CHAPTER III

THEORETICAL CONSIDERATIONS

3.1 Basic Equations and General Solutions

Consider axisymmetric deformations of a poroelastic half-space with respect

to the conventional cylindrical coordinates system (r,z) as shown in Figure 1.

Following Rice and Cleary (1976), the constitutive relation for a homogeneous

poroelastic material with compressible constituents can be expressed as the following:
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where o, 0,,, 0, and o, are the total stress components of the bulk material; & is

the dilatation of the solid matrix; p is defined as the excess pore fluid pressure
(suction is considered negative); x, v and v, denote the shear modulus, drained and

undrained Poisson’s ratio respectively. In addition, B is Skempton’s (1954) pore

pressure coefficient.

It is noted that 0<B<1 and v<v, <0.5 for all poroelastic materials. The

limiting cases of a poroelastic solid with incompressible constituents and a dry elastic

material are obtained when v, =0.5 and B=1, and B — 0 respectively. The excess

pore fluid pressure can be expressed as
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where ¢ denotes the variation of fluid volume per unit reference volume. In addition,

u;and y, denote the average displacement of solid matrix and the fluid displacement

relative to the solid matrix, in the i” direction (i = r,z) respectively. Then,

W, = J'q,.dt and ¢, = —K-pr (3.6)
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where ¢, is the fluid discharge in the i" direction and x is the coefficient of

permeability of the medium.

The quasi-static governing equations for a poroelastic medium with
compressible constituents, expressed in terms of stresses and pore pressure as basic
variables, can be transformed into Navier equations with coupling terms and a

diffusion equation by treating the displacements, «; and the variation of fluid volume

per unit reference volume, &, as the basic unknowns as
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The general solutions for equations (3.7) to (3.9) can be derived by applying Laplace-

Hankel transform (order zero) with respect to time and radial coordinates respectively.



At this stage, it is convenient to nondimensionalize all quantities including the

co-ordinate frame with respect to length and time by selecting a layer thickness “/4 ™
as a unit length and “#’ /c ” as a unit time respectively. All variables will be replaced

by appropriate nondimensional variables, but the previous notations will be used for

convenience.

The Laplace-Hankel transform of a function ¢(r,z,t) with respect to the

variable ¢ and r respectively, is defined by (Sneddon, 1951)
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In equation (3.13), s and ¢ denote the Laplace and Hankel transform parameters

respectively, and J, (dfr) denotes the Bessel function of the first kind of order zero.

The inverse relationship is given by
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where @ is greater than the real part of all singularities of ¢(r,z,s) and i is the

imaginary number.

It can be shown that the general solution for the solid and fluid displacements,
pore pressure and stresses in the Laplace-Hankel transform space can be expressed in

the following matrix form (Senjuntichai and Rajapakse, 1995)

u(£,2,5) =R(&,2,5) X(£,5) (3.15)
£(£,2,5)=5(&,2,5)X(&,5) (3.16)

in which
u(&,z,5)=[u(¢&2,5)] ;i=1,23 (3.17)
£(£,2,5)=[/(¢&25)] ;i=123 (3.18)
u (&,2,5) = ur (3.19)
U, (&,2,5) =t (3.20)

u,(£,2,5)=Dp (3.21)
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fi(¢,2,5)=0x (3.22)
£, (&,2,5)=0= (3.23)
£ (&:25) =y (3.24)
X(&,5)=[4 B C D E F| (3.25)

and the matrices R(&,z,5)and S(&,z,s) in equations (3.15) and (3.16) are explicitly
given by equations (A - 1) to (A - 10) in Appendix A. The arbitrary functions 4(¢, )
,B(£,s), ..., F(&,s) appearing in the vector X(¢,s)are to be determined by

employing appropriate boundary and/or continuity conditions.
3.2 Stiffness Matrices

A multi-layered system with a total of NI poroelastic layers overlying a
poroelastic half-space is considered in this section. Layers and interfaces are

numbered as shown in Figure 1. A subscript “n” is applied to denote quantities
associated with the n” layer (n=1,2,..,NI). For the n" layer, the following

relationships can be established by using equations (3.15) and (3.16) :

U =] s X(") (&.5) (3.26)

(5 Zn+l’s)

§ Z",S
.................... X" (&,5) (3.27)
[ (E12,05) 0 (£2,0005) | (3.28)

[0 (£,2,8) 1(E2,005) ] (3.29)

From equations (3.26) to (3.29), U™ denotes a vector of generalized

displacements for the n™ layer whose elements related to the Laplace-Hankel

transform of displacements and pore pressure of the top and bottom surfaces of the

n™ layer. Similarly, F") denotes a generalized force vector whose elements related to
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the Laplace-Hankel transform of the tractions and fluid displacement of the top and

bottom surfaces of the n™ layer.

The matrices R and S in equations (3.26) and (3.27) are identical to R
and S defined in Appendix A except that the material properties of the n™ layer are
employed in the definition and z=z,or z,,,. Equation (3.26) can be inverted to
express X" in terms of U™ and the substitution in equation (3.27) yields

" = kg™ (3.30)
where K" can be considered as an exact stiffness matrix in the Laplace-Hankel

transform space describing the relationship between the generalized displacement
vector U and the generalized force vector F") for the n" layer. In equation (3.30),
the layer stiffness matrix K" is a 6x6 symmetric matrix and its element, k,.j, 1s

function of layer thickness, layer material properties and Laplace and Hankel

transform parameter respectively.

For the underlying half-space, the arbitrary function 4™, C"*)and

E™* are set to be zero to guarantee the regularity of the solutions at infinity. The

stiffness matrix for the bottom half-space can be expressed as

F(N1+l) _ K(NI+1)U(NI+1) _ (3.31)
where
+ + L
) — l:u(N/ 1) (5, ZN,+1,S):| (3.32)
FV+) _ [_f(NM) (5 = S):IT (3.33)
- > “NIl+1> '

(N1+1)

Due to the regularity condition at z — o0, the matrix K is a 3x3 symmetric

matrix. It is noted that exponential terms of & and s are not involved in the
expression of K"*) and its elements depend only on the material properties of the
underlying half-space and the Laplace and Hankel transform parameter respectively.

The elements of K™ and K™ are explicitly given by Senjuntichai and Rajapakse
(1995).
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3.3 Global Stiffness Matrix

The global stiffness matrix of a multi-layered poroelastic half-space is
assembled by using layer and half-space stiffness matrices together with the

continuity conditions of tractions and fluid flow at the layer interfaces. For example,

the continuity conditions at the n” interface can be expressed as
£ (&,2,,5) £ (&,2,,5) =T (3.34)
where £"™) and £ are defined in equation (3.18) and

~(m) "
T(n)=|ii:r(") TZ(") “Q_} (3.35)
S

where f(”) (i= r,z) and é(n) denote the Laplace-Hankel transform of tractions and

1

fluid source which applied at the n” interface respectively.

Consideration of equation (3.35) at each layer interface together with the layer
and bottom half-space stiffness matrices defined in equations (3.30) and (3.31) results

in the following global stiffness equation of order 3(N/ +1) :

K® uW T )
K®) u® T®
g i p=a (3.36)
K(N’) u™ T
i K(NI+1) J \U(N1+I) i \T(NIH) )

The solutions of equation (3.36) are the influence functions required to establish the
flexibility equation for the derivation of the strain energy of a multi-layered

poroelastic half-space.
3.4 Variational Formulation

Consider a multi-layered poroelastic half-space with an embedded elastic pile

group as shown in Figure 1. The pile group is subjected to an axial load ¥,H (¢) when
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H(r) is a Heaviside step function and each pile in the group is assumed to be

perfectly bonded to the surrounding medium. The pile cap is assumed to be rigid and
is not in contact with the ground. Since we are concerned with the deformation of an
elastic pile group where each pile has a large length-to-radius ratio, it is well justified
(see Muki and Sternberg 1969, 1970) to assume one-dimensional behavior for each
pile. It was also found that the deformation of each pile decreases gradually along its
length towards the pile base (Poulos 1980). It is then well justified (see Selvadurai
and Rajapakse 1990) to assume the distribution of deformation for each pile in the

form of exponential function with a number of arbitrary coefficients.
Nt
W (z,t)=Y e " el (1) 5i=12,...Np (3.37)
m=]

In the above equation, a,, (¢) is the arbitrary coefficient, Nz denotes the number of

terms used to represent the deformation of the pile group, Np and Ne are the total
number of piles and elements used for discretizing the pile respectively. In addition,
L is the total length of pile. The displacement profile along the i" pile in equation

(3.37) is indeterminate within the arbitrary coefficients a; (), @, (1), ..., ay(t). By

using Laplace transformation, equation (3.37) can be transformed into the Laplace

domain and can be written as

—i Nt y—i
w(zs)=Y " an(s) ;i=12,.,Np (3.38)

m=1

where the superposed bar is used to denote the Laplace transform of a function.

The system in Figure 1 is decomposed into an extended poroelastic medium
and a number of fictitious piles as shown in Figures 2(a) and 2(b) respectively. The
system can be considered as a composite system of an extended poroelastic medium
reinforced by fictitious piles with their Young’s moduli being equal to the difference
between the Young’s moduli of the real piles and the medium. Then, the strain energy
of each fictitious pile i corresponding to the assumed displacement function in the

Laplace domain can be expressed as

E (a@‘ /62)2
2

o= |

LA

dAdz (3.39)
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By substituting the deformation of the i pile equation (3.38), into equation (3.39, the

strain energy of fictitious elastic pile i* can be obtained in the following form

Up' = 225% ) D, an(s) (3.40)

m=1 n=1

i —
where D, =

/4 (ai )2 (m - 1) (n - l) %ﬁ E,-‘ [(e_(mm-z) (:", -Al /2) _ e—(m+n—2)(zi.+Ari. /2) )il

2L(m+n-2) = g
,for m + n #2

D =D/ =0 for mn=12,..,Nt (3.41)

E' =Ep' —Es, for k=1,2,..,Ne (3.42)

Finally, the strain energy of the fictitious pile group can be expressed as
Np )
- Z Up’ (3.43)
i=1

where Up, and Up' denote the strain energy functional of the fictitious pile group

and the i” pile, respectively in the Laplace transform space; a' is radius of the i”

pile; Ep' and Es,are the modulus of elasticity of the i pile and the modulus of

elasticity of the layer that is at the level of the k™ element respectively. In addition,

At,’ denotes the thickness of the k" element of the i pile as shown in Figure 2(b).

The derivation of Up' is given in detail in Appendix B.

The solutions for the vertical body force over a cylindrical region identical to
the real pile and the vertical displacement of the extended half-space are determined

by discretizing the pile into a total of Ne elements. It is assumed that the vertical

body force corresponding to the k™ element of the i” pile is constant with each
element as shown in Figure 2(a). The relationship between the unknown body forces
and the vertical displacements of the extended half-space can be expressed in terms of

the following flexibility equations
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[FY F? ... FY ... FW ([ B') ' ]
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where F'/ is an NexNe symmetric matrix defined as

[—ij =i —hJ
fo S o v T
—i,j —4,J ~—%hJ
Fi'j _ f2] f22 . fZNe for i,j:1,2,---s Np and k,l =1,29"'3Ne
fkl :
—=j.f =) —i.J
LfNL’I fNeZ fNeNe_

(3.45)

In the above equation, the element 7',(/ of the matrix F*/ denotes the Laplace

transform of the vertical displacement at the nodal point of k" element of the i" pile

due to a vertical body force of unit intensity acting over the disk element

corresponding to the middle of the /” element of the ;” pile. In addition, the vertical

displacement of the j” pile can the be expressed as
w =w’/a’ (3.46)

where the vectors w’ and a’ denote the vertical displacement and the arbitrary

coefficient respectively of the j* pile given by

: . ik
; —J —J ! ==
w,,:[wl v S w,\,e} (3.47)
; = —J —J -] i
and afz[a, & o o - a} (3.48)
a)ll a)lZ a)lm a)]N!
le wZZ a)?.m a)ZN!
In addition, o’ =| ' D ' (3.49)
W  Opy 0 Oy o Oy
LwNel Dpey 7 Onge " Oy |
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where @,, e ™%/ for m=1,2, .., Ntand k=1, 2, ..., Ne (3.50)

The vertical body forces over a cylindrical region identical to the real Jj™ pile,

denoted by B/, can be expressed in matrix form as

B/ = pla’ (3.51)
_— —_— . —d T

where B’ =[Bf B =« Br Bi,e} (3.52)
—ﬂlj; :Bljz l{n ﬂljl.\/t_

13211 13212 :szm ﬂszx

and B’ = (3.53)

ﬂkjl ﬂka ﬂkin :Bljw

_ﬂléel ﬂI{IeZ ﬂ}{’ek lBl{/eNr_

In addition, B/ denotes the intensity of the body force acting on the disk element
corresponding to the k" element of the j™ pile when the vertical displacements of
the fictitious contact surface at the k” element of the j* pile equal to the m"

exponential term of equation (3.37).

In view of equations (3.44), (3.46) and (3.51), the relationship between the

matrices B’ and @’ can be rewritten as

Np . . . .
ZF"’B’ =’ for j=1,2,.,Np (3.54)

i=1

The detailed derivation of the relationship between unknown B’ and o’ is explicitly

given in Appendix C.

The strain energy of the extended half-space corresponding to the i" pile,

Uh', by using the body force can then be expressed as

m==fimef

UK = | jﬁzldAdV (3.55)
LA
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where B denotes the body force corresponding to the i” pile. By using equations
(3.38) and (3.51), the strain energy of the extended half-space corresponding of "

pile, Uh', can be obtain in the following form

ﬂaz Nt Nt —;

S 3 an(s) B Atiwl, an(s) (3.56)

2 m=1 n=1

Uh' =

The strain energy of the extended half-space corresponding to the i" pile can be

rewritten as

) Nt —j L —i
Ul =5 5 an(s) M, an (5) (3.57)
m=1 n=1
; ﬂaz Ne . g
where M, = 5 Y B At o, ~ (3.58)
k=1

Then, the strain energy of the extended half-space of the pile group can be expressed

as

Np .
Uh, =Y UK (3.59)
i=1

The potential energy of the vertical load V' at the top of the i” pile in Figure
2(b) due to the assumed displacement function in the Laplace transform space can be

expressed as
wi= -V an(s) (3.60)

where V' denotes the vertical load corresponding to the i” pile. Then, the potential

energy of the total of vertical load can be expressed as
Np )
w,=> W (3.61)
i=1

In view of equations (3.43), (3.59) and (3.61), the total potential energy
functional of the pile group-multi-layered medium system in the Laplace domain, ,

can be written as

Nj

M3

n=>(Up' +UK +W") (3.62)
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substituting equations (3.40), (3.57) and (3.60) in equation (3.62) yields

- o Np Nt :
7'[=NI7 Nt %am( )D,’""an( )+§%§a;( M’ a,.,(S) Zzam
i=l m=1n=1 i=l m=l n=1 i=1 m=1

(3.63)

Minimization of the above functional with respect to the arbitrary coefficient atn for
the i" pile yields a system of linear simultaneous equations

Nt

S{(D + D, )+ (M, +M,, Nen=V' for m=1,2, .., Mt (3.64)

nm mn
n=l|

The equilibrium of the vertical load acting on the pile cap in the Laplace

domain can be expressed as
Np .
oSy (3.65)

Due to assumption that the pile cap is rigid, then the deformation at the top of each

pile must be the same, 1. .,

Nt —i N _ .
an(s)=Y.an(s) ;ij=12..,Np (3.66)
m=1 m=1

Let consider the pile group configuration P2, P3, P4 and PS5 as shown in
Figure 3(b). For P2, P3 and P4, each pile in those groups will have the same value of

Ne —i
ZF“’ . Therefore, the load at the top of each pile, ¥, and its arbitrary coefficients,
i=1

o' will be the same. From the equilibrium of the vertical load given by equation
(3.65), the load at the top of each pile in Laplace domain will be equal to ¥} / (sz) ;
Thereafter, the solution of @' can be obtained from the system of linear equations
(3.64).

Next, let consider the pile group P5 as shown in Figure 3(b). In this case,
7oL 1 _ 2 _ 3 _ 4 _, 5 .
V =V =V =V #V and @ =a"=a =a #a . Then, the equilibrium equation
(3.65) can be written as

W=t (3.67)
S
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and the equation (3.66) for the rigid cap assumption, can be expressed as
Nt

Za; (s)= g&fn (s) (3.68)

m=1

In view of equations (3.67) and (3.68), the arbitrary coefficient o'

(i=1, 2, 3and 4)and @’ can now be determined by solving equation (3.64)

The solutions of the system of linear equations (3.64) results in the value of
arbitrary coefficients aw in the Laplace transform space. The inverse Laplace
transformation is applied to transform those arbitrary coefficients from the L aplace
domain to the time domain. Finally, back substitution of a,‘;, into equation (3.37)

results in the time histories of displacement profiles of the pile group.

3.5 The Inverse Laplace-Hankel Integral Transform

The solution of equation (3.36) yields the Laplace-Hankel transforms of

displacement and pore pressure at layer interfaces for discrete value of £ and s . The

time domain response of a multi-layered half-space is determined by numerically
evaluating the inverse relationship of the integral appearing in equation (3.14). The
Laplace inversion will be carried out numerically and the inverse of the integral with

respect to & in equation (3.14) will be numerically evaluated by employing the

trapezoidal rule.

There are two Laplace inversion methods which are widely used in poroelastic
problem. The first one was proposed by Stehfest (1970) and the other by Schapery
(1962). The formula due to Stehfest is given by

f(z)zgzcj(nl—“;% (3.69)

where f denotes the Laplace transform of f () and

min(n,N/2) kN/Z (2k)'
ety (N/2- k) k! (k =1)!(n~k)!(2k —n)!

and N is even. It was found that the accurate time-domain solutions can be obtained

e = (_1)n+N/2

n

(3.70)

from equation (3.70) with N >6 for general poroelasticity problems. It is important
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to note that the Stehfest scheme is computationally quite demanding although it is
accurate. A simpler and more computationally efficient scheme is given by Schapery

which can be expressed as
f (t) ~ [S_j;l:o.s/: (8:FL)

where f denotes the Laplace transform of f(r) and s is the Laplace transform

parameter.
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