การผลิตและศึกษาผลตอบสนองทางสเปกตรัมของโฟโตไดโอด GaAs/GaAlAs ที่มีช่องว่างพลังงานเป็นขั้นบันได

นายภควัฒน์ วิเศษละคร

ศูนย์วิทยิทรัพยากร เาลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า
คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2546
ISBN 974-17-3469-17
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

FABRICATION AND STUDY ON SPECTRAL RESPONSE OF GaAs/GaAlAs STAIRCASE BAND GAP PHOTODIODES

Mr. Pakhawat Wisetlakhorn

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering Department of Electrical Engineering

Faculty of Engineering
Chulalongkorn University
Academic Year 2003

ISBN 974-17-3469-7

Thesis Title	Fabrication and study on spectral response of GaAs/GaAlAs staircase band gap photodiodes
Ву	Mr. Pakhawat Wisetlakhorn
Field of study	Electrical Engineering
Thesis Advisor	Associate Professor Choompol Antarasena, DrIng.
	pted by th <mark>e Faculty of Engineeri</mark> ng, Chulalongkorn University in Partial uirements for the Master's Degree
	Dean of Faculty of Engineering (Professor Somsak Panyakeow, D.Eng.)
THESIS COMMITTEE	Chairman (Professor Somsak Panyakeow, D.Eng.)
	(Associate Professor Montri Sawadsaringkarn, DrIng.) Member (Assistant Professor Somchai Ratanathammaphan, D.Eng.)
	ลงกรณ์มหาวิทยาลัย

Thesis Title

้ ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

##4370655021: MAJOR ELECTRICAL ENGINEERING
KEYWORD: GaAs/GaAlAs, PHOTODIODE, STAIRCASE BAND GAP, WINDOW EFFECT,
SPECTRAL RESPONSE, LIQUID PHASE EPITAXY (LPE), MOLECULAR BEAM EPITAXY (MBE),
Zn DIFFUSION

PAKHAWAT WISETLAKHORN: FABRICATION AND STUDY ON SPECTRAL RESPONSE OF GaAs/GaAIAs STAIRCASE BAND GAP PHOTODIODES. THESIS ADVISOR: ASSOC. PROF. CHOOMPOL ANTARASENA, Dr.-Ing. 90 pp. ISBN 974-17-3469-7.

This thesis is a study of the role of staircase bandgap structure on the spectral response of GaAs/GaAlAs photodiodes. Two structures have been designed: type A staircase bandgap structure which converges the bandgap energy of active layer from that of Gao.6Alo.4As (P+) window layer to that of GaAs (n+) substrate and type B staircase bandgap structure which diverges the bandgap energy of active layer from that of GaAs (n-) underneath Ga_{0.6}Al_{0.4}As (P+) window layer to that of Ga_{0.6}Al_{0.4}As (N-) near to GaAs (n+) substrate. These two structures were compared with the structure of GaAs (n-) constant bandgap active layer. From the calculation point of view, the constant bandaap structure has the carrier generation occurs very close to the p-n junction where the high recombination rate exists. Moreover, there is no quasi electric field produced within active region, therefore, the quantum efficiency is not high. While type A staircase bandgap structure generates the carriers far distance from the junction, thus the recombination would not much effect as well as the electrons would drift very nearly toward the n-side. In addition, the quasi electric fields were produced within the active region due to the band edge gradients especially for conduction band. As a result, electron multiplication can be gained. In case of type B staircase bandgap structure, the carrier generation happens near the junction as the one of constant bandgap. Anyway, this structure is over than the constant bandgap structure that the quasi electric field can be produced in active region and especially for hole, consequently, hole multiplication can be gained. The quasi electric field of conduction band and valence band can be separately adjusted by either the thickness of Ga_{1-x}Al_xAs (N-) active layer or doping aspect. For the sake of this, the staircase bandgap structure can be applied to the Separate Absorption and Multiplication Avalanche Photodiode (SAM APD) to minimize the excess avalanche noise.

As for the experiment, we have fabricated 3 structures namely structure I, structure II and structure III. Structure I and II were grown by Liquid Phase Epitaxy (LPE) while the structure III which its pn junction was formed by Zn diffusion was grown by Molecular Beam Epitaxy (MBE). However, all experimental structures are the type A staircase bandgap. From the experimental point of view, all structures have the short wavelength spectral responses expand more broader than those of theoretical calculation because of the diffusion current. In addition, their spectral responses of active region were fluctuated due to the recombinations around each interface of active layer. As for the case of structure III, the spectral response between 400 and 750 nm depended upon the junction depth. The deeper the junction is, the lower the spectral response at short wavelengths exhibits.

Department Electrical Engineering Field of Study Electrical Engineering Academic year 2003

ACKNOWLEDGEMENT

This research has been done at the Semiconductor Device Research Laboratory (SDRL), Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University under the supervision of Associate Professor Dr. Choompol Antarasena.

The author gratefully acknowledges Associate Professor Dr. Choompol Antarasena for proving the opportunity to do this research in the laboratory with valuable guidance.

The author wishes to make deep acknowledgement to the member of the thesis committee: Professor Dr. Somsak Panyakeow, Associate Professor Dr. Montri Sawadsaringkarn, Assistant Professor Dr. Somchai Ratanathamphan and Associate Professor Dr. Choompol Antarasena for every useful discussions and guidance.

Particular thanks are due to Dr. Arporn Teeramongkonradsame for good recommendations, Mr. Supachok Thainoi for technical assistances and Miss Yuparwadee Deesirapipat as well as Miss Duangporn Chatweerachaikit for discussions.

In addition, the author would like to give special thanks to his parents and his sister for warm encouragement.

This work reported here was supported by SDRL Research Fund.

CONTENTS

		Page
Abstract (Thai).		iv
Abstract (Englis	h)	٧
Acknowledgen	nent	vi
Content		vii
List of Figures		x
List of Tables		xiii
CHAPTER		
1	Introduction	1
	1.1 Background	1
	1.2 Objective	1
	1.3 Overview	1
2	Principles of heterojunction photodiodes and their characteristics	3
	2.1 Introduction	3
	2.2 pn-Homojunctions and semiconductor heterojunctions	3
	2.2.1 pn-Homojunctions	3
	2.2.1.1 Electrostatics of the pn-homojunction: contact potential and space charge	3
	2.2.1.2 The built-in voltage	6
	2.2.1.3 Depletion layer width	7
	2.2.2 Semiconductor heterojunctions	8
	2.3 Principles of PIN photodiodes	12
	2.3.1 Basic concept of photodiodes	12
	2.3.2 PIN photodiodes and their characteristics	13
	2.4 GaAs-Ga _{1-x} Al _x As material system	18
	2.4.1 Energy bandgap	18
	2.4.2 Lattice constant	20
	2.4.3 Absorption coefficient	20
	2.5 GaAlAs/GaAs heterojunction and widow effect	22
3	Structure design	24
	3.1 Introduction	24
	3.2 Bandgap engineering	24
	3.3 Spectral response simulation	25
	3.4 Structure Design	07

CONTENTS (continued)

			Page
		3.4.1 Constant bandgap structure (Reference)	28
		3.4.2 Type A staircase bandgap structure	32
		3.4.2.1 The calculated EHPs generation rate	33
		3.4.2.2 The calculated spectral response	41
		3.4.2.3 The band diagram	43
		3.4.2.4 Application	43
		3.4.3 Type B staircase bandgap structure	46
		3.4.3.1 The calculated EHPs generation rate	47
		3.4.3.2 The calculated spectral response	55
		3.4.3.3 The band diagram	57
		3.4.3.4 Application	57
4	Fab	orication of GaAs/GaAlAs Staircase Band Gap Photodiodes	60
	4.1	Introduction	60
	4.2	Epitaxial growth technique	60
		4.2.1 Liquid Phase Epitaxy (LPE)	61
		4.2.2 Molecular Beam Epitaxy (MBE)	62
		4.2.2.1 Pumping system	62
		4.2.2.2 Modules	63
		4.2.2.3 Epitaxy chamber	63
	4.3	Substrate preparation and cleaning techniques	63
	4.4	Material preparation and calculation	64
		4.4.1 Material preparation	64
		4.4.2 Material weight calculations	65
	4.5	Growth process	68
		4.5.1 Liquid Phase Epitaxy	68
		4.5.2 Molecular Beam Epitaxy	69
	4.6	Zn Diffusion	71
	4.7	Device structure formation	73
		4.7.1 Metallization	73
		4.7.2 Photolithography and mesa etching	73

CONTENTS (continued)

		Page
5	Experimental result and discussion	76
	5.1 Introduction	76
	5.2 Fabricated structures	76
	5.3 Current-Voltage characteristic (IV characteristic)	76
	5.4 Spectral response	78
	5.5 Discussion	80
6	Conclusions	86
References		88
Biography		90

LIST OF FIGURES

Figures		Page
2.1	Electrostatics of the pn-homojunction in thermal equilibrium (a) Formation of pn-homojunction, (b) Junction band diagram (c) The hole and electron concentration profiles, (d) Flow directions of the four-particle, (e) Space charge distribution, (f) Potential profile, (g) Electric field profile.	4
2.2	Energy band diagram of an ideal P-n heterojunction (Anderson's Model) (a) before contact, (b) at the thermal equilibrium	9
2.3	Ideal energy band diagram of the N-p, P-p and N-n heterojunctions (a) Ideal energy band diagram of an N-p heterojunction in thermal equilibrium, (b) Ideal energy band diagram of a P-p heterojunction in thermal equilibrium, (c) Ideal energy band diagram of an N-n heterojunction in thermal equilibrium	10
2.4	Possibilities of band diagram alignment in heterojunctions (a) Straddling, (b) Staggered, (c) Broken gap	11
2.5	The operation behaviors of pn-junction photodiode	12
2.6	A schematic of the p-i-n photodiode operation under reverse bias	14
2.7	A typically relation between wavelength (nm) and responsivity (A/W) at $\eta_{ext} pprox 1$	17
2.8	Band structure of GaAs and AlAs	19
2.9	Energy variations of the three conduction band minima and the valence maximum in Ga _{1-x} Al _x As as a function of the composition x	19
2.10	Low temperature energy bandgaps of a number of semiconductors versus their lattice constants	19
2.11	Absorption edge of Ga _{0.8} Al _{0.2} As and Ga _{0.6} Al _{0.4} As at room temperature	21
2.12	Window effect demonstration on the Ga _{1-x} Al _x As (P+)/GaAs (n-) heterojunction	22
3.1	Band diagram of the Ga _{1-x} Al _x As/GaAs heterostructure according to the bandgap engineering concept	24
3.2	Conceptual structures	25
3.3	Calculated spectral response of the 1 μ m Ga _{0.6} Al _{0.4} As (P+) window layer photodiode with different GaAs (n-) active layer thickness	26
3.4	Calculated spectral response of the 6 μm GaAs (n·) active layer photodiode with different Ga $_{0.6}$ Al $_{0.4}$ As (P·) window layer thickness	26
3.5	The designed structure of constant bandgap	28
3.6	The EHPs generation rate at 635, 675, 725, 785 and 850 nm of constant bandgap structure	29
3.7	The calculated spectral response of constant bandgap structure	30
3.8	The band diagram of constant bandgap structure	31
3.9	Type A staircase bandgap structure	32
3.10	The EHPs generation rate at 635, 675, 725, 785 and 850 nm of structure A1	33
3.11	The EHPs generation rate at 635, 675, 725, 785 and 850 nm of structure A2	35
3.12	The EHPs generation rate at 635, 675, 725, 785 and 850 nm of structure A3	37
3.13	The EHPs generation rate at 635, 675, 725, 785 and 850 nm of structure A4	39

LIST OF FIGURES (continued)

Figures		Page
3.14	The calculated spectral response of structure A1 to A4	41
3.15	A comparison of calculation spectral response between type A structures	42
3.16	Band diagram of type A staircase bandgap structure	44
3.17	The application of type A staircase bandgap structure	45
3.18	Type B staircase bandgap structure	46
3.19	The EHPs generation rate at 635, 675, 725, 785 and 850 nm of structure B1	47
3.20	The EHPs generation rate at 635, 675, 725, 785 and 850 nm of structure B2	49
3.21	The EHPs generation rate at 635, 675, 725, 785 and 850 nm of structure B3	51
3.22	The EHPs generation rate at 635, 675, 725, 785 and 850 nm of structure B4	53
3.14	The calculated spectral response of structure B1 to B4	55
3.15	A comparison of calculation spectral response between type B structures	56
3.16	Band diagram of type B staircase bandgap structure	58
3.17	The application of type B staircase bandgap structure	59
4.1	A horizontal LPE system	60
4.2	A multi-bin graphite boat	61
4.3	The RIBER MBE system	62
4.4	Liquidus composition versus reciprocal temperature for GaAs, GaP and InP	66
4.5	The upper curves are the room temperature hole concentration in GaAs versus the atom fraction of Ge in the liquid along the 800 and 900 °C and the lower curves are the room temperature electron concentration in GaAs versus the atom fraction of Sn in the liquid along the 700 and 800 °C	66
4.6	Solidus composition in Ga _{1-x} Al _x As as a function of liquidus composition	67
4.7	Liquidus isotherms in the GaAlAs system	67
4.8	Basic setup for LPE system	68
4.9	The schematic profile of the furnace temperature versus the growing time duration	68
4.10	The MBE growth device structure	71
4.11	Crossectional view of a modified graphite boat showing diffusion charge and confined vapor chamber between the charge and wafer	71
4.12	The Zn diffusion depth of 600 °C for 30 minutes	72
4.13	The IV characteristic of Zn diffusion pn junction under 600 °C for 30 minutes	72
4.14	The photolithography process (a) Photoresist coating, (b) Photoexpose, (c) Developing of the photoresist, (d) Etching metal film patterns, (e) Mesa etching	74
4.15	Contact and mesa mask	75
4.16	Testing house	75
5.1	Fabricate structures.	76

LIST OF FIGURES (continued)

Figures		Page
5.2	The curve tracer and the probe station used in current-voltage characteristics measurement	77
5.3	IV-characteristics of (a) structure I, (b) structure II, (c) structure III	77
5.4	A schematic of the lamp power measurement	78
5.5	A schematic of the special response measurement setup	79
5.6	The comparison between experimental and theoretical spectral response of (a) structure I, (b) structure II, (c) structure III	79
5.7	Recombinations in active region of structure I, II and III	81
5.8	Spectral response of RTD photodiodes as a function of the heating rate with the hole time of 9 sec at diffusion temperature	82
5.9	Staircase bandgap around pn metallurgical junction	83
5.10	Band diagram of staircase bandgap photodiode with location 1 metallurgical junction	83
5.11	Band diagram of staircase bandgap photodiode with location 2 metallurgical junction	84
5.12	Band diagram of staircase bandgap photodiode with location 3 metallurgical junction	84
5.13	Band diagram of staircase bandgap photodiode with location 4 metallurgical junction	85

LIST OF TABLES

Tables		Page
3.1	Bandgap energy and cutoff wavelength of GaAs and Ga _{1-x} Al _x As	26
3.2	The parameters for constructing the band diagram according to Anderson's Model	27
4.1	Material weight	67

