

CHAPTER IV

RESULTS AND DISCUSSION

1. Isolation of the endophytic fungus ARE-1

Only one isolate of the endophytic fungus was germinated from healthy leaf of *Annona reticulata* L. (Annonaceae) (Figure 1). It was designated as ARE-1. Its colony morphology on five different culture media, *i.e.* CzYA, MCzA, MEA, SDA and YES, is shown in Figure 2.

2. Classification of the endophytic fungus isolate ARE-1

2.1 Conventional method

Isolate ARE-1 did not produce conidium or spore on common mycological media including PDA. In addition, it did not sporulate when grown on banana leaf agar, a nutritionally weak medium, under near UV light (a 12 h on/off cycle) for 2 months. This condition is suggested for promoting sporulation (Smith and Onions 1994). Therefore, ARE-1 was classified as Mycelia sterilia.

2.2 Molecular method

In attempt to classify the endophytic fungus isolate ARE-1, molecular method determining the nucleotide sequence of ITS1-5.8S-ITS2 region of rRNA gene was applied. Nucleotide sequence of ITS region can be used to separate taxa from class to species (Mitchell *et al.*, 1995).

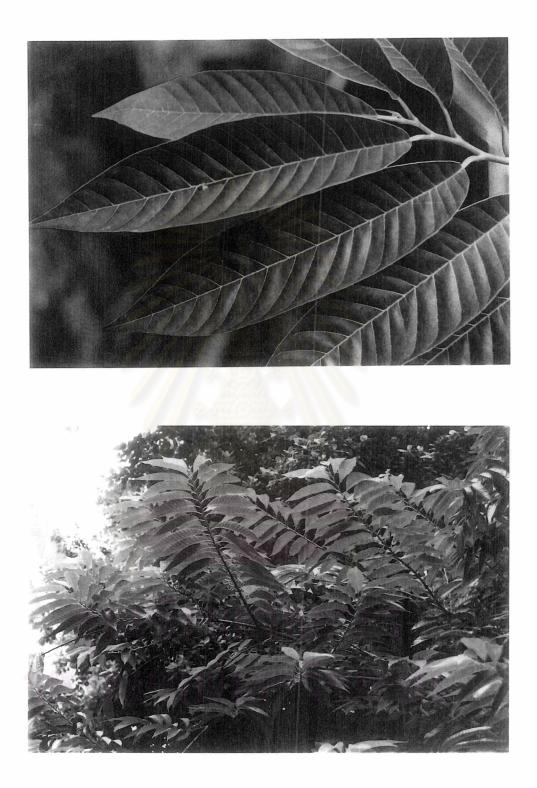
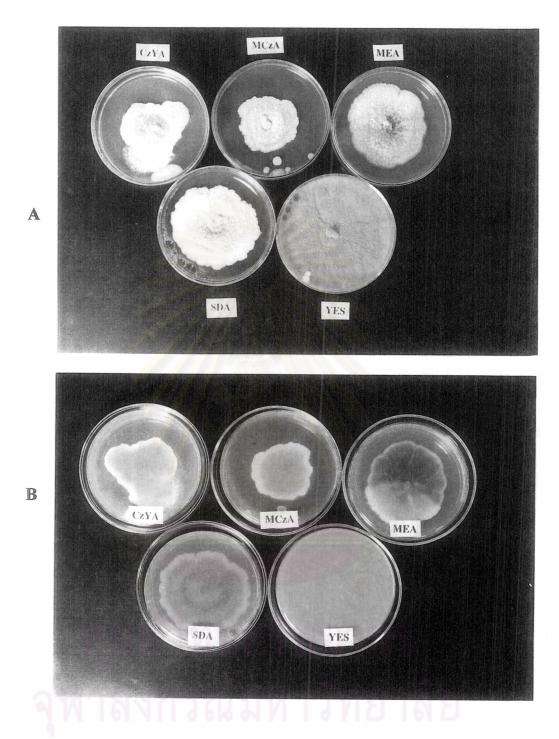



Figure 1 Leaf of Annona reticulata L. (Annonaceae)

Figure 2 Colony morphology of the endophytic fungus isolate ARE-1 on five different mycological media (CzYA, MCzA, MEA, SDA and YES) after cultivation for 7 days at 30 °C. Appearance on the obverse side (A) and on the reverse side (B).

2.2.1 The PCR product of ITS1- 5.8S-ITS2 region of ribosomal DNA

PCR conditions were optimized to amplify a rDNA gene of the isolate ARE-1. The oligonucleotide primers ITS4 and ITS5 were used to amplify a DNA fragment at 3' end of 18S, ITS1-5.8S-ITS2 and 5' end of 28S rDNA. The PCR product with expected size was obtained, as shown in Figure 3.

Figure 3 Agarose gel electrophoresis of PCR product from amplification of 3'end of 18S, ITS1-5.8S-ITS2 and 5' end of 28S rDNA. Lanes 1 and 3 were $\lambda PstI$ marker, and Lane 2 was the PCR product of ARE-1.

2.2.2 Nucleotide sequences of partial 18S sequence, complete ITS1-5.8S-ITS2 sequences and partial 28S sequence of the isolate ARE-1

Sequencing of the PCR product resulted in a 583 bp fragment. It comprised 3' end of 18S sequence, complete ITS1-5.8S-ITS2 sequences and 5' end of 28S sequence, as shown in Figure 4.

1 TTGGA AGTAA AAGTC GTAAC AAGGT CTCCG TTGGT GAACC 40

--ITS1 18S 41 AGCGG AGGGA TCATT GCTGG AACGC GCCCC AGGCG CACCC 80 81 AGAAA CCCTT TGTGA ACTTA TACCT TACTG TTGCC TCGGC 120 121 GTACG CTGGC CCCTA GGGGT CCCTC TGTCT ACAGA GGAGC 160 161 AGGCG CGCCG GCGGC CAAGT TAACT CTTGT TTTTA CACTG 200 ITS1 5.85 201 AAACT CTGAG AAAAA AACAA AAATG AATCA AAACT TTCAA 240 241 CAACG GATCT CTTGG TTCTG GCATC GATGA AGAAC GCAGC 280 281 GAAAT GCGAT AAGTA ATGTG AATTG CAGAA TTCAG TGAAT 320 321 CATCG AATCT TTGAA CGCAC ATTGC GCCCT CCGGT ATTCC 360 5.8S ITS2 361 GGAGG GCATG CCTGT TCGAG CGTCA TTTCA ACCCT CAAGC 400 401 CTGGC TTGGT GTTGG GGCAC TGCCT GTAAA AGGGC AGGCC 440 441 CTCAA ATCTA GTGGC GAGCT CGCCA GGACC CCGAG CGTAG 480 481 TAGTT AAACC CTCGC TTTGG AAGGC CCTGG CGGTG CCCTG 520 ITS2 28S 521 CCGTT AAACC CCCAA CTCTT TGAAA ATTTG ACCTC GGATC 560 561 AGGTA GGAAT ACCCG CTGAA CTT

Figure 4 Nucleotide sequences of the partial 18S sequence, complete ITS1-5.8S-ITS2 sequences and partial 28S sequence of the isolate ARE-1.

Chappethogonaic musille	-) 3(CGTGGCCC	
Chaenothecopsis pusilla ARE1			AGGCGCACCC	
Fungal endophyte MUT 2715			AGGCGCACCC	
Diaporthe phaseolorum			AGGCGCACCC	
D.meridionalis			AGGCGCACCC	
D.caulivora			AGGCGCACCC	
D.helianthi			CGGCGCACCC	
D.vaccinii	CTGGAA	-GCCCCCC	AGAAGCACCC	AGAAA
Phomopsis vaccinii	CTGGAA	CGCGCCCC	AGGCGCACCC	AGAAA
P.oryzae	CTGGAA	CGCGCCCC	AGGCGCACCC	AGAAA
P.amygdali	CTGGAA	CGCGCCT	CGGCGCACCC	AGAAA
P.quercina	CTGGAA	CGCGCCCC	AGGCGCACCC	AGAAA
P.juniperivora	TTGGAA	CGCGCCCC	AGGGGCACCC	AAAA
P.longicolla	CTGGAA	CGCGCTT	CGGCGCACCC	AGAAA
P.sojae	CTGGAA	CGCGCTT	CGGCGCACCC	AGAAA
P.sclerotioides	CTGGA-	CGCGCTT	CGGCGCACCC	AGAAA
P.columnaris	ATTGCTGGAA	CGCGCTT	CGGCGCACCC	AGAAA
Cytospora eucalypticola	TTGGAA	CGCGCT-	C-GCGCACCC	AGAAA
Mycosphaerella latebrosa		TGAGGGCCCT	CGGGCC	CGACCTCCCA
M.berberidis		TGAGGGCCTT	CGGGCT	CGACCTCCAA
M.nubilosa	C-CGAG	TGAGGG	CGGCAGCC	CGACCTCCTA
M.cryptica	C-CGAG	TGAGGG	CGCCCGCC	CGACCTCCAA
Lophodermium conigenum	-AAGAAAAAA	C-ATG-CCTT	CGGGCT	CTGTTCT'TCT
Pseudocercospora eriodendri	CT-GAG	TGAGGGCTCA	CGCC	CGACCTCCAA
Guignardia endophyllicola	CGCCGAAA	TGACCTT	C	TCA
Phyllosticta pyrolae	-CCGGGGAA-	GGTCC-T	C	TCACA

	1 1	1 1		
Chaenothecopsis pusilla			TGT-CCT	
ARE1			TATACCTT-A	
Fungal endophyte MUT 2715			TATACCTT-A	
Diaporthe phaseolorum			TATACCTT-A	
D.meridionalis			CATACCTT-A	
D. caulivora			TATACCTT-A	
D.helianthi			TATACCTAT-	
D.vaccinii			TATACCTAT-A	
Phomopsis vaccinii			TATACCTT-A	
P.oryzae			TATACCTT	
P.amygdali				
P.quercina			TATACCTT-A	
P. juniperivora			TATACCTT-A	
			GATACCTT-A	
P.longicolla Reside			TATACCTA	
P.sojae			TATACCTAT-	
P.sclerotioides			TATACCT-TA	
P.columnaris			TATACCT-TA	
Cytospora eucalypticola			TATACCTATA	
Mycosphaerella latebrosa				
M.berberidis				
M.nubilosa			A	
M.cryptica			A	
Lophodermium conigenum			ТА	
Pseudocercospora eriodendri				
Guignardia endophyllicola	CCCTTGTG	TAC-T-CACT	A	-TGTTGCTTT
Phyllosticta pyrolae	CCCTTGTG	TACCT-TACC	A	-TGTTGCTTT

Figure 5 Alignment data of complete ITS1-5.8S-ITS2 sequences of isolate ARE-1 and 25 reference taxa.

Chaenothecopsis pusilla ARE1 Fungal endophyte MUT 2715 Diaporthe phaseolorum D.meridionalis D.caulivora D.helianthi D. vaccinii Phomopsis vaccinii P.oryzae P.amygdali P.quercina P. juniperivora P.longicolla P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa M.berberidis M.nubilosa M. cryptica Lophodermium conigenum Pseudocercospora eriodendri Guignardia endophyllicola Phyllosticta pyrolae

90 100 110 120 GGCGGGGTCA --CCGTTCTC CCTCC-GG-- -GGGG-GATG GGCG---TAC -GCTGGCCCC -TA----- --GGG-GTCC GGCG---CAT -GCCGGCCCC C-A----- --GGG-GCCC GGCG---CAG -GCCGGCCCC CTA----- -CGGG-GCCC GGCG---CAG -GCCGGCCCC CCC---AG-- --GGG-GCCC GGCG---CAG -GCCGGCCCC -CTT----- -GGGG-GCCC GGCG---CAG -GCCGGCCCC CC--CT-G-- --GGG-GCCC GGCG---CTA -GCTGGCCC- -CT-C---- --GGG-GCCC GGCG---CTA -GCTGGCCC- -CT-C---- --GGG-GCCC GGCG---CT- -GCTGGT--- -CT-CTAGTA ---GG--CCC GGCG---CAG -GCCGGCCCC -CTTCT---- -GGGG-GCCC GGCG---CTA -GCTGGTCC- --TTC---- --GGG-GCCC GGCG---CTA -GCTGGTCC- --TTC---- --GGG-GCCC GGCG---CAG -GCCGGCCT- -TTT-GTG-A CAAAG-GCCC GGCC---TAG -GCCGGCCT- -CTTC----A CTGAG-GCCC GGCG---CAG -GCCGGCC-- ---TC----A CCGAG-GCCC GGCG---CAG -GCCGGCC-- ---TC----A CTGAG-GCCC GGCG---TCG -GCTGCCCCC C--TCG---- -GGGG-GTCC GGGG--GCGA CCCTGCCG-- -TTTCG--CG GCGAGCGCCC GGGG--GCGA CCCTGCCG-- -TTTCGA-CG GCGAGCGCCC GGGG--GCGA CCC-GGCCCC C--GCGC-CG G--GG-CCCT GGGG--GCGA CCC-GGCCGC C--GTGC-CG G--GG-CCCC GGCG---CA- --CCG--CGC C-AGTGG--A TCGAAACCCT GGGG--GCGA CCCTGCCGGC ACTTCG---- CTGGGCGCCC GGCG--GCGA -CCTGG---- -TTCCGG-CG GCCGGCGCCC GGCG--GCGA -CCCGG---- -TTTCGG-CG GCCGGCGCCC 140 160 Chaenothecopsis pusilla GCCC----- GCCGGAGGAT CTCTG--TCT ----ACAGAG GAGCAGGCGC GCCGGCGGCC CTCGG-A--- ----GACGAG GAGCAGGCAC GCCGGCGGCC CTTGGC---- ----GACAAG GAGCAGGCCC GCCGGCGGCC CTCGG-A--- ----AACGAG GAGCAGGCCC GCCGGCGGCC CCCGG-A--- ----GACGGG GAGCAG-CCC GCCGGCGGCC CCTGGGA--- ----ACAGG GAGCAG-CCC GCCGGCGGCC CTCACCCTC- GGG----TT GAGACGGCCC GCCGGCGGCC CTCACCCTC- GGGTG---TT GAGACGGCCC GCCGGCGGCC

ARE1 Fungal endophyte MUT 2715 Diaporthe phaseolorum D.meridionalis D.caulivora D.helianthi D.vaccinii Phomopsis vaccinii P.oryzae P.amygdali P. *quercina* P. juniperivora P.longicolla P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa M.berberidis M.nubilosa M. cryptica Lophodermium conigenum Pseudocercospora eriodendri Guignardia endophyllicola Phyllosticta pyrolae

Figure 5. (continued)

CTCAC--TC- CGGTGAGGAA AA---GGCAC GCCGGCGGCC CTCGT--TC- C--TGACGAG GAGCAGGCTC GCCGGCGGCC CTCACCCTC- GGGTG---TT GAGATAGCCC GCCGGCGGCC CTCACCCTC- GGGTG---TT GAGACAGCCC GCCGGCGGCC CCT----- -GGAGACAGG GAGCAG-CCC GCCGGCGGCC CCT----- -GGAGACAGG GAGCAG-CCC GCCGGCGGCC CTC----- -GGAAACGAG GAGCAG-CCC GCCGGCGGCC CTC----- -GGAAACGAG GAGCAG-CCC GCCGGCGGCC CTCACCATCT CGGT---GAG GAGCAGGCCC GCCGGCGGCC CC----- -GGAGGCCTT -----C CC-----C -GGAGGCCTT -----C C-----CCC C-----TC C-----CCC C-----TC T-----TC CC----- -GGAGGTCTT -----C C-CAGCCT-T AACTGGCCAG GAC---GCCC ---GGC--T-C-CAGCC-CT CACCGGCCAG GAC---GTCA ---GGC--T-

	170) 180)
Chaenothecopsis pusilla		TCGTTTGTAA	
ARE1	AAGTTAACTC	TTGTTTTTAC	AC
Fungal endophyte MUT 2715	AAGTTAACTC	TTGTTTTTAC	AC
Diaporthe phaseolorum	AAGTTAACTC	T-GTTTTTAC	AC
D.meridionalis	AAGCCAACTC	TTGTTTTTAC	ACO
D.caulivora	AAGCTAACTC	TTGTTTTTAC	AC
D.helianthi	GACCAAACTC	TTGTTTCTAC	AG
D.vaccinii	AACC-AACTC	TTGTTTTTAC	AC
Phomopsis vaccinii	AACCCAACTC	TTGTTTTTAC	AC
P.oryzae	AAATCAACTC	T-GTTTTTAC	AC
P.amygdali	AAGTTAACTC	TTGTTTTTAT	TG
P.quercina	AACCCAACTC	TTGTTTTTAC	AC
P. juniperivora	AACCCAACTC	TTGTTTTTAC	AC
P.longicolla	AACCAAACTC	TTGTTTCTAC	AG
P.sojae	AACTAAACTC	TTGTTTCTAT	AG
P.sclerotioides	GACCAAACTC	TTGTTTCT-C	AG
P.columnaris	AACCAGACTC	TTGTTTCT-T	AG
Cytospora eucalypticola	AAGTTAACTC	TTGTTTTTAC	AC
Mycosphaerella latebrosa	CAACCC	-TGCATCT-T	TG
M.berberidis	AAACAC	-TGCATCT-C	TG
M.nubilosa	AACGGC	-TGGATCT-G	TG
M.cryptica	AACTC	-TGCATCT-T	TG
Lophodermium conigenum	A	TTG	-C(
Pseudocercospora eriodendri	AAACAC	-TGCATCT-T	TG
Guignardia endophyllicola	AAG	-TGCCC	-G
Phyllosticta pyrolae	AAG	-CGCCC	-GC

190 200 GTCGTCTG AGCGA-TGAG TGAAACTC TGAGAA--AA TGAAACTC TGAGAA-AAA CTGAAACTC TGAGCA--CA CCGAAACTC TGAGCA--AA TGAAACTC TGAGAA--AT STGGATCTC TGAGT-T-AA TGAAACTC TGAGAAT--A TGAAACTC TGAGAAT--A CTGAAACTC TGAGAA---A TGAAACTC TGAGAAT--A TGAAACTC TGAGAAT--A CTGAAACTC TGAGAAT--A STGAATCTC TGAGTA--CA STGAATCTC TGAGTA--AA STGGATCTC TGAGTA--AA STGGATCTC TGAGTA--AA TGAAACTC TGAGAAT--A CG----TC GGAGTTTAA-CG----TC GGAGTTTAA-CG----T- GGAGTAATA-CG----TC TGAGT--GA-CG----TC TGAGTACTA-CG----TC GGAGTT----CCA---- GTA-TACAAA CCA---- GTA-TACAAA

ACTCATAAAT TAATTAAAAC TTTCAACAAC GGATCTCTTG

210 220 230 240 Chaenothecopsis pusilla AAA-AAAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG ARE1 AAACAAAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG Fungal endophyte MUT 2715 AAAC-AAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG Diaporthe phaseolorum AAACATAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG D.meridionalis AAACACAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG D.caulivora AAACATAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG D.helianthi AAACACAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG AAACATAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG D.vaccinii AAACATAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG Phomopsis vaccinii P.oryzae AAACACAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG P.amygdali AAACATAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG P.quercina AAACATAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG P. juniperivora AAACATAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG P.longicolla AAACATAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG P.sojae AAACATAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG P.sclerotioides AAAAA-AAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG P.columnaris AAACATAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG Cytospora eucalypticola AAACAAAAAT GAATCAAAAC TTTCAACAAC GGATCTCTTG ----GTAAAT TAAACAAAAC TTTCAACAAC GGATCTCTTG Mycosphaerella latebrosa M.berberidis ----GTAAAT TAAACAAAAC TTTCAACAAC GGATCTCTTG M. nubilosa ----- CAATTAAAAC TTTCAACAAC GGATCTCTTG M.cryptica TAACGAAAAT CAATCAAAAC TTTCAACAAC GGATCTCTTG Lophodermium conigenum ----TATAA TAGTTAAAAC TTTCAACAAC GGATCTCTTG Pseudocercospora eriodendri ----TAAAT CAAACAAAAC TTTCAACAAC GGATCTCTTG Guignardia endophyllicola ACTCATATAT CGATTAAAAC TTTCAACAAC GGATCTCTTG

Phyllosticta pyrolae Figure 5. (continued)

Chaenothecopsis pusilla ARE1 Fungal endophyte MUT 2715 Diaporthe phaseolorum D.meridionalis D.caulivora D.helianthi D.vaccinii Phomopsis vaccinii P.oryzae P.amygdali P.quercina P. juniperivora P.longicolla P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa M.berberidis M. nubilosa M.cryptica Lophodermium conigenum Pseudocercospora eriodendri Guignardia endophyllicola Phyllosticta pyrolae

Chaenothecopsis pusilla ARE1 Fungal endophyte MUT 2715 Diaporthe phaseolorum D.meridionalis D.caulivora D.helianthi D.vaccinii Phomopsis vaccinii P.oryzae P.amygdali P.quercina P. juniperivora P.longicolla P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa M.berberidis M.nubilosa M.cryptica Lophodermium conigenum Pseudocercospora eriodendri Guignardia endophyllicola Phyllosticta pyrolae

····|····| ····| ····| ····| ····| ····| ····| ····| 260 250 270 280 GTTCTGGCAT CGATGAAGAA CGCAGCGAAA TGCGATAAGT 290 300 310 320 AATGTGAATT GCAGAATTCA GTGAATCATC GAATCTTTGA AATGTGAATT GCAGAATTCA GTGAATCATC GAATCTTTGA

> AATGTGAATT GCAGAATTCA GTGAATCATC GAATCTTTGA AATGTGAATT GCAGAATTCA GTGAATCATC GAATCTTTGA

Figure 5. (continued)

	····!····! ····! ····! ····! ····!
100- 100 F	330 340 350 360
Chaenothecopsis pusilla	ACGCACATTG CGCCCCCTGG TATTCCGGGG GGCATGCCTG
ARE1	ACGCACATTG CGCCCTCCGG TATTCCGGAG GGCATGCCTG
Fungal endophyte MUT 2715	ACGCACATTG CGCCCTCCGG TATTCCGGAG GGCATGCCTG
Diaporthe phaseolorum	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
D.meridionalis	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
D. caulivora	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
D.helianthi D.vaccinii	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
Phomopsis vaccinii	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
P.oryzae	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
P.amygdali	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
P.quercina	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
P. juniperivora	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
P.longicolla	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
P.sojae	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
P.sclerotioides	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
P.columnaris	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
Cytospora eucalypticola	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG ACGCACATTG CGCCCTCTGG TATTCCCGAA GGCATGCCTG
Mycosphaerella latebrosa	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
M.berberidis	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
M.nubilosa	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
M.cryptica	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
Lophodermium conigenum	ACGCACATTG CGCCCTCCGG TATTCCGGAG GGCATGCCTG
Pseudocercospora eriodendri	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
Guignardia endophyllicola	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
Phyllosticta pyrolae	ACGCACATTG CGCCCTCTGG TATTCCGGAG GGCATGCCTG
	SUCCESSION SUCCESSION SUCCESSION
	······································
Chaenothecopsis pusilla	TTCGAGCGTC ATTATCAACC CTCAAGCTCA GCTTGTTGTT
ARE1	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGTT
Fungal endophyte MUT 2715	TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT
Diaporthe phaseolorum	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGTT
D.meridionalis	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGTT
D.caulivora	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGTT
D.helianthi	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT
D.vaccinii	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT
Phomopsis vaccinii	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT
P.oryzae	TTCGAGCGTC ATT-TCAACC CTCAAGCATT GCTTGGTGTT
P.amygdali	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT
P.quercina	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT
P.juniperivora	mmoora come and mean and and and
Plongicalla	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT
P.longicolla	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT
P.sojae	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT
P.sojae P.sclerotioides	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT
P.sojae P.sclerotioides P.columnaris	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT
P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGTT
P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGTT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT
P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa M.berberidis	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCACCC CTCAAGCCTG GCTTGGTGTT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT
P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa M.berberidis M.nubilosa	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT
P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa M.berberidis M.nubilosa M.cryptica	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGTT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-CCACCA CTCCAGCCCC GCTTGGTATT
P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa M.berberidis M.nubilosa M.cryptica Lophodermium conigenum	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGTT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-CCACC CTCCAGCCCC GCTTGGTATT TTCGAGCGTC ATTA-CACC CTCCAGCCTC GCTGGTGTT
P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa M.berberidis M.nubilosa M.cryptica Lophodermium conigenum Pseudocercospora eriodendri	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGTT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTC GCTTGGTATT TTCGAGCGTC ATT-CACCC CTCCAGCCCC GCTTGGTATT TTCGAGCGTC ATTA-CACCC CTCCAGCCTC GCTGGGTGTT TTCGAGCGTC ATTA-CACCC CTCAAGCTT GCTTGGTGTT
P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa M.berberidis M.nubilosa M.cryptica Lophodermium conigenum Pseudocercospora eriodendri Guignardia endophyllicola	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-CACCA CTCCAGCCCC GCTTGGTATT TTCGAGCGTC ATTA-CACC CTCCAGCCTC GCTGGTGTT TTCGAGCGTC ATTA-CACC CTCAAGCTT GCTTGGTGTT TTCGAGCGTC ATTA-CACC CTCAAGCTT GCTTGGTGTT TTCGAGCGTC ATTA-CACC CTCAAGCTT GCTTGGTGTT TTCGAGCGTC ATT-TCACCA CTCAAGCTT GCTTGGTATT
P.sojae P.sclerotioides P.columnaris Cytospora eucalypticola Mycosphaerella latebrosa M.berberidis M.nubilosa M.cryptica Lophodermium conigenum Pseudocercospora eriodendri	TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGAT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCACT GCTTGGTGTT TTCGAGCGTC ATT-TCAACC CTCAAGCCTG GCTTGGTGTT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTG GCTTGGTATT TTCGAGCGTC ATT-TCACCA CTCAAGCCTC GCTTGGTATT TTCGAGCGTC ATT-CACCC CTCCAGCCCC GCTTGGTATT TTCGAGCGTC ATTA-CACCC CTCCAGCCTC GCTGGGTGTT TTCGAGCGTC ATTA-CACCC CTCAAGCTT GCTTGGTGTT

Figure 5. (continued)

				~
Chappetheory signature 11				- 110
Chaenothecopsis pusilla ARE1			GG-ACCG	
			AG-GGCAG-G	
Fungal endophyte MUT 2715			AA-GGCAG-G	
Diaporthe phaseolorum			GG-GGCAG-G	
D.meridionalis			AG-GGCAG-G	
D.caulivora			AG-GGCAG-G	
D.helianthi			AG-GGCAG-G	
D.vaccinii			AG-GGCAG-G	
Phomopsis vaccinii	GGGGCACTGC	CTTTACCCAA	AGGCAG-G	CCCTGAAA-T
P.oryzae	GGGGCACTGC	-TTTTCAC	-GAAGCAG-G	CCCTGAAA-T
P.amygdali	GGGGCACTGC	CTTGTGTAAA	CGAGGCAG-G	CCCTGAAA-T
P.quercina	GGGGCACTGC	-TTTTACCCA	AG-AGCAG-G	CCCTGAAA-T
P.juniperivora	GGGGCACTGC	-TTTTACCCA	AG-AGCAG-G	CCCTGAAA-T
P.longicolla	GGGGCACTGC	TCTCTGA-CG	GGA-GCAG-G	CCCTGAAA-T
P.sojae	GGGGCACTGC	CTTCT-AGCG	AG-GGCAG-G	CCCTGAAA-T
P.sclerotioides	GGGGCACCGC	CT-GTAAA	AG-GGCGG-G	CCCTGAAA-T
P.columnaris	GGGGCACCGC	CT-GTAAA	AG-GGCGG-G	CCCTGAAA-T
Cytospora eucalypticola			GAAGGCAG-G	
Mycosphaerella latebrosa	GGG-CGCCGC	GGTGTTCC	GC-GCG	-CCTCAAAGT
M.berberidis			GC-GCG	
M.nubilosa			GC-GCG	
M.cryptica			GC-GCG	
Lophodermium conigenum			CGGGGGCT-CG	
Pseudocercospora eriodendri			GC-GCG	
Guignardia endophyllicola			-GAC-GTG	
Phyllosticta pyrolae			GGAC-GCG	

Chappatheonais musille	45			
Chaenothecopsis pusilla			CGTTCTCCAG	
			GGACCCCGAG	
Fungal endophyte MUT 2715			GGACCCCGAG	
Diaporthe phaseolorum			GGACTCCGAG	
D.meridionalis			GGACCCCGAG	
D.caulivora			GGACCCCGAG	
D.helianthi			GGACCCCGAG	
D.vaccinii			GGACCCCGAG	
Phomopsis vaccinii	TCAGTGGC-G	A-GCTCGCCA	GGACCCCGAG	CGCAGTAG-T
P.oryzae	CTAGTGGC-G	A-GCTCGCCA	GGACCCCGAG	CGCAGTAG-T
P.amygdali	TCAGTGGC-G	A-GCTCGCCA	GGACTCCGAG	CGCAGTAG-T
P.quercina	TCAGTGGC-G	A-GCTCGCCA	GGACCCCGAG	CGCAGTAG-T
P.juniperivora	TCAGTGGC-G	A-GCTCGCCA	GGACCCCGAG	CGCAGTAG-T
P.longicolla	CTAGTGGC-G	A-GCTCGCTA	GGACCCCGAG	CGTAGTAG-T
P.sojae	CTAGTGGC-G	A-GCTCGCTA	GGACCCCGAG	CGTAGTAG-T
P.sclerotioides	CTAGTGGC-G	A-GCTCGCCG	GGACCCCGAG	CGTAGTAAAT
P.columnaris	CTAGTGGC-G	A-GCTCGCCA	GGACCCCGAG	CGTAGTAA-T
Cytospora eucalypticola	TCAGTGGC-G	A-GCTCGCCA	GGACCCCGAG	CGCAGTAG-T
Mycosphaerella latebrosa	CT-CCGGCTG	A-GCT-GTCC	GT-CTCCAAG	CGTCGT-G-A
M.berberidis	CT-CCGGCTG	A-GCT-GTCC	GT-CTCCAAG	CGTTGT-G-A
M.nubilosa	CT-CCGGCCG	A-GC-CGACC	GT-CTCTCAG	CGTTGTGGCA
M.cryptica	CT-CCGGCCG	A-GC-CGACC	ĠT-CTCTAAG	CGTTGTGGCA
Lophodermium conigenum	C-AGTGGCGG	CCGC-CGTCC	G-ACCTTCAG	CGCAGTAA-T
Pseudocercospora eriodendri	CTTCCGGCTG	A-GCT-GTCC	GT-CTCTAAG	CGTTGTGGAA
Guignardia endophyllicola	CCT-CGGC-G	ACGG-CGTCC	TAGCCTCGAG	CGTAGTAG-T
Phyllosticta pyrolae			TAGCCTCGAG	

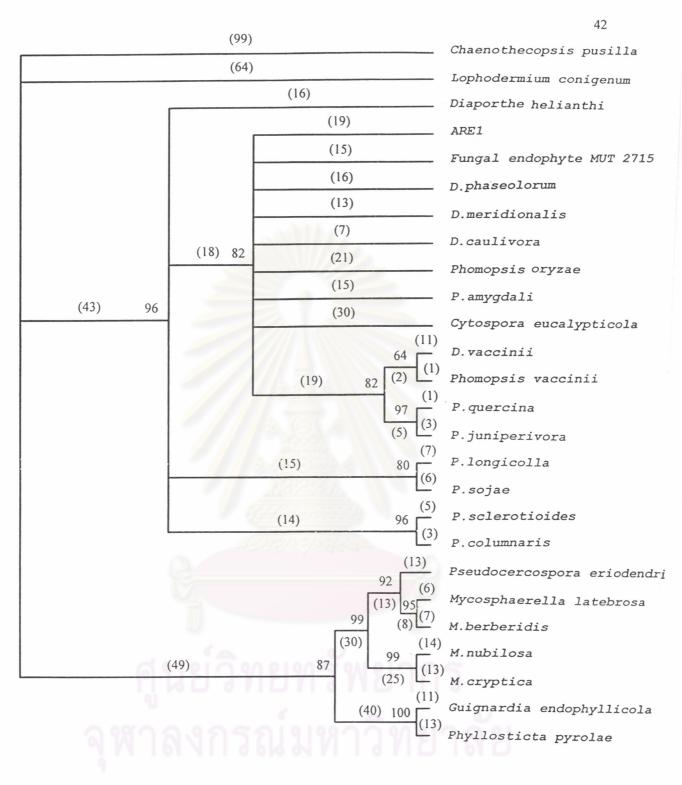
Figure 5. (continued)

Chaenothecopsis pusilla ARE1
Fungal endophyte MUT 2715
Diaporthe phaseolorum
D.meridionalis
D.caulivora
D.helianthi
D.vaccinii
Phomopsis vaccinii
P.oryzae
P.amygdali
P.quercina
P.juniperivora
P.longicolla
P.sojae
P.sclerotioides
P.columnaris
Cytospora eucalypticola
Mycosphaerella latebrosa
M.berberidis
M.nubilosa
M.cryptica
Lophodermium conigenum
Pseudocercospora eriodendri
Guignardia endophyllicola
Phyllosticta pyrolae

490			520
ACTTCATTGA	TCTCCCGCTG	ATGGGAACGG	CCCGGTGTGC
TAAACCC	TCGCTTT	GGAAGGCC	-CTGGCGG-T
TAAACCC	TCGCTTT	GGAAGGCC	-CTGGCGG-T
TAAACCC	TCGTTCT	GGAAGGCC	TGGCGG-T
TAAACCC	TCGCTC	GGGAGGCC	-CTGGCGG-T
TAAACCC	TCGCTTT	GGAAGGCC	-CTGGCGG-T
AACTTC	TCGCTCC	GGAAGGCC	-CTGGCGG-C
TAAACCC	TCGCTTT	GGAAGGCC	-CTGGCGC-G
TAAACCC	TCGCTTT	GGAAGGCC	-CTGGCGG-T
TAAACCC	TCGCTCT	GGAAGGCC	-CTGGCGG-T
TAAACCC	TCGCTTT	GGAAGGA	-CTGGCGG-T
TAAACCC	TCGCTCT	GGAAGGCC	-CTGGCGG-T
TAAACCC	TCGCTCT	GGAAGGCC	-CTGGCGG-T
TATATC	TCGTTCT	GGAAGGCC	-CTGGCGG-T
TATATC	TCGTTCT	GGAAGGCC	-CTGGCGG-T
TATATT	TCGTTCT	GGAAGGCC	-CCGGCGG-T
TATATT	TCGTTCT	GGAAGGCC	-CTGGCGG-T
TAAACCC	TCGCTCT	GGACTGTA	-CTGGTGCGG
TTTCATTA-A	TCGCTTC	GGG-GGC-GG	-GCGGCCG-C
TTTCATTA-A	TCGCTTC	GAAGTGC-GG	-GCGGCCG-C
CTACTGTT	TCGCTGAC	GGGGA-CCGG	TCTGGCGC
CAACTGTT	TCGCTTCC	GG-GA-CCGG	TCTGGCGT-C
GCTCG	TCGCTGTTAG	GGAAGGGTGG	-CAAGCGC-C
TTTAACTA-T	TCGCTTC	GGAGTGC-GG	-GTGGCCG-C
AAAATATC	TCGCTTT	GGAGTG	-CTGGGCGAC
AACATC	TCGCTTT	GGAGTG	-CTAGCCGTT

•••••

	530	0 540	0 550)
Chaenothecopsis pusilla	CGGCAGCCC-	CCCCCA	AATCTTCGTG	AAT
ARE1	GCCCTGCCGT	TAAACCCCCA	ACTCTTTGAA	AAT
Fungal endophyte MUT 2715	GCCCTGCCGT	TAAACCCCCA	ACTCTT-GAA	AAT
Diaporthe phaseolorum	GCCCTGCCGT	TAAACCCCCA	ACTCCT-GAA	AAT
D.meridionalis	GCCCTGCCGT	TAAACCCCCA	ACTTCT-GAA	AAT
D.caulivora	GCCCTGCCGT	TAAACCCCCA	ACTTCT-GAA	AAT
D.helianthi	GCCCTGCCGT	TAAACCCCCA	ACTCCT-GAA	AAT
D.vaccinii	GTGCTGCCGT	TAAACCCCCA	ACTTCT-GAA	AAT
Phomopsis vaccinii	GCCCTGCCGT	TAAACCCCCA	ACTTCT-GAA	AAT
P.oryzae	GCCCTGCCGT	TAAACCCCCA	ACTCTT-GAA	AAT
P.amygdali	GCCCTGCCGT	TAAACCCCCA	ACTCTT-GAA	AAT
P.quercina	GCCCTGCCGT	TAAACCCCCA	ACTTCT-GAA	AAT
P.juniperivora	GCCCTGCCGT	TAAACCCCCA	ACTTCT-GAA	AAT
P.longicolla	GCCCTGCCGT	TAAACCCCCA	ACTTCT-GAA	AAT
P.sojae	GCACTGCCGT	TAAACCCCCA	ACTTCT-GAA	AAT
P.sclerotioides	GCCCTGCCGT	TAAACCCCCA	ACTCCT-GAA	AAT
P.columnaris	GCCCTGCCGT	TAAACCCCCA	ACTTCT-GAA	AAT
Cytospora eucalypticola			ACTTCT-GAA	
Mycosphaerella latebrosa			-TCTTTCACC	
M.berberidis			-TATTTCACA	
M.nubilosa			-CCTTTCACC	
M.cryptica			-TCTCTCAC-	
Lophodermium conigenum			CA-C	
Pseudocercospora eriodendri			-TCTTTATTC	
Guignardia endophyllicola	GGCCGC	CGGACAATCG	ACCTTCGGTC	TAT
Phyllosticta pyrolae	GGCCGC	CGGACAATCG	ACCTTTGGTC	TAT


Figure 5. (continued)

2.2.3 Phylogenetic analysis

Searching for similar sequences to 5.8S rDNA region of isolate ARE-1 in GenBank resulted in 5 taxa with 100 % identity. They were sterile fungal endophytes isolated from Mediterranean plant roots, *Pinus halepensis* and *Rosmarinus officinalis*. The ITS1-5.8S-ITS2 sequences of these isolates were similar with 98-100 % identity. Therefore, one isolate, fungal endophyte MUT 2715, was selected as reference taxon. A total of 21 species with 98-99 % identity and one species with lower percentage identity that have complete data of ITS1-5.8S-ITS2 sequences were also selected. In order to get complete reference taxa, the ITS1-5.8S-ITS2 sequences of isolate ARE-1 was used as the query sequence. Two more similar sequences from *Phomopsis quercina* and *Cytospora eucalypticola* were hit. They were added in the reference taxa.

The alignment data of complete ITS1-5.8S-ITS2 sequences of isolate ARE-1 and 25 reference taxa is shown in Figure 5. The phylogenetic analysis of all taxa with *C. pusilla* as an outgroup taxon yield concensus maximum parsimoneous tree of 710 tree length, with consistency index (CI), homoplasy index (HI), retention index (RI) and rescaled consistency index (RC) of 0.6113, 0.3887, 0.6634 and 0.4055, respectively, as shown in Figure 6. In this tree, isolate ARE-1 formed a monophyletic clade with all reference taxa of the family Valsaceae with a 96 % bootstrap support. Based on branch length, as shown in Figure 6, evolution of isolate ARE-1 was found to be most closely related to *Diaporthe caulivora*.

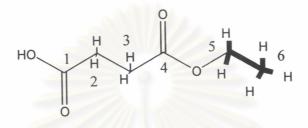
ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 6 Maximum-parsimony tree generated from the ITS1-5.8S-ITS2 sequences of 26 taxa showing the relationships of ARE1 sequence with reference taxa. The numbers at internal node indicate the percentages of trees from 1,000 bootstrap replications. The numbers in bracket at branches indicate the branch length. *Chaenothecopsis pusilla* was used as an outgroup.

3. Structure elucidation of the isolated compounds.

Five metabolites were isolated from YES culture of the isolate ARE-1. The ethyl acetate extract (AREB 0.9 g) of YES fermentation broth (12L) of the isolate ARE-1 gave four known secondary metabolites, succinic acid monoethyl ester (AREB 3575 HP22, 8.7 mg, 0.96 % of ethyl acetate extract), phenylacetic acid (AREB 485 HP4, 5.1 mg, 0.56 % of ethyl acetate extract), 2-(4' hydroxy-phenyl)-ethyl acetate (AREB 485HP5, 2.2 mg, 0.24 % of ethyl acetate extract) and 4-hydroxyphenethyl alcohol or tyrosol (AREB 485 HP2+3/4, 2.1 mg, 0.23 % of ethyl acetate extract). While a primary metabolite, ergosterol (ARHM(H) 76, 31.9 mg, 2.28 % of hexane extract), was obtained from hexane extract (ARHM(H) 1.4 g) of ARE1 mycelia. Ergosterol is a major component of cell membrane in most fungi (Weete, 1973).

3.1 Structure elucidation of succinic acid monoethyl ester (AREB3575 HP22)


Compound AREB 3575 HP22 was obtained as yellow oil. The IR absorption spectrum (Figure 7 in Appendix B) exhibited characteristic bands at 3420 cm⁻¹ (O-H stretching), 2926 cm⁻¹ and 1457 cm⁻¹ (C-H stretching), 1732 cm⁻¹ and 1653 cm⁻¹ (C=O stretching) and 1272 cm⁻¹ (C-C stretching). The UV spectrum in MeOH (Figure 8 in Appendix B) of compound AREB 3575 HP22 showed λ_{max} (\in) at 203 (3957) nm. The ESI-TOF MS of compound (Figure 9 in Appendix B) displayed the pseudomolecular ion peak [M+Na]⁺ at *m*/*z* 169.0471 (calculated for C₆H₁₀O₄Na at *m*/*z* 169.0477).

The 500 MHz ¹H-NMR spectrum of compound AREB 3575 HP22 in CDCl₃ (Figure 10 in Appendix B) revealed a methyl proton signal at δ 1.28 ppm; two methylene proton signals at δ 2.65 and 2.70 ppm; and an oxygen-bearing methylene proton signal at δ 4.15 ppm.

The 125 MHz ¹³C-NMR spectrum (Figure 11 in Appendix B) gave six carbon signals. The carbon signals were classified by DEPT 135 spectrum (Figure 12 in Appendix B) and HMQC spectrum (Figure 13 in Appendix B) as one methyl carbon signal at δ 14.1 ppm; two methylene carbon signals at δ 28.8 and 29.0 ppm; one oxygen-

bearing methylene carbon signal at δ 60.8 ppm and two carbonyl quaternary carbon signals at δ 172.1 and 176.9 ppm.

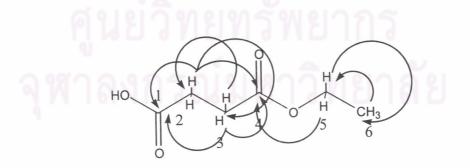

The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectra of compound AREB 3575 HP22 (Figure 14 in Appendix B) established the proton connection from H-5 to H-6.

Figure 15 The ¹H-¹H correlation (bold line) in ¹H-¹H COSY spectrum of AREB 3575 HP22

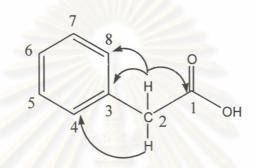
The complete ¹³C assignments of AREB 3575 HP22 were obtained from the HMBC spectra (${}^{n}J_{HC} = 8$ Hz and 4 Hz) (Figures 16 and 17 in Appendix B) showing the following long-range correlations; H-6 (δ 1.28) to oxygen-bearing methylene C-5 (δ 60.8); H-5 (δ 4.15) to C-6 (δ 14.1) and carbonyl carbon C-4 (δ 172.1); and H-3 (δ 2.70) to C-2 (δ 29.0), carbonyl carbon C-1 (δ 176.9) and C-4 (δ 172.1).

The ${}^{1}\text{H}{}^{-13}\text{C}$ long-range correlations from the HMBC spectrum of AREB 3575 HP22 in CDCl₃ are shown in Figure 18 in Appendix B and summarized in Table 6.

Figure 18 Long-range correlations from HMBC (${}^{n}J_{HC} = 8$ Hz and 4 Hz) spectral data of AREB 3575 HP22 in CDCl₃.

D :::	δH (ppm), mult,	SC ()	Long-range corre	elation in HMBC
Position	(J in Hz)	δC (ppm)	ⁿ $J_{\rm HC} = 8 {\rm Hz}$	ⁿ $J_{\rm HC} = 4 {\rm Hz}$
1	-	176.9	-	-
2	2.65, <i>t</i> , (12)	29.0	C-1,C-3,C-4	C-3
3	2.70, <i>t</i> , (12)	28.8	C-1,C-2,C-4	C-2
4		172.1	-	-
5	4.15, <i>q</i> , (3)	60.8	C-4,C-6	C-4,C-6
6	1.28, <i>t</i> , (7)	14.1	C-5	C-5

Table 6 The ¹H, ¹³C-NMR and HMBC spectral data of AREB 3575 HP22 in CDCl₃.


3.2 Structure elucidation of phenylacetic acid (AREB 485 HP4)

Compound AREB 485 HP4 was obtained as yellow oil. The IR absorption spectrum (Figure 19 in Appendix B) showed characteristic bands at 3420 cm⁻¹ (O-H stretching), 2915 cm⁻¹ (C-H stretching), 1715 cm⁻¹ (C=O stretching), 1517 cm⁻¹ and 700 cm⁻¹ (C=C stretching) and 1236 cm⁻¹ (C-O stretching carboxylic group). The UV spectrum in MeOH (Figure 20 in Appendix B) of compound AREB 485 HP4 exhibited λ max (\in) at 205 (8850) nm and 258 (578) nm. The ESI-TOF MS (Figure 21 in Appendix B) demonstrated the pseudomolecular ion peak [M+Na]⁺ at *m*/*z* 159.0429 (calculated for C₈H₈O₂Na at *m*/*z* 159.0422).

The 500 MHz ¹H-NMR spectrum of AREB 485 HP4 in CDCl₃ (Figure 22 in Appendix B) presented one methylene proton signal at δ 3.68 ppm and five methine proton signals at δ 7.29-7.39 ppm. The 125 MHz ¹³C-NMR spectrum in CDCl₃ (Figure 23 in Appendix B) showed eight carbon signals which were classified by DEPT 135 (Figure 24 in Appendix B) and HMQC spectrum (Figure 25 in Appendix B) as one methylene carbon signal at δ 40.9 ppm (C-2); one methine carbon signal at δ 127.3 ppm (C-6); two equivalent methine carbon signals at δ 128.6 ppm (C-5 and C-7); one quaternary carbon signal at δ 133.3 ppm (C-3) and one quaternary carbonyl carbon signal at δ 176.6 ppm (C-1).

The HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) of AREB 485 HP4 (Figure 26 in Appendix B) exhibited long-rang correlations of H-2 (δ 3.68) to C-3 (δ 133.3), C-1 (δ 176.6), C-4 (129.3) and C-8 (δ 129.3).

The ¹H-¹³C long-range correlations from HMBC spectrum of AREB 485 HP4 are shown in Figure 27 in Appendix B and summarized in Table 7.

Figure 27 Important ¹H-¹³C long-range correlations in the HMBC spectrum of AREB 485 HP4 in CDCl₃.

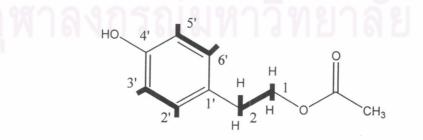
The downfield of H-2 (singlet at δ 3.68 ppm) was due to a connection to the aromatic moiety. The NOESY experiment (Figure 28 in Appendix B) of AREB 485 HP4 confirmed the correlations of aromatic methine protons (H-4 and H-8) to methylene proton (H-2).

Comparison the spectral data of compound AREB 485 HP4 to reported values in the Aldrich Library of ¹³C and ¹H NMR spectra indicated that AREB 485 HP4 is a known compound, phenylacetic acid (Table 8). This compound was also a metabolite of *Aspergillus niger* as reported by Nair and Burke (1988).

		AREB	485 HP4		
position	δH (ppm), <i>mult</i> , (<i>J</i> in Hz)	δC (ppm)	Long-range correlation in HMBC (${}^{n}J_{HC} = 8 \text{ Hz}$)		
1	-	176.6	-		
2	3.68, s	40.9	C-1,C-3,(C-4,C-8)		
3		133.3	-		
4	7.29-7.39,m	129.3	C-2,C-3,C-5,C-6,C-8		
5	7.29-7.39,m	128.6	C-3,C-4,C-6,C-7		
6	7.29-7.39,m	127.3	C-4,C-5,C-7,C-8		
7	7.29-7.39,m	128.6	C-3,C-5,C-6,C-8		
8	7.29-7.39,m	129.3	C-2,C-3,C-4,C-6,C-7		

Table 7The ¹H, ¹³C-NMR and HMBC spectral data of AREB 485 HP4 in CDCl₃.

Table 8 ¹H-NMR (500 MHz in CDCl₃) and ¹³C-NMR (125 MHz in CDCl₃) spectral data of AREB 485 HP4 and ¹H-NMR (300 MHz in CDCl₃) and ¹³C-NMR (60 MHz in CDCl₃) spectral data of phenylacetic acid (Pouchert and Behnke 1993).


position	AREB 485 HP4		Phenylacetic acid (Pouchert and Behnke 1993)	
position	δH (ppm), <i>mult</i> , (<i>J</i> in Hz)	δC (ppm)	δH (ppm), <i>mult</i> , (J in Hz)	δC (ppm)
1	บยวท	176.6	18-175	178.1
2	3.68, <i>s</i>	40.9	3.60, <i>s</i>	41.0
3	ลงกร	133.3	10191910	133.1
4	7.29 - 7.39, m	129.3	7.25-7.35, m	129.3
5	7.29 - 7.39, <i>m</i>	128.6	7.25-7.35, m	128.5
6	7.29-7.39, m	127.3	7.25-7.35, <i>m</i>	127.2
7	7.29-7.39, m	128.6	7.25-7.35, m	128.5
8	7.29-7.39, m	129.3	7.25-7.35, <i>m</i>	129.3

3.3 Structure elucidation of 2(4'-hydroxy-phenyl) ethyl acetate (AREB485 HP5)

Compound AREB 485 HP5 was obtained as yellow oil. The IR absorption spectrum (Figure 29 in Appendix B) showed characteristic bands at 3420 cm⁻¹ (O-H stretching), 2924 cm⁻¹, 1238 cm⁻¹ (C-H stretching), 1558 cm⁻¹ (C=C stretching) and 1717 cm⁻¹ (C=O stretching). The UV spectrum in MeOH (Figure 30 in Appendix B) of compound AREB 485 HP5 exhibited λ_{max} (\in) at 202 (8462) nm , 222 (6126) nm , 277 (1799) nm and 284 (1608) nm. The ESI-TOF MS of AREB 485 HP5 (Figure 31 in Appendix B) presented the pseudomolecular ion peak [M+Na]⁺ at *m/z* 203.0684 (calculated for C₁₀H₁₂O₃Na at *m/z* 203.0684), establishing the molecular formula of this compound as C₁₀H₁₂O₃.

The 500 MHz ¹H-NMR spectrum of AREB 485 HP5 in CDCl₃ (Figure 32 in Appendix B) showed one methyl proton signal at δ 2.05 ppm; two methylene proton signals at δ 2.9 and δ 4.25 ppm; two equivalent methine proton signals at δ 6.8 ppm (H-3' and H-5') and two equivalent methine proton signals at δ 7.1 ppm (H-2' and H-6'). The 125 MHz ¹³C-NMR (Figure 33 in Appendix B) and HMQC spectral data (Figures 35-37 in Appendix B) revealed ten carbons with were classified by the DEPT 135 (Figure 34 in Appendix B) as one methyl carbon signal at δ 20.9 ppm; two methylene carbon signals at δ 65.1 ppm and δ 34.1 ppm; two equivalent carbons at δ 115.3 ppm; two equivalent carbons at δ 130.0 ppm, and three quaternary carbons at δ 129.9, 154.2 and 171.1 ppm.

The 1 H- 1 H COSY spectrum of AREB 485 HP5 (Figure 38 in Appendix B) revealed the correlations between H-1 and H-2; and H-2' (or H-6') and H-3' (or H-5').

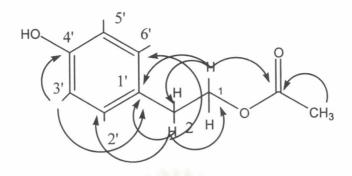


Figure 39 The correlations (bold line) in the ¹H-¹H COSY spectra of AREB 485 HP5 in CDCl₃.

The HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) of AREB 485 HP5 (Figures 40-42 in Appendix B) exhibited long-range correlations of H-1 (δ 4.25) to C-2 (δ 34.1), C-1' (δ 129.9) and carbonyl carbon (δ 171.1); H-2 (δ 2.9) to C-1 (δ 65.1), C-2' or C-6' (δ 130.0) and C-1' (δ 129.9); methyl proton (δ 2.05) to carbonyl carbon (δ 171.1); H-2' or H-6' (δ 7.1) to C-2 (δ 34.1), C-1' (δ 129.9) and C-4' (δ 154.2); and H-3' or H-5' (δ 6.8) to C-1' (δ 129.9), C-2' (δ 130.0) and C-4' (δ 154.2).

The ¹H-¹³C long-range correlations from the HMBC spectrum of AREB 485 HP5 are shown in Figure 43 in Appendix B and summarized in Table 9. **Table 9** The ¹H, ¹³C-NMR and HMBC spectral data of AREB 485 HP5 in CDCl₃.

	AREB 485 HP5			
position	δH (ppm), <i>mult</i> , (J in Hz)	δC (ppm)	Long-range correlation in HMBC ($^{n}J_{HC} = 8 \text{ Hz}$)	
1	4.25, <i>t</i> , (7)	65.1	C-1′, C-2, C=0	
2	2.90, <i>t</i> , (7)	34.2	C-1, C-1', C-2', C-6'	
1'		129.9	-	
2′	7.10, <i>d</i> , (8)	130.0	C-2, C-1', C-4', C-6'	
3'	6.80, <i>d</i> , (8)	115.3	C-1', C-2', C-4', C-5'	
4′	-	154.2	-	
5'	6.80, <i>d</i> , (8)	115.3	C-1', C-3', C-4', C-6'	
6'	7.10, <i>d</i> , (8)	130.0	C-2, C-1', C-2', C-4'	
C=O		171.1		
CH ₃	2.05, s	20.9	C=O	

Figure 43 Important ¹H-¹³C long-range correlations in the HMBC spectrum of AREB 485 HP5 in CDCl₃.

Based upon these spectral data, compound AREB 485 HP5 is identified as known compound, 2(4'-hydroxyphenyl) ethyl acetate.

3.4 Structure elucidation of 4-hydroxyphenethyl alcohol (AREB 485 HP2+3/4)

Compound AREB 485 HP2+3/4 was obtained as white yellow oil. The IR absorption spectrum (Figure 44 in Appendix B) showed characteristic bands at 3387 cm⁻¹ (O-H stretching), 2926 cm⁻¹ (C-H stretching), 1515 cm⁻¹ (C=C stretching), 1242 cm⁻¹ (C-C stretching), 1050 cm⁻¹ (C-O stretching) and 817 cm⁻¹ (=C-H bending). The UV spectrum in MeOH (Figure 45 in Appendix B) of compound AREB 485 HP2+3/4 presented λ_{max} (ϵ) at 202 (7545) nm, 222 (6643) nm and 279 (1702) nm. The ESI-TOF MS of compound AREB 485 HP2+3/4 (Figure 46 in Appendix B) showed the pseudomolecular ion peak [M+Na]⁺ at *m*/*z* 161.0588 (calculated for C₈H₁₀O₂Na at *m*/*z* 161.0578) consistent with the molecular formula C₈H₁₀O₂.

The ¹H-NMR spectrum of AREB 485 HP2+3/4 in acetone *d*-6 and CDCl₃ (9:1) (Figure 47 in Appendix B) exhibited two methylene proton signals at δ 3.7 ppm and δ 2.7 ppm; two equivalent methine proton signals at δ 7.05 ppm (H-2' and H-6') and two equivalent methine proton signals at δ 6.72 ppm (H-3' and H-5'). The ¹³C-NMR (Figure 48 in Appendix B), DEPT 135 (Figure 49 in Appendix B) and HMQC spectral data (Figures 50 and 51 in Appendix B) showed eight carbons in AREB 485 HP2+3/4 two methylene carbon signals at δ 39.1 ppm and δ 63.8 ppm, two equivalent methine carbon

signals at δ 115.4 ppm (C-3' and C-5'), two equivalent methine carbon signals at δ 130.3 ppm (C-2' and C-6'), and two quaternary carbon signals at δ 130.6 ppm (C-1') and δ 156.1 ppm (C-4').

The ${}^{1}\text{H}{-}^{1}\text{H}$ COSY spectrum of AREB 485 HP2+3/4 (Figure 52 in Appendix B) presented the proton connections between H-1 and H-2, and between H-2' (or H-6') and H-3' (or H-5').

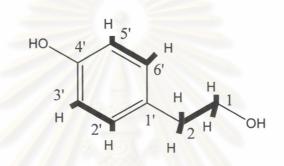
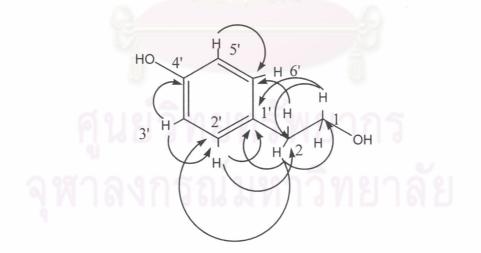


Figure 53 The correlations (bold line) from the ${}^{1}H{}^{-1}H$ COSY spectrum of AREB 485 HP2+3/4 in acetone *d*-6 and CDCl₃ (9:1).


The HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) of AREB 485 HP2+3/4 (Figure 54 and 55 in Appendix B) established long-range correlations of H-1 (δ 3.7) to C-2 (δ 39.1), C-1' (δ 130.6); H-2 (δ 2.7) to C-1 (δ 63.8), C-1' (δ 130.6), C-2' (δ 130.3) and C-6' (δ 130.3); H-2' or H-6' (δ 7.05) to C-2 (δ 39.1), C-3' (δ 115.4), C-4' (δ 156.1), and C-1' (δ 130.6); and H-3' or H-5' (δ 6.72) to C-2' (δ 130.3), C-4' (δ 156.1), and C-1' (δ 130.6).

The ${}^{1}\text{H}-{}^{13}\text{C}$ long-range correlations from the HMBC spectrum of AREB 485 HP2+3/4 are shown in Figure 56 in Appendix B and summarized in Table 10.

	AREB 485 HP2+3/4			
position	δH (ppm), <i>mult</i> , (J in Hz)	δC (ppm)	Long-range correlation in HMBC $(^{n}J_{HC} = 8 \text{ Hz})$	
1	3.70, <i>t</i> , (7)	63.8	C-2, C-1	
2	2.70, <i>t</i> , (7)	39.1	C-1, C-1', C-2', C-6'	
1'		130.6	-	
2'	7.05, <i>d</i> , (9)	130.3	C-2, C-1', C-3', C-4', C-6'	
3'	6.72, <i>d</i> , (9)	115.4	C-1', C-2', C-4', C-5'	
4'	-	156.1	-	
5'	6.72, <i>d</i> , (9)	115.4	C-1', C-3', C-4', C-6'	
6'	7.05, d, (9)	130.3	C-2, C-1', C-2', C-4', C-5'	

Table 10 The ¹H, ¹³C-NMR and HMBC spectral data of AREB 485 HP2+3/4 in acetone d-6 and CDCl₃(9:1)

Figure 56 Important ${}^{1}\text{H}{}^{-13}\text{C}$ long-range correlations in the HMBC spectrum of AREB 485 HP2+3/4 in acetone *d*-6 and CDCl₃ (9:1).

Comparison the spectral data of compound AREB 485 HP2+3/4 to previously reported values in the Aldrich Library of ¹³C and ¹H NMR spectra, compound AREB 485 HP2+3/4 was identified as 4-hydroxyphenethyl alcohol or Tyrosol (Table 11).

4-Hydroxyphenethyl alcohol has been reported as fungitoxic phenolic compound produced by the endophytic fungus *Epichloe typhina* of *Phleum pratense* (Timothy plant) (Koshino *et al.*, 1988).

Table 11 ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectral data of AREB 485 HP2+3/4 and ¹H-NMR (300 MHz) and ¹³C-NMR (60 MHz) spectral data (in CDCl₃ and DMSO-*d*) of 4-hydroxyphenethyl alcohol (Pouchert and Behnke 1993).

position	AREB 485 HP2+3/4		4-Hydroxyphenethyl alcohol (Pouchert and Behnke 1993)	
	δH(ppm), <i>mult</i> , (J in Hz)	δC (ppm)	δH (ppm), <i>mult</i> , (J in Hz)	δC (ppm)
1	3.70, <i>t</i> , (7)	63.8	3.60	62.8
2	2.70, t, (7)	39.1	2.69	38.3
1'	-//.	130.6	-	129.4
2'	7.05, <i>d</i> , (9)	130.3	7.00	129.3
3'	6.72, <i>d</i> , (9)	115.4	6.70	114.9
4'	- 49	156.1	-	155.3
5'	6.72, <i>d</i> , (9)	115.4	6.70	114.9
6′	7.05, <i>d</i> , (9)	130.3	7.00	129.3

3.5 Structure elucidation of ergosterol (ARHM(H) 76)

Compound ARHM(H)76 was obtained as yellow white wax. The IR absorption spectrum (Figure 57 in Appendix B) established characteristic bands at 3424 cm⁻¹ (O-H stretching), 2954 cm⁻¹, 1458 cm⁻¹ (C-H stretching), 1658 cm⁻¹ (C=C stretching), 1368 cm⁻¹ (C-C stretching) and 1037 cm⁻¹ (C-OH stretching). The UV spectrum in MeOH (Figure 58 in Appendix B) of ARHM(H)76 showed λ_{max} (\in) at 204 (19115) nm, 260 (11257) nm, 271 (15655) nm, 281 (16231) nm and 292 (10031) nm. Due to degradation was occurred, the peaks at 260, 271, 281 and 292 nm were examined. In the present investigation, ARHM(H)76 was identified as ergosterol by comparison of its ¹H and ¹³C-NMR spectral data with reported values (Adler *et al.*, 1977 and Chobot *et al.*, 1997).

In the ¹H-NMR spectrum (Figure 59 in Appendix B), the signals at δ 5.38 ppm (1H, *dd*, *J* = 2.8, 5.7 Hz) and δ 5.57 ppm (1H, *dd*, *J* = 2.8, 5.7 Hz) were assigned to H-6 and H-7 of ergosterol. The signals at δ 5.15 - δ 5.31 ppm (2H, *m*) were assigned to H-22 and H-23 of ergosterol. The signals at δ 0.96 and δ 1.00 ppm (2 x Me, *s*) were assigned to Me-18 and Me-19. The signals at δ 1.04, δ 0.84, δ 0.82 and δ 0.92 ppm (4 x Me, *d*, *J* = 6.6 Hz) were assigned to Me-21, 26, 27 and 28, respectively.

The ¹³C-NMR spectrum (Figure 60 in Appendix B) of ARHM(H) 76 displayed twenty eight carbon signals. Comparison of these data with reported ¹³C-NMR values of ergosterol (Chobot *et al.*, 1997) is shown in Table 12.

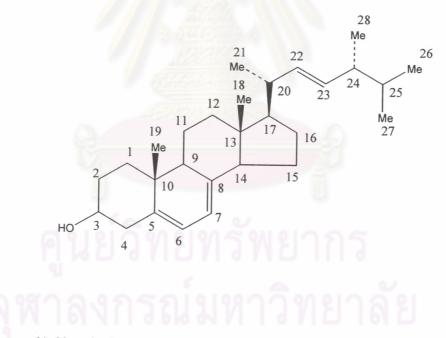


Figure 61 Chemical structure of compound ARHM(H)76.

Ergosterol was previously obtained from the endophytic fungus Colletotrichum sp. of Artemisia annua (Compositae) (Lu et al., 2000).

Table	12	¹³ C-NMR spectral data (CDCl ₃) of ARHM(H)76 and ergosterol in CDCl ₃
		(Chobot <i>et al.</i> , 1997).

nosition	Chemical shift (ppm)		
position	ARHM(H)76	Ergosterol	
1	38.3	38.4	
2	31.9	32.0	
3	70.4	70.4	
4	40.7	40.8	
5	141.3	141.4	
6	119.5	119.6	
7	116.2	116.3	
8	139.7	139.8	
9	46.2	46.3	
10	36.9	37.0	
11	21.0	21.1	
12	39.0	39.1	
13	42.7	42.8	
14	54.5	54.5	
15	22.9	23.0	
16	28.2	28.3	
17	55.6	55.7	
18	12.0	12.1	
19	16.2	16.3	
20	40.3	40.4	
21	19.6	19.7	
22	135.5	135.6	
23	131.9	132.0	
24	42.7	42.8	
25	33.0	33.1	
26	21.0	21.1	
27	19.9	20.0	
28	17.5	17.6	

4. Biological activities

Ergosterol (ARHM(H)76) and succinic acid monoethyl ester (AREB 3575 HP22) were tested for biological activities, while other isolated compounds were not biologically evaluated due to limited amount of substances. Only ergosterol showed antituberculosis activity against *Mycobacterium tuberculosis* at MIC of 12.5 μ g/ml. Recently, ergosterol has been evaluated against *Mycobacterium tuberculosis* H37Rv for the rational design of new antituberculosis agents (Rugutt 2002). Both ergosterol and succinic acid monoethyl ester were inactive against the malarial parasite *Plasmodium falciparum* K1 strain.

Succinic acid monoethyl ester has been previously reported as volatile oil from custard apple (*Annona reticulata*) (Bartley, 1987). This implies that both the fungal endophyte, ARE-1, and its host plant produce the same metabolite as in taxol producing organisms (Stierle and Strobel, 1995).

The other three metabolites of ARE-1, 4-hydroxyphenethyl alcohol (tyrosol), 2 (4'-hydroxyphenyl) ethyl acetate (tyrosyl acetate) and phenylacetic acid, were reported to have antifungal activity. Tyrosol and tyrosyl acetate could be isolated from various plants such as *Olea europaea* L. (Briante *et al.*, 2002), *Croton lechleri* L. (Chen *et al.*, 1994) and *Rhodiola rosea* L. (Rohloff, 2002). Additionally, literature data indicated that tyrosol also isolated from fungi for example, *Coniothyrium* sp. (Holler *et al.*, 1999), *Ophiostoma crassivaginata* (Ayer and Trifonov, 1995), *Gloeophyllum* sp. (Rasser *et al.*, 2000), *Oospora astringenes* (Yamamoto and Nitta, 1962) and the endophytic fungi should be a good source for isolation of active compounds without destruction of the forests (Strobel and Long, 1998).