CHAPTER II

MATERIALS REAGENTS AND METHODS

MATERIALS

1	1. Albumin, bovine, crystallised	(Sigma Chemical)
2	2. 8 - Anilino - 1 - naphthalene sulphonic acid	(ANS)
		(Eastman Kodak Corp. USA)
3	B. Barbituric acid G.R.	(Merck)
4	. Charcoal activated extrapure	(Herck)
5	5. Complete Freund's adjuvant	(Difco Laboratoies)
6	i. 1 - ethyl - 3(3 - dimethyl - aminopropyl)	
	aminopropyl) carbodiimide HCl	(Sigma Chemical)
7	. Hydrochloric acid G.R.	(Herck)
8	. Incomplete Freund's adjuvant	(Difco Laboratories)
9	. Methanol absolute G.R.	(Merck)
1	O. Methyl cellulose	
1	1. Monoiodotyrosine	(Sigma Chemical)
1	2. Hitrogen gas	
1	3. Nomal rabbit serum	
1	4. Normal pool serum	ยาลย
7	5. Sodium chloride	(Merck)
1	6. Sodium hydroxide	(Merck)
1	7. Sodium barbital	(BDH Lab. Reagent)
18	8. Sulphuric acid	(BDH Lab. Reagent)
19	9. T ₄ - stable thyroxine. Sod. salt	(Sigma Chemical)
20	0. T ₄ ¹²⁵ - high specific 1200 uci/ug	(Amersham)

21. Triiodothyronine

(Sigma Chemical)

22. Triethylamine

(Merck)

23. Tetrahydrofuran

(BDH Lab. reagent)

REAGENT

1. To-free Serum

5 ng T₄I¹²⁵ is added to every 10 ml pooled normal serum and left to equilibrate for 1 hour. I g Norit A charcoal is added and mixed at room temperature for 4 hours. The mixture is centrifuge for 20 min at 30,000 xg and the supernatant removed. The serum is finally passed disposable 0.45 u millipere membrane to remove residual traces of charcoal and sterile. The serum is aliquoted and deep frozen for no hormone serum.

2. 0. I N HCT

HC1

8.3 ml

Distilled water q.s. to

1000.0 mT

3. 0. I NaOH

NaOl-

4

Distilled water q.s. to

1000.0 ml

4. Barbitone buffer pH 8.6, 0.05 M

Diethyl barbituric acid

1.83 g

Sodium barbitone

10.3 q

20% BSA

0.5 ml

Deionized water q.s. to

1000 ml

`			
5.	8 - Anilino - 1 - naphthalene sulphonic acid 4	mg/ml	
	ANS	40 mg	
	Barbitone buffer pH 8.6 q.s. to	10 ml	
	Prepare freshly before use.		
6.	Charcoal suspension 10 mg charcoal/100 ul		
	Methyl cellulose	100 mg	
	Barbitone buffer q.s. to	20 ml	
	Charcoal activated extrapure	2 g	
7.	Standard non - radioactive T ₄		
	7.1 50% Propylene glycol sol ⁿ		
	7.2 Standard stock T ₄ (1)		
	T _G - Sod	2.28	mg
	50% Propylene glycol	2.0	ml
	7.3 Standard stock T4 (2)		
	Std. stock T ₄ (1)	500 u1	
	Barbitone buffer q.s. to	50 ml	
	7.4 Standard stock T4 (3) (60 ng/ml)		
	Std. stock (2)	500 u1	
	Barbitone buffer q.s. to	100 ml	
	7.5 Diluted standard stock T_4 (3) to 30, 10,	5, 2.5,	0.625
	0.156 ng/ml		
8.	$T_4 I^{125} Sol^n (T_4 = 15-20 pg/50 ul)$		
	T ₄ 1125	100 u1	
	Banbital buffer q.s. to	10 mT	
	Prepare freshly before use and store in	dark bot	tle.

9. Monoidodotyrosine Solⁿ (MIT)

Weigh 1 mg MIT and dissolve in Banbitone buffer then dilute to 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 ng/ml.

10. <u>Triiodethyronine Solⁿ (T₃)</u>

Weigh 1 mg T_3 and dissolve in 0.1N NaOH 1 ml then dilute to 0.1, 1,10, 100, 1000, 10000, 100000, 1000000 ng/ml.

Animal Use

Six rabbits weigh about 2000 gm

Equipments and glassware

- 1. Kipp apparatus
- 2. pH Meter (Orient)
- 3. Magnetic stirror
- 4. Magnetic bar
- 5. Autogamma counter (Packard)
- 6. MSE cool spin
- 7. Fume hood
- 8. Dialysis tubing
- 9. Vortex mixer
- 10. Eppendrof pipette, 5, 10, 20, 50, 100 ul
- 11. Disposable pipette tip
- 12. Repette 5 ml
- 13. Repette 10 ml
- 14. Measuring cylinder
- 15. Watch glass
- 16. Deep freeze refrigerator

- 17. Lyophilizer
- 18. Lead shield bottle
- 19. Ultrasanic cleaner
- 20. Autoclave
- 21. Tissue homoginizer
- 22. Volumetric flask
- 23. Stirring rod
- 24. Beaker 2000 ml
- 25. Pasteur pipette
- 26. 10 x 75 mm Plastic test tube
- 27. Eppendorf centrifuge 3200
- 28. Disposable millipore 0.45 u

METHOD

I. Prepanation of Antigens

- A. Conjugation of T4.CH3.HC1 to BSA
 - a) Esterification of thyroxine
 - 1. 100 mg T_4 + 30 ml Methánol (Absolute) + 12 ul T_4I^{125} (1200 uci/ug) count = 812465/.1 min = 2.455 ng
 - 2. Prepare HC1 gas using NaC1 + H_2SO_4 conc. pour in small amount into a Kipp apparatus and bubbing into (1) for 40 min.
 - 3. Warm the reaction to 37° C the precipitate will form then concentrate the solution by passing N₂-gas, will have supernate and precipitate (ppt.)

Dissolve ppt. in warm methanol at 30-40°C then add distilled water dropwise.

Isolate the ppt. and count = 502,950/.1 min = 1.520 ng

Calculation

$$T_4I^{125}$$
 2.455 ng form ester

1.52 ng
$$1.52 \times 100 \times 10^{6}$$
2.455

= 61.914 mg

b) Conjugate Ta.CH3.HC1 to BSA

- 1. Dissolve 50 mg T4.CH3.HCl in 0.1N NaOH 2.5 ml
- 2. Dissolve 100 mg BSA in distilled water
- 3. Weigh carbiditmide 75 mg dissove in 9.1N NaOH in small amount and add into (1) mix by using magnetic stirror.
- 4. Add (2) into (3) slowly and mix (pH 9.6) and adjust pH = 9.0 with 0.1N HCl
- 5. Leave reaction overnight at 4°C
- 6. Wash dialyze tubing for 3-4 hours in distilled water, washed inside and out by turning tubing inside out.
 Reverse to correct phase and knot. Check for leaks by filling with distilled water.
- 7. Dialyzed against 5 litres of distilled water with 3-4 change (3 days) in the dark.
- 8. Count 1 ml aliquot of each change.

		cpm/ml	Total Volume	Total count/m
1st d	ialyzate	52	1800	93,600
2nd	8 5	68	1300	88,400
3rd	88	87	1000	87,000
4 t h	п	50	1000	50,000
			Tota	1 319,000
				= 0.0964 ng

Calculation

I125
$$T_4$$
.CH₃.HC1 conjugate to BSA = 1.520 - 0.0964 ng
= 1.4236 ng
I125 T_4 .CH₃.HC1 1.52 ng conjugate to BSA 1.4236 ng
 T_4 .CH₃.HC1 50 mg " 1.4236 x 50
1.52 = 46.8289 mg

B. Conjugation of T4 to BSA

- 1. Weigh out 100 mg of T_4 dissolve in 50% Tetrahydrofuran (T.h.f) 4 mls.
- 2. Add 10 ul T_4I^{125} (50 uci/ug) to the solution, exposing to light as little as possible.
- 3. Add carbodismide (slightly molar excess) to the T_4 solution. Store in the dark. Measure radioactivity = 471174 count/.1 min = 85.724 ng SolⁿA.

- 4. Weigh out 200 mg BSA dissolve in 10 ml distilled water. When complete dissolve add 10 ml T.h.f stirring.
- 5. Add about 50 ul triethylamine Solng.
- 6. Mix solnA and 8. Stir for 5 min in the dark store 24 hours in the dark in beaker covered with watch glass at 40C.
- 7. Wash dialyze tubing as A.b.6 (p. 13).
- 8. Filled solution from 6 into dialyze tubing and dialyzed in the dark against distilled water for 3-4 changes (5-6 litres of water)
- 9. Count 1 ml aliquot of each change.

	Count per min	Total Vol.	Total count	
1 st dialyzate	700	1500	1050000	
2nd "	460	1500	690000	
grd "	350	1000	350000	
4th "	280	1000	280000	
90000	0.004 5.5		Total = 2370000	
0031 56		= 43.119. ng		

Calculation

 $I^{125}T_{\Delta}$ Conjugate to BSA

= 85.724 - 43.119 ng

= 42.605

ng

$$I_{4}$$
 85.724 ng conjugate to BSA = 42.605 ng
 I_{4} 100 mg = $\frac{42.605 \times 100}{85.724}$ = 49.7002 mg

10. Divide (8) in 1 mg T_a aliquot into the vial and lyophilize.

II. Production of Antibodies

A. Immunization

Emulsified T_4 .CH $_3$.HCl - BSA (1 mg of T_4) and T_4 - BSA (1 mg of T_4) in complete Freund's adjuvant ratio 1:3 using Thomas Teflon Pestle Tissue Homogenizers to obtain W/O emulsion.

Immminize 3 rabbits with each emulsion dose 300 ug/rabbit. Intradermal injection at 30-50 sites along the vertebral column (3).

B. Booster injection and antibodies estimation

Booster injection were made at 3 weeks intervals. The anti-bodies were estimate by incubating with $T_4 \, I^{125}$ (50 pg)

Estimation procedure

- 1. Add 200 ul barbitone buffer into the plastic test tube.
- 2. Add 100 ul antiserum.
- Add 100 ul T₄ I¹²⁵ (50 pg).
- 4. Add 500 ul barbitone buffer. Count total count for 1 min then incubate overnight at 4°C.
- 5. Add 100 ul charcoal suspension and mix.

- 6. Centrifuge 2400 rpm for 25 min.
- Separate the supernate with Pasteur pipette and count the supernate (Bound) for 1 min.
- 8. Calculate the % Bound.

C. Antibody titration

Antibody titres were estimated by incubating $T_4 I^{125}$ (20 pg) with increasing amount of antiserum dilution.

D. TA-RIA procedure

- 1. Labelled tube: C.B, B₀ 0.625, 2.5, 10, 30, 60 ng/ml
- 2. Pipette to 10 ul T4-free serum into the set of standard tubes.
- 3. Pipette unknown serum 10 ul into unknown tube.
- 4. Add 100 ul standard into each std. tube and add 100 ul barbitone buffer into C.B, Bo and unknown tube.
- 5. Add 100 ul ANS sol^n (4 mg/ml). Mix and leave for 5-10 min.
- 6. Add 50 ul T_4 I125 (20 pg) into each tube and mix.
- 7. Add 100 ul T₄ antisera into each tube except tube C.B".
- 8. Adjust the total volume of each tube to 900 ul.
- 9. Incubate overnight at 40C.
- 10. Add 100 ul cool charcoal suspersion into each tube.
- 11. Centrifuge 2400 rpm for 25 minutes.
- 12. Separate the supernate (Bound) by using Pasteur pipette.
- 13. Count the supernate for 1 min.