CHAPTER VI

APPLICATION OF LINEAR REGRESSION MODEL TO PREDICT PROCESS YIELD AND PROCESS CAPACITY OF FERTILIZER GRANULE BY GENERAL MULTI LINEAR REGRESSION

6.1 Introduction

Unless engineers try to operate a fertilizer plant with good understanding of the granulation process, it could produce large amount of off-grade fertilizer during process disturbance, the adding of sulfuric concentration for ammonium sulfate synthesis in pipe reactor. The general linear regression models – constructed and divided by fertilizer formulation – are useful tool and could enhance the understanding and reduce losses due to off-grade fertilizer

Up to now, from chapter 4 and 5, the only high liquid phase and low liquid phase fertilizer formulation, the useful decisive fertilizer formulations have the same relation both sulfuric concentration versus process yield and sulfuric concentration versus process capacity that are selected to make general linear regression model.

To achieve the objective for this work, the author use both results of chapter 4 & 5 and plant manual phenomena that mentions about 3 substantial parameters affecting to efficiency and capacity of granulation.

- 1. Mole ratio of ammonia gas to phosphoric liquid raw material feed to reactor.
- 2. Specific gravity of phosphoric liquid raw material feed to reactor.
- 3. Recycle ratio of solid recycle feed stream to all raw material feed.

In this chapter, this extended work concludes 2 independent variables, the mole ratio and the specific gravity, operated by multiple linear regression. The recycle ratio of solid recycle feed stream to raw material feed is significant but it can not draw to analyze because of the substantial errors from measurements in this plant.

6.2 Estimation of Process Yield and Process Capacity by Multiple Linear Regression

These result parameters of multiple linear regression, shown in Table (6.2) to (6.6), express more decisive significant parameters than simple linear regression parameters. In Table 6.1, the summary table of considerable parameter, shows that multiple linear regression method is more useful to gain exact parameters, taken to construct the general model to predict process yield and process capacity, than simple linear regression model.

Table 6.1 Summary of Estimated Parameters of SPSS Multiple Linear Regression Model

Formulation	β。	ß	ß	O	Б	R ²	Significance		Significan	nce t _o	
(month)	Ρ,	β,	β₂	β_3	R	K	F _o	Constant	SO ₄	S.G.	M _R
16-20-0	81.489	-0.267	-19.941	3.862	0.117	0.014	0.591	0.199	0.440	0.609	0.708
June	72.582	0.317	1.183	-4.998	0.2	0.04	0.129	0.063	0.137	0.961	0.429
16-20-0	28.740	-0.129	1.875	12.994	0.134	0.018	0.477	0.780	0.678	0.978	0.213
July	-102.275	0.066	113.798	-3.222	0.215	0.046	0.089	0.135	0.947	0.012	0.640
16-8-8	-121.891	0.001	112.084	6.842	0.269	0.072	0.375	0.299	0.997	0.180	0.383
April	79.891	0.078	0.135	-4.830	0.737	0.543	0.0	0.000	0.042	0.989	0.000
16-8-8	-36.62	1.614	25.879	12.263	0.75	0.563	0.001	0.675	0.000	0.664	0.374
July	187.176	0.806	-34.875	-33.344	0.832	0.692	0.0	0.001	0.000	0.278	0.000
15-7-18	147.817	0.759	-73.154	-2.223	0.419	0.176	0.364	0.263	0.233	0.391	0.922
April	-86.206	0.681	97.951	-2.463	0.623	0.388	0.044	0.359	0.139	0.118	0.880

From above table, R^2 value - the coefficient of determination - enhance more than those in simple linear regression. Especially for the low liquid phase fertilizer formulation, almost R^2 value nearly approaches 0.6-0.7 and F_0 value - the significant F_0 - is less than C0.05. Then it is reject null hypothesis $H_0 = \beta_1 = \beta_2 = ... = \beta_K = 0$ referring to confirm that there are at least 1 independent variable - sulfuric acid concentration, mole ratio, or SG - relate to process yield and process capacity

Nevertheless, it can accept the multiple linear regression if the test of individual coefficient is proved. Significance t_0 – from table 6.1-of low liquid phase fertilizer formulation show that sulfuric acid concentration and mole ratio of fluid raw material feed relate to process yield and process capacity because of t_0 value is less than α = 0.05.

From Table (6.1), this parameter shows that only the 16-8-8 fertilizer formulation – having the best decisive parameters – is proper to make concise model to predict process yield and process capacity. Furthermore, during actual plant operation, a large number of disturbance variables, disturbing the process all time, should study further and introduce to analyze by multiple linear regression to obtain all models of fertilizer formulations.

Table 6.2 The Parameter of Multiple Linear Regression for Process Yield and Process Capacity Dependent Parameters of 16-20-0 June, the High Liquid Phase Fertilizer Formulation

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	MR, SG, SO4 a		Enter

a. All requested variables entered.

b. Dependent Variable: YIELD

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	Change Statistics	dr2	Sig. F Change	Durbin-Watson
1	.117*	.014	-,CO3,-	8.34906	.014	.640	3	139	.591	1.041

a. Predictors: (Constant), MR, SG, SO4

$ANOVA^b$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	133.744	3	44.581	.640	.591ª
	Residual	9689.249	139	69.707		
	Total	9822.993	142			

a. Predictors: (Constant), MR, SG, SO4

Coefficients "

		Unstandardize	Unstandardized Coefficients		Standardized Unstandardized Coefficients Coefficients		Correlations			Collinearity Statistics	
Model		В	Std. Error	Beta	, t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(('onstant)	81.489	63.169		1.290	.199					
	SO4	267	.345	077	774	,440	103	065	065	.717	1.394
	SG	-19.941	38.851	044	513	.609	060	-,04,3	043	.976	1.025
	MR	3.862	10.276	.037	.376	.708	.083	.032	.032	.723	1'38'3

a. Dependent Variable: YIELD

Collinearity Diagnostics^a

					Variance P	roportions	
Model	Dimension	Eigenvalue	Condition Index	(Constant)	SO4	SG	MR
1	1	3.832	1.000	.00	.01	.00	.00
	2	.167	4.793	.00	.68	.00	.00
	3	.001	59.098	.02	.31	.03	.96
	4	6.563E-05	241.628	.98	.00	.97	.04

a. Dependent Variable: YIELD

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	53.1489	59.4383	55.9930	.97049	143
Residual	-21.5238	15.9871	.0000	8.26040	143
Std. Predicted Value	-2.931	3.550	.000	1.000	143
Std. Residual	-2.578	1.915	.000	.989	143

a. Dependent Variable: YIELD

b. Dependent Variable: YIELD

b. Dependent Variable: YIELD

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	MR, SG, SO4 ^a		Enter

a. All requested variables entered.

b. Dependent Variable: CAP

Model Summary

				td. Error of the		C	hange Statistics			
Model	R	R Square	djusted R Squar	Estimate	Square Change	F Change	dfl	df2	Sig. F Change	urbin-Watson
1	.200 ^a	.040	.019	5.12316	.040	1.921	3	139	.129	.877

a. Predictors: (Constant), MR, SG, SO4

b.Dependent Variable: CAP

$ANOVA^b$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	151.275	3	50.425	1.921	.129ª
	Residual	3648.303	139	26.247		
	Total	3799.578	142			

a. Predictors: (Constant), MR, SG, SO4

b. Dependent Variable: CAP

Coefficients"

	Unstandardized Coefficients		d Coefficients	Standardized Coefficients			Correlations			Collinearity Statistics		
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF	
1	(Constant)	72.582	38.762		1.873	.063						
	SO4	.317	.212	.147	1.497	.137	.188	.126	.124	.717	1.394	
	SG	1.183	23,840	.004	.050	.961	.035	.004	.004	,976	1.025	
	MR	-4.998	6.306	-,077	793	.429	155	067	066	.723	1.383	

a. Dependent Variable: CAP

Collinearity Diagnostics^a

					Variance P	roportions	
Model	Dimension	Eigenvalue	Condition Index	(Constant)	SO4	SG	MR
1	1	3.832	1.000	.00	.01	.00	.00
	2	.167	4.793	.00	.68	.00	.00
	3	.001	59.098	.02	.31	.03	.96
	4	6.563E-05	241.628	.98	.00	.97	.04

a. Dependent Variable: CAP

Casewise Diagnostics^a

Case Number	Std. Residual	CAP		
25	-3.537	50.00		
26	-3.328	50.00		
38	-3.348	50.00		
140	-3.503	50.00		

a. Dependent Variable: CAP

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	66.1999	70.8173	67.5091	1.03214	143
Residual	-18.1221	8.2964	.0000	5.06875	143
Std. Predicted Value	-1.268	3.205	.000	1.000	143
Std. Residual	-3.537	1.619	.000	.989	143

a. Dependent Variable: CAP

Table 6.3 The Parameter of Multiple Linear Regression for Process Yield and Process Capacity Dependent Parameters of 16-20-0 July , the High Liquid Phase Fertilizer Formulation

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	MR, SG, SO4 ^a		Enter

a. All requested variables entered.

b. Dependent Variable: YIELD

Model Summary

		,								The state of the s
				td. Error of th		C	hange Statistics			
Model	R	R Square	djusted R Squar	Estimate	Square Chang	F Change	dfl	df2	Sig. F Change	urbin-Watson
1	.134 ^a	.018	004	8.97373	.018	.834	3	137	.477	.944

a. Predictors: (Constant), MR, SG, SO4

b.Dependent Variable: YIELD

$ANOVA^b$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	201.441	3	67.147	.834	.477ª
	Residual	11032.318	137	80.528		
	Total	11233.759	140			

a. Predictors: (Constant), MR, SG, SO4

b. Dependent Variable: YIELD

Collinearity Diagnostics^a

				Variance Proportions				
Model	Dimension	Eigenvalue	Condition Index	(Constant)	SO4	SG	MR	
1	1	3.826	1.000	.00	.01	.00	.00	
	2	.173	4.706	.00	.85	.00	.00	
	3	.001	56.842	.01	.14	.01	.98	
	4	2.671E-05	378.499	.99	.00	.99	.02	

a. Dependent Variable: YIELD

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	50.9838	56.9590	53.3972	1.19953	141
Residual	-22.7989	20.2728	.0000	8.87706	141
Std. Predicted Value	-2.012	2.969	.000	1.000	141
Std. Residual	-2.541	2.259	.000	.989	141

a. Dependent Variable: YIELD

Variables Entered/Removedh

Model	Variables Entered	Variables Removed	Method
1	MR, SG, SO4 ^a		Enter

a. All requested variables entered.

b. Dependent Variable: CAP

Model Summary

				Std. Error of the	Change Statistics					
Model	R	R Square	Adjusted R Square	Estimate	R Square Change	F Change	df1	d12	Sig. F Change	Durbin-Watson
1	.215*	.046	.025	5.94811	.046	2.220	3	137	.089	.910

a. Predictors: (Constant), MR. SG. SO4

b. Dependent Variable: CAP

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	235.635	3	78.545	2.220	.089ª
	Residual	4847.065	137	35.380		
	Total	5082.700	140			

a. Predictors: (Constant), MR, SG, SO4

b. Dependent Variable: CAP

Caefficient

		Unstandardized Coefficients		Standardized Coefficients			Correlations		elations Collinearity		y Statistics
Model		В	Std. Error	Beta	ι	Sig.	Zero-order	Partial	Part	Tolerance	VII
1	(Constant)	-102.275	68,026		-1.503	.135					
	SO4	.066	.206	.029	.323	.747	.038	.028	.027	.878	1.139
	SG	113.798	44.819	.217	2.539	.012	.207	.212	.212	.953	1.049
	MR	-3.222	6.877	043	468	.640	007	040	039	.840	1.191

a. Dependent Variable: CAP

Collinearity Diagnostics^a

				Variance Proportions				
Model	Dimension	Eigenvalue	Condition Index	(Constant)	SO4	SG	MR	
1	1	3.826	1.000	.00	.01	.00	.00	
	2	.173	4.706	.00	.85	.00	.00	
	3	.001	56.842	.01	.14	.01	.98	
	4	2.671E-05	378.499	.99	.00	.99	.02	

a. Dependent Variable: CAP

Casewise Diagnostics^a

Case Number	Std. Residual	CAP
113	-3.473	50.00

a. Dependent Variable: CAP

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	65.8543	72.7103	69.1294	1.29735	141
Residual	-20.6579	10.0142	.0000	5.88404	141
Std. Predicted Value	-2.524	2.760	.000	1.000	141
Std. Residual	-3.473	1.684	.000	.989	141

a. Dependent Variable: CAP

Table 6.4 The Parameter of Multiple Linear Regression for Process Yield and Process Capacity Dependent Parameters of 16-8-8 April, the Low Liquid Phase Fertilizer Formulation

Variables Entered/Removedb

Model	Variables Entered	Variables Removed	Method
1	MR, SG, SO4 ^a		Enter

a. All requested variables entered.

b. Dependent Variable: YIELD

Model Summary

				Std. Error of the	Change Statistics					
Model	R	R Square	Adjusted R Square	Estimate	R Square Change	F Change	dfl	df2	Sig. F Change	Durbin-Watson
1	.269ª	.072	.004	9.84517	.072	1.065	3	41	.375	1.814

a. Predictors: (Constant), MR, SG, SO4

b.Dependent Variable: YIELD

ANOVA^b

Model		Sum of Squares	Sum of Squares df		F	Sig.
1	Regression	309.622	3	103.207	1.065	.375ª
	Residual	3974.023	41	96.927		
	Total	4283.644	44			

a. Predictors: (Constant), MR, SG, SO4

b. Dependent Variable: YIELD

Coefficients

		Unstandardized Coefficients		Standardized Coefficients			Correlations			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	-121.891	115.848		-1.052	.299					
	SO4	.001	.321	.001	.004	.997	.051	.001	100,	.718	1.393
	SG	112.084	82,082	.229	1.366	.180	.228	.209	.205	.804	1.244
	MR	6,842	7.752	.142	.883	.383	.140	.137	.133	.872	1.146

a. Dependent Variable: YIELD

Collinearity Diagnostics^a

				Variance Proportions						
Model	Dimension	Eigenvalue	Condition Index	(Constant)	SO4	SG	MR			
1	1	3.959	1.000	.00	.00	.00	.00			
	2	.037	10.374	.00	.61	.00	.04			
	3	.004	31.695	.01	.24	.01	.96			
	4	7.788E-05	225.464	.99	.15	.99	.00			

a. Dependent Variable: YIELD

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	52.2546	63.8469	57.9111	2.65271	45
Residual	-23.4958	14.1204	.0000	9.50361	45
Std. Predicted Value	-2.132	2.238	.000	1.000	45
Std. Residual	-2.387	1.434	.000	.965	45

a. Dependent Variable: YIELD

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method		
1	MR, SG, SO4 ^a		Enter		

a. All requested variables entered.

Model Summary

				td. Error of the	Change Statistics					
Model	R	R Square	djusted R Square	Estimate	Square Change	F Change	dfl	df2	Sig. F Change	Durbin-Watson
1	.737 ^a	.543	.509	1.140687	.543	16.232	3	41	.000	1.471

a. Predictors: (Constant), MR, SG, SO4

 $ANOVA^b$

Model		Sum of Squares df		Mean Square	F	Sig.
1	Regression	63.361	3	21.120	16.232	.000 ^a
	Residual	53.348	41	1.301		
	Total	116.709	44			

a. Predictors: (Constant), MR, SG, SO4

Coefficients

	Unstandardized Coefficients		Standardized Coefficients			Correlations			Collinearity Statistics		
Mod	del	В	Std. Error	Beta	t.	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	79.891	13.422		5.952	.000					
	SO4	.078	.037	.262	2.104	.042	.462	.312	.222	.718	1.393
	SG	.135	9.510	.002	.014	.989	.117	.002	.001	.804	1.244
	MR	-4.830	.898	608	-5.378	.000	694	643	568	.872	1.146

a. Dependent Variable: CAP

b. Dependent Variable: CAP

b.Dependent Variable: CAP

b. Dependent Variable: CAP

Collinearity Diagnostics^a

				Variance Proportions				
Model	Dimension	Eigenvalue	Condition Index	(Constant)	SO4	SG	MR	
1	1	3.959	1.000	.00	.00	.00	.00	
	2	.037	10.374	.00	.61	.00	.04	
	3	.004	31.695	.01	.24	.01	.96	
	4	7.788E-05	225.464	.99	.15	.99	.00	

a. Dependent Variable: CAP

Casewise Diagnostics^a

Case Number	Std. Residual	CAP
1	-4.052	66.000

a. Dependent Variable: CAP

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	69.24611	73.43138	71.06556	1.200012	45
Residual	-4.62222	2.90840	.00000	1.101114	45
Std. Predicted Value	-1.516	1.972	.000	1.000	45
Std. Residual	-4.052	2.550	.000	.965	45

a. Dependent Variable: CAP

Table 6.5 The Parameter of Multiple Linear Regression for Process Yield and Process Capacity Dependent Parameters of 16-8-8 July, the Low Liquid Phase Fertilizer Formulation

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	MR, SG, SO4 ^a		Enter

a. All requested variables entered.

Model Summary

				Std. Error of the		Change Statistics				
Model	R	R Square	Adjusted R Square	Estimate	R Square Change	F Change	dfl	dí2	Sig. F Change	Durbin-Watson
I	.750 ^a	.563	.494	8.53756	.563	8.148	3	19	.001	1.900

a. Predictors: (Constant), MR, SG, SO4

b. Dependent Variable: YIELD

b.Dependent Variable: YIELD

$\mathsf{ANOVA}^\mathsf{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1781.700	3	593.900	8.148	.001 ^a
	Residual	1384.908	19	72.890		
	Total	3166.609	22			

a. Predictors: (Constant), MR, SG, SO4

b. Dependent Variable: YIELD

Coefficients

		Unstandardized Coefficients		Standardized Coefficients				Correlations		Collinearit	y Statistics
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	-36.620	86,001		426	.675					
	SO4	1.614	.361	.731	4.476	.000	.731	.716	.679	.864	1.158
	SG	25.879	58.685	.072	.441	.664	138	.101	.067	.874	1.144
	MR	12.263	13.474	.142	.910	.374	.269	.204	.138	.942	1.061

a. Dependent Variable: YIELD

Collinearity Diagnostics^a

					Variance Proportions				
Model	Dimension	Eigenvalue	Condition Index	(Constant)	SO4	SG	MR		
1	1	3.947	1.000	.00	.00	.00	.00		
	2	.050	8.870	.00	.86	.00	.00		
	3	.003	39.215	.03	.02	.03	.99		
	4	.000	132.359	.97	.12	.97	.00		

a. Dependent Variable: YIELD

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	38.7000	74.6458	59.1304	8.99924	23
Residual	-14.5678	16.5807	.0000	7.93413	23
Std. Predicted Value	-2.270	1.724	.000	1.000	23
Std. Residual	-1.706	1.942	.000	.929	23

a. Dependent Variable: YIELD

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method	
1	MR, SG, SO4 ^a		Enter	

a. All requested variables entered.

b. Dependent Variable: CAP

Model Summary

				Std. Error of the			Change Statistics			
Model	R	R Square	Adjusted R Square	Estimate	R Square Change	F Change	dΩ	df2	Sig. F Change	Durbin-Watson
1	.832*	.692	.643	4.53871	.692	14.213	3	19	,000	1.272

a. Predictors: (Constant), MR, SG, S()4

$ANOVA^b$

Model	×	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	878.341	3	292.780	14.213	.000ª
	Residual	391.398	19	20.600		
	Total	1269.739	22			

a. Predictors: (Constant), MR, SG, SO4

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			Correlations		Collinearity Statistics		
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant	187.176	45.720		4.094	.001					
	SO4	.806	.192	.576	4.204	.000	.525	.694	.535	.864	1.158
	SG	-34.875	31.198	152	-1.118	.278	404	248	142	.874	1.144
	MR	-33.344	7.163	611	-4.655	.000	536	730	593	.942	1.061

a. Dependent Variable: CAP

Collinearity Diagnostics a

				Variance Proportions					
Model	Dimension	Eigenvalue	Condition Index	(Constant)	SO4	SG	MR		
1	I	3.947	1.000	.00	.00	.00	.00		
	2	.050	8.870	.00	.86	.00	.00		
	3	.003	39.215	.03	.02	.03	.99		
	4	.000	132.359	.97	.12	.97	.00		

a. Dependent Variable: CAP

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	. N
Predicted Value	69.0923	90.9333	81.4783	6.31859	23
Residual	-8.8976	9.5852	.0000	4.21792	23
Std. Predicted Value	-1.960	1.496	.000	1.000	23
Std. Residual	-1.960	2.112	.000	.929	23

a. Dependent Variable: CAP

b. Dependent Variable: CAP

b. Dependent Variable: CAP

Table 6.6 The Parameter of Multiple Linear Regression for Process Yield and Process Capacity Dependent Parameters of 15-7-18 April, the Low Liquid phase Fertilizer Formulation

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	MR, SG. PERC.SO4		Enter

a. All requested variables entered.

b. Dependent Variable: YIELD

Model Summary

1 1				td. Error of the			hange Statistics			
Model	R	R Square	djusted R Squar	Estimate	Square Change	F Change	dfl	df2	Sig. F Change	Durbin-Watson
1	.419 ^a	.176	.021	8.52982	.176	1.138	3	16	.364	2.113

a. Predictors: (Constant), MR, SG, PERC.SO4

b.Dependent Variable: YIELD

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	248.424	3	82.808	1.138	.364 ^a
	Residual	1164.126	16	72.758		
	Total	1412.550	19			

a. Predictors: (Constant), MR, SG, PERC.SO4

b. Dependent Variable: YIELD

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients				Correlations			y Statistics
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	147.817	127.497		1.159	.263					
	PERC.SO	.759	.612	.446	1.241	.233	.368	.296	.282	.399	2.509
	SG	-73.154	82.917	208	882	.391	102	215	200	.930	1.075
	MR	-2.223	22.445	035	099	.922	.278	025	022	.418	2.394

a. Dependent Variable: YIELD

Collinearity Diagnostics^a

					Variance Proportions					
Model	Dimension	Eigenvalue	Condition Index	(Constant)	PERC.SO4	SG	MR			
1	1	3.976	1.000	.00	.00	.00	.00			
	2	.023	13.256	.00	.43	.00	.00			
	3	.001	60.058	.01	.45	.04	.92			
	4	.000	181.153	.98	.12	.96	.08			

a. Dependent Variable: YIELD

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	46.9854	61.6427	57.1500	3.61593	20
Residual	-17.7746	12.9587	.0000	7.82750	20
Std. Predicted Value	-2.811	1.242	.000	1.000	20
Std. Residual	-2.084	1.519	.000	.918	20

a. Dependent Variable: YIELD

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	MR, SG. PERC.SO4		Enter

a. All requested variables entered.

Model Summary

				Std. Error of the		(Change Statistics			
Model	R	R Square	Adjusted R Square	Estimate	R Square Change	F Change	dſ1	dí2	Sig. F Change	Durbin-Watson
1	.623ª	.388	.273	6.10807	.388	3.378	3	16	.044	1.875

a. Predictors: (Constant), MR, SG, PERC.SO4

 $ANOVA^b$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	378.063	3	126.021	3.378	.044ª
	Residual	596.937	16	37.309		
	Total	975.000	19			

a. Predictors: (Constant), MR, SG, PERC.SO4

b. Dependent Variable: CAP

b.Dependent Variable: CAP

b. Dependent Variable: CAP

Coefficients

		Unstandardized Coefficients		Standardized Coefficients			Correlations			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant	-86.206	91.298		944	.359					
	PERC.S	.681	.438	.482	1.555	.139	.529	.362	.304	.399	2.509
	SG	97.951	59.375	.335	1.650	.118	.447	.381	.323	.930	1.075
	MR	-2.463	16.072	046	153	.880	.362	038	030	.418	2.394

a.Dependent Variable: CAP

Collinearity Diagnostics

				Variance Proportions				
Model	Dimension	Eigenvalue	Condition Index	(Constant)	PERC.SO4	SG	MR	
1	1	3.976	1.000	.00	.00	.00	.00	
	2	.023	13.256	.00	.43	.00	.00	
	3	.001	60.058	.01	.45	.04	.92	
	4	.000	181.153	.98	.12	.96	.08	

a. Dependent Variable: CAP

Residuals Statistics

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	55.3210	73.3345	67.5000	4.46072	20
Residual	-15.3210	9.7767	.0000	5.60515	20
Std. Predicted Value	-2.730	1.308	.000	1.000	20
Std. Residual	-2.508	1.601	.000	.918	20

a. Dependent Variable: CAP

6.3 Comparison of Estimated Process Yield and Process Capacity by Multiple Linear Regression Model with Actual Process Yield and Process Capacity

The scatter plot graphs between actual yield in the y-axis and estimated yield in the x-axis, estimated by multiple linear regression, are shown in Figure (6.1) to (6.5) for high liquid phase and low liquid phase fertilizer formulations.

Moreover, consideration of figure 6.4, the 16-8-8 fertilizer formulation, is the vivid confirmation of the good multiple regression that can predict process yield and process capacity

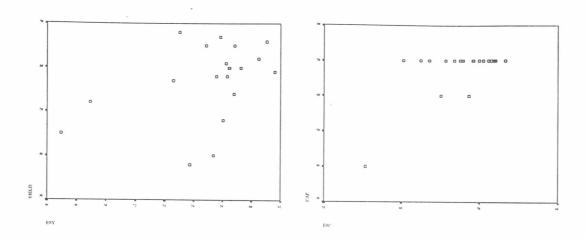


Figure 6.1 The Comparison Graph Plot of 16-20-0 June, the High Liquid Phase Fertilizer Formulation

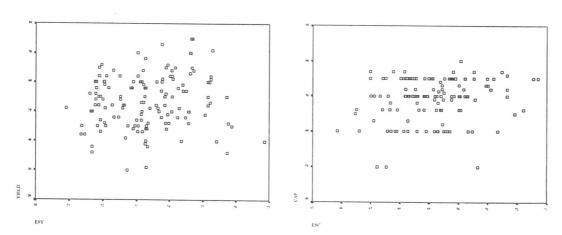


Figure 6.2 The Comparison Graph Plot of 16-20-0 July, the High Liquid Phase Fertilizer Formulation

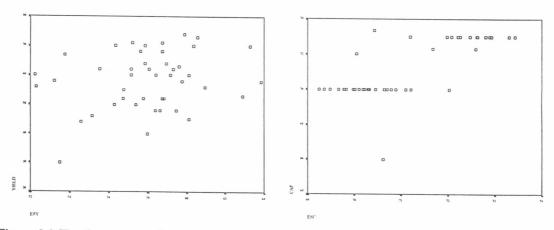


Figure 6.3 The Comparison Graph Plot of 16-8-8 April, the Low Liquid Phase Fertilizer Formulation

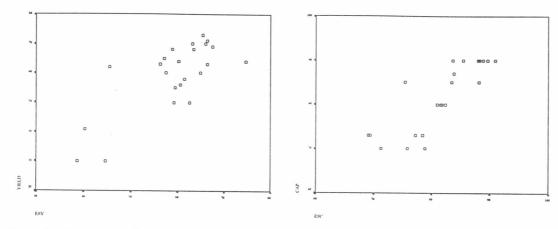


Figure 6.4 The Comparison Graph Plot of 16-8-8 July, the Low Liquid Phase Fertilizer Formulation

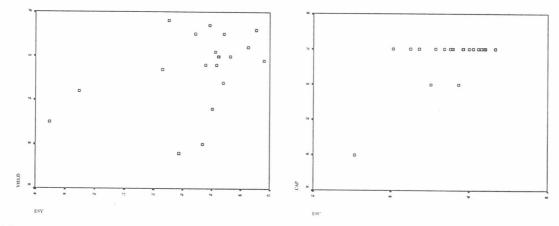


Figure 6.5 The Comparison Graph Plot of 15-7-18 April, the Low Liquid Phase Fertilizer Formulation