Chapter 3

A review of mobility spectrum

3.1 Introduc

In this chapter ; 8 miques for the mobility spectrum cal-

culation are describ on the characteristic of
mobility spectrum pr s ', echniques comprised of the proce-
dure purposed by Beck and And an iterative technique by Dziuba and

Gorska (1992), a Quantitative M , Spabte Analysis (QMSA) by Antoszewski
et al. (1995), an im ed Quaritita Mot pe Analysis (i-QMSA) by

Vurgaftman et al. V.f_

(ME-MSA) by Kiatgaﬁolc ai e e re@wed briefly.
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The moblhty spectrum préblem is to détermine %ﬁ’ﬁmg the con-
ductlva ﬁ?rﬂlﬁif&i u;m :;11’] nﬂ he Fredholm
integral of the first kind. The Fredholm integral of the first kind takes a general
form of [Press et al. (1992)]

b
g(t) = / K, 5) £ (a) ds. (3.1)

The left-hand-side term g (t) is a known quantity. f (s) is an unknown function and

K (¢, 5) is the kernel function of two variables. If the variables ¢ and s are discrete,
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Eq. (3.14) can be expressed in a matrix form
g=K-f. (3.2)

Eq. (3.2) can be solved easily by inverting the kernel matrix if it is not singular. In

general, the Fredholm integral is s i itioned that the kernel matrix is nearly

singular or its condition nu he solution is therefore extremely

sensitive to a small chan d of the problem is known as
the inverse problem. ot be done directly in this
manner. Examples o are a de on problem, an image and
spectrum reconstructi ! sctre e;.. 1alysis problems including the mobility

spectrum.

3.1.2 DMobility s

By comparing Egs. (2. 6} 0 Eq. (3.1), the known functions are

the conductivity tensor ¢ rents o, (B) ¢ B he conductivity density

B

s (p) is the unknown 1 k&rdels are
1

J i
Kz (1, B) = GB?

w AUEINENINEINS
Ku, (£B) = —FBa Y 3.4
~ ANAND AW NENAY, . o

dependent on puB at uB = 1 [Dziuba and Gorska (1992)] which is called unity

(3.3)

condition. By this condition, it is suggested that the lowest mobility (m*V-1s71)

which can be resolved effectively is about B! (1),
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Figure 3.1: The kernel fufictins of magnetoc ' ity 0z (B) and o,y (B) (after
Kiatgamolchai (2000)). "
3.2 Beck and A{;d; bility spectrum
. : T’ : ‘
A mobility'spe 2 eck and Anderson (1987)

for a multi-carrier chars terlzatlon The method employed the magnetic-field-dependent

resistivity i - g eriments. From Mec-
Clure’s expres@ﬁﬁl@fj ﬂm ﬂ ﬁj(ﬂtiwty, Beck and Ander-
son deri e \i‘ ents T ()

7 (Bi_u :jcﬁﬁftjmaﬁﬁ:ja u.(‘g!:je ;a magnetic field via

the integral equations (Egs. (2.25) and (2.26)) which have been discussed in Section

2.2. They suggested that the determination of mobility spectrum s () provides all

fundamental information of the electrical transport; for example,

1) The conduction in multiple bands with different mobilities are represented

as distinct peaks in s (u).
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2) The broadening of a peak in s (u) corresponds to an energy-dependent
2
relaxation time (7) in a given band with the Hall factor 75 = g(%—; and a distribution
: T

of relaxation time can be determined. The presence of a non-parabolic band at finite

temperatures also broadens the peak.

3) The non-spherical Fer l‘
in s (k). @

of carrier species with bilit ‘ carrier ntrations. To do this, the

,f}/ﬂr a given band causes harmonic peaks

sis is to extract the number

number of magnetic field

t means that there is not

However, Beck aud Anderson ha mathematical procedure to
determine a unique envelope ¢f.all s (1) thatleorresponds to a given set of data.
Firstly, the procedure performsﬁrgyf.yy"‘fsié iest-to.check a validity of measured data.
In physical test stage,-meas ata w =- Linte d combinatorial subset of
a few data points, and g enva : ociated with data are calculated.

|
For any subset to be p yszcal their correspondlng eigenvalues must be nonnegative.

Then the nonﬁﬁﬁwﬁ%ﬁrwﬂﬂcﬂﬁm used to calculate

s (u), and the uniique envelope of all s(p) is obtalned In practlcal the procedure
AT Froms v P B e
in each sgbset should be at least N + 1 points since IV is a number of carrier species
in the sample. In fact, increasing a number of data points per subset leads to the
extreme decrease of passing rate of the physical test. The number of acceptable
s (1) is also decreased. When this happens, the envelope becomes unreasonable and

does not represent the carrier correctly.

In summary, this technique is a qualitative method to calculate the envelope
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of mobility spectrum. It has been demonstrated with synthetic data and experimen-

tal data of HgCdTe and GaAs/AlGaAs heterostructures.

3.3 Quantitative method

Dzuiba and Gorska (: »Eed the integral transforms (Egs.

(3.5)
and

(3.6)
where the partial con iyitiel 74 ' in » ‘ hole and electron partial
conductivities s? and s™ 7

(3.7)
and » ! '

T = X (3.8)

N is the number of nm)ility mesh points which are ded within our interested

| ir"ﬁﬁ:i: z ;s associated
Y TER B ST ey

N is set egual to the number of magnetic field points. The mobility value is selected

mobility range

£

with the condition y;B; = 1. As a result, the mobility range is limited to P, = B
and p .. = B,;iln where By, and B,,;, are the maximum and minimum magnetic

field strength.

Dziuba and Gorska solved the system of Egs. (3.5) and (3.6) by using the

Jacobi iteration procedure (see Gerald et al. (1986)). The iterative part is expressed
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as
Sik = Sij-1 1 (057 (B:) — 045 (Bi)) ez (3.9)
and
S5y (0;;‘/1’ (Bi); Oy (Bi)) Shogs (3.10)
i
where k is the number of iterations. The eter oz and oy, (usually less than
1) are adjustable to stabilizestl is technique, the mobility spec-
trum was found to show suated at the mobility of each carrier
species but with oscillati d the zero level. The os-
cillation occurred as th he algorithm. It causes a
negative conductivity a sidered unphysical. Dzuiba
and Gorska summarized ity spectrum from this nu-
merical technique is limite tic field, the number of data

I {l)

used Gauss-Seidel successwe over-relaxatlon 1terat10n (see Gerald et al. (1986)) to

Cﬂ“"ﬁ‘ﬂ "?‘Wﬁ“ﬁ e N3
sTE=(1- wm)s,k_lwm ﬁj ﬁ %:1 J:’ZEBgJ
ammni ML ERGRTT

and

- “ N $%Y
1+uB}) | — S7kH;B S7h-1/4B;
Ty _ 1— zy ( g B: 2,k s J
Sik ( Way) Sik—1TWay- ./“Lz . ( — § :1_*_“]232 Z 1 +M232
(3.12)
where wg, and w,, are parameters adjustable to control the convergence speed. The

mobility range is extended to cover the mobility lower than B_l by an extrapolation
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of the nieasured data beyond the maximum magnetic field strength. The density
of mobility points in spectrum is also increased by data interpolation between the
adjacent experimental data using a spline technique. In order to avoid an unphysical
interpretation, the partial conductivities are constrained to be nonnegative during

t Beck and Anderson mobility spectrum
p m for QMSA.

=

the iteration processes. They suggest

In i-QMSA, the

points and their values are ] ' en, | ent of the number of magnetic

. £/ ""J"’"f ‘
calculations, and also physical. _.;.;-}1', S

These iterative procedu ) f een developed for a commercial use, and it
- ": ] P.f ) -

was tested over a variéty of samples, s 5] dCdTe. The only drawback

is their data manipulatio

L : .
the spectrum from umgxeness and true 1nterpretat10n

3.4 Ma.%'uﬂ gnyx]cﬂmwlﬂng itrum analy-
ammn'sm URIAINYIAY

he maximum entropy principle was first applied to the mobility spectrum
analysis by Kiatgamolchai et al. (2002a) and later named Maximum Entropy Mo-
bility Spectrum Analysis (ME-MSA). Using the information concept of the entropy,

a unique solution is extracted from a limited number of data.

The entropy function H of the probability distribution {pili =1,2,..,N} is
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defined in a unique way as [Jaynes (1957)]

N
H{p}=-) pp, (3.13)
=1

where ). p; =1 and p; > 0 for all 4.

- y/ 20 N} = {8, 88, ey 50, 8,
2 2
s relate &bility distribution {p;} by
_J
_' e ———

(3.14)

is simply equal to n;ey,;. By

Hollis et al. (1992). m

¢

th v
In thi r ,tﬂe iti ‘ sary. The number
mﬂe sele?lﬁ}om ﬁ?w ﬂqﬂ?ﬁ

of mobility poi e greater than the number of data points.

=% o/
Also t kt'i ﬁ ﬁﬁomrwqhﬁ;%lﬁ:’qﬂﬁtggth. The in-
ter/ exgﬁion ﬁata and the empirical manipulation procedure is not required.
For a given data set, a unique and physically reasonable mobility spectrum is ob-
tained. The resultant spectrum shows high degree of smoothness with a good fit to
data. It overcame the previous procedure in such that it is less sensitive to mea-
surement errors, and the low-mobility carrier species can be observed easier. More

details of entropy and information theory are discussed in Section 4.2.
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3.5 Summary

The inverse problem of mobility spectrum calculation has been solved by
different techniques. The later developed procedure has overcome the previous pro-

cedure. The difficulties of the problem such as the sensitivity to error and the

recovering or low carrier speci DT oV et owever, an error analysis is not

involved in those reviewed
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