CHAPTER IV

NUMERICAL SOLUTIONS

This chapter is concerned with the numerical results obtained from
the solution scheme described in Chapter III. A computer program has been
developed to investigate the interaction problem between a pile group and a
multi-layered poroelastic medium. Convergence and stability of numerical
solutions are investigated. The accuracy of the present solutions is verified
by comparing with the existing solutions given in the literature. Numerical
results are also presented in this chapter to investigate the influence of
various parameters on the quasi-static behavior of vertically loaded pile

group in multi-layered poroelastic medium.

4.1 Numerical Solution Scheme

The solution scheme described in Chapter III is implemented into a
computer program. The tasks performed by the computer program can be

summarized as follows:

1. The pile is discretized into Ne elements. The deformation of each pile is
approximated by an exponential series given by equation (3.37). The

Laplace transform is then applied to the equation (3.37).

2. The strain energy of the fictitious pile group is computed from equation
(3.39)-(3.43).

3. The submatrix of vertical influence function of the extended half-
space, equation (3.44), is determined to establish the flexibility

matrix, equation (3.45).

4. The strain energy of the extend half-space, Uh,, is computed by using

equation (3.55) to (3.59).
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5. The system of simultaneous linear equations is solved for the
generalized coordinates in the L aplace domain, O (s), for the i" pile,

i=1,2,..,Npand m=12,..,Nt.

6. Appropriate numerical Laplace inversion scheme is employed to

obtain time domain solutions of the generalized coordinates, E'm (s)

7. The pile deformation and the unknown body force are obtained by

back substituting the generalized coordinates a;(t)into equations

(3.37) and (3.51) respectively.

The major computation effort performed by the computer program is
the evaluation of the influence functions. The influence functions appear in
terms of semi-finite integrals with respect to & and s given by equation
(3.14). The semi-finite integrals with respect to & can be evaluated by
applying numerical quadrature. The scheme subdivides the interval of the
integral and employs Simpson’s rule to evaluate the integral over each
subinterval. The error for each subinterval is estimated, and the bisection

procedure is continued until the error criterion is reached.

4.2 Convergence and Numerical Stability of Present Solution

The convergence and stability of the numerical solution scheme
described in the previous section are investigated with respect to the

following parameters:

1. The upper limit of integration, £, , used in the numerical integration

of equation (3.14) to determine the flexibility matrix of the

multilayered half-space.

2. The number of terms N¢ used in the displacement of each pile given

by equation (3.37).

3. The number of elements Ne used in the discretization of the piles as

shown in Figure 2(b).
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Table 1 presents the convergence of axial stiffness, Kv, where
Kv=V,/pah, for an axially loaded single pile and a pile group in a
homogeneous elastic half-space with respect to £, . The geometry of the
piles-half-space system and properties are shown in Figure 3. The pile
length, L=40a, and the spacing between center of piles, d=35a, are
considered in this figure. In addition, three values of pile stiffness are
shown, 1.e., Ep/,u=100, 6000 and . It is found from the results shown in
Table 1 that the axial stiffness for all values of pile stiffness converges for

£ 240.

The influence of number of terms in the displacement approximate
equation (3.37), Nt, on the axial stiffness is shown in Table 2. The geometry
and properties of the piles-half-space system are the same as those employed
in Table 1. It appears that the accurate numerical results are obtained when

Nt >8. Therefore, subsequence numerical solutions presented in this chapter

are then computed by employing &, =40 and Nr=8.

Figure 4 shows the convergence of axial stiffness with respect to Ne,
the number of elements used for discretizing piles. Four different values of
pile length, i.e., L/a=40, 60, 80 and 100, with Ep/u=6000 and oo are
considered. In addition, the properties of the half-space are the same as those in
Figure 3. It is found that the numerical solutions converge for Ne equal to 30 and 40

for 20< L/a <60 and 60 < L/a <100 respectively.

4.3 Comparison with Existing Solutions

The accuracy of the present solution scheme is verified by comparing
the solutions obtained from the present scheme with the existing solutions.
Three types of elastic media, namely a homogeneous half-space,
nonhomogeneous half-space and a multi-layered half-space are considered in

the comparison.
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Figures 5, 6 and 7 present a comparison of the axial stiffness of the
piles-homogeneous half-space system of figure 3 with those reported in
existing studies (Butterfield and Banerjee 1971). In Figure 5 the axial
stiffness is plotted with respect to tﬁe ratio of L/a for Ep/u=6000 and o,

with the spacing between center of piles, d, being equal to a for P1, P2,
P3 and P4. Figure 6 presents a comparison of the axial stiffness for different

values of the ratio of L/a for PS. It is evident that the present solutions are
in very good agreement with the existing solutions for both ratios of Ep/u.
Figure 7 presents a comparison of the group reduction factor, R;, for
different values of d/a for L=40a. Once again, it can be clearly seen that

both solutions agree very closely for all ratios of dfa.

Figure 8 presents a comparison of the distribution of shear stress

along pile, T,2arL/V,, for a single pile embedded in a homogeneous elastic

half-space obtained from the present scheme with those given by Poulos
and Davis (1980). It can be seen from this figure that the two sets of

solutions agree very closely for both values of pile stiffness.

Table 3 presents a settlement influence factor, I, for a single pile in
a nonhomogeneous elastic medium with rigid base as shown in Figure 9(a).

Note that 7, =A0E5(L)a/V0 where A, is the displacement at the top of the
pile (z=0). Two values of the pile length, i.e., L/a=20 and 50, with
Ep/Es(L)=100 and 1000 are considered. In addition, the degree of

nonhomogeneity, p, is equal to 0.0 and H/L=2 where p=pu(0)/p(L) and

H denotes the depth of rigid base. Numerical results presented in Table 3
indicate that, the present solutions are in very good agreement with the

solutions given by Chow(1987) and Poulos(1979).

Rajapakse(1990) presented solutions for an axially loaded single pile
in a nonhomogeneous elastic half-space as shown in Figure 9(b). Figure 10
shows a comparison of the axial stiffness for different degree of

nonhomogeneity obtained from the present scheme with those reported by
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Rajapakse(1990). It can be seen from this figure that the two sets of

solutions agree very closely for all values of p and Ep.

Finally, let consider a multi-layered system consisting of three layers
with a rigid base as shown in Figure 11. The properties of each layer are

given in Table 4. Table 5 presents a comparison of I, for the case of a

single pile. The present solutions are in good agreement for Case A and B
with solutions from a finite element program ISOPE. But the solution from
the program AXPILS5 (Poulos 1979) shows some significant differences from
the other two schemes for case B due to the approximations made in the
analysis. Table 6 shows the comparison of interaction factor for two piles
from present scheme and that given by Chow (1987). The interaction factor
is defined as the ratio of additional settlement due to adjacent pile to the
settlement of a pile under its own weight. Numerical results presented in
Table 6 indicate that interaction factor from both schemes agree very closely
for all systems considered in the comparison. The accuracy of the present

scheme is therefore confirmed through these independent comparisons.
4.4 Numerical Results and Discussion

Numerical results are presented in this section to demonstrate the
influence of various parameters on the quasi-static response of axially
loaded pile group embedded in a multi-layered poroelastic medium. A
layered system consisting of the two poroelastic layers boned to an under
lying poroelastic half-space is considered as shown in Figure 12(a). The
properties of each layer are given in Table 7. The configuration of the pile

groups in the numerical study is shown in Figure 3(b). A non-dimensional
time, =c(2)t/a2 . in the range 107 <¢ <10’ is considered in all numerical
results presented in this section. Note that ¢? is the consolidation

coefficient of the second layered given by equation (3.10). The influences of

several parameters are presented from Figures 13 to 19.

The influence of spacing between the piles, d , on axial stiffness, Kv

where Kv=V0/,u(2) ah, is presented in Figure 13 for different pile stiffness,
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(Ep" =le+2and Ep =le+6). In addition, Ep' =Ep/u®, x"/k® =0.1 and
[ =40a. It is found that the values of axial stiffness increase for increasing
the spacing between the piles for all types of pile group. This feature can be
explained by the fact that the interaction between adjacent piles decreases

when the spacing between piles is increased.

Figure 14 shows the non-dimensional pile settlement curves along the
length of piles, w, where w = Ao,u(z)A/Va for various slenderness ratios,

L/a. Consider the initial and final solutions of w', the difference between

the two solutions decreases along the length of pile when the slenderness -

ratio of pile is increased. In addition, it is also found that the pile

shortening, W ;) —W (s> N @ longer pile is greater than a shorter one.

Non-dimensional pile settlements at z=0 and z=L are presented in

Figures 15 and 16 for different length of pile, (L=20a, 40a, 60a and 1004)

with K'(l)/l((z) —0.1. The numerical results indicate that the settlement at the
top of the pile, w'(zzo), decreases when the pile stiffness and the pile length
are increased for all types of pile group. On the other hand, the settlement at

pile tip, w'(:=14), increases when Ep’ and number of piles in group, Np, are

increased.

Time history of axial stiffness is shown in Figure 17 for L=40a and
different values of K'(l)/l('(z) - K(l)/rc(z) =0.1, 1 and 10, to demonstrate the
influence of permeability on Kv. Numerical results indicate that
consolidation process is accelerated when the ratio of K(l)/l(‘(z) is increased
as the permeability of the top layer is higher. This is also true for all types
of pile and all values of Ep". Figures 18 and 19 show the effect of the ratio
K(l)/xm on the axial stiffness for L =40a. Numerical results indicate that the
time dependent responses of axial stiffness for different values of

K(')/K(Z) are different. It is also found that axial stiffness increases when the

pile stiffness is increased for all values of K(])/K(Z).
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Figures 20 and 21 present the time history of axial stiffness for an
axially loaded pile group in a multi-layered poroelastic medium with rigid

base as shown in Figure 12(b) for different ratio of H/L. Note that H is the

depth of rigid base and K(l)/K(Z) —0.1 and L=40a in the numerical results
presented in these two figures. It is found that an increase in the depth of
rigid base results in the reduction in the axial stiffness, Kv. It is also found
that the depth of rigid base has significant influence on the time dependent

behavior of axial stiffness for a rigid pile than that of the flexible one.
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