyanins, cyanidin 3-*O*-rhamnosyl-1"-glucosyl-4"-*O*-rhamnoside (127), cyanidin 3-*O*-rhamnosyl-1"-*O*-rhamnoside (128), cyanidin 3-*O*-rhamnoside (129), and cyanidin (121) from cherry, have shown their anti Fe²⁺-induced lipid peroxidative activity at IC₅₀ 39, 70, 75 and 57 at 2 mM (Wang *et al.*, 1999).

3.7 Isoflavone derivatives

Genistein (130), biachanin A (131), daidzein (132), formonetin (133) and genistein 7-glucoside (134) exhibited their ABTS⁺ cation scavenging activities with TEAC values at 2.90, 1.16, 1.25, 0.11 and 1.24 mM, respectively (Pietta, 2000).

Isoflavan and pterocarpan derivatives (135-159) from Lespedeza homoloba exhibited antioxidative activity against lipid peroxidation in the rat brain homogenate test, as shown in Table 8 (Miyase et al., 1999).

Table 8 Antioxidative activities of isoflavonoids from Lespedeza homoloba

Compound	Antioxidative activity IC ₅₀ (μΜ)	O ₂ radical scavenging activity (%)
haginin E (135)	0.3	52.4
haginin D (136)	0.2	38.0
3,9-dihydroxypterocarp-6a- en (137)	0.2	76.1
lepedezol A ₁ (138)	0.2	61.4
lepedezol A ₂ (139)	0.2	51.3
lepedezol A ₃ (140)	0.3	64.8
lepedezol B ₁ (141)	0.3	64.4
lepedezol B ₂ (142)	0.2	69.8
lepedezol B ₃ (143)	0.3	61.4
lepedezol C ₁ (144)	0.3	55.5
lepedezol A ₄ (145)	0.2	85.1

Table 8 Antioxidative activities of isoflavonoids from Lespedeza homoloba (continued)

Compound	Antioxidative activity	O ₂ radical scavenging	
	IC ₅₀ (μΜ)	activity (%)	
lepedezol A ₅ (146)	0.4	66.8	
lepedezol A ₆ (147)	0.4	24.2	
lepedezol D ₁ (148)	_d	-15.5	
lepedezol D ₂ (149)	_d	2.5	
lepedezol D ₃ (150)	0.5	98.6	
lepedezol D ₄ (151)	0.1	14.7	
lepedezol D ₅ (152)	0.2	-5.9	
lepedezol D ₆ (153)	0.1	-12.7	
lepedezol E ₁ (154)	_d	89.1	
lepedezol E ₂ (155)	0.4	54.7	
lespedol D (156)	_d	-14.7	
lespedol E (157)	_d	11.7	
lepedezol F ₁ (158)	0.4	54.9	
lepedezol G ₁ (159)	_d	9.2	

⁻d = not determined

3.8 Chalcone derivatives

Retrochalcones (160-164) isolated from the root of *Glycyrrhiza* inflata exhibited anti Fe^{3*}-ADP/NADPH-induced lipid peroxidative activity. In particular, licochalcone B (161) and licochalcone D (163) showed O₂ radical scavenging and DPPH scavenging activities (Haraguchi, 2001), as shown in Table 9.

Table 9 Antioxidative activities of retrochalcones from Glycyrrhiza inflata

Compound	IC ₅₀ (μM)			
	lipid peroxidation	DPPH radical	O ₂ generation	
licochalcone A (160)	18.1	44.1	64.8	
licochalcone B (161)	2.5	6.5	7.0	
licochalcone C (162)	44.1	>100	71.2	
licochalcone D (163)	2.0	5.7	9.9	
echinatin (164)	61.0	>100	>100	

3.9 Biflavone derivatives

Amentoflavone (165) inhibited CCl_4 -induced rat liver microsome lipid peroxidation at IC_{50} 74.1±0.8 µM (Cholbi, Paya and Alcaraz, 1991). Antilipid peroxidative and DPPH scavenging activity of several biflavones from *Ginkgo biloba* have been reported, as shown in Table 10 (Joyeux, *et al.*, 1995).

Table 10 Antioxidative activities of biflavones from Ginkgo biloba

Compound	Concentration	MDA	DPPH, % decoloration
	(μM)	nm/10 ⁶ cell	10 ⁻⁴ M
amentoflavone	100	3.83 <u>+</u> 0.49	21
(165)		,	
bilobetin (166)	100	2.26 <u>+</u> 0.15	0
ginkgetin (167)	100	3.14 ± 0.18	0
isoginkgetin (168)	100	2.93 <u>+</u> 0.38	0
sciadopitysin (169)	100	4.50 <u>+</u> 0.70	0

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 2 Structures of compounds previously isolated from Ochna

(5)

$$H_3CO$$
 H_3CO
 H_3CO

Figure 2 Structures of compounds previously isolated from Ochna (continued)

(14)

(15)

(34)

Figure 2 Structures of compounds previously isolated from Ochna (continued)

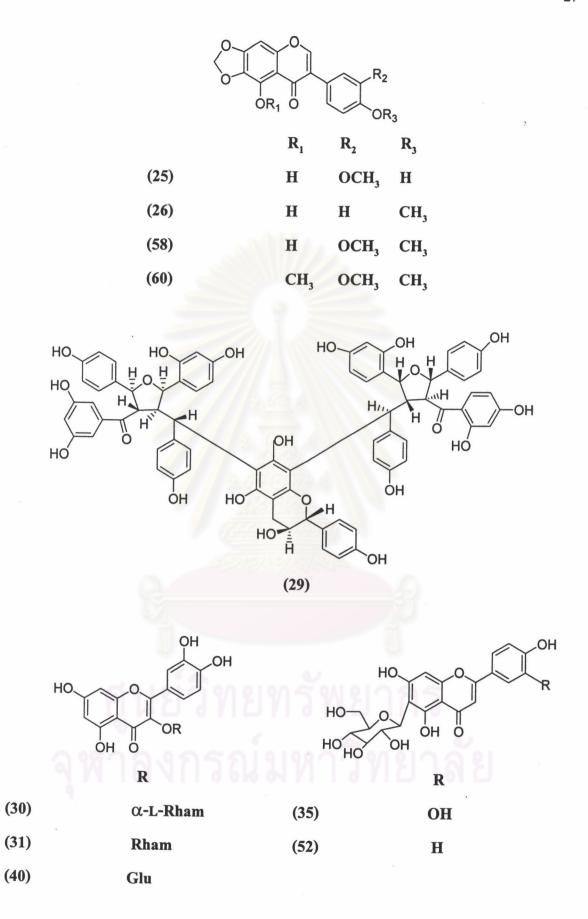


Figure 2 Structures of compounds previously isolated from Ochna (continued)

Figure 2 Structures of compounds previously isolated from Ochna (continued)

Figure 2 Structures of compounds previously isolated from Ochna (continued)

	5	6	7	8	3'	4'
(61)	ОН	Н	ОН	Н	H	ОН
(62)	ОН	OCH ₃	OCH ₃	OCH ₃	ОН	OCH ₃
(63)	ОН	Н	ОН	Н	ОН	ОН
(64)	ОН	ОН	ОН	Н	H	ОН
(65)	ОН	ОН	O-Glucur	Н	H	H
(66)	ОН	OCH ₃	OCH ₃	Н	H	O-Glu
(67)	ОН	ОН	ОН	Н	ОН	ОН
(68)	ОН	ОН	ОН	н	H	H
(69)	ОН	ОН	ОН	н	H	ОН
(70)	ОН	Н	<i>O</i> -Glu	н	H	ОН
(71)	ОН	Н	ОН	H	ОН	<i>O</i> -Glu
(72)	ОН	Н	ОН	H	Н	Н
(74)	н	Н	Н	Н	H	Н
(75)	ОН	H on e	ОН	H	Н	OCH ₃

Figure 3 Structures of flavonoids with free radical scavenging activity

Figure 3 Structures of flavonoids with free radical scavenging activity (continued)

	\mathbf{R}_{1}	R_2	R_3	R_4
(91)	ОН	O-Glc	H	ОН
(92)	ОН	ОН	H	O-Gal
(93)	ОН	ОН	Н	O-Glu
(94)	ОН	ОН	ОН	O-Ara
(95)	ОН	ОН	Н	<i>O</i> -α-Ara-2"-gallate
(96)	Н	ОН	Н	<i>O</i> -α-Ara-2"-gallate
(97)	ОН	O-Glc-6"-gallate	H	ОН

Figure 3 Structures of flavonoids with free radical scavenging activity (continued)

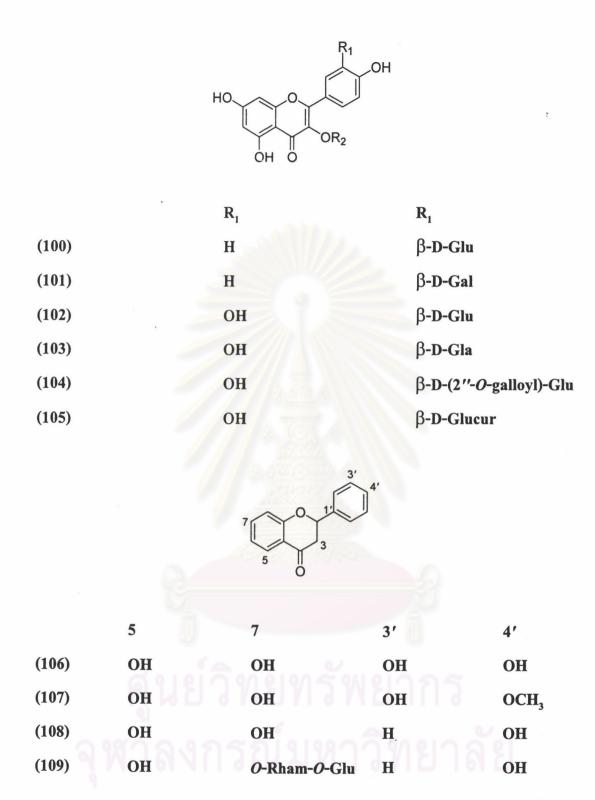


Figure 3 Structures of flavonoids with free radical scavenging activity (continued)

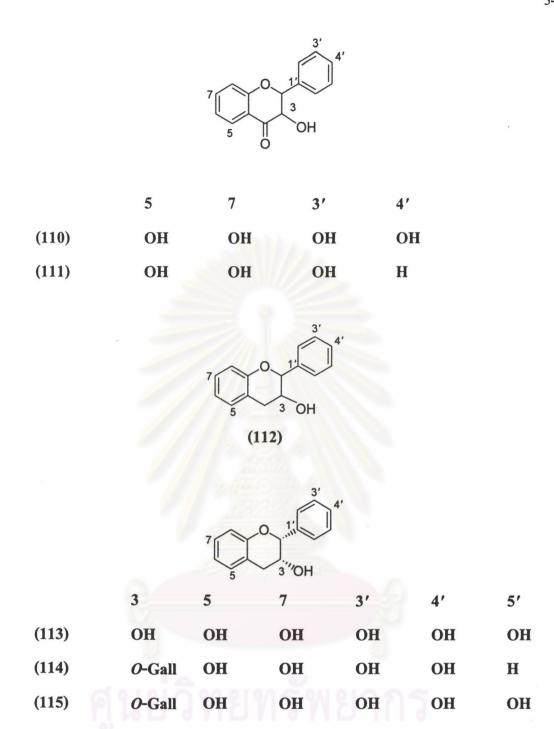


Figure 3 Structures of flavonoids with free radical scavenging activity (continued)

OH HO
$$_{7}$$
 $_{6}$ $_{5}$ $_{3}$ $_{7}$ $_{9}$ $_{2}$ $_{4}$ $_{4}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{6}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{6}$ $_{6}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{6}$ $_{4}$

Figure 3 Structures of flavonoids with free radical scavenging activity (continued)

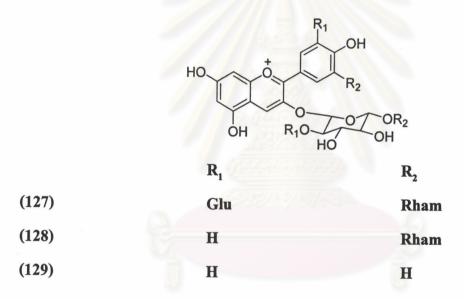


Figure 3 Structures of flavonoids with free radical scavenging activity (continued)

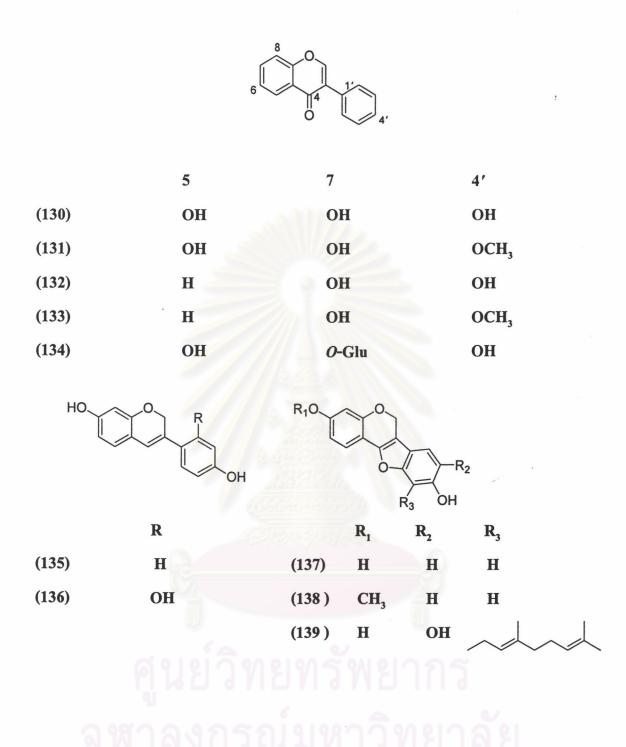


Figure 3 Structures of flavonoids with free radical scavenging activity (continued)

Figure 3 Structures of flavonoids with free radical scavenging activity (continued)

Figure 3 Structures of flavonoids with free radical scavenging activity (continued)

Figure 3 Structures of flavonoids with free radical scavenging activity (continued)

คูนยวทยทรพยากร หาลงกรณ์มหาวิทยาลัย

Figure 3 Structures of flavonoids with free radical scavenging activity (continued)