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CHAPTER I 
 

Introduction 

 

The credit derivative market has become one of the fastest-growing derivative 

markets since the late 1990s, according to the Bank for International Settlements. Credit 

default swaps more than doubled in 2008 to US$26 trillion in 2009, per the International 

Swaps and Derivatives Association. In modern financial markets, the credit default swap 

market has supplanted the bond market as the industry gauge for a borrower’s credit quality. 

As a result, researchers and practitioners have been focusing on developing credit default 

swap pricing models by exploring the factors that are important and have strong explanatory 

power to explain credit risk movements. Investors and risk managers can therefore use these 

factors as a guideline to determine sound and reasonable credit information to value credit 

default swap contracts. 

There are many types of credit default swap pricing models. Each type of model relies 

on different features and assumptions to explain the credit default swap spread variations in 

the credit derivatives markets. Nevertheless, there have been no academicians or practitioners 

comparing the explanatory power of each feature using the data during the credit crisis in 

2008-2009. After conducting a thorough literature review, the features that we have seen 

most frequently are: 

1. Provided that the recovery rates are constant through time, the credit default swap 

spread variations exist because of the change on the perception of the default probabilities in 

the credit market. This type of models measures the perception of the default probabilities 

from securities which are related to the credit default swaps such as the stock prices or bond 

prices. In this type of models, it is believed that the related security prices reflect the 
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reference entity’s situation including the perception of the default probabilities which firms 

are facing. For example, Jarrow and Turnbull (1995)’s reduced-form credit risk model which 

is one of the most widely adopted reduced-form credit default pricing models derives the 

risk-neutral default probabilities which the credit market assigns to each firm in each moment 

using the firm’s bond market prices. The derived default probabilities can be used to price 

credit risky assets such as credit default swaps. Higher defaultable bond prices imply lower 

default probabilities. That is because if compared to bonds yielding the same cash flow, 

higher bond prices are associated with higher credit quality of the reference entity and thus 

less likely for the firm to default.  There are a number of models similar to Jarrow and 

Turnbull’s (1995) which link the prices of the related securities with the default probabilities 

such as Chiang (1987), Hull and White (2000) etc. To sum up, for this type of models, the 

related security prices are used to gauge the perception of the default probabilities and 

explain credit default swap premium variations.  The credit default swap premiums calculated 

from this type of models are strongly dependent on the related security prices used in each 

model.  

Furthermore, one could argue that the effect of the related security prices on the 

market perception of the default probabilities does not remain in the same degree over time. 

Therefore, it is also interesting to add one special feature which allows for the change in the 

degree of the effect of the related security prices on the market perception of the default 

probabilities through time. This would enhance the flexibility of the usage of the related 

securities to measure the market perception on default probabilities. 

2. Provided that the recovery rates are constant through time, the credit default swap 

spread variations also exist because of the change on the time-varying nature of the default 

probabilities. This type of models uses a process which makes default probabilities vary with 

time. In other words, this type of models focuses on term structures of the default 
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probabilities. For instance, Elizalde (2005) contemplated three deterministic hazard 

(intensity) rate processes to price credit risky assets such as credit default swaps, when the 

recovery rates are assumed to be constant. In addition, Houweling and Vorst (2005) 

compared different specifications of (deterministic) time dependent intensity rates. We can 

typically observe that credit default swap premiums are likely to increase as credit default 

swaps’ maturities are longer. Therefore, it can be inferred that it is expected the default 

probability will usually increase through time provided the effect of maturity risk premium is 

very small and negligible.  To sum up, for this type of models, a process that makes default 

probabilities vary with time is used to explain credit default swap premium variations.  The 

credit default swap premiums which are calculated from this type of models are strongly 

dependent upon the choice of the specification of the time process in the default intensity rate 

function which is used in each model. There are a lot of other academic works that focus on 

the time-varying nature of the default intensities such as Truck, Laub and Rachev (2004) and 

Berd, Marshal and Wang (2004). 

3. Even though many credit default swap pricing models ignore the effect of the 

correlation between default probability and recovery rate, there have been various credit 

default swap pricing models where the effect of the correlation is added and it is construed as 

an important feature. That means it is assumed in those models that a chance of a situation 

where a loan will not be repaid and the amount that a creditor would receive in final 

satisfaction of the claims on the defaulted loan are statistically dependent. This feature 

reflects the fact that during an economic recession, it is more likely that a default will happen 

with a debt and at the same time the recovery rate is likely to be smaller.  For example, 

Duffie and Singleton (1999) allowed for the correlation between default probability and 

recovery rate. In fact, in their model the behavior of both default probabilities and recovery 

rates were allowed to depend on firm-specific or macro-economic variables and therefore 



4 
 
they were set to be correlated. There is also extensive empirical evidence to support the 

existence of the correlation between default probability and recovery rate. For instance, Hu 

and Perrudin (2006) empirically investigated the dependence between recovery rate and 

default rate using Moody’s historical market bond prices. Having filtered the recovery data to 

allow for the variation over time in the pool of borrowers rated by Moody’s, they studied 

simple measures of the correlation between aggregate quarterly default and average recovery 

rates. The results suggest that recoveries tend to be low when default rates are high. By 

adding the effect of the correlation between the default probability and recovery rate, we 

could avoid overvaluing credit default swap contracts when the credit market is full of 

confidence (low default probabilities and high recovery rates) and could avoid under-valuing 

credit default swap contracts when the credit market is lack of confidence (high default 

probabilities and low recovery rates). 

Having different features in different types of credit default swap pricing models 

guides us to important research questions.  Which was the most prevailing feature to the 

others during the credit crisis in 2008 to 2009? Which feature plays an important role in 

explaining short-term or day-to-day credit default swap premium variations? Which feature is 

important in capturing the term structure of credit default swaps in the credit market?  We 

focus on the period of the credit crisis in 2008 to 2009 because it has highlighted the need for 

better valuation models. 

After the credit crunch in 2008 to 2009, investors have been craving for tools which 

have features to efficiently evaluate credit risks. The feature which most prevailed in the 

credit crisis should be implemented and incorporated to ensure that credit default swap 

valuation models have the feature which is the most capable of explaining the movement of 

credit default swap premiums during the crisis in the future. During financial a crisis, market 

participants need very precise asset valuation models to ensure that they have good guidelines 
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to make reasonable investment decisions. Furthermore, specific information about the 

features which play a crucial role in explaining the short-term and the long-term perceptions 

of default probability is very essential to the credit market participants in the sense that 

modelers can suitably select the appropriate feature when trying to create a model to price 

credit default swap contracts. In particular, if a modeler would like to come up with a model 

which is able to explain the daily variations in credit default swap premiums, he/she should 

focus on the feature which plays an important role in explaining short-term credit default 

swap premium variations. On the other hand, when a modeler needs to develop a model 

which is able to explain the difference in credit default swap premiums among different time-

to-maturities, a longer time horizon of credit information must be used and he/she must 

employ a feature that is able to capture the long-term perception on default probability.  

The challenge of the effort to determine the feature which prevailed to the others and 

the features which play a crucial role in explaining the short-term and the long-term 

perceptions of default probability during the credit crisis in 2008-2009 is that we need a 

model which can handle all of the features we would like to compare simultaneously. Most of 

the credit default swap valuation models cannot cope with many different features at the same 

time. Even though it is possible to do so in some models, it is so mathematically complicated 

that it is almost computationally infeasible. 

Luckily, we found a flexible jump-to-default model which was used in Das and 

Hanouna (2009). The model employs inputs which are stock prices and stock volatilities in 

conjunction with credit default swap spreads to identify implied, endogenous, dynamic 

functions of default probability and recovery rate. The model does not assume that the 

recovery rates are constant, but instead it imposes the relationship between default probability 

and recovery rate.  
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By modifying Das and Hanouna (2009)’s model, we can flexibly define different 

dynamics of default probability and the recovery rate because Das and Hanouna (2009)’s 

framework allows any modifications on the functions of default probability and recovery rate 

to accommodate all of the features we would like to investigate. Therefore, we decided to 

apply and modify this model and use it as a platform for our study. In fact, Das and Hanouna 

(2009) did not intended use their model to compare the important features, which explain 

credit default swap premium variations as in this study. They intended to only use the model 

to extract forward-looking hazard (intensity) rates and recovery rates with pre-specified 

default intensity and recovery rate functions. Unlike the original of the purpose, we modify 

and improve Das and Hanuona (2009)’s model to compare the important features which 

explain credit default swap premium variations. 

 We are going to determine the most prevailing feature to the others during the credit 

crisis in 2008 to 2009 using Das and Hanouna (2009)’s platform by starting with the most 

basic specification in which both default intensity and recovery rate are constant. After that, 

we add a new feature and check the degree of improvement of the model after the new 

feature has been added.  We also check the degree of improvement of each feature when 

there have already been some features added into the model to check the independency of the 

features in our study.  

We use sum of squared errors to measure the goodness of fit and the degree of improvement 

of each feature. 

 We are also going to distinguish the feature that plays a crucial role in explaining the 

short-term perception of the default intensity from the one that captures the long-term term-

structure of CDS spreads by checking the degree of improvement of each feature when the 

dataset contains only a specific time-to-maturity. By doing so, we can eliminate the need of 

capturing the term-structure of credit default swap spreads with different maturities and we 
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can therefore focus only the short-term perception. Hence, the feature that prevailed to the 

other during the crisis in 2008-2009 would be the feature that is most essential to explaining 

the short-term perception of default probability in the credit market.  

  We are going to extract parameters and study the features which explain credit 

default swap premium variations by using unique and very frequent dataset. We use daily 

stock prices, stock volatilities and credit default swap premiums having maturities 1 to 10 

years of the 30 reference entities which are listed in Dow Jones Average Index. The 

advantage of performing the tedious work by extracting parameters using daily data is that we 

can observe more frequent movement of the parameters. Furthermore, we choose the 

reference entities in the study from different industries. Therefore, we can compare and 

contrast the effect of the different industries on the degree of improvement of each feature. 



 
 

CHAPTER II 

 

Literature Review 

 

 The current credit default models can be divided into two groups, the structural-form 

models and the reduced-form models. In the former the default process is driven by the firm’s 

assets value, which when falls below a certain threshold causes a default. The latter is linked 

to a stochastic jump process which causes a default. A more detailed explanation is given 

below.  

2.1 Pricing of Credit Default Swaps Using Structural-Form Models  

 Black and Scholes (1973) and Merton (1974) changed the credit default pricing 

models; they took the value of the firm’s assets which is a balance of assets and debt. If the 

value of asset was less than the total liabilities it caused a default. This structural model 

means that the payoff at maturity to the bondholder is equal to the face value of the bond 

minus the premium of a put option on the value of the firm’s assets, with a strike price equal 

to the face value of the bond and a maturity equal to the life of the bond. Leland (1994) and 

Leland and Toft (1996) developed the original Black and Scholes (1973) and Merton (1974) 

models with a default boundary linked to changes in taxes, bond covenants, bankruptcy costs 

and payout ratios. Anderson, Sundaresan and Tychon (1996) and Mella-Barral and Perraudin 

(1997), developed what is known as the AST-MBP models, which assumes that in an 

environment of positive bankruptcy costs, equity holders default. It is clear that the structural-

form models originally developed by Black and Scholes (1973) and Merton (1974) allow a 

default to happen only on the date of maturity and are called “the first generation of credit 

risk models”. The “second generation of credit risk models’ was initiated by Black and Cox 

(1976) and all allowed a default to occur at any time in the life of the debt when firm’s 



9 
 

 
 

asset value reached  a threshold level. 

 Kim, Ramaswamy and Sundaresan (1993) focused on the valuation of coupon-

paying defaultable bonds. Nielsen, Saà-Requejo and Santa Clara (1999) developed a model 

allowing the default boundary to be stochastic and the randomness of the boundary to be 

tied to the interest rate process. Ericsson and Renault (2002) attempted to improve 

structural-form models by introducing an additional feature, namely liquidity shocks. They 

assumed that liquidity premiums (compensation for liquidity shocks), are driven by the 

probability of default, however, they do not take account of other liquidity factors such as 

demand and supply. 

 The advantages of the structural-form models for bank loan departments and 

corporate bond portfolio managers is that they can be used to calculate estimated default 

probabilities from market equity prices.  

     In spite of the advancements and increasing popularity, structural-form models still 

have three main disadvantages.  Firstly the models still require estimates for the parameters 

of the firm’s asset value, which are unobservable. Therefore, the use of proxies for a firm’s 

asset value is still debatable. Secondly, structural-form models do not incorporate credit-

rating changes. Empirical studies suggest that rating changes which take place quite 

frequently for default-risky corporate debts are the most important determinant for credit 

default swap premiums Aunon-Nerin, Cossin, Hricko and Huang (2002), observed this and 

introduced  linear regression to explore the determinants of credit default swap premiums. 

They found that the credit rating is the most important determinant which explains CDS 

premium variations. Finally most structural-form models assume that the value of the firm 

is continuous in time, neglecting jumps in the firm’s value. On a practical level the firm’s 
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asset value is proxied by the value of equity plus the value of debt, when there are jumps in 

share prices, jumps in firm’s asset value are therefore likely. 

2.2 Pricing of Credit Default Swaps Using Reduced-Form Models 

 In the reduced-form models, defaults are defined as exogenous rare events that can 

be modeled by a jump process. The term “reduced-form” was first used by Duffie and 

Singleton (1999). This class of model is also referred to as an intensity-based model (e.g. 

Bielecki and Rutkowski (2000)), instantaneous risk of default (e.g. Blauer and Wilmott 

(1997)), and hazard rate models (e.g. Madan and Unal (2000)). Similar to the recovery 

schemes in structural-form models, the recovery rates in reduced-form models can also be 

endogenously or exogenously derived. Nevertheless, generally speaking, reduced form 

models assume an exogenous recovery rate that is independent from the probability of 

default. 

 In contrast to structural-form models, the time of default in intensity models 

(reduced form models) is not determined via the value of the firm, but it is the first jump of 

a point process (for example, a Poisson process). Risk-neutral hazard rates for default are 

inferred from market data. Default is modeled as the first arrival of a point process with the 

inferred risk neutral hazard rate.  

 The reduced form models view risky debt as paying off a fraction of each promised 

dollar in the event of bankruptcy which is seen as exogenous and does not depend in the 

firm’s underlying assets. This approach considers the probability of default, ignoring the 

effect of capital structure as an exogenous variable. In reduced form models, defaults are 

unpredictable events or surprises. However, default events follow a jump process, i.e. the 

event of default, state 1, is a discontinuity in the life of the firm, state 0. The jump process is 

associated with an intensity parameter denominated hazard rate. This hazard rate assesses 
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the frequency of default and can be constant, a deterministic function of relevant state 

variables such as time to maturity or a stochastic variable implying a term structure of the 

probability of default. 

 Reduced form models were first introduced by Jarrow and Turnbull (1992) while 

other developed the model: Litterman and Iben (1991), Jarrow and Turnbull (1995), Das 

and Tufano (1996), Duffie and Singleton (1999) and Das and Sundaram (1999). 

 2.3 The comparison of Structural Form and Reduced Form models 

 While structural models assume complete knowledge of a very detailed information 

set, akin to that held by the firm’s managers, reduced form models assume knowledge of a 

less detailed information set, akin to that observed by the market. In most cases, this 

informational assumption implies that the firm’s default time is inaccessible. Given this 

insight, one sees that the key distinction between structural and reduced form models is not 

in the characteristic of the default time (predictable versus inaccessible), but in the 

information set available to the modeler. Jarrow and Protter (2004) argue that the structural 

and reduced form models are not separated and disjoint model types as is commonly 

supposed, but rather that they are really the same model which have different informational 

assumptions.  Jarrow and Protter (2004) further argue that structural models can be 

transformed into reduced form models as the information set changes and becomes less 

refined, from that observable by the firm’s management to that which is observed by the 

market. 

2.4 Recovery Rate Specifications 

 Recovery rates are most of the time specified arbitrarily, constant and independent 

of other variables.  The recovery rates commonly used in structural-form and reduced-form 

models can be categorized into 3 groups. Firstly, Recovery of Face Value (RFV) is 
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characterized by Longstaff and Schwartz (1995) and Saa-Requejo and Santa-Clara (1999) 

as receiving the same fractional recovery of par at default for bonds issued by a particular 

company regardless of maturity. Secondly, Recovery of Treasury (RT) is characterized by 

Collin-Dufresne and Goldstein (2001) as receiving a fixed fraction of default-free bond with 

the same coupon and maturity as the defaultable bond. Finally, in the Recovery of Market 

Value (RMV) case, Delianedis and Lagnado (2002) assume that the recovery amount is a 

fraction of a non-defaulted risky bond of a similar credit quality and maturity as the 

defaultable bond. Clearly recovery rates are defined based on personal perceptions and 

thinking with no standard method to define them.  The method of calculating recovery rates 

does determine whether credit default swap spreads obtained from pricing models are 

correct and fair. It is worth to point out that none of the recovery rate models above takes 

into account the correlation between recovery rate and other variables, for example default 

probability or interest rates.  In other words, it is assumed that the recovery rate is 

independent of default probability and interest rates which are not quite intuitive. For 

instance, it can be argued that high interest rates cause companies to experience financial 

difficulties and, as a result, default probabilities increase. During economic recession, it is 

more likely that a default will happen with a debt and at the same time the recovery rate is 

likely to be smaller. 

2.5 Empirical Investigation on the Movement of Credit Default Swap Premiums 

 The following paragraphs review the literature on comparison and empirical 

investigation of important factors which affect credit default swap premiums. 

 Christopher Finger (1998) expressed that the fair value of credit default swap is 

affected by the quality of the reference credit and the time to maturity of the contract. 

Similarly, Kamin & von Kleist (1999) showed that the maturity of an instrument is an 



13 
 

 
 

important determinant of the degree of uncertainty about repayment and is therefore related 

to the spread. The greater the maturity of an instrument, the more likely it is that the 

creditworthiness of the borrower will change during the life of the instrument. 

 Hull, Predescu and White (2004) tested the relationship between credit spreads 

which are the differences in yield due to different credit quality and credit default swap 

premiums. They discovered that the theoretical relationship between credit default swap 

premiums and credit spreads holds fairly well with the average difference being 10 bps.  

 Houweling and Vorst’s (2003) findings coincides with that of Hull, Predescu and 

White (2004). Nonetheless, when they separated the sample according to rating classes, the 

relationship between credit spreads and credit default swap premiums deviates significantly, 

with absolute deviations increasing for lower credit ratings. In the sub-sample comprised of 

AAA to A reference entities, bond spreads are higher than credit default swap premiums, 

while in the sub-sample comprised of BBB to B reference entities credit default swap 

premiums are materially higher than bond spreads.  

 Zhu (2003) used a co-integration test to examine the relationship between credit 

default swap premiums and bond spreads. He discovered that CDS premiums and credit 

spreads are co-integrated in the long run. It can be concluded from his results that market 

forces remove the arbitrage opportunity between the two markets in the long run.  

Aunon-Nerin, Cossin, Hricko and Huang (2002) applied linear regression to explore the 

determinants of credit default swap premiums. They investigated the relationship between 

credit default swap premiums and (1) credit ratings; (2) interest rates; (3) the slope of yield 

curves; (4) time-to-maturity; (5) share prices; (6) volatility of firm assets; (7) leverage; (8) 

index returns; (9) idiosyncratic factors. They discover the following: the credit rating is the 

most important determinant; US interest rates influence reference entities from all countries; 
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the slope of the US yield curve matters for US companies and other local yield curves 

influence non-US companies; share price changes are positively linked to credit default 

swap premium changes and still influential even when adjusted for returns on indices; and 

leverage has a significant influence on credit default swap premiums. 

 Jacob and Oviedo-Helfenberger (2004) investigated the theoretical dependence of 

changes in credit default swap premiums and the so-called structural determinants, namely 

the parameters in structural-form models. They found that the correlation between leverage, 

equity volatilities, risk-free interest rates and credit default swap premiums is very 

significant. Consequently, they suggested that these three structural determinants are 

important credit default swap premium determinants.  

 Berndt, Douglas, Duffie, Ferguson and Schronz (2004) examined the relationship 

between credit default swap premiums and EDFs. Moody’s KMV EDFs are conditional 

probabilities of default, which are fitted non-parametrically from the historical default 

frequencies of other firms that had the same estimated “distance to default” as the targeted 

firm. The distance to default is the number of standard deviations of annual asset growth by 

which its current assets exceed a measure of book liabilities. They found that there is a 

positive link between 5-year EDFs and 5-year credit default swap premiums. However, the 

sample only included North American companies from three industries; therefore the result 

might not be representative of the whole market. 

 Bystrom (2005) provided some evidence of a link between the iTraxx credit default 

swap index market and the stock market. He found  that for a sample of European sectoral 

iTraxx credit default swap indices, a correlation study revealed  a tendency for iTraxx credit 

default swap spreads to narrow when stock prices rise and vice versa. Furthermore, there is 

some evidence of firm-specific information being embedded into stock prices before it is 
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embedded into credit default swap spreads. In his study, stock price volatility is also found 

to be significantly correlated with CDS spreads and the spreads are found to increase 

(decrease) with increasing (decreasing) stock price volatilities. Last but not least, he found 

significant positive autocorrelation in the iTraxx market. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

CHAPTER III 

 

Methodology 

 

3.1 Das and Hanouna (2009)’s platform 

Das and Hanouna (2009) actually modified already existing continuous-time credit 

default swap pricing models to discrete time (binomial tree) models. To illustrate, in the 

structural-form credit default swap pricing models, the default process is driven by the 

firm’s asset value in continuous-time movement. In Das and Hanouna (2009), the default 

process is caused by the stock price movement in discrete time manner (binomial tree). 

The inputs to Das and Hanouna (2009)’s platform are the term structure of credit 

default swap spreads at different time maturities, Cj ; j = 1,...,N; forward risk-free rates fj ; j 

= 1; : : : ;N, the stock price S and its volatility σ (these last two inputs are the same as 

required in the application of the Merton (1974)’s model).  

The outputs from Das and Hanouna (2009)’s platform are as follows. 

(a) Implied functions for default intensities and recovery rates  

(b) The term structures of forward default probabilities (λj) and forward recovery 

rates (Φj). 

(c) Calculated credit default swap spreads. 

The only one driving state variable in Das and Hanouna (2009)’s platform is the 

stock price (S). In particular, stock prices will be used as a driver of the dynamics of the 

default probabilities in the credit market. The stochastic behavior of stock prices in Das and 

Hanouna (2009)’s platform is based upon a Cox, Ross and Rubinstein (1979) binomial tree. 

However, Das and Hanouna (2009)’s platform incorporate an additional feature: the stock 
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can happen to default with probability λ[i ,j], where λ[i, j] is state-dependent. As a result, we 

can generate the binomial tree of the stock price and for each node the stock price will 

proceed to one of the three values in the next period: 

                          (1) 

As in Cox, Ross and Rubinstein (1979) binomial tree, the stock rises by factor        

    and falls by factor                     where σ is the stock volatility and h is the duration 

of the time interval in each period during which the stock price goes up or down in units of 

one year (time step). For example, if h is equal to duration of a month, then it is equal to 

1/12 = 0.08333. The last branch represents the case in which the firm defaults and it creates 

the “jump-to-default” feature of the model. Stock price at each node is therefore equal to

ijiduSjiS −= ]0,0[],[ . We signify each node on the tree with the index [i, j], where i 

indicates the number of upward movements the stock price has made since start, and j is the 

time index in Das and Hanouna (2009)’s platform.  

In the model, we imply that the stock price will go to zero when the firm defaults. 

Practically, this might not be true because after the debt holders receive their recovery 

payment, it is possible that shareholders could receive the remaining portion of the company 

if there is remained. However, if the recovery rate for the debt holders is less than 100%, it 

is reasonable to say that the stock price will go to zero when the firm defaults on its debt.   

In order for us to be able to imply the jump-compensated risk-neutral probability, 

the discounted stock price must be a martingale under risk-neutrality. If fj is the risk-free 

heu σ= hed σ−=
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rate of interest for the period under consideration, we can write q[i, j] – the risk-neutral 

probability that the stock price will increase of each node as follows1.  

du
djiR

jiq j

−

−−
=

]),[1/(
],[

λ

                                                                          (2) 

hf
j

jeR = ; fj  is the annual risk-free rate at year j                                          (3) 

One of the most important reasons why we use Das and Hanouna (2009)’s jump-to-

default platform to price credit default swaps is because it provides a very common model 

of default. To give an example, if we would like to price a credit default swap contract 

which pays one dollar if default occurs over the next two years, we can just attach a value of 

a dollar to each node where default occurs. Then we perform backward recursion and 

aggregate the expected present value of these default cash flows to obtain the fair value of 

this credit default swap contract. Conversely, we can observe the true credit default swap 

spreads from the market, and then we may extract the “implied” value of default 

probabilities that results in the model value which corresponds to the market credit default 

swap spreads. 

For the stock price binomial tree, the first node is the [0, 0] node. At the end of the 

first period, we have 2 nodes [0, 1] and [1, 1]; there are three nodes at the end of the second 

period: [0, 2], [1, 2] and [2, 2] and so forth. At each node, we have different default 

                                                           
1Proof of the risk neutral-probability that the stock price will increase of each node  

jR
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probability λ[i, j] and recovery rate Φ[i, j] and they are linked to the stock price. Therefore, 

it is assumed in our model that default intensity and recovery rate are time and state-

dependent. In other words, both default intensity and recovery rate are dynamic, not static. 

It is worth to emphasize here that we can use Das and Hanouna (2009)’s platform to handle 

many features at the same time in our study. That is because we can flexibly identify the 

functional forms of default intensity λ[i, j] and recovery rate Φ[i, j] as we wish. For 

example, if we would like to incorporate the feature which the credit default swap spread 

variations exist because of a process which makes default probabilities vary with time, we 

just simply add a time process into the functional form of default intensity λ [i, j]. In this 

study, we first specify the default intensity, which is the probability of default per year and 

is denoted by ζ [i,j]. After that, we convert default intensity to default probability using the 

equation below.  

                                   hjieji ],[1],[ ξλ −−=                                                (4) 

In order for the martingale measure to exist, the probability that the stock price will 

move upward (q) in each binomial tree has to follow the equation (2). It is therefore 

possible that the probability that the stock price will increase (q) does not fall within the 

range (0, 1). In order to have the probability that the stock price will increase remains in the 

range (0, 1), the following restriction is needed in our study2.  

σξσ −≥+≥ hf )(                                                 (5)  

 While the latter inequality is trivially satisfied, it is possible that the first inequality 

is not satisfied. If the inequalities above are violated, the binomial tree will not be sensible. 

Therefore, we must impose the only one constraint which is the probability that the stock 

price will increase (q) has to fall within the range (0,1).   
                                                           
2 The full explanation is provided in Impiled Recovery - Das and Hanouna (2009) 
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3.2 Fair spread calculation   

The binomial tree can be used to price a credit default contract given the values of 

parameter in each model. The fair spread on a credit default contract is the value which 

makes the present value of expected premiums, which the protection seller receives on the 

credit default swap, denoted by A[i, j], equal to the present value of expected loss of 

contingent payment paid by the protection seller following a credit event on the reference 

security underlying the credit default swap, denoted by B[i,j]. The value of the expected 

premium paid by the protection buyer to the protection seller - A[i,j] and the expected value 

of expected loss of contingent payment paid by the protection seller to the protection buyer 

- B[i, j] can be written as follows. 

[ ]]1,[]),[1(]),[1(]1,1[]),[1(],[1],[ +×−×−+++×−×+= jiAjijiqjiAjijiq
R

CjiA
j

λλ
 

                                                                                                                                  (6) 

In the recursive operation, the value of the expected premium paid by the protection 

buyer at each node equals the amount of the premium that the protection buyer has to pay 

periodically – annually, semi-annually, or quarterly whichever indicated in the credit default 

swap contract (C) plus the expected discounted value of the two expected premiums 

adjacent to the node provided that the reference entity does not default in the current time 

period. If the reference entity defaults in the current period, the protection buyer stops 

paying the premium in next period. The variable C in the above formula is the premium 

paid by the protection buyer.  

If A[i, j] is the terminal node in the binomial tree, one can simply write the value of 

the expected premium paid by the protection buyer as  

                                                   A[i,j] = C                                                    (7)  
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The expected value of the loss of contingent payment paid by the protection seller 

equals the default probability times the loss incurred if the reference entity defaults. In the 

model, we assume that if the reference entity defaults any time during the current period, 

the payment made by protection sellers will be paid during next period. In other words, if 

the reference entity defaults during the period of time i, the contingent payment paid by the 

protection seller will be paid during the period of time i+1. For instance, if the duration of 

the time interval in each period (h) is one month and the reference entity defaults anytime in 

January, the contingent claim payment will be paid in February. 

Since we assume that if the reference entity defaults any time during the current 

period, the payment made by protection sellers will be paid during next period. Therefore, 

in the recursive operation, the expected loss of contingent payment at each node can be 

written as follows.  

])1,[1(]1,[],[ −−×−= jijijiB φλ
   

                                               

                     (8) 

That is, at each node the value of B[i, j] is equal to the expected loss of contingent 

payment which the protection sell has to pay to the protection buyer in the case where the 

reference entity defaults plus the expected discounted value of the two expected losses next 

adjacent to the node provided that the reference entity does not default in the current time 

period. If the reference entity defaults, the credit default swap will be terminated.  

If B[i, j] is the terminal node in the binomial tree, one can simply write the expected 

loss of contingent payment paid by the protection seller as follows.  

                                 ])1,[1(]1,[],[ −−×−= jijijiB φλ                                 (9) 

[ ] ]]1,[])1,[1(])1,[1(]1,1[])1,[1(1,[1
+×−−×−−+++×−−×−+ jiBjijiqjiBjijiq

R j
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Figure 3.1: The illustration of the calculation of expected loss of contingent payment paid 

by the protection seller denoted by B[i,j] at each node. 
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Since we assume that if the reference entity defaults any time during the current 

period, the payment made by protection sellers will be paid during next period. In other 

words, if the reference entity defaults during the period of time i, the contingent payment 

paid by the protection seller will be paid during the period of time i+1, the first node in the 

recursive operation of the expected loss of contingent payment tree is simply B[0,1]. B[0,0] 

= (1/R0)• B[0,1]. The fair credit default swap spread is the one that makes the initial present 

value of expected premium A[0, 0] equal to the present value of expected losses B[0, 0]. 

     

 

Figure 3.2: The binomial trees which show the calculation of the present value of expected 

premiums, denoted by A[i, j] and the calculation of the present value of expected loss of 

contingent payment paid by the protection seller, denoted by B[i, j]. 
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3.3 Feature Comparison  

The main objective of this study is to compare important factors which explain 

credit default swap premium variations. In particular, we would like to investigate if credit 

default swap pricing models are better when using related security prices, correlation 

between probability of default and recovery rate, and a process which makes default 

probabilities vary with time to explain credit default swap premium variations. We also 

check the degree of improvement after adding these features into the model. As explained 

earlier, we use Das and Hanouna (2009)’s platform because it allows us to flexibly specify 

different functions of the default intensities and recovery rates. We stipulate different 

specifications of the default intensity and the recovery rate which we have seen most 

frequently including the feature which allows for the change in the degree of the effect of 

the related security prices through time. 

We initially start with the most basic model specification in which both default 

intensity and recovery rate are constant. After that, we add more factors and check if credit 

default swap pricing models are better after adding these factors into the model. Each 

parameter that we add into the model has economic intuition behind it. We will conclude 

that the credit default swap pricing model is better if after adding one of these factors, the 

model has better fit.  In other words, we check if the credit default swap pricing model after 

adding these explanatory factors fits the market data better. We use sum of squared errors to 

measure the goodness of fit or the relative importance of each factor. The relative 

importance of each factor is compared to the effect of the other factors  

The model specifications which are modified in our study are different to the one in 

Das and Hanouna (2009). Instead of only using the stock price as the measure of the 

perception on the default intensities in the market as in Das and Hanouna (2009), we 
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consider to capture credit default swap spread variations using many features and we check 

which features predominates the others. The features that we incorporate into our models 

are summarized as follows.  

1. As in Das and Hanouna (2009), we use the stock price as the measure of the 

perception on the default intensities in the credit market (Feature 1). 

2. We use a process which makes default probabilities vary with time to explain the 

change in the market perception on the default intensities in the credit market (Feature 2). 

The process which makes default probabilities vary with time in our study is the most basic 

linear function which is c0 + c1t. We avoid using more complicated linear function because 

this basic linear function is very easy to work with. Also, it is fair to use the most basic 

linear function when comparing with the other features because we would like to avoid the 

bias which occurs from trying to find the best linear function in order to beat the other 

features.  

3. We incorporate the time trend into the effect of the stock price which has 

stochastic movement in the binomial tree in order to explain the effect of the time trend on 

the stock price movement (Feature 3).  This feature is similar to the feature 2 because this 

type of models also uses time trend to explain the perception on the default intensities in the 

credit market.  However, this feature is used to capture the change in the effect of the stock 

prices on the default probabilities through time. That means the effect of the stock prices on 

the default probabilities may be dynamic and not be constant through time. 

4. As in Das and Hanouna (2009), we link the default probability and recovery rate 

functions with the Probit function or the inverse cumulative distribution function of the 

standard normal to capture the correlation between default probabilities and recovery rates 

(Feature4).   
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There are in total 11 combinations of different models by turning on and off the 4 

features. The full model is shown below.  

tbbs
ctccji

10

2
10],[ +++=ξ

                                                                              (10) 

]),[(],[ 10 jiaaNji λφ +=                                                                           (11) 

   

   By setting some parameters to zero, we effectively turn off some feature and 

therefore totally have 11 combinations of different models.  

The table below illustrates these 11 models. It also shows the specifications of 

default intensity and recovery rate and provides the intuition behind of each model.   
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 Model Specifications Parameters 

Included  

Intuition behind 

Model 1 
0],[ cji =ξ  

)(],[ 0aNji =φ  

a0, and c0 We start with the most basic specification in which both default intensity and recovery 

rate are constant. ],[ jiξ  is the default intensity which is the default probability per year 

conditional on no earlier default.  N(.) is the inverse cumulative distribution function of 

the standard normal. We use this model as the benchmark to investigate how much the 

credit default swap pricing model has better fit after adding the stock price (feature 1) or 

a process which makes default intensities vary with time (feature 2) provided that there is 

no other feature has previously been incorporated into the model.  

Model 2 tccji 10],[ +=ξ  

)(],[ 0aNji =φ  

a0, c0, and c1 In this model, we add the most basic time trend into the default intensity function (feature 

2). The recovery rate remains constant. We can use this model to check how much the 

credit default swap pricing model has better fit after adding the most basic time trend into 

the default intensity function (feature 2) when using Model 1 as the benchmark model. 

Furthermore, we can use this model as the benchmark when we would like to investigate 

how much the credit default swap pricing model has better fit after adding the stock price 
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(feature 1) or the correlation between default intensities and recovery rates (feature 4) 

provided that the most basic time trend in the default intensity function (feature 2) has 

already been incorporated into the model. 

Model 3 
0

2
0],[ bs

ccji +=ξ
 

)(],[ 0aNji =φ  

a0, b0, c0, 

and c2  

In this model, we add the stock price into the default intensity function (feature 1). The 

recovery rate remains constant. We can use this model to check how much the credit 

default swap pricing model has better fit after adding the stock price into the default 

intensity function (feature 1) when using Model 1 as the benchmark model. Furthermore, 

we can use this model as the benchmark when we would like to investigate how much the 

credit default swap pricing model has better fit after adding a process which makes 

default intensities vary with time (feature 2) or the effect of the time trend on the stock 

price movement (feature 3) or  the correlation between default intensities and recovery 

rates (feature 4) provided that the stock price (feature 1) has already been incorporated 

into the model.  
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Model 4 
tbbs

ccji
10

2
0],[ ++=ξ

 

)(],[ 0aNji =φ  

 

 

 

a0, b0, b1, c0, 

and c2 

In this model, we incorporate the stock price (feature 1) and the effect of the time trend 

on the stock price movement (feature 3) into the model. The recovery rate remains 

constant. We can use this model to check how much the credit default swap pricing 

model has better fit after adding the effect of the time trend on the stock price movement 

into the default intensity function (feature 3) when using Model 3 as the benchmark 

model. Furthermore, we can use this model as the benchmark when we would like to 

investigate how much the credit default swap pricing model has better fit after adding a 

process which makes default intensities vary with time (feature 2) or the correlation 

between default intensities and recovery rates (feature 4) provided that the stock price 

(feature 1) and the effect of the time trend on the stock price movement (feature 3) have 

already been incorporated into the model.  
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Model 5 tccji 10],[ +=ξ  

]),[(],[ 10 jiaaNji λφ +=
 

a0, a1, c0 and 

c1 

In this model, we add the most basic time trend (feature 2) and the correlation between 

default intensities and recovery rates (feature 4) into the model. We can use this model to 

check how much the credit default swap pricing model has better fit after adding the 

correlation between default intensities and recovery rates (feature 4) provided that the 

most basic time trend into the default intensity function (feature 2) has already been 

added by using model 2 as the benchmark model. Furthermore, we can use this model as 

the benchmark when we would like to investigate how much the credit default swap 

pricing model has better fit after adding  the stock price (feature 1) provided that the most 

basic time trend into the default intensity function (feature 2) and the correlation between 

default intensities and recovery rates (feature 4) have already been incorporated into the 

model.  
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Model 6 
0

2
0],[ bs

ccji +=ξ
 

]),[(],[ 10 jiaaNji λφ +=
 

 

 

 

 

 

a0, a1, b0, c0, 

and c2 

In this model, we add the stock price (feature 1) and the correlation between default 

intensities and recovery rates (feature 4) into the model. We can use this model to check 

how much the credit default swap pricing model has better fit after adding the correlation 

between default intensities and recovery rates provided that the stock price (feature 1) has 

already been added by using model 3 as the benchmark model. Furthermore, we can use 

this model as the benchmark when we would like to investigate how much the credit 

default swap pricing model has better fit after adding  the most basic time trend (feature 

2) or the effect of the time trend on the stock price movement (feature 3) provided that 

the stock price (feature 1) and the correlation between default intensities and recovery 

rates (feature 4) have already been incorporated into the model.  
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Model 7 
tbbs

ccji
10

2
0],[ ++=ξ

 

hjieji ],[1],[ ξλ −−=  

]),[(],[ 10 jiaaNji λφ +=
 

 

 

 

 

a0, a1, b0, b1, 

c0 and c2 

 We add the stock price (feature 1), the effect of the time trend on the stock price 

movement (feature 3) and the correlation between default intensities and recovery rates 

(feature 4) into the model. We can use this model to check how much the credit default 

swap pricing model has better fit after adding the correlation between default intensities 

and recovery rates (feature 4) provided that feature 1 and feature 3 have already been 

added into the model by using model 4 as the benchmark model. Also, we can use this 

model to check how much the credit default swap pricing model has better fit after 

adding the effect of the time trend on the stock price movement (feature 3) provided that 

feature 1 and feature 4 have been added into the model by using model 6 as the 

benchmark model. Also, we can use this model as the benchmark when we would like to 

investigate how much the credit default swap pricing model has better fit after adding  the 

most basic time trend (feature 2) or  provided that the stock price (feature 1) and the 

correlation between default intensities and recovery rates (feature 4) have already been 

incorporated into the model.  
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Model 8 
0

2
10],[ bs

ctccji ++=ξ
 

)(],[ 0aNji =φ  

 

 

a0, b0, c0, c1 

and c2 

We add the stock price (feature 1), and the most basic time trend (feature 2). We can use 

this model to check how much the credit default swap pricing model has better fit after 

adding the stock price (feature 1) provided that feature 2 has already been added into the 

model by using model 2 as the benchmark model. Also, we can use this model to check 

how much the credit default swap pricing model has better fit after adding the most basic 

time trend (feature 2) provided that feature 1 has been added into the model by using 

model 3 as the benchmark model. Also, we can use this model as the benchmark when 

we would like to investigate how much the credit default swap pricing model has better 

fit after adding the effect of the time trend on the stock price movement (feature 3) or the 

correlation between default intensities and recovery rates (feature 4) provided that the 

stock price (feature 1) and the most basic time trend (feature 2) have already been 

incorporated into the model. 
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Model 9 
tbbs

ctccji
10

2
10],[ +++=ξ

 

)(],[ 0aNji =φ  

a0, b0, b1,c0, 

c1 and c2 

We add the stock price (feature 1), the most basic time trend (feature 2), and the effect of 

the time trend on the stock price movement (feature 3). We can use this model to check 

how much the credit default swap pricing model has better fit after adding the most basic 

time trend (feature 2) provided that feature 1 and feature 3 have been added into the 

model by using model 4 as the benchmark model. Furthermore, we can use this model to 

check how much the credit default swap has better fit after adding the effect of the time 

trend on the stock price movement (feature 3) provided that feature 1 and feature 2 have 

been added into the model using model 8 as the benchmark model. Also, we can use this 

model as the benchmark when we would like to investigate how much the credit default 

swap pricing model has better fit after adding the correlation between default intensities 

and recovery rates (feature 4) provided that the stock price (feature 1), the most basic 

time trend (feature 2), and the effect of the time trend on the stock price movement 

(feature 3) have already been incorporated into the model. 

 



35 
 

 
 

Model 

10 
0

2
10],[ bs

ctccji ++=ξ
 

]),[(],[ 10 jiaaNji λφ +=
 

 

 

 

 

 

a0, a1, b0, c0, 

c1, and c2 

We add the stock price (feature 1), the most basic time trend (feature 2), and the 

correlation between default intensities and recovery rates (feature 4). We can use this 

model to investigate how much the credit default swap model has better fit after 

incorporating feature 1 provided that feature 2 and feature 4 have already been added into 

the model by using model 5 as the benchmark model. In addition, we can use this model 

to check how much the credit default swap pricing model has better fit after adding 

feature 2 provided that feature 1 and feature 4 have been added into the model by using 

model 6 as the benchmark model. Furthermore, we can use this model to check how 

much the credit default swap has better fit after adding  the correlation between default 

intensities and recovery rates (feature 4) provided that feature 1 and feature 2 have been 

added into the model using model 8 as the benchmark model. Also, we can use this 

model as the benchmark when we would like to investigate how much the credit default 

swap pricing model has better fit after adding the effect of the time trend on the stock 

price movement (feature 3) provided that feature 1, feature 2 and feature 4 have already 

been incorporated into the model. 
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Model 

11 
tbbs

ctccji
10

2
10],[ +++=ξ

 

]),[(],[ 10 jiaaNji λφ +=
 

a0, a1, b0,b1, 

c0, c1, and c2 

This is the final model. All of the 4 features are included in this model. We can use this 

model to investigate how much the credit default swap model has better fit after 

incorporating the most basic time trend (feature 2) provided that feature 1, feature 3 and 

feature 4 have already been added into the model by using model 7 as the benchmark 

model. In addition, we can use this model to check how much the credit default swap 

pricing model has better fit after adding the effect of the time trend on the stock price 

movement (feature 3) provided that feature 1, feature 2 and feature 4 have been added 

into the model by using model 10 as the benchmark model. Furthermore, we can use this 

model to check how much the credit default swap has better fit after adding  the 

correlation between default intensities and recovery rates (feature 4) provided that feature 

1, feature 2 and feature 3 have been added into the model using model 9 as the 

benchmark model.  

Table 3.1 : The specifications of default intensity and recovery rates of the 11 models which are used to investigate the contribution to explaining 
the credit default swap premiums of each feature.  
 
.   
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We can summarize the feature(s) which is/are used in each model as follows.  

 Feature 1 
(Stock Prices) 

Feature 2 
(The most 

basic Linear 
Time Trend) 

Feature 3 
(The Effect of 
Linear Time 
Trend on the 
Stock Prices) 

Feature 4 
(Correlation 

between Default 
Probabilities and 
Recovery Rates) 

Model 1 No No No No 

Model 2 No Yes No No 

Model 3 Yes No No No 

Model 4 Yes No Yes No 

Model 5 No Yes No Yes 

Model 6 Yes No No Yes 

Model 7 Yes No Yes Yes 

Model 8 Yes Yes No No 

Model 9 Yes Yes Yes No 

Model 10 Yes Yes No Yes 

Model 11 Yes Yes Yes Yes 

 

 Table 3.2: The feature(s) which is/are included in each model. 

 

 We use all of the 11 features above to explore crucial factors which explain credit default 

swap spread variations.  When comparing the models to check the contribution of the 4 features, 

we must ensure that the models that we are comparable and it makes sense to compare these 2 

models. For example, we cannot get much information when comparing Model 1 (the most basic 

model) with Model 11 (the full model) because we will not get any information in order to 

answer our research questions. In contrast, if would like to have information to answer our 
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research questions, we must hold the other features unchanged except the feature that we are 

considering in order to make the two models comparable. For example, when we would like to 

check the contribution of the feature 1 (stock prices) to explain the credit default swap spread 

variations we can compare model 1 in which there are no features included with model 3 in 

which only is feature 1 (stock prices) included. We can see that we hold features 2, 3 and 4 

unchanged (There are no features 2, 3 and 4 in both models). We only have feature 1 in model 3, 

but we do not have it in feature 1. Then, we check the improvement (better variation explanation) 

from model 1 to model 3. In this case, we can clearly see the impact that feature 1 (stock prices) 

has made to explain the credit default swap premium variations.  After that we can compare the 

impact that each feature has made and check which feature has make the greatest contribution.  

The tables below summarize how we compare the 11 models to examine the contribution of the 4 

features.  
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Feature 1’s contribution (Stock Prices) 

Benchmark 

Model 
Model 1

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

No No  No  No Feature 2,3 and 4 

Comparable 

Model 
Model 3

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes No No No Feature 1 

 

Benchmark 

Model 
Model 2

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

No Yes No No Feature 2,3 and 4 

Comparable 

Model 
Model 8

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes Yes No No Feature 1 

 

Benchmark 

Model 
Model 5

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

No Yes No Yes Feature 2,3 and 4 

Comparable 

Model 

Model 

10 

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes Yes No Yes Feature 1 

 

Table 3.3: The comparison the stipulated models to examine the contribution of the stock prices 

(feature 1) to explaining the credit default swap premium variations.  
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Feature 2’s contribution (Linear Time Trend)  

Benchmark 

Model 
Model 1

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

No No No No Feature 1,3 and 4 

Comparable 

Model 
Model 2

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

No Yes No No Feature 2 

 

Benchmark 

Model 
Model 3

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes No No No Feature 1,3 and 4 

Comparable 

Model 
Model 8

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes Yes No No Feature 2 

 

Benchmark 

Model 
Model 4

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes No Yes No Feature 1,3 and 4 

Comparable 

Model 
Model 9

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes Yes Yes No Feature 2 

 

Benchmark 

Model 
Model 6

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes No No Yes Feature 1,3 and 4 

Comparable 

Model 

Model 

10 

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes Yes No Yes Feature 2 
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Benchmark 

Model 
Model 7

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes No Yes Yes Feature 1,3 and 4 

Comparable 

Model 

Model 

11 

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes Yes Yes Yes Feature 2 

 

Table 3.4: The comparison the stipulated models to examine the contribution of the most basic 

time trend (feature 2) to explaining the credit default swap premium variations.  

 

Feature 3’s contribution (The Effect of Linear Time Trend on the Stock Prices) 

Benchmark 

Model 
Model 3

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes No No No Feature 1,2 and 4 

Comparable 

Model 
Model 4

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes No Yes No Feature 3 

 

Benchmark 

Model 
Model 6

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes No No Yes Feature 1,2 and 4 

Comparable 

Model 
Model 7

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes No Yes Yes Feature 3 
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Benchmark 

Model 
Model 8

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes Yes No No Feature 1,2 and 4 

Comparable 

Model 
Model 9

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes Yes Yes No Feature 3 

 

Benchmark 

Model 

Model 

10 

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes Yes No Yes Feature 1,2 and 4 

Comparable 

Model 

Model 

11 

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes Yes Yes Yes Feature 3 

 

Table 3.5: The comparison the stipulated models to examine the contribution of the effect of the 

linear time trend on the stock price movement (Feature 3) to explaining the credit default swap 

premium variations. 

Feature 4’s contribution (Correlation between Default Probabilities and Recovery Rates) 

Benchmark 

Model 
Model 2

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

No Yes No No Feature 1,2 and 3 

Comparable 

Model 
Model 5

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

No Yes No Yes Feature 4 

 

Benchmark 

Model 
Model 3

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes No No No Feature 1,2 and 3 
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Comparable 

Model 
Model 6

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes No No Yes Feature 4 

 

Benchmark 

Model 
Model 4

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes No Yes No Feature 1,2 and 3 

Comparable 

Model 
Model 7

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes No Yes Yes Feature 4 

 

Benchmark 

Model 
Model 8

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes Yes No No Feature 1,2 and 3 

Comparable 

Model 

Model 

10 

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes Yes No Yes Feature 4 

 

Benchmark 

Model 
Model 9

Feature 1 Feature2 Feature 3 Feature 4 Feature(s) which 

is/are held constant 

Yes Yes Yes No Feature 1,2 and 3 

Comparable 

Model 

Model 

11 

Feature 1 Feature2 Feature 3 Feature 4 Feature in Focus 

Yes Yes Yes Yes Feature 4 

 

Table 3.6: The comparison the stipulated models to examine the contribution of the correlation 

between default intensities and recovery rates (Feature 4) to explaining the credit default swap 

premium variations. 
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The formal mathematical expression of the relative importance or explanatory power of 

each feature can be written as follows.  

                                       (10)   

                                       (11) 

                               (12) 

                                      (13)                             

 These mathematical expressions illustrate how we use sum of squared errors to measure 

the degree of improvement after the new factor has been added. For example, the degree of 

improvement after adding feature 1 or the relative importance of feature 1 is the percentage 

change of sum of squared errors after incorporating parameter c2 and c2* is the parameter c2 that 

minimize the sum of squared errors. We apply the same principle to calculate the relative 

importance of the other features as well. It is noteworthy to mention that we will have not only 

one, but instead a few explanatory powers of each factor. That is because we will obtain 

explanatory powers in different situations of turning on and off the other factors.  
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3.4 Research Procedure   

There are in total 7 parameters in the full model (model 11) which are a0, a1, b0, b1, c0, c1, 

and c2. The other groups of specifications omit some parameters depending on the number of 

features which we include into each model. We proceed to extract the parameters in each model 

by solving the following least-squares program.
  

       

2

11

)'(min ∑∑
==

−
n

j
ijij

k

i

CC
                                                    (14)

 

where {C’ij} , j = 1,2,…,n are the observable credit default swap spreads for each 

reference entity over different times to maturity of the credit default swap contracts, and {Cj}, j = 

1,2,…,N are the calculated spreads over different time to maturities (1 year to 10 years) of the 

credit default swap contracts produced by our credit default swap pricing model. We minimize 

the sum of squared errors by optimally selecting the parameters in each model (a0, a1, b0, b1, c0, 

c1, and c2). n is the number of years to maturity which are included in the model. Since we 

include the credit default swaps which have the time to maturities from 1 year to 10 years, n is 

equal to 10. k is the number of trading days which we include into the least squares program. k 

equals 30 in our study.  

We start with the most basic specification in which both default intensity and recovery 

rate are constant. We minimize the sum of squared errors using Derivative-Free optimization 

method. After that, we add more factors and check if credit default swap pricing models are 

better after adding these factors in the model.  

We have to use the historical recovery rate in our study as the initial value when 

performing Derivative-Free optimization method in order to alleviate the multiple solution 

problems when simultaneously extract many of the parameters in the model. We obtain the 



46 
 

 
 

historical recovery rate in each industry from Moody’s whose dataset contains default data from 

1982-2003. Table 7 shows average recovery rate by industry obtained from Moody’s which was 

published in December 2003. To illustrate, if we are to compare and to investigate which factors 

are important and explain credit default swap premium variations of a company in the industrial 

sector, we have to use the historical recovery rate of the industrial sector which is 34.5% as the 

initial value when performing Derivative-Free optimization method for the first and the most 

basic specification (model 1). The recovery rate in model1 is stipulated as; 

)(],[ 0aNji =φ  

The historical recovery rate of the industrial sector is 34.5%, so 

         )(%5.34 0aN=  

           39886.00 −=a  

Then we use -0.39886 as the initial value for parameter a0. The other parameter in model 

1 is c0. The initial value for c0 when performing Derivative-Free optimization method for the first 

and the most basic specification (Model 1) is 0. After we estimate parameter c0 from the most 

basic specification which is both default intensity and recovery rate are deterministic constant, 

we use the estimated c0 as the initial value when performing Derivative-Free optimization 

method for the 2nd group of specifications (Model 2) in which we add the basic time trend in the 

default intensity function. The recovery rate remains constant. We set the initial value for the 

new parameter which is c1 equal to 0. We apply this procedure for more complex models. If the 

parameter is included in the less complex model, we set the initial value of each parameter equal 

to the extracted value from the one-step less complex model. If the parameter is new and is not 

included in the less complex model, we set the initial value of the parameter equal to zero.  
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Industry  Issuer Weighted Mean 
Utility-Gas 51.5 
Oil and Oil Services  44.5 
Hospitality 42.5 
Utility-Electric 41.4 
Miscellaneous 39.5 
Transport-Ocean 38.8 
Media, Broadcasting and 
Cable 38.2 
Transport-Surface 36.6 
Finance and Banking 36.3 
Industrial 35.4 
Retail 34.4 
Transport – Air 34.3 
Automotive 33.4 
Healthcare 32.7 
Consumer Goods 32.5 
Construction 31.9 
Technology 29.5 
Real Estate 28.8 
Steel 27.4 
Telecom 23.2 

 

Table 3.7: Average Recovery Rate by Industry (Source: Moody’s Special comment, Recovery 

Rates on Defaulted Corporate Bonds and Preferred Stocks, 1982–2003, Published on December 

2003) 

If the sum of squared errors materially reduces after adding the new explanatory factor, 

we can conclude that the model can substantially explain credit default swap premium variations.  

In other words, the model after adding the explanatory factors considerably fits the market data 

better.  

However, the sum of squared errors could be reduced because of the more number of 

iterations in the Derivative-Free optimization since we use the estimated c0 from the first group 
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of specification as the initial value when performing Derivative-Free optimization method for the 

2nd group of specifications (Model 2). Therefore, we have to obtain the benchmark result by 

performing Derivative-Free optimization from Model 1 again, but this time we use the estimated 

c0 which we obtain when performing Derivative-Free optimization method for the first and the 

most basic specification (Model 1) as the initial value, not 0. The benchmark results control the 

factor of the number of iterations in the Derivative-Free optimization method. That is, the better 

sum of squared errors must be resulted from the new factor added in the model, not the increase 

in the number of iterations in the Derivative-Free optimization method. In this case, we call the 

first group of specification as the “benchmark specification”. Luckily, the results suggest that 

there are no the sum of squared errors which reduced because of the more number of iterations in 

the Derivative-Free optimization.    

When we perform Derivative-Free optimization, we use MATLAB and we set the 

number of iterations equal to 10,000 times (We perform Derivative-Free optimization 10 rounds 

with 1,000 times of iterations in each round). We repeat the same procedure more complex 

specifications in which more factors are added.  

3.5 Derivative-Free Optimization 

As mentioned above, we perform Derivative-Free Optimization to minimize the sum of 

squared errors. Recent developments show that derivative free optimization is demanded by 

researches for solving optimization problems in various practical contexts. Although well-known 

optimization methods that employ derivative information can be very efficient, a derivative free 

method will be more efficient in cases where the objective function is non-differentiable; the 

derivative information is not available or is not reliable. Derivative Free Optimization (DFO) 

was developed for solving small dimensional problems (less than 100 variables) in which the 
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computation of an objective function is relatively expensive and the derivatives of the objective 

function are not available. The objective function in our study is the sum of squared errors. 

Furthermore, as previously discussed the fair CDS spreads calculated from our model is the one 

that makes the initial present value of expected premiums      A[0, 0] equal to the present value of 

expected losses B[0, 0]. Both A[0,0] and B[0,0] are obtained from a recursive calculation from 

the binomial trees. Thus, there is no closed-form function to calculate fair credit default spreads 

for our model. It is therefore impossible to be able find the derivative of this function and a 

derivative free method is appropriate in this case.  Non-linear least squares cannot be used in this 

case because the objective functions cannot be expressed in a closed-form.  

The details about the derivative free methods will not be discussed in detail because it is 

not the main objective of this study. However, a brief explanation of the Derivative Free Method 

is provided below.  

 The problem of minimizing a nonlinear function    f:Rn R of several variables when the 

derivatives of the function are not available is attempted to be solved by the “derivative free 

method”. This function may in fact be smooth, but a non-smooth function is also possible here. 

A formal statement of the underlying problem can be found in A.R. Conn, K Scheinberg and 

Ph.L. Toint, Derivative free optimization algorithm for constrained problems, preprint, IBM T.J. 

WATSON Research Center, 1999 as follows: 

            min  f(x) 

            such that ai ≤ ci(x) ≤ bi  (i = 1,2,…,m),             

            x ∈ F ⊆Rn,                                                             (15) 

where ∇ f(x) cannot be computed or just does not exist for every x. Here, F is an arbitrary 

subset of Rn, and x ∈F is called the easy constraint while the functions ci(x) (i = 1, 2, . . . ,m) 
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represent difficult constraints. By easy constraints, we mean bound constraints on the variables, 

linear constraints, or more general nonlinear smooth constraints whose values and the Jacobian 

matrix can be computed cheaply. Difficult constraints are any nonlinear constraints whose value 

is expensive to compute and whose derivatives are unavailable.  

 The idea of DFO is to approximate the objective function by a model which assumes to 

describe the objective function well in a trust-region without explicitly modeling its derivatives. 

This model is computationally less expensive to evaluate and easier to optimize than the 

objective function itself. The model is obtained by interpolating the objective function using a 

quadratic interpolation polynomial. Quadratic interpolation is preferred to approximate the 

objective function since it can be used successfully within a trust-region method.  

Derivative free optimization (DFO) methods are typically designed to solve optimization 

problems whose objective function is computed by a “black box”; hence, the gradient 

computation is unavailable. Each call to the “black box” is often expensive, so estimating 

derivatives by finite differences may be prohibitively costly. Finally, the objective function value 

may be computed with some noise, and the finite differences estimates may not be accurate. All 

the above properties, such as relatively expensive “black box” computations and presence of 

noise, are characteristics of Cycle-Tempo optimization problems. However, it is the noise which 

creates most difficulty in applying gradient based methods to these problems. 

3.6 Data 

For each reference entity, we obtain daily stock prices and credit default swap spreads 

from January 2008 to October 2009 from Thomson DataStream. We extract parameters in each 

model using 30 trading days in each time window. The first trading day of the next time window 

is the next 10 trading days of the first trading days of the current time window. There are 
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therefore in total 44 time windows in the study. Hence, for each reference entity, each time 

window and each group of specifications, we will report the extracted parameters and the sum of 

squared error. In order to extract all of the parameters in the model, we simply need the 

following market data.  

1. Stock prices  

2. Stock price volatilities 

3. Credit default swap spreads 

4. Risk free rates 

Since the credit default swap market is in its infancy and credit default swap transactions 

are over-the-counter, the quality of available credit default swap data is not as good as that of 

exchange based transaction data, because exchange-based transaction are normally automatically 

recorded while OTC transaction data are subject to the recording omissions and/or errors of those 

who collect them. Therefore, our studies and analyses comprise of only the firms listed in the 

Dow Jones Industrial Average Index or Dow 30 to ensure that the credit default swap spreads 

used in this study are from the reference entities which are most liquid. We selected 10 

companies listed in the Dow 30 from different industries. The time period of the data in our 

study is from January 2008 to October 2009. The data covers 22 trading months. When 

computing stock volatilities, we use 120 days of historical stock prices.  

The companies which we randomly selected into the study are: Alcoa Inc., AT&T Inc, 

Bank of America Corporation, The Boeing Company, Exxon Mobile Corporation, International 

Business Machines, Kraft Foods Incorporated, Merck & Co. Incorporated, and The Walt Disney 

Company. These ten companies are in different industries and are listed in Dow Jones Industrial 

Average Index.  Therefore, the movement of credit default swap premiums of these ten 
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companies should be good representatives of the movement of the credit default swap premiums 

during the financial crisis. Also, we can compare and contrast the effect of the different 

industries on the degree of improvement of each feature.  

  For each reference entity, we obtain daily stock prices and credit default swap spreads 

from January 2008 to July 2009 from Thomson DataStream.  Risk free rates used in the study are 

US Treasury bill rates. These securities are considered to be risk-free because the likelihood of 

US Treasury bills defaulting is extremely low, and especially the short maturity of the bill 

protects the investor from interest-rate risk that is present in all fixed rate bonds.  

3.7 Assumptions and Caveats 

Before the results in our study are presented, we should point out the assumptions 

implicitly embedded in the model. There are several caveats and assumptions in our study.  

1. No Counter-party risk. In credit default swaps, counterparty risks are understood to be the 

type and degree of risks associated with each party in a credit default swap arrangement. 

Essentially, the counterparty risk addresses the financial stability of each party involved. 

If we take counter-party risk in our consideration, the credit default swap premiums 

would be higher to compensate the counter-party risk.  

2. The parameters in each model do not change over time in the binomial trees.  

3. The relationship between default probabilities and recovery rates follows the functional 

forms in the model. We use the Probit function or the inverse cumulative distribution 

function of the standard normal to capture the correlation between default probabilities 

and recovery rates. 

4. The relationship between stock prices and default probabilities follows the functional 

forms in the model. The functional forms can be changed but the functional forms must 
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have practical characteristic e.g. when the stock price is equal to zero, the firm goes 

default. 

5. Credit Default Swap contracts protect only one reference entity.  

6. Liquidity risk is neglected. There has been evidence showing that liquidity characteristics 

and liquidity risk together could on average account for about 20% of CDS spreads. Yan 

and Tan (2007) show that the liquidity effect on credit default swap spreads is significant 

with an estimated liquidity premium on par with those of Treasury bonds and corporate 

bonds. They also find cross-sectional variations in the liquidity effect highlighting the 

interplay between search friction and adverse selection in the credit default swap market. 

Furthermore, they provide supporting evidence for liquidity risk being positively priced 

beyond liquidity characteristics in credit default swap spreads. Their estimates indicate 

that liquidity characteristics and liquidity risk together could on average account for 

about 20% of credit default swap spreads. 

7. No partial premium is paid after the reference entity defaults. At each payment date ,the 

buyer has to pay the premium to the seller, where  is the year fraction between 

 And Assuming the buyer pay the premium semi-annually, if the reference entity 

does not default during the year fraction between  and , the buyer make the full 

premium at time , . However, if default occurs any time ti during the year fraction 

between  And , the buyer makes no premium payment to the sellers at time  and 

stops making the remaining premium payments and the CDS seller has to pay contingent 

claim payment at ti to the protection buyer.  

8. The Derivative-Free optimization method does not guarantee a global optimal solution. 

However, we in fact do not need the global optimal solution in our study because the goal 
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of our study is to check if credit default swap pricing models have better fit after adding 

new factors in the model. As long as after adding new factors, the sum of squared errors 

which we use to measure the goodness of fit is less than the one of the models in which 

the new factors are not added provided that the number of the iterations and the initial 

values in the Derivative-Free optimization method are the same.  

9. The credit default swaps protect only corporate defaultable bonds which have their stocks 

traded in the stock market.  

 



 
 

 
 

CHAPTER IV 

 

Results 

 

4.1 Investigation of Important Factors Which Explain Credit Default Swap Variations 

 After extracting the parameters in each model by solving the least-squares program by 

MATLAB using the procedure discussed in the previous chapter, we can obtain the complete 

results which are exhibited in Appendix C. 

 In the models where we do not incorporate the parameter a1, the values of the parameter 

a0 which represent the recovery rates of each reference entity vary over time window. In this 

case, the values of the parameter a0 obtained from the derivative-free optimization method are 

quite near to the initial value provided by the procedure discussed in the previous chapter in 

order to alleviate the multiple-solution problem.  

After including the parameter a1, it can be noticed that the values of parameter a1 which 

represent the correlations between default intensities and recovery rates are all negative. The 

result is not against the basic intuition. A probability of a situation where a loan will not be 

repaid and the amount that a creditor would receive in final satisfaction of the claims on the 

defaulted loan should be statistically and negatively dependent. Recovery rates tend to be lower 

when a company is in bad time and it is more likely that the company will default during that 

period of time (more default probability). In contrast, recovery rates are inclined to be higher 

when a company is in good shape and it is less likely that the company will default during that 

period of time (less default probability). After adding the parameter a1, the values of parameter a0 

greatly reduce and the values are quite near to zero in most of the time windows.   
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Figure 4.1: The development of the parameter a0 in model 1 of Alcoa Incorporated.  

 

 

Figure 4.2: The development of the parameter a1 in model 5 of The Boeing Company.  

 

Moreover, in the models in which the parameter b1 is not included, the values of the 

parameter b0 which represent the effect of the stock prices on default intensities also change over 

time window. It can be observed from the results that the values of the parameter b0 tend to be 

low if the reference entity has relatively high stock prices. In contrast, the values of the 
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parameter b0 tend to be high when the reference entity has relatively low stock prices. 

Considering time dimension, as the credit crisis in the U.S. reached its peak during the period of 

time of October 2008 through April 2009, the ten reference entities in our study have 

comparatively low stock prices compared to the other periods of time. The values of the 

parameter b0 are higher during the period of time of October 2008 through April 2009 than 

during the other periods of time. That means when compared within the same reference entity, 

the values of the parameter b0 also tend to be high if the reference entity has relatively low stock 

prices. 

Furthermore, the values of the parameter b0 tend to be averagely higher when its 

reference entity has lower stock prices compared to other reference entities.  For instance, the 

average stock price of Merck and Co., Inc. (MRK) from January 1, 2008 to October 6, 2009 is 

around 30.16 dollars. The average value of the parameter b0 in model 3 for Merck and Co., Inc 

(MRK) in which we do not incorporate the parameter b1 in all 44 time windows (from January 1, 

2008 to October 6, 2009) is 0.33. The average value of the parameter b0 is greatly lower for 

Exxon Mobile Corp. (XOM) as the average stock prices of Exxon Mobile Corp. is greater than 

the one of Merck and Co., Inc. Specifically, the average stock prices of Exxon Mobile Corp. 

(XOM) from January 1, 2008 to October 6, 2009 is approximately equal to 73.96 dollars. The 

average value of the parameter b0 in model 3 for Exxon Mobile Corp. (XOM) is 0.26.  

The graph below shows the development of the parameter b0 in model 6 of Bank of 

America.  
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Figure 4.3: The development of the parameter b0 in model 6 of Bank of America.  

 

The result also does not contradict basic intuition in the sense that the effect of the stock 

prices on default intensities should be less when companies are in good standing. To illustrate, 

during the time when a company faces a bad situations and its stock price is low, the stock price 

movement of the company would be very sensitive to the fundamental of the company which is 

directly linked to its default probability. In this case the parameter b0 should be high. For 

example, when the stock price is only three dollars, it does really matter if the price drops further 

or increases by one dollar. On the other hand, during the time when a company faces excellent 

situations and its stock prices shoot up, any slight changes in the stock prices would not much 

reflect any changes in fundamental of the company. For instance, when the stock price is as high 

as three hundred dollars, it does not really matter if the price drops or increases by one dollar. In 
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this case the value of the parameter b0 should not be as high as when the company is facing bad 

time.  

The values of parameter b1 are close to zero in all reference entities and all time 

windows. It can be inferred from this fact that the effect of the most basic linear time trend on the 

stock prices (feature 3) plays very little role in explaining credit default swap premium 

variations.   

 

Figure 4.4:  The development of the parameter b1 in model 11 of the Walt Disney Company.   

 

The value of the parameter c0 in each time window in model 1 where we do not 

incorporate any feature in the model indicates the average implied default intensity or average 

implied default probability per year given that the recovery rate is equal to N(a0). For example, 

for Alcoa Inc., the value of the parameter c0 in the first time window (January 1, 2008 to 

February 11, 2008) is equal to 0.0136. That means if we assume constant default intensity in the 

next 10 years and investors are risk-neutral, the market perceived that the default probability was 

equal to 1.36% per year.  During the period of time of October 2008 through April 2009 when 

the credit crisis in the U.S. was the most severe, the credit default swap premiums were 
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extremely high. Therefore, the values of the parameter c0 were significantly high during this 

period to reflect bad expectations of investors during this difficult period of time.    

For IBM, average implied default probability is around 0.6% per year but it reached its 

peak in December 2008 around almost 2% per year.   

 

Figure 4.5: The development of parameter c0 in model 1 of International Business Machine.   

 

In addition, if incorporated, the values of the parameter c1 which reflect the most basic 

linear time trend of the default intensity are mostly positive. When the parameter c1 is positive 

and if we assume that credit default swap issuers do not expect to receive maturity-risk 

premiums to compensate for issuing longer time-to-maturity credit default swap contract, it can 

be inferred that investors expect that the default intensity would increase through time.  

However, in practice at longer time to maturities there is more uncertainty and a greater 

chance of catastrophic events that impact the credit default swap premiums. Therefore, positive 

values of parameter c1 can possibly be resulted from higher credit default swap premiums due to 
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higher maturity-risk, not because the fact that investors expect that the default probability would 

increase though time.  

 

Figure 4.6: The development of the parameter c1 in model 2 of AT&T  

 

In some reference entities which are Alcoa Inc., The Boeing Co., Bank of America Corp., 

and Kraft Food Incorporated, we can observe that some of the values of parameter c1 are 

negative during the period of time when the credit crisis in the U.S. reached its peak during the 

period of time of October 2008 through April 2009. It can be clearly seen that investors during 

that period of time expected that the default probability would decrease in the future because the 

default intensity rates during that period of time were exceptionally high. For the other reference 

entities of which the values of the parameters c1 are still positive during the period of time of 

October 2008 through April 2009, we can hypothesize that investors during that time did not 

expect that the default probability would decrease in the future or the effect of the maturity-risk 

premium prevailed the expectation that the default intensity would decline in the future.   
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Figure 4.7: The development of parameter c1 in model 2 of Bank of America  

 

The sum of squared errors in each model and each reference entity can be summarized in 

the table below. We use the sum of squared errors in the table to investigate the 4 commonly 

seen features which explain credit default swap premium variations. We check how much the 

sum of squared errors would decline after adding one of these commonly seen features.  



63 
 

 
 

 

Table 4.1: The average values of minimized sum of squared errors over 44 time windows and each reference entity when comparing the 

actual credit default swap premiums with the credit default swap premiums calculated from each stipulated model.    
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4.1.1 The Contribution to Explaining Credit Default Swap Premium Variations Made by Stock 

Prices (Feature 1) 

We compared three pairs of models to investigate the contribution to explaining the credit 

default swap premium variations made by stock prices. The comparison of model 1 and model 3 

checks the impact of adding stock prices (feature 1) into the credit default swap pricing model 

when there are no other features included. The comparison of model 2 and 8 investigates the 

result of having stock prices (feature 1) when the most basic linear time trend (feature 2) has 

already been included into the credit default swap pricing model. The comparison of model 5 and 

model 10 examines the impact of adding stock prices (feature 1) when the linear time trend 

(feature 2) and the correlation between default probabilities and recovery rates (feature 4) have 

already been included into the credit default swap pricing model.  These three comparisons are 

shown in table 4.2, 4.3 and 4.4 respectively.   

 

Table 4.2: The comparison of model 1 in which we do not incorporate any features and model 3 

in which we incorporate only feature 1.  
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Table 4.3: The comparison of model 2 in which we incorporate only feature 2 and model 8 in 

which we incorporate feature 1 and feature 2.  

 

Table 4.4: The comparison of model 5 in which we incorporate only feature 2 and feature 4 and 

model 10 in which we incorporate feature 1, feature 2, and feature 4.  
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4.1.2 The Contribution to Explaining Credit Default Swap Premium Variations Made by the 

Linear Time Trend 

We compared five pairs of models to investigate the contribution to explaining the credit 

default swap premium variations made by the linear time trend. The comparison of model 1 and 

model 2 checks the impact of adding the feature of the linear time trend into the credit default 

swap pricing model when there are no other features included. The comparison of model 3 and 

model 8 investigates the impact of having the feature of the linear time trend when the feature of 

stock prices has already been included into the credit default swap pricing model. The 

comparison of model 4 and model 9 examines the impact of adding the feature of the linear time 

trend when the features of stock prices and the effect of the linear time trend on the stock prices 

have already been included into the credit default swap pricing model.  The comparison of model 

6 and model 10 looks at the impact of incorporating the feature of the linear time trend when the 

features of the linear time trend and the correlation between default probabilities and recovery 

rates have already been included into the credit default swap pricing model. The comparison of 

model 7 and model 11 inspects the impact of including the feature of the linear time trend when 

the features of stock prices, the effect of the linear time trend on the stock prices and the 

correlation between default intensities and recovery rates have already been incorporated into the 

credit default swap pricing model. These five comparisions are shown in table 4.5, 4.6,4.7,4.8 

and 4.9 respectively.   
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Table 4.5: The comparison of model 1 in which we do not incorporate any features and model 2 

in which we incorporate only feature 2.  

 

Table 4.6: The comparison of model 3 in which we incorporate only feature 1 and model 8 in 

which we incorporate feature 1 and feature 2.  
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Table 4.7: The comparison of model 4 in which we incorporate only feature 1 and feature 3 and 

model 9 in which we incorporate feature 1, feature 2, and feature 3.  

 

Table 4.8: The comparison of model 6 in which we incorporate only feature 1 and feature 4 and 

model 10 in which we incorporate feature 1, feature 2, and feature 4.  
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Table 4.9: The comparison of model 7 in which we incorporate only feature 1, feature 3, and 

feature 4 and model 11 in which we incorporate feature 1, feature 2, feature 3, and feature 4.  

4.1.3 The Contribution to Explaining Credit Default Swap Premium Variations Made by the 

Effect of the Linear Time Trend on Stock Prices. 

We compared fours pairs of models to investigate the contribution to explaining the 

credit default swap premium variations made by the effect of the linear time trend on stock 

prices. The comparison of model 3 and model 4 investigates the impact of having the feature of 

the effect of the time trend on the stock prices when the feature of stock prices has already been 

included into the credit default swap pricing model. The comparison of model 6 and model 7 

checks the impact of having the feature of the ffect of the time trend on the stock prices provided 

that the features of stock prices and the correlation between default probabilities and recovery 

rates have already been included into the credit default swap pricing model. The comparison of 

model 8 and model 9 examines the impact of adding the feature of the effect of the linear time 

trend on the stock prices when the features of stock prices and the effect of the linear time trend 

on the stock prices have already been included into the credit default swap pricing model.  The 
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comparison of model 10 and model 11 looks at the impact of incorporating the feature of the 

linear time trend when the features of stock prices ,the linear time trend and the correlation 

between default probabilities and recovery rates have already been included into the credit 

default swap pricing model. These three comparisions are shown in the tables below.  

 

Table 4.10: The comparison of model 3 in which we incorporate only feature 1 and model 4 in 

which we incorporate feature 1 and feature 3.  

 

Table 4.11: The comparison of model 6 in which we incorporate only feature 1 and feature 4 and 

model 7 in which we incorporate feature 1, feature 3 and feature 4.  
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Table 4.12: The comparison of model 8 in which we incorporate only feature 1 and feature 2 and 

model 9 in which we incorporate feature 1, feature 2, and feature 3.  

 

Table 4.13: The comparison of model 10 in which we incorporate only feature 1, feature 2, and 

feature 4 and model 11 in which we incorporate feature 1, feature 2, feature 3, and feature 4.  
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4.1.4 The Contribution to Explaining Credit Default Swap Premium Variations Made by the 

correlation between default intensities and recovery rates  

We compared five pairs of models to investigate the contribution to explaining the credit 

default swap premium variations made by the correlation between default intensities and 

recovery rates. The comparison of model 2 and model 5 investigates the impact of having the 

feature of the correlation between default intensities and recovery rates when the feature of stock 

prices has already been included into the credit default swap pricing model. The comparison of 

model 3 and model 6 examines the impact of adding the feature of the correlation between 

default intensities and recovery rates when the feature of stock prices has already been included 

into the credit default swap pricing model.  The comparison of model 4 and model 7 looks at the 

impact of incorporating the feature of the correlation between default intensities and recovery 

rates when the features of stock prices and the effect of the linear time trend on the stock prices 

have already been included into the credit default swap pricing model. The comparison of model 

8 and model 10 inspects the impact of including the feature of the correlation between default 

intensities and recovery rates when the features of stock prices, the effect of the linear time trend 

on  stock prices and the linear time trend have already been incorporated into the credit default 

swap pricing model. The comparison of model 9 and model 11 checks the impacts of adding the 

feature of the correlation between default intensities and recovery rates after the features of stock 

prices, the linear time trend and the effect of the linear time trend on stock prices have already 

included into the credit default swap model.  

These five comparisions are shown in table 4.13, 4.14, 4.15, 4.16 and 4.17 respectively.   
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Table 4.14: The comparison of model 2 in which we incorporate only feature 2 and model 5 in 

which we incorporate feature 2 and feature 4.  

 

Table 4.15: The comparison of model 3 in which we incorporate only feature 1 and model 6 in 

which we incorporate feature 1 and feature 4.  
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Table 4.16: The comparison of model 4 in which we incorporate only feature 1 and feature 3 and 

model 7 in which we incorporate feature 1, feature 3, and feature 4.  

 

Table 4.17: The comparison of model 8 in which we incorporate only feature 1 and feature 2 and 

model 10 in which we incorporate feature 1, feature 2, and feature 4.  
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 First of all, according to Figure 4.8 which is the bar chart which compares the 

contribution of each feature to explaining the credit default swap premium variation, it seems 

like the 4 features are independent. As you can see, the relative improvement of each feature 

remains quite the same no matter whether or not the other features are added.  

  The feature which can best explain the credit default swap premium variations is the 

linear time trend. We compared three pairs of models to investigate the contribution to 

explaining the credit default swap premium variations made by the linear time trend. Of the 

selected 10 companies in our study listed in Dow Jones Industrial Index, the sum of squared 

errors sharply decreases by 53.506025% when comparing model 1 in which we did not include 

any features in the model with model 3 in which only feature 2 (linear time trend) is 

incorporated. Moreover, the sum of squared errors materially reduces by 50.2382839% when we 

make comparison between model 3 and model 8 to investigate the contribution to explaining the 

credit default swap premium variations made by the linear time tread. Only feature 1 (stock 

prices) is incorporated in model 3 whereas both feature 1 (stock prices) and feature 2 (linear time 

trend) are included in model 8. Also, the sum of squared errors greatly diminishes by 

50.5833417% when we compare model 4 where we have feature 1 (stock prices) and feature 3 

(the effect of the linear time trend on the stock prices) and model 9 where we have feature 1 

(stock prices), feature 2 (linear time trend) and feature 3 (the effect of the linear time trend on the 

stock prices). Also, the sum of squared errors substantially lessens by 51.5832077% when we 

compare model 6 in which we incorporate feature 1(stock prices) and feature 4 (correlation 

between default probabilities and recovery rates). Finally, the sum of squared errors considerably 
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reduces by 52.1612131$ when comparing model 7 where all of the features except feature 2 are 

incorporated and model 11 in which all of the features are included in the model. 

 The feature which has the second-best capability to explain the credit default swap 

premium variations is feature 1 (stock prices). We compared three pairs of models to investigate 

the contribution to explaining the credit default swap premium variations made by stock prices. 

On average, of the selected 10 companies in our study listed in Dow Jones Industrial Index, the 

sum of squared errors improves by 41.0918604% when we compare model 1 in which we did not 

have any features in the model with model 3 in which we only incorporate feature 1 (stock 

prices). Furthermore, the sum of squared errors improves by 37.2090883% when we compare 

model 2 in which we incorporate only feature 1 (stock prices) with model 8 in which we include 

feature 1 (stock prices) and feature 2 (linear time trend) to see the impact that feature 2 (linear 

time trend) has made to explain the credit default swap premium variations. In addition, the sum 

of squared errors improves by 40.5951772% when comparing model 5 in which feature 2 (linear 

time trend) and feature 4 (correlation between default probabilities and recovery rates) are 

incorporated and model 10 in which feature 1 (stock prices), feature 2 (linear time trend) and 

feature 4 (correlation between default probabilities and recovery rates) are included to check how 

much feature 1 (stock prices) has contributed to explaining the credit default swap premium 

variations. 

 The feature which can also explain the credit default swap premium variations, but its 

contribution is less than the linear time trend and stock prices is correlation between default 

probabilities and recovery rates. We compared five pairs of models to investigate the 

contribution to explaining the credit default swap premium variations made by correlation 

between default probabilities and recovery rates. First of all, of the selected 10 companies in our 
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study listed in Dow Jones Industrial Index, the sum of squared errors improves by 

17.06302011% when we make a comparison between model 2 in which no feature is included 

except feature 2 (linear time trend) and model 5 where we incorporate feature 2 (linear time 

trend) and feature 4 (correlation between default probabilities and recovery rates). Secondly, the 

sum of squared errors is better by 19.1814289% when comparing model 3 in which we 

incorporate only feature 1 (stock prices) in the model with model 6 in which we have both 

feature 1 (stock prices) and feature 4 (correlation between default intensities and recovery rates) 

in the model. Third, the sum of squared error reduces by 18.1161513% after adding feature 4 

into model 7 and it becomes model 7. Moreover, the sum of square errors diminishes by 

21.5770793% when we compare model 8 in which we have feature 1 (stock prices) and feature 2 

(linear time trend) with model 10 in which in include feature 1 (stock prices), feature 2 (linear 

time trend) and feature 4 (correlation between default probabilities and recovery rates). Finally, 

If we compare model 9 in which we have feature 1 (stock prices), feature 2 (linear time trend), 

and feature 3 (the effect of the linear time trend on the stock prices) with model 11 where we 

incorporate all of the features (feature 1, 2, 3 and 4), we can see that the sum of squared errors 

improves by 20.66735596%. 

 The feature which has the worst capability to explain the credit default swap premium 

variations is feature 3 (the effect of the linear time trend on stock prices). We compared three 

pairs of models to investigate the contribution to explaining the credit default swap premium 

variations made by the effect of the linear time trend of the stock prices. On average, of the 

selected 10 companies in our study listed in Dow Jones Industrial Index, the sum of squared 

errors slightly improves by 7.9182465% when we compare model 3 with model 4. In model 3 we 

only include feature 1 (stock prices) whereas in model 4 we have 2 features which are feature 
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1(stock prices) and feature 3 (the effect of the linear time trend on the stock prices.) Moreover, 

the sum of squared errors marginally declines by 8.8448558% when we make a comparison 

between model 8 and model 9. In model 8 we have only two features which are feature 1(stock 

prices) and feature 2 (linear time trend). In model 9, we incorporate 3 features which are feature 

1 (stock prices), feature 2 (linear time trend) and feature 3 (the effect of the linear time trend on 

the stock prices). Lastly, the sum of squared errors marginally declines by 7.8422266% when 

making a comparison between model 10 and model 11. In model 10 we have all of the features 

except feature 3 (the effect of the linear time trend on the stock prices) whereas in model 11 we 

include all of the four features including feature 3 (the effect of the linear time trend on the stock 

prices). 

 We can observe that the values of parameter b1 which reflects the effect of the linear time 

trend on the stock prices are nearly equal to zero for all of the ten reference entities and for all of 

the time windows. The values of all of the parameters are shown in Appendix C. It can be 

inferred that the effect of the linear time trend on the stock prices plays very little role in 

explaining the credit default swap premium variations. This confirms the result the feature which 

has the worst capability to explain the credit default swap premium variations is feature 3 (the 

effect of the linear time trend on the stock prices). The result does not contradict to the basic 

intuition. The impact of the change in stock prices remains quite constant through time. That 

means if a company’s strength which is gauged by its stock prices has changed; the effect on its 

credit default swap spreads does not alter through time. 
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4.2 The Highest Relative Importance of the Linear Time Trend. 

Evidently, we can observe from the previous section that the feature which has the 

highest relative importance or the highest explanatory power is the most basic linear time trend. 

This interesting fact leads us to further investigate the reason that makes the most basic linear 

time trend very special and has the highest explanatory power.  

We hypothesize that the most linear time trend has very high explanatory power because 

it can be used to explain the term structure of credit default swap spreads very well. We therefore 

perform the comparison of the important factors again. However, for this time instead of 

combining 1 to 10-year time-to-maturities altogether, we separately do it for each time-to-

maturity of credit default swaps. The credit default swap contracts that we include in the study to 

investigate the reason that the most basic linear time trend is the most powerful factor are only 3-

year, 5-year and 7- year. Furthermore, we only use model 1, model 2, model 3, model 5, model 6 

and model 10. That is because we already found that feature 3 (the effect of linear time trend on 

the stock prices) is not significant to explain the credit default swap premium variations. 

Therefore, we choose to exclude feature 3 in this phase of study. 

By separately performing the comparison of the important factors for each time-to-

maturity, we can eliminate the need of explaining the term structure of credit default swap 

spreads. On one hand, if we found that the most basic linear time trend is still the best after 

eliminating the need of explaining the term structure of credit default swap spreads, we can 

conclude that the linear time trend is not playing an important role in explaining the term 

structure of credit default swap spreads. On the other hand, if we found that that most basic 

linear time trend has less explanatory power, we can conclude that the most basic linear time 
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trend has very impressive explanatory power because it can be effectively used to explain the 

term structure of credit default swap spreads. 

By comparing model 1 with model 3, we will be able to observe the relative importance 

of feature 1 (stock prices) when the effect of the correlation between default intensities and 

recovery rates has not been incorporated. By comparing model 1 with model 2, we can check the 

relative importance of feature 2 (the most basic linear time trend) when the effect of the 

correlation between default intensities and recovery rates has not been added. When comparing 

model 5 with model 10, we can investigate the explanatory power of feature 1 (stock prices) 

when the effect of the correlation between default intensities and recover rates has already been 

incorporated. When comparing model 6 with model 10, we can check the explanatory power of 

feature 2 (the most basic linear time trend) provided that the effect the correlation between 

default intensities and recovery rates has already added.  

 The sum of squared errors in each model and each reference entity including the 

explanatory power of feature 1 (stock prices) and feature 2 (the most basic linear time trend) are 

shown below.  
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Table 4.19: The sum of squared errors and the explanatory power of feature 1 (stock prices) and 

feature 2 (the most basic linear time trend) of Alcoa Inc. when separately performing the 

comparison of the important factors for each time-to-maturity. 

 

Table 4.20: The sum of squared errors and the explanatory power of feature 1 (stock prices) and 

feature 2 (the most basic linear time trend) of AT&T Inc. when separately performing the 

comparison of the important factors for each time-to-maturity. 

Reference Entity: AA
3‐year 5‐year 7‐year

Model 1 107014.8 124199 138435.1
Model 2 100593.7 106789.1 123857.6
Model 3 81608.88 81180.42 97971.84
Model 5 90672.49 96561.63 145993.5
Model 6 65101.75 78048.7 84938.88
Model 10 58199.54 71552.91 80258.4

First Comparison (without correlation)
Improvement Made by Feature 1 0.237406 0.346368 0.292291
Improvement Made by Feature 2 0.060002 0.140178 0.105303

Second Comparison (with correlation)
Improvement Made by Feature 1 0.358134 0.258992 0.450261
Improvement Made by Feature 2 0.106022 0.083227 0.055104

Time‐to‐Maturity

Reference Entity: T
3‐year 5‐year 7‐year

Model 1 5296.922 6146.991 6857.693
Model 2 5007.589 5674.534 5930.923
Model 3 4018.516 3965.827 4500.877
Model 5 3473.992 4145.849 4577.371
Model 6 2754.264 3275.112 3550.254
Model 10 2514.712 2883.03 3212.009

First Comparison (without correlation)
Improvement Made by Feature 1 0.241349 0.354834 0.343675
Improvement Made by Feature 2 0.054623 0.07686 0.135143

Second Comparison (with correlation)
Improvement Made by Feature 1 0.276132 0.304598 0.298285
Improvement Made by Feature 2 0.086975 0.119716 0.095274

Time‐to‐Maturity
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Table 4.21: The sum of squared errors and the explanatory power of feature 1 (stock prices) and 

feature 2 (the most basic linear time trend) of Bank of America Corp. when separately 

performing the comparison of the important factors for each time-to-maturity. 

 

 

Table 4.22: The sum of squared errors and the explanatory power of feature 1 (stock prices) and 

feature 2 (the most basic linear time trend) of The Boeing Co. when separately performing the 

comparison of the important factors for each time-to-maturity. 

Reference Entity: BAC
3‐year 5‐year 7‐year

Model 1 28967 33789.75 37207.38
Model 2 25366.15 31086.22 34675.56
Model 3 21932.46 24922.58 25335.73
Model 5 20099.17 26665.06 24729.8
Model 6 14662.21 17442.93 19531.12
Model 10 13635.02 15789.86 17555.82

First Comparison (without correlation)
Improvement Made by Feature 1 0.242847 0.262422 0.319067
Improvement Made by Feature 2 0.124309 0.08001 0.068046

Second Comparison (with correlation)
Improvement Made by Feature 1 0.321613 0.407845 0.290094
Improvement Made by Feature 2 0.070057 0.09477 0.101136

Time‐to‐Maturity

Reference Entity: BA
3‐year 5‐year 7‐year

Model 1 13345.51 15304.9 17244.79
Model 2 12228.82 13953.14 15347.54
Model 3 7940.465 10383.96 10912.65
Model 5 9735.772 11116.12 11655.17
Model 6 7124.07 8004.449 8591.375
Model 10 6306.149 7123.992 8086.503

First Comparison (without correlation)
Improvement Made by Feature 1 0.405009 0.321527 0.367192
Improvement Made by Feature 2 0.083675 0.088322 0.110019

Second Comparison (with correlation)
Improvement Made by Feature 1 0.35227 0.35913 0.306187
Improvement Made by Feature 2 0.114811 0.109996 0.058765

Time‐to‐Maturity
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Table 4.23: The sum of squared errors and the explanatory power of feature 1 (stock prices) and 

feature 2 (the most basic linear time trend) of Exxon Mobil Corp. when separately performing 

the comparison of the important factors for each time-to-maturity. 

 

Table 4.24: The sum of squared errors and the explanatory power of feature 1 (stock prices) and 

feature 2 (the most basic linear time trend) of International Business Machines when separately 

performing the comparison of the important factors for each time-to-maturity. 

Reference Entity: XOM
3‐year 5‐year 7‐year

Model 1 2484.229 3092.016 3422.06
Model 2 2419.651 2799.587 3157.034
Model 3 1590.043 1960.954 2324.716
Model 5 1982.737 2220.679 2246.109
Model 6 1374.648 1648.79 1801.413
Model 10 1226.753 1434.016 1597.39

First Comparison (without correlation)
Improvement Made by Feature 1 0.359945 0.365801 0.320668
Improvement Made by Feature 2 0.025995 0.094575 0.077446

Second Comparison (with correlation)
Improvement Made by Feature 1 0.381283 0.354244 0.288819
Improvement Made by Feature 2 0.107588 0.130261 0.113257

Time‐to‐Maturity

Reference Entity: IBM
3‐year 5‐year 7‐year

Model 1 3695.431 4317.827 4745.192
Model 2 3431.13 3851.028 4380.878
Model 3 2921.353 3205.023 3258.787
Model 5 2379.957 2927.263 3345.605
Model 6 1833.724 2332.053 2465.622
Model 10 1746.295 2051.745 2205.648

First Comparison (without correlation)
Improvement Made by Feature 1 0.209469 0.257723 0.313244
Improvement Made by Feature 2 0.071521 0.10811 0.076775

Second Comparison (with correlation)
Improvement Made by Feature 1 0.266249 0.299091 0.340733
Improvement Made by Feature 2 0.047679 0.120198 0.10544

Time‐to‐Maturity
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Table 4.25: The sum of squared errors and the explanatory power of feature 1 (stock prices) and 

feature 2 (the most basic linear time trend) of Kraft Food Inc. when separately performing the 

comparison of the important factors for each time-to-maturity. 

 

Table 4.26: The sum of squared errors and the explanatory power of feature 1 (stock prices) and 

feature 2 (the most basic linear time trend) of Merck & Co. Inc. when separately performing the 

comparison of the important factors for each time-to-maturity. 

 

Reference Entity: KFT
3‐year 5‐year 7‐year

Model 1 5884.105 6848.161 7541.567
Model 2 5152.742 5941.896 6914.325
Model 3 4423.904 4634.423 4740.462
Model 5 4700.365 4162.175 4965.558
Model 6 3430.101 3571.08 4136.559
Model 10 2772.899 3213.281 3533.728

First Comparison (without correlation)
Improvement Made by Feature 1 0.24816 0.32326 0.371422
Improvement Made by Feature 2 0.124295 0.132337 0.083171

Second Comparison (with correlation)
Improvement Made by Feature 1 0.410067 0.22798 0.288352
Improvement Made by Feature 2 0.191598 0.100193 0.145733

Time‐to‐Maturity

Reference Entity: MRK
3‐year 5‐year 7‐year

Model 1 2400.355 2788.535 3112.327
Model 2 2193.307 2546.823 2840.986
Model 3 1548.374 1998.459 2067.608
Model 5 1911.707 1773.421 2173.28
Model 6 1230.459 1444.858 1610.058
Model 10 1149.759 1294.27 1456.445

First Comparison (without correlation)
Improvement Made by Feature 1 0.35494 0.28333 0.335671
Improvement Made by Feature 2 0.086257 0.086681 0.087183

Second Comparison (with correlation)
Improvement Made by Feature 1 0.398569 0.270185 0.32984
Improvement Made by Feature 2 0.065585 0.104224 0.095408

Time‐to‐Maturity
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Table 4.27: The sum of squared errors and the explanatory power of feature 1 (stock prices) and 

feature 2 (the most basic linear time trend) of Wal-Mart Stores Inc. when separately performing 

the comparison of the important factors for each time-to-maturity. 

 

Table 4.28: The sum of squared errors and the explanatory power of feature 1 (stock prices) and 

feature 2 (the most basic linear time trend) of The Walt Disney Co. when separately performing 

the comparison of the important factors for each time-to-maturity. 

From the result, we can clearly see that that most basic linear time trend has a lot less 

explanatory power when separately performing the comparison of the important factors for each 

Reference Entity: WMT
3‐year 5‐year 7‐year

Model 1 1752.564 2016.602 2262.093
Model 2 1506.137 1920.216 2080.533
Model 3 1336.905 1455.196 1529.388
Model 5 1402.402 1461.802 1422.823
Model 6 918.2827 1092.402 1115.423
Model 10 833.8379 950.5178 1075.247

First Comparison (without correlation)
Improvement Made by Feature 1 0.237172 0.278392 0.323906
Improvement Made by Feature 2 0.14061 0.047796 0.080262

Second Comparison (with correlation)
Improvement Made by Feature 1 0.405421 0.349763 0.244286
Improvement Made by Feature 2 0.091959 0.129883 0.036019

Time‐to‐Maturity

Reference Entity: DIS
3‐year 5‐year 7‐year

Model 1 4628.847 5495.742 6000.033
Model 2 4020.572 5025.603 5657.669
Model 3 3610.173 3782.505 3900.426
Model 5 3368.435 3811.233 3751.213
Model 6 2423.457 2882.884 3116.618
Model 10 2144.649 2576.991 2779.529

First Comparison (without correlation)
Improvement Made by Feature 1 0.220071 0.311739 0.349933
Improvement Made by Feature 2 0.13141 0.085546 0.05706

Second Comparison (with correlation)
Improvement Made by Feature 1 0.36331 0.323843 0.259032
Improvement Made by Feature 2 0.115046 0.106107 0.108159

Time‐to‐Maturity
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time-to-maturity. Hence, we can conclude that the most basic linear time trend has very 

impressive explanatory power because it can be effectively used to explain the term structure of 

credit default swap spreads. 

 

4.3 The Comparison of Market Credit Default Swap Spreads with Calculated Credit 

Default Swap Spreads from Das and Hanouna (2009)’s Platform 

We also compare market credit default swap spreads with the calculated credit default 

swap spreads from our model to check how well our model performs.  We use model 11 which is 

our full model because it has the largest numbers of parameter and thus has the most predictive 

power. For each trading month and each reference entity, we would obtain one set of parameters 

of a0, a1, b0, b1, c0, c1, and c2.  We use these parameters to forecast credit default swap spreads in 

the next month. For instance, if we are trying to find a fair value of a credit default swap spread 

of a reference entity on January 19, 2009, we need to obtain the extracted parameters a0, a1, b0, 

b1, c0, c1, and c2using the trading data of the last trading  month which is December 2008. Then, 

we use the actual stock price and volatility on January 19, 2009 to create the binomial tree in 

order to calculate the forecasted credit default swap spreads as explained in the subsection 3.2. 

After that we compare the actual market credit default swap spreads on January 19, 2009 with 

our forecasted credit default swap spreads to check how well our model performs and estimate 

the parameter in the study. 
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 Table 4.29: The extracted parameters in each month and the sum of squared errors of prediction for Alcoa Inc. The extracted parameters of 

each month are used to forecast credit default swap spreads in the next calendar month. 

Reference Entity: Alcoa Inc. NYSE: AA Industry: Steel

a0 a1 b0 b1 c0 c1 c2

1/1/2008‐1/31/2008 23 ‐0.6175 0.5939 0.0000 0.0011 ‐0.0221 0.0003 0.0268 44,835.70 2/1/2008‐2/29/2008 660,467.82
2/1/2008‐2/29/2008 20 ‐0.7483 174.5330 0.6216 ‐0.0052 0.0218 0.0008 ‐0.1045 23,182.81 3/3/2008‐3/31/2008 36,196.94
3/3/2008‐3/31/2008 20 ‐0.5759 ‐9.4230 0.4035 ‐0.0030 0.0535 0.0010 ‐0.1769 27,227.51 4/1/2008‐4/30/2008 138,286.59
4/1/2008‐4/30/2008 22 ‐0.7356 146.2528 0.0000 ‐0.0002 ‐0.1683 0.0000 0.1779 36,818.17 5/1/2008‐5/30/2008 57,254.12
5/1/2008‐5/30/2008 21 ‐0.6918 195.1891 0.0000 ‐0.0009 ‐0.1952 ‐0.0003 0.2001 6,783.80 6/2/2008‐6/30/2008 29,249.10
6/2/2008‐6/30/2008 21 ‐0.6173 ‐0.0099 0.0000 0.0028 0.0163 0.0001 ‐0.0090 9,134.00 7/1/2008‐7/31/2008 64,568.13
7/1/2008‐7/31/2008 22 ‐0.7553 250.5639 0.0000 ‐0.0015 ‐0.0574 0.0000 0.0636 10,104.17 8/1/2008‐8/29/2008 57,488.36
8/1/2008‐8/29/2008 21 ‐0.5839 ‐50.2760 0.0000 ‐0.0008 ‐0.5123 ‐0.0010 0.5199 10,450.02 9/1/2008‐9/30/2008 481,161.01
9/1/2008‐9/30/2008 21 ‐0.7714 240.4192 0.0000 0.0026 0.0000 0.0006 0.0071 14,212.68 10/1/2008‐10/31/2008 9,534,486.07
10/1/2008‐10/31/2008 22 ‐0.5844 ‐0.0274 0.1826 ‐0.0018 ‐0.1798 ‐0.0010 0.3251 197,458.13 11/3/2008‐11/28/2008 658,779.12
11/3/2008‐11/28/2008 19 ‐0.5833 ‐0.2962 0.4308 ‐0.0029 ‐0.0015 ‐0.0014 0.1361 301,467.91 12/1/2008‐12/31/2008 1,322,677.45
12/1/2008‐12/31/2008 22 ‐0.7398 26.2507 0.0000 ‐0.0012 ‐0.1973 0.0014 0.2607 153,835.95 1/1/2009‐1/30/2009 2,218,041.38
1/1/2009‐1/30/2009 20 ‐0.5787 ‐0.9333 0.4431 ‐0.0030 0.0439 ‐0.0018 0.0908 622,751.15 2/2/2009‐2/27/2009 5,029,887.41
2/2/2009‐2/27/2009 19 ‐0.6172 ‐0.0044 0.3169 ‐0.0018 0.1411 ‐0.0002 ‐0.0157 412,881.31 3/2/2009‐3/31/2009 7,389,306.56
3/2/2009‐3/31/2009 22 ‐0.6146 ‐0.1982 0.0348 0.0000 ‐1.1252 ‐0.0036 1.3679 3,778,763.65 4/1/2009‐4/30/2009 6,463,100.42
4/1/2009‐4/30/2009 21 ‐0.6173 0.0025 0.0000 0.0007 ‐0.0081 ‐0.0004 0.1087 1,021,899.95 5/1/2009‐5/29/2009 7,843,628.05
5/1/2009‐5/29/2009 20 ‐0.5941 ‐2.5470 0.8589 ‐0.0061 0.0609 ‐0.0010 0.0334 565,014.15 6/1/2009‐6/30/2009 296,591.36
6/1/2009‐6/30/2009 22 ‐0.5840 ‐0.1526 0.2280 ‐0.0011 ‐0.0255 ‐0.0010 0.1362 73,999.26 7/1/2009‐7/31/2009 826,164.60
7/1/2009‐7/31/2009 23 ‐0.6619 19.8992 0.0600 ‐0.0004 ‐0.6319 ‐0.0010 0.7755 208,655.80 8/3/2009‐8/31/2009 284,819.92
8/3/2009‐8/31/2009 21 ‐0.6083 0.0299 0.0000 ‐0.0016 ‐0.0782 ‐0.0001 0.1087 93,100.21 9/1/2009‐9/30/2009 800,748.18
* When performing Derivative‐Free optimization, we use MATLAB. The number of iterations equal to 10,000 times (10 rounds with 1,000 times of iterations in each round)

**for each trading month and each reference entity, we would obtain one set of parameters of a0, a1, b0, b1, c0, c1, and c2.   We use these parameters to forecast CDS spreads in the next month.

Extraction of Parameters Expected CDS Spreads

Period of time in which the 
parameters are extracted

The number of 
trading days

Extracted Parameters Minimized Sum of 
squared errors*

Period of time in which expected CDS 
spreads are calculated from the 

extracted parameters

Sum of squared errors 
of prediction**



89 
 

 
 

 
Table 4.30: The extracted parameters in each month and the sum of squared errors of prediction for ATT&T Inc. The extracted parameters of 

each month are used to forecast credit default swap spreads in the next calendar month. 

Reference Entity: AT&T Inc. NYSE: T Industry: Telecom

a0 a1 b0 b1 c0 c1 c2

1/1/2008‐1/31/2008 23 ‐0.7476 ‐0.0056 0.0003 0.0072 ‐0.0001 0.0001 0.0008 2,018.45 2/1/2008‐2/29/2008 39,795.59
2/1/2008‐2/29/2008 20 ‐0.7475 ‐0.3333 0.0000 ‐0.0013 0.0638 0.0005 ‐0.0630 5,062.96 3/3/2008‐3/31/2008 93,338.59
3/3/2008‐3/31/2008 20 ‐0.7473 0.0000 0.0774 ‐0.0068 0.0030 0.0002 ‐0.0003 6,950.06 4/1/2008‐4/30/2008 130,897.36
4/1/2008‐4/30/2008 22 ‐0.7465 ‐7.3820 0.0000 0.0012 ‐0.0187 0.0002 0.0204 5,997.84 5/1/2008‐5/30/2008 12,422.35
5/1/2008‐5/30/2008 21 ‐0.7120 ‐51.5151 0.0000 0.0015 ‐0.0080 0.0002 0.0090 984.52 6/2/2008‐6/30/2008 1,759.00
6/2/2008‐6/30/2008 21 ‐0.7183 11.7524 0.0000 ‐0.0014 ‐0.0061 0.0001 0.0072 1,425.36 7/1/2008‐7/31/2008 7,352.37
7/1/2008‐7/31/2008 22 ‐0.8129 684.1883 0.0000 0.0060 ‐0.0045 0.0003 0.0055 1,256.01 8/1/2008‐8/29/2008 12,442.40
8/1/2008‐8/29/2008 21 ‐0.6416 ‐1199.35 0.0000 ‐0.0024 0.0091 0.0002 ‐0.0085 4,007.19 9/1/2008‐9/30/2008 14,326.65
9/1/2008‐9/30/2008 21 ‐0.7476 0.0001 0.0000 ‐0.0055 0.0032 0.0002 ‐0.0020 6,434.41 10/1/2008‐10/31/2008 193,547.01
10/1/2008‐10/31/2008 22 ‐0.7781 167.8262 0.0000 0.0014 ‐0.0664 0.0004 0.0706 15,676.95 11/3/2008‐11/28/2008 74,242.93
11/3/2008‐11/28/2008 19 ‐0.7447 0.1159 0.0000 0.0007 ‐0.0900 0.0002 0.0995 23,117.78 12/1/2008‐12/31/2008 75,709.71
12/1/2008‐12/31/2008 22 ‐0.7476 ‐0.0216 0.0000 ‐0.0030 ‐0.0018 0.0000 0.0116 33,372.26 1/1/2009‐1/30/2009 50,011.45
1/1/2009‐1/30/2009 20 ‐1.1098 485.5377 0.0000 0.0017 ‐0.0104 0.0002 0.0196 21,819.21 2/2/2009‐2/27/2009 81,748.94
2/2/2009‐2/27/2009 19 ‐0.7757 47.1422 0.0000 ‐0.0030 ‐0.0027 0.0000 0.0098 22,718.39 3/2/2009‐3/31/2009 51,383.77
3/2/2009‐3/31/2009 22 ‐0.6130 ‐241.8832 0.1786 ‐0.0015 ‐0.0337 ‐0.0002 0.0686 10,997.23 4/1/2009‐4/30/2009 6,569.79
4/1/2009‐4/30/2009 21 ‐0.7014 ‐39.2847 0.4460 ‐0.0018 ‐0.0106 ‐0.0001 0.0637 4,895.85 5/1/2009‐5/29/2009 14,025.55
5/1/2009‐5/29/2009 20 ‐0.9746 929.6036 0.0000 0.0005 0.0570 0.0001 ‐0.0542 415.90 6/1/2009‐6/30/2009 5,609.22
6/1/2009‐6/30/2009 22 ‐0.9556 1013.84 0.0281 ‐0.0001 0.0253 0.0001 ‐0.0247 1,874.32 7/1/2009‐7/31/2009 7,408.18
7/1/2009‐7/31/2009 23 ‐0.7399 ‐9.8746 0.0000 0.0009 ‐0.0834 0.0003 0.0870 5,294.17 8/3/2009‐8/31/2009 17,208.32
8/3/2009‐8/31/2009 21 ‐0.8977 1291.21 0.0045 0.0046 0.0123 0.0000 ‐0.0109 1,784.16 9/1/2009‐9/30/2009 2,099.27
* When performing Derivative‐Free optimization, we use MATLAB. The number of iterations equal to 10,000 times (10 rounds with 1,000 times of iterations in each round)

**for each trading month and each reference entity, we would obtain one set of parameters of a0, a1, b0, b1, c0, c1, and c2.   We use these parameters to forecast CDS spreads in the next month.
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Table 4.31: The extracted parameters in each month and the sum of squared errors of prediction for Bank of America Corp. The extracted 

parameters of each month are used to forecast credit default swap spreads in the calendar next month. 

Reference Entity: Bank of America Corp. NYSE: BAC Industry: Finance and Banking

a0 a1 b0 b1 c0 c1 c2

1/1/2008‐1/31/2008 23 ‐0.4034 80.0706 0.1428 0.0000 ‐0.1818 0.0000 0.3173 14,659.83 2/1/2008‐2/29/2008 47,610.66
2/1/2008‐2/29/2008 20 ‐0.3311 ‐0.1321 0.3413 ‐0.0004 ‐0.0021 0.0000 0.0428 22,618.01 3/3/2008‐3/31/2008 267,839.15
3/3/2008‐3/31/2008 20 ‐0.3699 ‐0.0036 0.0000 ‐0.0050 0.0138 0.0001 ‐0.0005 117,187.23 4/1/2008‐4/30/2008 267,516.50
4/1/2008‐4/30/2008 22 ‐0.3535 32.8706 0.0000 0.0025 0.0297 0.0000 ‐0.0217 18,146.23 5/1/2008‐5/30/2008 60,953.70
5/1/2008‐5/30/2008 21 ‐0.5047 436.2390 0.0000 0.0046 0.0029 0.0004 0.0004 4,932.70 6/2/2008‐6/30/2008 106,044.14
6/2/2008‐6/30/2008 21 ‐0.5201 336.5169 0.0000 ‐0.0002 ‐0.0006 0.0005 0.0054 16,520.36 7/1/2008‐7/31/2008 166,306.20
7/1/2008‐7/31/2008 22 ‐0.5629 269.5919 0.0000 0.0015 ‐0.0104 0.0006 0.0185 16,768.16 8/1/2008‐8/29/2008 20,098.86
8/1/2008‐8/29/2008 21 ‐0.3698 ‐0.0552 0.0000 0.0019 0.0182 0.0001 ‐0.0051 24,626.89 9/1/2008‐9/30/2008 365,017.68
9/1/2008‐9/30/2008 21 ‐0.3326 1.0668 0.0602 ‐0.0007 ‐0.1669 ‐0.0004 0.2221 124,435.24 10/1/2008‐10/31/2008 1,376,543.84
10/1/2008‐10/31/2008 22 ‐0.3593 ‐0.0265 0.0069 ‐0.0013 ‐0.0399 0.0003 0.0524 100,644.80 11/3/2008‐11/28/2008 325,886.02
11/3/2008‐11/28/2008 19 ‐0.3629 19.6485 0.0767 ‐0.0003 ‐0.1476 ‐0.0011 0.2018 49,965.49 12/1/2008‐12/31/2008 585,873.62
12/1/2008‐12/31/2008 22 ‐0.3698 ‐0.0473 0.0409 ‐0.0017 0.0026 0.0002 0.0173 127,537.70 1/1/2009‐1/30/2009 259,568.29
1/1/2009‐1/30/2009 20 ‐0.5436 96.7353 0.0627 ‐0.0002 ‐0.0500 ‐0.0006 0.0851 115,823.41 2/2/2009‐2/27/2009 795,059.73
2/2/2009‐2/27/2009 19 ‐0.3487 ‐3.0091 0.0000 0.0001 ‐0.3892 ‐0.0008 0.4391 372,967.05 3/2/2009‐3/31/2009 2,850,058.05
3/2/2009‐3/31/2009 22 0.9915 ‐198.1056 0.0189 0.0001 ‐0.0538 ‐0.0013 0.1409 372,025.72 4/1/2009‐4/30/2009 720,225.18
4/1/2009‐4/30/2009 21 ‐0.0816 ‐44.7997 0.0596 ‐0.0001 ‐0.0242 ‐0.0021 0.1077 483,463.14 5/1/2009‐5/29/2009 2,759,316.73
5/1/2009‐5/29/2009 20 1.6943 ‐557.9791 0.0578 ‐0.0001 0.0156 ‐0.0007 0.0335 457,612.11 6/1/2009‐6/30/2009 1,111,851.43
6/1/2009‐6/30/2009 22 1.0276 ‐591.7508 0.0000 ‐0.0010 ‐0.0309 0.0003 0.0589 303,295.14 7/1/2009‐7/31/2009 1,287,370.50
7/1/2009‐7/31/2009 23 ‐0.3698 ‐0.0001 0.0111 ‐0.0016 0.0340 ‐0.0001 ‐0.0023 157,750.89 8/3/2009‐8/31/2009 132,638.74
8/3/2009‐8/31/2009 21 ‐0.8111 232.3585 0.0000 ‐0.0017 0.0015 0.0000 0.0228 21,628.22 9/1/2009‐9/30/2009 343,713.17
* When performing Derivative‐Free optimization, we use MATLAB. The number of iterations equal to 10,000 times (10 rounds with 1,000 times of iterations in each round)

**for each trading month and each reference entity, we would obtain one set of parameters of a0, a1, b0, b1, c0, c1, and c2.   We use these parameters to forecast CDS spreads in the next month.
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Table 4.32: The extracted parameters in each month and the sum of squared errors of prediction for The Boeing Co. The extracted 

parameters of each month are used to forecast credit default swap spreads in the next calendar month. 

Reference Entity: The Boeing Co. NYSE: BA Industry: Industrial

a0 a1 b0 b1 c0 c1 c2

1/1/2008‐1/31/2008 23 ‐0.3100 ‐226.1916 0.1140 0.0000 ‐0.1357 0.0001 0.2276 1,767.07 2/1/2008‐2/29/2008 64,297.99
2/1/2008‐2/29/2008 20 ‐0.3936 0.0000 0.0065 ‐0.0069 0.0048 0.0002 ‐0.0004 14,590.34 3/3/2008‐3/31/2008 661,273.41
3/3/2008‐3/31/2008 20 ‐0.5375 383.6335 0.0000 ‐0.0001 0.0073 0.0003 ‐0.0031 13,674.63 4/1/2008‐4/30/2008 138,046.96
4/1/2008‐4/30/2008 22 ‐0.3080 ‐286.0530 0.1042 ‐0.0001 ‐0.1139 0.0000 0.1827 3,751.20 5/1/2008‐5/30/2008 59,207.39
5/1/2008‐5/30/2008 21 ‐0.5124 475.3901 0.5344 ‐0.0022 ‐0.0108 0.0000 0.1431 19,165.31 6/2/2008‐6/30/2008 46,796.50
6/2/2008‐6/30/2008 21 ‐0.3613 9.7097 0.3781 ‐0.0007 ‐0.0138 0.0000 0.0983 3,434.94 7/1/2008‐7/31/2008 27,447.77
7/1/2008‐7/31/2008 22 ‐0.5259 309.6910 0.0000 ‐0.0040 ‐0.0055 0.0000 0.0113 20,788.22 8/1/2008‐8/29/2008 23,242.83
8/1/2008‐8/29/2008 21 ‐0.2363 ‐345.7197 0.0000 ‐0.0028 0.0270 0.0005 ‐0.0226 1,516.68 9/1/2008‐9/30/2008 113,924.49
9/1/2008‐9/30/2008 21 ‐0.3434 ‐59.8478 0.1710 0.0000 ‐0.0912 0.0000 0.1990 16,507.32 10/1/2008‐10/31/2008 78,055.62
10/1/2008‐10/31/2008 22 ‐0.3549 ‐0.4302 0.0000 0.0005 ‐0.3809 0.0007 0.3994 58,762.45 11/3/2008‐11/28/2008 247,059.40
11/3/2008‐11/28/2008 19 ‐0.3648 ‐0.0031 0.4798 ‐0.0030 ‐0.0133 ‐0.0008 0.2032 143,831.45 12/1/2008‐12/31/2008 308,288.04
12/1/2008‐12/31/2008 22 ‐0.3954 1.0304 0.0000 ‐0.0022 ‐0.1138 ‐0.0004 0.1336 59,086.62 1/1/2009‐1/30/2009 917,060.39
1/1/2009‐1/30/2009 20 ‐0.3952 1.2415 0.0000 ‐0.0019 ‐0.0818 ‐0.0002 0.0974 56,738.27 2/2/2009‐2/27/2009 96,874.72
2/2/2009‐2/27/2009 19 ‐0.3555 ‐0.0159 0.0439 ‐0.0037 0.0254 0.0001 ‐0.0017 49,188.63 3/2/2009‐3/31/2009 804,311.43
3/2/2009‐3/31/2009 22 ‐0.3508 ‐1.8298 0.0000 0.0006 ‐0.4006 0.0007 0.4320 307,417.67 4/1/2009‐4/30/2009 104,955.60
4/1/2009‐4/30/2009 21 ‐0.6105 170.4942 0.0000 ‐0.0010 0.0150 0.0009 0.0020 32,836.72 5/1/2009‐5/29/2009 562,072.63
5/1/2009‐5/29/2009 20 ‐0.5986 221.2860 0.0000 ‐0.0006 ‐0.3872 0.0000 0.3995 39,885.62 6/1/2009‐6/30/2009 390,361.49
6/1/2009‐6/30/2009 22 ‐0.5091 120.9658 0.2189 ‐0.0004 ‐0.0393 ‐0.0001 0.1223 10,455.70 7/1/2009‐7/31/2009 54,191.72
7/1/2009‐7/31/2009 23 ‐0.3922 0.1025 0.3482 ‐0.0009 0.0032 0.0000 0.0379 53,069.93 8/3/2009‐8/31/2009 84,709.03
8/3/2009‐8/31/2009 21 ‐0.3556 ‐0.0096 0.0010 ‐0.0064 0.0110 0.0001 0.0000 30,332.05 9/1/2009‐9/30/2009 27,368.11
* When performing Derivative‐Free optimization, we use MATLAB. The number of iterations equal to 10,000 times (10 rounds with 1,000 times of iterations in each round)

**for each trading month and each reference entity, we would obtain one set of parameters of a0, a1, b0, b1, c0, c1, and c2.   We use these parameters to forecast CDS spreads in the next month.
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Table 4.33: The extracted parameters in each month and the sum of squared errors of prediction for Exxon Mobil Corp. The extracted 

parameters of each month to forecast credit default swap spreads in the next calendar month. 

Reference Entity: Exxon Mobil Corp. NYSE: XOM Industry: Oil & Oil Service

a0 a1 b0 b1 c0 c1 c2

1/1/2008‐1/31/2008 23 ‐0.0709 ‐1045.13 0.0000 0.0001 ‐0.0009 0.0001 0.0013 1,116.38 2/1/2008‐2/29/2008 10,173.71
2/1/2008‐2/29/2008 20 ‐0.1589 494.4002 0.0000 ‐0.0033 0.0026 0.0003 ‐0.0017 1,633.19 3/3/2008‐3/31/2008 2,141.94
3/3/2008‐3/31/2008 20 ‐0.1402 23.1713 0.3206 0.0002 ‐0.0192 0.0001 0.0890 2,102.42 4/1/2008‐4/30/2008 3,983.76
4/1/2008‐4/30/2008 22 ‐0.1768 249.1724 0.2368 0.0001 ‐0.0724 0.0001 0.2116 679.87 5/1/2008‐5/30/2008 2,317.37
5/1/2008‐5/30/2008 21 ‐0.1670 651.0161 0.0893 ‐0.0001 ‐0.0078 0.0001 0.0128 329.79 6/2/2008‐6/30/2008 436.55
6/2/2008‐6/30/2008 21 ‐0.1163 ‐0.2424 0.3858 0.0000 ‐0.0151 0.0001 0.0922 512.81 7/1/2008‐7/31/2008 1,557.45
7/1/2008‐7/31/2008 22 ‐0.1891 707.0391 0.0000 ‐0.0002 ‐0.0016 0.0002 0.0026 270.56 8/1/2008‐8/29/2008 2,663.93
8/1/2008‐8/29/2008 21 ‐0.1885 631.6071 0.0003 0.0001 0.0009 0.0002 0.0003 940.86 9/1/2008‐9/30/2008 5,874.11
9/1/2008‐9/30/2008 21 ‐0.1609 0.2697 0.3739 0.0002 ‐0.0021 0.0001 0.0237 2,284.18 10/1/2008‐10/31/2008 11,950.89
10/1/2008‐10/31/2008 22 ‐0.1158 ‐0.0830 0.0000 ‐0.0027 0.0140 0.0002 ‐0.0100 5,109.16 11/3/2008‐11/28/2008 197,721.25
11/3/2008‐11/28/2008 19 ‐0.1158 ‐0.0011 0.0000 ‐0.0036 0.0075 0.0001 ‐0.0001 43,645.16 12/1/2008‐12/31/2008 447,932.51
12/1/2008‐12/31/2008 22 ‐0.1272 ‐44.3604 0.0000 ‐0.0018 ‐0.0486 0.0000 0.0573 13,096.33 1/1/2009‐1/30/2009 50,047.27
1/1/2009‐1/30/2009 20 ‐0.1659 7.0620 0.0000 ‐0.0016 ‐0.0330 0.0001 0.0412 20,322.52 2/2/2009‐2/27/2009 193,484.49
2/2/2009‐2/27/2009 19 ‐0.3381 337.2732 0.0000 ‐0.0005 ‐0.0385 0.0002 0.0461 4,655.94 3/2/2009‐3/31/2009 24,269.10
3/2/2009‐3/31/2009 22 ‐0.3193 209.8726 0.0000 0.0008 ‐0.2963 0.0010 0.3055 8,053.22 4/1/2009‐4/30/2009 11,967.38
4/1/2009‐4/30/2009 21 ‐0.1925 58.6672 0.2946 0.0000 ‐0.0009 0.0001 0.0255 1,902.66 5/1/2009‐5/29/2009 11,134.13
5/1/2009‐5/29/2009 20 ‐0.3913 621.7336 0.0000 0.0010 0.0043 0.0002 0.0000 654.49 6/1/2009‐6/30/2009 987.60
6/1/2009‐6/30/2009 22 ‐0.3338 554.2560 0.6102 ‐0.0027 ‐0.0009 0.0001 0.0713 819.77 7/1/2009‐7/31/2009 2,162.16
7/1/2009‐7/31/2009 23 ‐0.2165 144.3136 0.3092 ‐0.0002 ‐0.0192 0.0000 0.0887 1,226.92 8/3/2009‐8/31/2009 4,619.84
8/3/2009‐8/31/2009 21 ‐0.3275 484.1689 0.5010 0.0017 0.0016 0.0001 0.0205 872.10 9/1/2009‐9/30/2009 2,078.04
* When performing Derivative‐Free optimization, we use MATLAB. The number of iterations equal to 10,000 times (10 rounds with 1,000 times of iterations in each round)

**for each trading month and each reference entity, we would obtain one set of parameters of a0, a1, b0, b1, c0, c1, and c2.   We use these parameters to forecast CDS spreads in the next month.
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Table 4.34: The extracted parameters in each month and the sum of squared errors of prediction for International Business Machines. The 

extracted parameters of each month are used to forecast credit default swap spreads in the next calendar month.  

Reference Entity: International Business Machines NYSE: IBM Industry: Technology

a0 a1 b0 b1 c0 c1 c2

1/1/2008‐1/31/2008 23 ‐0.5766 725.8330 0.5501 ‐0.0100 0.0002 0.0002 ‐0.0002 1,661.78 2/1/2008‐2/29/2008 124,851.90
2/1/2008‐2/29/2008 20 ‐0.5612 461.1209 0.0001 0.0062 0.0038 0.0003 ‐0.0032 21,875.29 3/3/2008‐3/31/2008 46,650.57
3/3/2008‐3/31/2008 20 ‐0.5527 ‐0.0014 0.0000 0.0043 0.0222 0.0000 ‐0.0195 26,877.51 4/1/2008‐4/30/2008 219,411.43
4/1/2008‐4/30/2008 22 ‐0.5776 717.2005 0.0000 ‐0.0007 ‐0.0737 0.0000 0.0744 6,543.64 5/1/2008‐5/30/2008 4,614.05
5/1/2008‐5/30/2008 21 ‐0.5790 705.6914 0.0000 ‐0.0003 ‐0.0006 0.0002 0.0014 3,988.55 6/2/2008‐6/30/2008 32,697.61
6/2/2008‐6/30/2008 21 ‐0.5514 579.0829 0.0000 0.0073 0.0098 0.0002 ‐0.0097 4,945.42 7/1/2008‐7/31/2008 23,557.25
7/1/2008‐7/31/2008 22 ‐0.5320 0.7158 0.2134 ‐0.0002 ‐0.1048 0.0000 0.3011 9,769.13 8/1/2008‐8/29/2008 14,431.33
8/1/2008‐8/29/2008 21 ‐0.6598 807.4390 0.7105 ‐0.0001 ‐0.0003 0.0002 0.0618 867.48 9/1/2008‐9/30/2008 10,951.74
9/1/2008‐9/30/2008 21 ‐0.6497 670.8217 0.4176 ‐0.0001 ‐0.0043 0.0003 0.0419 4,283.96 10/1/2008‐10/31/2008 125,701.27
10/1/2008‐10/31/2008 22 ‐0.6267 431.7744 0.0000 ‐0.0016 0.0117 0.0005 ‐0.0092 11,531.63 11/3/2008‐11/28/2008 351,018.92
11/3/2008‐11/28/2008 19 ‐0.5560 0.0040 0.0000 0.0029 0.0040 0.0001 0.0100 128,190.59 12/1/2008‐12/31/2008 126,412.93
12/1/2008‐12/31/2008 22 ‐0.5558 ‐0.1721 0.0000 ‐0.0028 ‐0.0858 ‐0.0014 0.1022 78,977.54 1/1/2009‐1/30/2009 170,893.26
1/1/2009‐1/30/2009 20 ‐0.5128 ‐46.2841 0.1341 ‐0.0001 ‐0.1200 ‐0.0003 0.2363 13,483.56 2/2/2009‐2/27/2009 3,342.11
2/2/2009‐2/27/2009 19 ‐0.5218 ‐0.0157 0.0000 0.0026 0.0175 0.0000 ‐0.0077 1,829.21 3/2/2009‐3/31/2009 10,998.71
3/2/2009‐3/31/2009 22 ‐0.5503 0.0000 0.0000 ‐0.0045 0.0106 0.0000 ‐0.0002 9,930.31 4/1/2009‐4/30/2009 82,302.07
4/1/2009‐4/30/2009 21 ‐0.6000 62.0944 0.0000 0.0005 ‐0.1053 0.0002 0.1139 13,041.18 5/1/2009‐5/29/2009 14,553.97
5/1/2009‐5/29/2009 20 ‐0.8885 732.2463 0.3723 ‐0.0010 ‐0.0113 0.0001 0.0934 1,452.10 6/1/2009‐6/30/2009 6,838.37
6/1/2009‐6/30/2009 22 ‐0.7726 431.2872 0.0000 ‐0.0003 ‐0.0494 0.0000 0.0563 6,578.87 7/1/2009‐7/31/2009 57,384.13
7/1/2009‐7/31/2009 23 ‐0.3648 ‐498.6029 0.0000 ‐0.0013 0.3410 0.0023 ‐0.3374 4,499.51 8/3/2009‐8/31/2009 21,008.37
8/3/2009‐8/31/2009 21 ‐0.7954 1266.3817 0.0000 ‐0.0002 0.0017 0.0001 0.0007 2,594.91 9/1/2009‐9/30/2009 10,609.13
* When performing Derivative‐Free optimization, we use MATLAB. The number of iterations equal to 10,000 times (10 rounds with 1,000 times of iterations in each round)

**for each trading month and each reference entity, we would obtain one set of parameters of a0, a1, b0, b1, c0, c1, and c2.   We use these parameters to forecast CDS spreads in the next month.
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Table 4.35: The extracted parameters in each month and the sum of squared errors of prediction for Kraft Foods Inc. The extracted 

parameters of each month are used to forecast credit default swap spreads in the next calendar month.  

Reference Entity: Kraft Foods Inc. NYSE: KFT Industry: Consumer Goods

a0 a1 b0 b1 c0 c1 c2

1/1/2008‐1/31/2008 23 ‐0.6055 ‐0.8345 0.0000 ‐0.0013 0.0599 0.0005 ‐0.0560 6,398.65 2/1/2008‐2/29/2008 167,892.75
2/1/2008‐2/29/2008 20 ‐0.8052 332.8183 0.0000 0.0011 0.0125 0.0003 ‐0.0056 25,992.35 3/3/2008‐3/31/2008 180,967.78
3/3/2008‐3/31/2008 20 ‐0.8030 286.7040 0.0000 0.0003 0.0018 0.0005 0.0046 66,770.11 4/1/2008‐4/30/2008 236,390.14
4/1/2008‐4/30/2008 22 ‐0.6446 62.1513 0.3579 ‐0.0002 ‐0.0244 0.0001 0.1037 19,475.23 5/1/2008‐5/30/2008 19,003.64
5/1/2008‐5/30/2008 21 ‐0.8073 281.4330 0.0000 ‐0.0029 ‐0.0499 ‐0.0005 0.0572 13,011.63 6/2/2008‐6/30/2008 22,508.34
6/2/2008‐6/30/2008 21 ‐0.8015 360.8729 0.0000 ‐0.0006 ‐0.0234 0.0003 0.0294 7,299.41 7/1/2008‐7/31/2008 35,322.05
7/1/2008‐7/31/2008 22 ‐0.6272 ‐16.8271 0.0000 0.0008 ‐0.3686 0.0011 0.3764 23,942.23 8/1/2008‐8/29/2008 12,546.93
8/1/2008‐8/29/2008 21 ‐0.6058 0.0000 0.0000 0.0002 ‐0.0004 0.0001 0.0067 2,970.31 9/1/2008‐9/30/2008 15,564.66
9/1/2008‐9/30/2008 21 ‐0.8089 405.1275 0.0000 0.0081 0.0028 0.0003 0.0020 8,044.02 10/1/2008‐10/31/2008 128,996.70
10/1/2008‐10/31/2008 22 ‐0.6307 0.0225 0.1987 ‐0.0002 ‐0.0467 0.0001 0.1068 7,303.54 11/3/2008‐11/28/2008 62,421.28
11/3/2008‐11/28/2008 19 ‐0.6040 ‐3.0848 0.2450 ‐0.0006 ‐0.0629 ‐0.0001 0.1579 9,703.32 12/1/2008‐12/31/2008 62,724.60
12/1/2008‐12/31/2008 22 ‐0.6091 4.1695 0.0000 ‐0.0024 ‐0.1448 ‐0.0010 0.1542 28,146.66 1/1/2009‐1/30/2009 239,352.78
1/1/2009‐1/30/2009 20 ‐0.6779 44.2844 0.2423 ‐0.0006 ‐0.0585 ‐0.0003 0.1549 4,428.97 2/2/2009‐2/27/2009 36,102.40
2/2/2009‐2/27/2009 19 ‐0.6378 ‐0.4652 0.0000 0.0026 0.0277 ‐0.0001 ‐0.0156 7,093.62 3/2/2009‐3/31/2009 38,220.49
3/2/2009‐3/31/2009 22 ‐1.1252 546.3227 0.0000 ‐0.0014 ‐0.0556 0.0001 0.0664 5,858.87 4/1/2009‐4/30/2009 92,517.36
4/1/2009‐4/30/2009 21 ‐0.3714 ‐283.4966 0.2469 ‐0.0009 ‐0.0831 ‐0.0004 0.1999 13,613.62 5/1/2009‐5/29/2009 8,531.67
5/1/2009‐5/29/2009 20 ‐0.6084 3.3453 0.2871 ‐0.0004 ‐0.0312 ‐0.0001 0.0961 4,886.69 6/1/2009‐6/30/2009 11,526.92
6/1/2009‐6/30/2009 22 ‐0.9185 642.9918 0.0000 ‐0.0024 ‐0.0369 ‐0.0002 0.0420 2,408.31 7/1/2009‐7/31/2009 73,947.19
7/1/2009‐7/31/2009 23 ‐0.6748 146.4859 0.0532 0.0005 ‐0.4362 0.0008 0.5236 2,350.76 8/3/2009‐8/31/2009 4,685.98
8/3/2009‐8/31/2009 21 ‐0.8866 1231.46 0.5919 ‐0.0025 ‐0.0033 0.0000 0.0397 1,987.36 9/1/2009‐9/30/2009 229,387.03
* When performing Derivative‐Free optimization, we use MATLAB. The number of iterations equal to 10,000 times (10 rounds with 1,000 times of iterations in each round)

**for each trading month and each reference entity, we would obtain one set of parameters of a0, a1, b0, b1, c0, c1, and c2.   We use these parameters to forecast CDS spreads in the next month.
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Table 4.36: The extracted parameters in each month and the sum of squared errors of prediction for Merck & Co. Inc. The extracted 

parameters of each month are used to forecast credit default swap spreads in the next calendar month. 

Reference Entity: Merck & Co. Inc.  NYSE: MRK Industry: Healthcare

a0 a1 b0 b1 c0 c1 c2

1/1/2008‐1/31/2008 23 ‐0.5266 494.8067 0.0000 0.0006 ‐0.1407 0.0004 0.1422 1,523.23 2/1/2008‐2/29/2008 24,089.73
2/1/2008‐2/29/2008 20 ‐0.5456 649.4591 0.2532 0.0003 ‐0.0001 0.0002 0.0034 1,501.61 3/3/2008‐3/31/2008 38,430.81
3/3/2008‐3/31/2008 20 ‐0.4300 ‐0.6753 0.2616 ‐0.0001 ‐0.0264 0.0001 0.0773 12,406.23 4/1/2008‐4/30/2008 98,726.45
4/1/2008‐4/30/2008 22 ‐0.4944 163.8552 0.0000 ‐0.0011 ‐0.1449 ‐0.0004 0.1468 13,683.45 5/1/2008‐5/30/2008 19,144.95
5/1/2008‐5/30/2008 21 ‐0.5432 763.4711 0.4935 ‐0.0010 0.0000 0.0001 0.0063 345.12 6/2/2008‐6/30/2008 463.54
6/2/2008‐6/30/2008 21 ‐0.4807 461.7593 0.0000 ‐0.0004 ‐0.1624 ‐0.0001 0.1636 261.37 7/1/2008‐7/31/2008 4,047.88
7/1/2008‐7/31/2008 22 ‐0.5391 697.8495 0.1097 ‐0.0013 ‐0.0190 0.0000 0.0296 311.61 8/1/2008‐8/29/2008 1,737.76
8/1/2008‐8/29/2008 21 ‐0.5052 537.8517 0.0000 ‐0.0007 ‐0.0595 0.0000 0.0610 82.83 9/1/2008‐9/30/2008 13,669.27
9/1/2008‐9/30/2008 21 ‐0.4935 213.9133 0.1717 0.0000 ‐0.0433 0.0001 0.0820 2,247.26 10/1/2008‐10/31/2008 5,930.44
10/1/2008‐10/31/2008 22 ‐0.5239 362.6897 0.4078 ‐0.0016 ‐0.0062 0.0001 0.0334 780.84 11/3/2008‐11/28/2008 9,172.14
11/3/2008‐11/28/2008 19 ‐0.4302 ‐0.0030 0.0023 0.0025 0.0030 0.0001 0.0025 9,196.30 12/1/2008‐12/31/2008 47,048.55
12/1/2008‐12/31/2008 22 ‐0.2440 ‐367.1579 0.3830 ‐0.0023 ‐0.0075 ‐0.0002 0.0490 2,740.79 1/1/2009‐1/30/2009 10,617.31
1/1/2009‐1/30/2009 20 ‐0.4311 0.9220 0.2054 ‐0.0043 ‐0.0159 ‐0.0003 0.0422 4,207.70 2/2/2009‐2/27/2009 144,466.76
2/2/2009‐2/27/2009 19 ‐0.4663 ‐0.0015 0.0038 0.0020 0.0032 ‐0.0001 0.0093 31,649.35 3/2/2009‐3/31/2009 91,355.33
3/2/2009‐3/31/2009 22 ‐0.4115 ‐22.3523 0.0000 ‐0.0025 ‐0.0240 ‐0.0002 0.0340 26,755.28 4/1/2009‐4/30/2009 23,224.73
4/1/2009‐4/30/2009 21 ‐0.4525 ‐0.0014 0.0108 ‐0.0044 0.0091 0.0001 ‐0.0005 2,950.46 5/1/2009‐5/29/2009 53,712.68
5/1/2009‐5/29/2009 20 ‐0.8551 833.9798 0.0000 ‐0.0052 0.0061 0.0001 ‐0.0001 2,552.66 6/1/2009‐6/30/2009 17,584.21
6/1/2009‐6/30/2009 22 ‐0.6644 476.1865 0.0079 ‐0.0010 ‐0.0354 ‐0.0001 0.0414 281.88 7/1/2009‐7/31/2009 26,151.65
7/1/2009‐7/31/2009 23 ‐0.4403 26.6907 0.3084 ‐0.0008 ‐0.0082 0.0000 0.0342 826.76 8/3/2009‐8/31/2009 9,967.07
8/3/2009‐8/31/2009 21 ‐0.6037 1128.22 0.0000 ‐0.0035 0.0039 0.0001 ‐0.0022 1,046.16 9/1/2009‐9/30/2009 902.75
* When performing Derivative‐Free optimization, we use MATLAB. The number of iterations equal to 10,000 times (10 rounds with 1,000 times of iterations in each round)

**for each trading month and each reference entity, we would obtain one set of parameters of a0, a1, b0, b1, c0, c1, and c2.   We use these parameters to forecast CDS spreads in the next month.
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Table 4.37: The extracted parameters in each month and the sum of squared errors of prediction for Wal-Mart Stores Inc. The extracted 

parameters of each month are used to forecast credit default swap spreads in the next calendar month. 

Reference Entity: Wal‐Mart Stores Inc.  NYSE: WMT Industry: Retail

a0 a1 b0 b1 c0 c1 c2

1/1/2008‐1/31/2008 23 0.1994 ‐2337.57 0.2972 0.0054 0.0045 0.0000 ‐0.0044 3,399.76 2/1/2008‐2/29/2008 26,989.83
2/1/2008‐2/29/2008 20 0.5596 ‐2647.13 0.0000 ‐0.0014 0.0421 0.0003 ‐0.0379 5,917.39 3/3/2008‐3/31/2008 11,937.64
3/3/2008‐3/31/2008 20 ‐0.3837 ‐0.0672 0.0000 0.0061 0.0137 0.0000 ‐0.0098 14,000.09 4/1/2008‐4/30/2008 30,233.69
4/1/2008‐4/30/2008 22 ‐0.3830 ‐0.0077 0.0000 0.0007 ‐0.0247 0.0001 0.0291 2,629.86 5/1/2008‐5/30/2008 966.59
5/1/2008‐5/30/2008 21 ‐0.6672 847.1220 0.0000 ‐0.0004 0.0026 0.0001 0.0013 866.35 6/2/2008‐6/30/2008 3,154.45
6/2/2008‐6/30/2008 21 ‐0.3826 ‐1.4520 0.0111 0.0001 ‐0.7565 0.0003 0.7945 510.49 7/1/2008‐7/31/2008 3,578.53
7/1/2008‐7/31/2008 22 ‐0.6437 830.3994 0.0000 0.0018 0.0002 0.0001 0.0035 2,963.50 8/1/2008‐8/29/2008 850.94
8/1/2008‐8/29/2008 21 ‐0.4405 72.4466 0.0000 0.0002 ‐0.0059 0.0001 0.0099 522.63 9/1/2008‐9/30/2008 9,475.64
9/1/2008‐9/30/2008 21 ‐0.4164 ‐10.3328 0.0000 ‐0.0009 0.0517 0.0002 ‐0.0473 3,335.85 10/1/2008‐10/31/2008 247,855.60
10/1/2008‐10/31/2008 22 ‐0.4795 70.8395 0.0000 0.0007 ‐0.7466 0.0018 0.7583 25,075.36 11/3/2008‐11/28/2008 63,328.78
11/3/2008‐11/28/2008 19 ‐0.4212 1.1152 0.2063 ‐0.0008 ‐0.1551 ‐0.0007 0.3756 9,584.68 12/1/2008‐12/31/2008 24,218.42
12/1/2008‐12/31/2008 22 ‐0.4603 74.7299 0.0000 ‐0.0002 ‐0.5191 ‐0.0003 0.5313 20,011.17 1/1/2009‐1/30/2009 22,620.46
1/1/2009‐1/30/2009 20 ‐0.4131 ‐0.0627 0.2109 ‐0.0002 ‐0.0225 0.0000 0.0785 7,659.53 2/2/2009‐2/27/2009 13,855.99
2/2/2009‐2/27/2009 19 ‐0.3981 ‐18.3392 0.0751 ‐0.0006 ‐0.0735 ‐0.0002 0.1171 4,508.01 3/2/2009‐3/31/2009 10,352.98
3/2/2009‐3/31/2009 22 ‐0.3937 ‐11.8177 0.3421 ‐0.0006 0.0012 ‐0.0001 0.0526 5,869.72 4/1/2009‐4/30/2009 39,494.36
4/1/2009‐4/30/2009 21 0.0877 ‐476.4843 0.0000 ‐0.0002 ‐0.0012 0.0000 0.0140 16,004.81 5/1/2009‐5/29/2009 91,173.91
5/1/2009‐5/29/2009 20 0.9727 ‐1738.29 0.4552 ‐0.0013 ‐0.0017 ‐0.0001 0.0658 8,032.14 6/1/2009‐6/30/2009 36,136.32
6/1/2009‐6/30/2009 22 ‐0.4204 0.0531 0.0000 0.0052 0.0130 0.0000 ‐0.0075 1,955.04 7/1/2009‐7/31/2009 17,501.85
7/1/2009‐7/31/2009 23 ‐0.4176 ‐6.4006 0.5866 ‐0.0010 ‐0.0001 0.0000 0.0486 4,079.20 8/3/2009‐8/31/2009 9,680.52
8/3/2009‐8/31/2009 21 ‐0.4198 ‐2.1556 0.8300 ‐0.0037 0.0093 0.0002 ‐0.1698 2,219.30 9/1/2009‐9/30/2009 15,375.63
* When performing Derivative‐Free optimization, we use MATLAB. The number of iterations equal to 10,000 times (10 rounds with 1,000 times of iterations in each round)

**for each trading month and each reference entity, we would obtain one set of parameters of a0, a1, b0, b1, c0, c1, and c2.   We use these parameters to forecast CDS spreads in the next month.
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Table 4.38: The extracted parameters in each month and the sum of squared errors of prediction for The Walt Disney Co. The extracted 

parameters of each month are used to forecast credit default swap spreads in the next calendar month.  

 

Reference Entity: The Walt Disney Co. NYSE: DIS Industry: Media, Broadcasting, Cable

a0 a1 b0 b1 c0 c1 c2

1/1/2008‐1/31/2008 23 ‐0.1800 5.2803 0.0000 0.0005 ‐0.2199 0.0005 0.2227 5,339.92 2/1/2008‐2/29/2008 52,365.95
2/1/2008‐2/29/2008 20 ‐0.1849 284.1755 0.0000 0.0163 0.0014 0.0005 0.0000 12,182.99 3/3/2008‐3/31/2008 17,261.28
3/3/2008‐3/31/2008 20 ‐0.2138 270.8870 1.0471 ‐0.0048 0.0000 0.0005 0.0271 12,631.82 4/1/2008‐4/30/2008 124,513.84
4/1/2008‐4/30/2008 22 ‐0.1805 ‐60.1345 0.0000 ‐0.0014 0.1256 0.0008 ‐0.1248 7,586.94 5/1/2008‐5/30/2008 2,015.82
5/1/2008‐5/30/2008 21 0.1011 ‐2186.08 0.0000 ‐0.0028 0.0262 0.0004 ‐0.0251 944.68 6/2/2008‐6/30/2008 5,059.98
6/2/2008‐6/30/2008 21 ‐0.1436 7.4642 0.0099 0.0001 ‐2.0650 0.0012 2.1389 2,889.87 7/1/2008‐7/31/2008 17,697.36
7/1/2008‐7/31/2008 22 ‐0.1403 ‐4.9375 0.4597 0.0000 ‐0.0029 0.0001 0.0291 5,687.02 8/1/2008‐8/29/2008 4,802.03
8/1/2008‐8/29/2008 21 ‐0.2027 441.8778 0.0000 ‐0.0024 ‐0.0050 0.0002 0.0064 1,035.95 9/1/2008‐9/30/2008 2,596.06
9/1/2008‐9/30/2008 21 ‐0.1415 ‐0.2657 0.2146 ‐0.0002 ‐0.0171 0.0001 0.0437 4,541.14 10/1/2008‐10/31/2008 29,949.18
10/1/2008‐10/31/2008 22 ‐0.2959 219.5205 0.0000 0.0011 ‐0.1405 0.0007 0.1464 11,993.92 11/3/2008‐11/28/2008 159,602.17
11/3/2008‐11/28/2008 19 ‐0.2743 220.5779 0.0000 ‐0.0035 0.0046 0.0005 ‐0.0004 116,104.41 12/1/2008‐12/31/2008 320,760.62
12/1/2008‐12/31/2008 22 ‐0.1587 ‐22.1997 0.0000 ‐0.0021 ‐0.0978 0.0001 0.1025 60,469.02 1/1/2009‐1/30/2009 211,226.36
1/1/2009‐1/30/2009 20 ‐0.1692 ‐13.7107 0.3601 ‐0.0017 0.0014 ‐0.0003 0.0395 12,046.02 2/2/2009‐2/27/2009 10,993.95
2/2/2009‐2/27/2009 19 ‐0.5944 373.1117 0.0000 ‐0.0004 ‐0.0775 0.0000 0.0905 2,741.71 3/2/2009‐3/31/2009 23,685.92
3/2/2009‐3/31/2009 22 ‐0.1756 29.1397 0.1926 ‐0.0008 ‐0.0424 ‐0.0003 0.0958 1,466.31 4/1/2009‐4/30/2009 11,844.39
4/1/2009‐4/30/2009 21 ‐0.1839 ‐0.0348 0.0064 0.0021 0.0019 0.0000 0.0092 5,496.31 5/1/2009‐5/29/2009 4,108.52
5/1/2009‐5/29/2009 20 ‐0.0003 ‐216.8475 0.3275 ‐0.0035 ‐0.0140 ‐0.0005 0.0669 1,382.20 6/1/2009‐6/30/2009 12,014.00
6/1/2009‐6/30/2009 22 ‐0.1014 ‐148.9792 0.1481 ‐0.0017 ‐0.0719 ‐0.0005 0.1248 3,402.14 7/1/2009‐7/31/2009 6,461.31
7/1/2009‐7/31/2009 23 ‐0.1662 ‐34.3227 0.0740 ‐0.0006 ‐0.2835 ‐0.0006 0.3649 1,937.95 8/3/2009‐8/31/2009 11,365.53
8/3/2009‐8/31/2009 21 ‐0.1857 ‐0.0535 0.0000 ‐0.0008 ‐0.0521 ‐0.0001 0.0561 9,136.70 9/1/2009‐9/30/2009 7,675.93
* When performing Derivative‐Free optimization, we use MATLAB. The number of iterations equal to 10,000 times (10 rounds with 1,000 times of iterations in each round)

**for each trading month and each reference entity, we would obtain one set of parameters of a0, a1, b0, b1, c0, c1, and c2.   We use these parameters to forecast CDS spreads in the next month.

Extraction of Parameters Expected CDS Spreads

Period of time in which the 
parameters are extracted

The number of 
trading days

Extracted Parameters Minimized Sum of 
squared errors*

Period of time in which expected CDS 
spreads are calculated from the 

extracted parameters

Sum of squared errors 
of prediction**
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We also graphically compare the actual credit default swap spreads with the predicted 

credit default swap spreads from our model. It can be observed that our model can be used to 

forecast the credit default swap spreads very well in all time to maturity credit default swap 

contracts except in some extreme cases when there is a big jump in credit default swap spreads. 

For example, we obtained the extracted parameters a0, a1, b0, b1, c0, c1, and c2 to predict the credit 

default swap spreads in October 2008 using the trading data of September 2008. However, the 1-

year credit default swap spread of Alcoa, Inc. (AA) jumped from 88.1 basis points in October 1, 

2008 to 361.1 basis points in October 27, 2008. Therefore, our model cannot cope with such a 

big jump in credit default swap spreads and cannot well predict the credit default swap spreads in 

this case. Nevertheless, our model can generally be used to forecast the credit default swap 

spreads very well in all time to maturity credit default swap contracts.  
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Figure 4.9: The comparison of the credit default swap premiums calculated from the model with the market credit default swap 

premiums of Alcoa Inc. across different maturities during February 2008 to August 2009. 
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Figure 4.10: The comparison of the credit default swap premiums calculated from the model with the market credit default swap 

premiums of AT&T Inc. across different maturities during February 2008 to August 2009. 
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Figure 4.11: The comparison of the credit default swap premiums calculated from the model with the market credit default swap 

premiums of Bank of America Corp. across different maturities during February 2008 to August 2009. 
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Figure 4.12: The comparison of the credit default swap premiums calculated from the model with the market credit default swap 

premiums of The Boeing Co. across different maturities during February 2008 to August 2009. 
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Figure 4.13: The comparison of the credit default swap premiums calculated from the model with the market credit default swap 

premiums of Exxon Mobil Corp. across different maturities during February 2008 to August 2009. 
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Figure 4.14: The comparison of the credit default swap premiums calculated from the model with the market credit default swap 

premiums of International Business Machines across different maturities during February 2008 to August 2009. 
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Figure 4.15: The comparison of the model credit default swap premiums calculated from the model with the market credit default 

swap premiums of Kraft Foods Inc. across different maturities during February 2008 to August 2009. 
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Figure 4.16: The comparison of the credit default swap premiums calculated from the model with the market credit default swap 

premiums of Merck & Co. Inc. across different maturities during February 2008 to August 2009. 
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Figure 4.17: The comparison of the credit default swap premiums calculated from the model with the market credit default swap 

premiums of Wal-Mart Stores Inc. across different maturities during February 2008 to August 2009. 
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Figure 4.18: The comparison of the credit default swap premiums calculated from the model with the market credit default swap 

premiums of The Walt Disney Co. across different maturities during February 2008 to August 2009. 
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If we know the estimated values of default probabilities and recovery rates, we can also 

compute credit default swap spreads using historical credit information (conventional method) to 

check how well our model using the forward-looking credit information performs when it is 

compared to the conventional method. However, it is very difficult in practice to observe 

estimated values of default probabilities and recovery rates on daily basis. The easiest way to do 

it is observe the implied default probabilities and recovery rates by bootstrapping the market 

credit default swap premiums. Nevertheless, there are 2 main advantages of bootstrapping the 

market credit default swap premiums to observe the implied default probabilities and recovery 

rates.  

First of all, it is impossible to concurrently extract the implied default probabilities and 

recovery rates by bootstrapping the market credit default swaps. Howeling and Vorst (2001) 

show that there is a singularity in the conventional credit default price model that causes more 

than one particular combinations of the recovery rate and the default intensity to give more or 

less the same credit default swap prices. Thus we must arbitrarily stipulate either a term structure 

of recovery rates and default probabilities when bootstrap the market credit default swaps. If we 

would like to observe the implied default probabilities, we must stipulate an arbitrary term 

structure of recovery rates. On the other hand, if we would like to calculate the implied default 

probabilities, we must arbitrarily specify a term structure of default intensities. This fact leads to 

important but difficult to solve questions. How can we find an appropriate term structure of 

default intensities? How can we estimate a reasonable term structure of recovery rates? The 

calculated credit default swaps from conventional models heavily depend on the term structures 

of default intensities and recovery rates which we specify.  
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In addition to the first disadvantage, it is quite unreasonable to compare any credit default 

swaps pricing models with a conventional model using implied default intensities or implied 

recovery rates obtained by directly bootstrapping the market credit default swap premiums. The 

reason is very straight-forward. If we use implied default intensities or implied recovery rates as 

inputs when calculating credit default swap premiums, the calculated premiums that we calculate 

from the model will be definitely equal to the market prices.  



 
 

 
 

 

CHAPTER V 

 

Conclusion 

  

Credit default swaps have become the most utilized credit derivative as they enable 

investors to artificially trade pure credit risk. Furthermore, when investors wish to judge a 

borrower’s credit quality the credit default swap market has become the desired option, taking 

over this mantle from the bond market. This has provoked the attention of investors and 

practitioners to focus on credit default swap pricing models. Credit default swap pricing models 

come in various guises. The most common features frequently found in credit default swap 

pricing modes are as follows: 1.When measuring the default probability, securities that are tied to 

credit default swaps are used; stock prices or bond prices are examples of these. These security 

prices tend to fluctuate over time corresponding to the situation of the reference entity. Due to 

this, a feature that takes the relation between the default probability and security prices into 

account should be considered. 2. Credit default swap spreads change over time to reflect the 

changing time-varying nature of the default probabilities in the credit market. In the most basic 

framework, a deterministic time trend is used with this type of models to capture the change of 

the default probabilities. 3. Credit default swap pricing models also sometimes include 

correlations between recovery rates and default intensities. This shows that if there is an 

increased chance that a default could occur, the recovery rate will also decrease accordingly.   

There are important research questions that arise from the different aspects in different 

types of credit default swap pricing models. Which commonly-used feature was the most 
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prevailing feature during the credit crisis in 2008 to 2009? Which feature plays a crucial role in 

explaining short-term credit default swap premiums? Which feature is essential to explaining 

variations of the long-term the perception of the default probabilities in the credit market? The 

credit crisis period during 2008-2009 is focused on as it was here when people realized the need 

for better valuation models. Features that prevailed during the credit crises should be included to 

make sure credit default swap valuation models include an explanation for the movement of 

credit default swap premiums during times of crisis. In addition, the knowledge about the 

features that are important in explaining the short-term and the long-term perceptions on the 

default probabilities are essential to investors and risk managers in the credit markets because 

modelers can select the appropriate feature according to their needs when attempting to develop 

a model to price credit default swap contracts.   

The major hurdle when trying to answers these research questions is the desire to opt for 

a model that allows a comparison of several features simultaneously. This is difficult as most 

models do not allow different features to be compared side by side. It is theoretically possible in 

some models but it nearly becomes practically infeasible to compute due to its mathematical 

complexity. However, Das and Hanouna (2009) presented a model which upon some 

modifications can be used in this case.  This model allows a comparison of different dynamics of 

recovery rates and the probability of defaults. This is perfectly suitable for this work as it allows 

us to modify and investigate all the intended dynamics. Different specifications of default 

intensity and recovery rates were set from the most commonly used sets in the literature.  

Our studies and analyses comprise of only the firms listed in the Dow Jones Industrial 

Average Index or Dow 30 to ensure that the credit default swap spreads used in this study are 

from the reference entities which are most liquid. We selected 10 companies listed in the Dow 30 
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from different industries. The time period of the data in our study is from January 2008 to 

October 2009. The data covers 22 trading months. When computing stock volatilities, we use 

120 days of historical stock prices. 

We determine the feature which has the most explanatory power by initially setting both 

default intensity and the recovery rate constant. Next, more factors are be included. This would 

enable us to check to see how much credit default swap pricing models will provide better fit 

after each feature has been included. The degree of improvement is measured by the percentage 

change of the reduced sum of squared errors. In summary, the features considered in the model 

will be as follows: 1. Stock prices will be used as a driver of the dynamics of the default 

intensities in the credit market (Feature 1), much like Das and Hanouna (2009) used. 2. 

Deterministic time trend will highlight the change in the market perception on the default 

intensities in the credit market (Feature 2). The most basic linear function in this study, c0 + c1t, 

will be used as a process which makes default probabilities vary with time. This function is easy 

to work with and avoids any unnecessary complex issues that may arise from using a 

complicated linear function. This also avoids bias when comparing the features as it prevents the 

chance to find the best function in order to beat the other features or over-fitting the model.  3. 

Time trends will be incorporated into the effect of the stock price which has stochastic 

movement in the binomial tree to explain the effect of the time trend on the stock price 

movement (Feature 3).  Feature 2 shares a common characteristic with that model as this also 

used the most basic linear time trend to explain the perception on the default probabilities in the 

credit market. This feature does differ though as here the effect of the time trend on the stock 

price movement is measured. This will allow for the change in the effect of the stock prices on 

the default probabilities as discussed above 4. The default probability and recovery rate functions 
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are linked with the Probit function to capture the correlation between default probability and 

recovery rate (Feature4), as in Das and Hanouna (2009). The linear time trend, feature 2, has 

been determined to be the best feature to evaluate the credit default swap premium variations. 

Stock prices, feature 1, were seen as the next best feature that could explain the credit default 

swap premium variations. After this comes the correlation between default probabilities and 

recovery rates, with feature 3 (the effect of the linear time trend on stock prices) being seen to be 

the worst feature that could explain the issue. Also, we check the independency of the features by 

investigating the degrees of improvement of each feature when there have been some other 

features already included and when they are omitted. We can observe from the results that all of 

the features seem to be independent.  

  We also try to distinguish the feature that is best capable of explaining the short-term 

perception of default probability from the one that is more suitable to explain the long-term 

perception of default probability. We attempt to classify the features which capture the short-

term and the long-term term structures of default probability by checking the degree of 

improvement of each feature when the dataset contains only a specific time-to-maturity. 

According to the results, stock prices or feature 1 has been determined to be the most capable of 

capturing the short-term perception whereas the linear time trend (a process that makes default 

probability vary with time) or feature 2 is the most suitable when a modeler would like to have a 

feature that can efficiently explain the long-term term structures of default probability. 

Interestingly, the results that all of the four features seem to be independent have been confirmed 

when considering only a specific time-to-maturity CDS contracts.    

Additionally, to check the robustness of the model that we used and to evaluate the 

effectiveness of the parameters estimations in the study, actual credit default swap premiums 
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have been used to compare with the credit default swap premiums calculated from our platform 

using out-of-the-sample testing. To gain the best predictive power, the full model is used as it 

incorporates all the features, with its larger number of parameters giving it this power. The 

results indicate that the model can be extremely effective in predicting credit default swap 

spreads over all the duration of the credit crises. It falls short in some extreme cases when there 

is a big change in credit default swap spreads. Therefore, we can conclude that the model that we 

selected to use in our study is robust and the parameter extractions in our study are sound and 

reasonable. 
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APPENDIX A 

MATLAB source codes for extracting the parameters using Derivative-Free Optimization 
Method.  
 
Filename: main.m 
 
clc 
close all 
clear all 
tic 
  
filename=’IBM’; 
  
filename_f1=[filename,’_f1_wd.xls’]; 
filename_f2=[filename,’_f2_wd.xls’]; 
filename_f3=[filename,’_f3_wd.xls’]; 
filename_f4=[filename,’_f4_wd.xls’]; 
filename_f5=[filename,’_f5_wd.xls’]; 
filename_f6=[filename,’_f6_wd.xls’]; 
filename_f7=[filename,’_f7_wd.xls’]; 
filename_f8=[filename,’_f8_wd.xls’]; 
filename_f9=[filename,’_f9_wd.xls’]; 
filename_f10=[filename,’_f10_wd.xls’]; 
filename_f11=[filename,’_f11_wd.xls’]; 
  
filename_f1_bm=[filename,’_f1_wd_bm.xls’]; 
filename_f2_bm=[filename,’_f2_wd_bm.xls’]; 
filename_f3_bm=[filename,’_f3_wd_bm.xls’]; 
filename_f4_bm=[filename,’_f4_wd_bm.xls’]; 
filename_f8_bm=[filename,’_f8_wd_bm.xls’]; 
filename_f10_bm=[filename,’_f10_wd_bm.xls’]; 
  
  
  
MaxFun_Evals=1000; 
nmax=10; 
nmax_bm=20; 
  
windows=30; 
step=10; 
  
%------------f1------------------ 
[input_11 txt_11 raw11] = xlsread(filename, ‘Sheet1’,’A1:AJ462’); 
[input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
[input_2 txt_2] = xlsread(‘historical-volatility_IBM.xls’, 
‘Sheet1’,’A2:D688’); 
[input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
  
  
  
dmy_1=zeros(size(txt_1,1),3); 
for i=1:size(txt_1,1) 
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    dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
    dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
    dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
end 
     
dmy_2=zeros(size(txt_2,1),3); 
for i=1:size(txt_2,1) 
    dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
    dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
    dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
end 
  
dmy_3=zeros(size(txt_3,1),3); 
for i=1:size(txt_3,1) 
    dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
    dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
    dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
end 
  
rd=0; 
  
while (size(dmy_1,1)-(step*rd)) > (windows-step) 
    if (size(dmy_1,1)-(step*rd))>=windows 
        ship=windows; 
    else 
        ship=(size(dmy_1,1)-(step*rd)); 
    end 
    pp=[]; 
    dammy_dmy_1=dmy_1(step*rd+1:step*rd+ship,:); 
    xlswrite(filename_f1,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
    xlswrite(filename_f2,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
    xlswrite(filename_f3,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
    xlswrite(filename_f1_bm,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
    xlswrite(filename_f2_bm,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
    xlswrite(filename_f3_bm,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
     
    for ii=1:size(dammy_dmy_1,1) 
        Id_1=find(dmy_1(:,1)==dammy_dmy_1(ii,1)& 
dmy_1(:,2)==dammy_dmy_1(ii,2)& dmy_1(:,3)==dammy_dmy_1(ii,3)); 
        Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
        Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
        if ~isempty(Id_2) && ~isempty(Id_3) 
            pp=[pp;[input_2(Id_2,[1 3]) input_1(Id_1,:) 
InterestRate(input_3(Id_3,:))]]; 
        end 
    end 
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    options = optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-
6,’TolFun’,1e-6); 
     
    [input_1_v txt_1_v raw] = 
xlsread(filename_f1,[‘window’,num2str(rd)],’V2:AB462’); 
    input_1_v=cell2mat(raw); 
     
    vv =input_1_v(1,:); 
    th_r=vv(6); 
    v=vv(~isnan(vv)); 
    for n=1:nmax_bm 
        [x,fval] = fminsearch(@(x) fitness_sg_daily_f1(x,pp,th_r),v,options); 
        format short e 
        v=x; 
        str = 125print(‘function 1    iteration -> %d/%d    2 variables    
%d/%d/%d  ->  %d/%d/%d\n’,n,nmax_bm,dammy_dmy_1(1,:),dammy_dmy_1(end,:)); 
        disp(str); 
        str = 125print(‘    v-> %4.5f \n’,v); 
        disp(str); 
        if n==nmax 
            [yy CSD] = fitness_sg_daily_f1(x,pp,th_r); 
            CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
            iii=1; 
            for ii=1:size(dammy_dmy_1,1) 
                Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
                Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
                if ~isempty(Id_2) && ~isempty(Id_3) 
                    CSDm(ii,:)=CSD(iii,:); 
                    iii=iii+1; 
                end 
            end 
                     
            vm=ones(size(dammy_dmy_1,1),8)*NaN; 
            iii=1; 
            for jj=find(~isnan(vv)) 
                vm(:,jj)=x(iii); 
                iii=iii+1; 
            end 
            vm(:,8)=fval; 
            xlswrite(filename_f1,CSDm,[‘window’,num2str(rd)],’L2’); 
            xlswrite(filename_f1,vm,[‘window’,num2str(rd)],’AC2’); 
            dataoutput_v_f2=vm(:,1:end-1); 
            dataoutput_v_f2(:,4)=0; 
            xlswrite(filename_f2,dataoutput_v_f2,[‘window’,num2str(rd)], 
‘V2’); 
            xlswrite(filename_f2_bm,dataoutput_v_f2,[‘window’,num2str(rd)], 
‘V2’); 
            dataoutput_v_f3=vm(:,1:end-1); 
            dataoutput_v_f3(:,[1 5])=0; 
            xlswrite(filename_f3,dataoutput_v_f3,[‘window’,num2str(rd)], 
‘V2’); 
            xlswrite(filename_f3_bm,dataoutput_v_f3,[‘window’,num2str(rd)], 
‘V2’); 
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        end 
     end 
     [yy CSD] = fitness_sg_daily_f1(x,pp,th_r); 
     CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
     iii=1; 
     for ii=1:size(dammy_dmy_1,1) 
         Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
         Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
         if ~isempty(Id_2) && ~isempty(Id_3) 
             CSDm(ii,:)=CSD(iii,:); 
             iii=iii+1; 
         end 
     end 
                     
     vm=ones(size(dammy_dmy_1,1),8)*NaN; 
     iii=1; 
     for jj=find(~isnan(vv)) 
         vm(:,jj)=x(iii); 
         iii=iii+1; 
     end 
     vm(:,8)=fval; 
     xlswrite(filename_f1_bm,CSDm,[‘window’,num2str(rd)],’L2’); 
     xlswrite(filename_f1_bm,vm,[‘window’,num2str(rd)],’AC2’); 
           
     rd=rd+1; 
end 
  
  
%------------f2------------------ 
[input_11 txt_11 raw11] = xlsread(filename, ‘Sheet1’,’A1:AJ462’); 
[input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
[input_2 txt_2] = xlsread(‘historical-volatility_IBM.xls’, 
‘Sheet1’,’A2:D688’); 
[input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
  
  
  
dmy_1=zeros(size(txt_1,1),3); 
for i=1:size(txt_1,1) 
    dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
    dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
    dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
end 
     
dmy_2=zeros(size(txt_2,1),3); 
for i=1:size(txt_2,1) 
    dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
    dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
    dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
end 
  
dmy_3=zeros(size(txt_3,1),3); 
for i=1:size(txt_3,1) 
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    dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
    dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
    dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
end 
  
rd=0; 
  
while (size(dmy_1,1)-(step*rd)) > (windows-step) 
    if (size(dmy_1,1)-(step*rd))>=windows 
        ship=windows; 
    else 
        ship=(size(dmy_1,1)-(step*rd)); 
    end 
    pp=[]; 
    dammy_dmy_1=dmy_1(step*rd+1:step*rd+ship,:); 
    xlswrite(filename_f5,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
             
    for ii=1:size(dammy_dmy_1,1) 
        Id_1=find(dmy_1(:,1)==dammy_dmy_1(ii,1)& 
dmy_1(:,2)==dammy_dmy_1(ii,2)& dmy_1(:,3)==dammy_dmy_1(ii,3)); 
        Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
        Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
        if ~isempty(Id_2) && ~isempty(Id_3) 
            pp=[pp;[input_2(Id_2,[1 3]) input_1(Id_1,:) 
InterestRate(input_3(Id_3,:))]]; 
        end 
    end 
    options = optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-
6,’TolFun’,1e-6); 
     
    [input_1_v txt_1_v raw] = 
xlsread(filename_f2,[‘window’,num2str(rd)],’V2:AB462’); 
    input_1_v=cell2mat(raw); 
     
    vv =input_1_v(1,:); 
%     th_r=vv(6); 
    v=vv(~isnan(vv)); 
    for n=1:nmax_bm 
        [x,fval] = fminsearch(@(x) fitness_sg_daily_f2(x,pp,th_r),v,options); 
        format short e 
        v=x; 
        str = 127print(‘function 2    iteration -> %d/%d    3 variables    
%d/%d/%d  ->  %d/%d/%d\n’,n,nmax_bm,dammy_dmy_1(1,:),dammy_dmy_1(end,:)); 
        disp(str); 
        str = 127print(‘    v-> %4.5f \n’,v); 
        disp(str); 
        if n==nmax 
            [yy CSD] = fitness_sg_daily_f2(x,pp,th_r); 
            CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
            iii=1; 
            for ii=1:size(dammy_dmy_1,1) 
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                Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
                Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
                if ~isempty(Id_2) && ~isempty(Id_3) 
                    CSDm(ii,:)=CSD(iii,:); 
                    iii=iii+1; 
                end 
            end 
                     
            vm=ones(size(dammy_dmy_1,1),8)*NaN; 
            iii=1; 
            for jj=find(~isnan(vv)) 
                vm(:,jj)=x(iii); 
                iii=iii+1; 
            end 
            vm(:,8)=fval; 
            xlswrite(filename_f2,CSDm,[‘window’,num2str(rd)],’L2’); 
            xlswrite(filename_f2,vm,[‘window’,num2str(rd)],’AC2’); 
            dataoutput_v_f5=vm(:,1:end-1); 
            dataoutput_v_f5(:,7)=0; 
            xlswrite(filename_f5,dataoutput_v_f5,[‘window’,num2str(rd)], 
‘V2’); 
        end 
     end 
     [yy CSD] = fitness_sg_daily_f2(x,pp,th_r); 
     CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
     iii=1; 
     for ii=1:size(dammy_dmy_1,1) 
         Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
         Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
         if ~isempty(Id_2) && ~isempty(Id_3) 
             CSDm(ii,:)=CSD(iii,:); 
             iii=iii+1; 
         end 
     end 
                     
     vm=ones(size(dammy_dmy_1,1),8)*NaN; 
     iii=1; 
     for jj=find(~isnan(vv)) 
         vm(:,jj)=x(iii); 
         iii=iii+1; 
     end 
     vm(:,8)=fval; 
     xlswrite(filename_f2_bm,CSDm,[‘window’,num2str(rd)],’L2’); 
     xlswrite(filename_f2_bm,vm,[‘window’,num2str(rd)],’AC2’); 
           
     rd=rd+1; 
end 
  
  
%------------f3------------------ 
[input_11 txt_11 raw11] = xlsread(filename, ‘Sheet1’,’A1:AJ462’); 
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[input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
[input_2 txt_2] = xlsread(‘historical-volatility_IBM.xls’, 
‘Sheet1’,’A2:D688’); 
[input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
  
  
  
dmy_1=zeros(size(txt_1,1),3); 
for i=1:size(txt_1,1) 
    dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
    dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
    dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
end 
     
dmy_2=zeros(size(txt_2,1),3); 
for i=1:size(txt_2,1) 
    dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
    dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
    dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
end 
  
dmy_3=zeros(size(txt_3,1),3); 
for i=1:size(txt_3,1) 
    dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
    dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
    dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
end 
  
rd=0; 
  
while (size(dmy_1,1)-(step*rd)) > (windows-step) 
    if (size(dmy_1,1)-(step*rd))>=windows 
        ship=windows; 
    else 
        ship=(size(dmy_1,1)-(step*rd)); 
    end 
    pp=[]; 
    dammy_dmy_1=dmy_1(step*rd+1:step*rd+ship,:); 
    xlswrite(filename_f4,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
    xlswrite(filename_f6,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
    xlswrite(filename_f8,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
    xlswrite(filename_f4_bm,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
    xlswrite(filename_f8_bm,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
         
    for ii=1:size(dammy_dmy_1,1) 
        Id_1=find(dmy_1(:,1)==dammy_dmy_1(ii,1)& 
dmy_1(:,2)==dammy_dmy_1(ii,2)& dmy_1(:,3)==dammy_dmy_1(ii,3)); 
        Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
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        Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
        if ~isempty(Id_2) && ~isempty(Id_3) 
            pp=[pp;[input_2(Id_2,[1 3]) input_1(Id_1,:) 
InterestRate(input_3(Id_3,:))]]; 
        end 
    end 
    options = optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-
6,’TolFun’,1e-6); 
     
    [input_1_v txt_1_v raw] = 
xlsread(filename_f3,[‘window’,num2str(rd)],’V2:AB462’); 
    input_1_v=cell2mat(raw); 
     
    vv =input_1_v(1,:); 
%     th_r=vv(6); 
    v=vv(~isnan(vv)); 
    for n=1:nmax_bm 
        [x,fval] = fminsearch(@(x) fitness_sg_daily_f3(x,pp,th_r),v,options); 
        format short e 
        v=x; 
        str = 130print(‘function 3    iteration -> %d/%d    4 variables    
%d/%d/%d  ->  %d/%d/%d\n’,n,nmax_bm,dammy_dmy_1(1,:),dammy_dmy_1(end,:)); 
        disp(str); 
        str = 130print(‘    v-> %4.5f \n’,v); 
        disp(str); 
        if n==nmax 
            [yy CSD] = fitness_sg_daily_f3(x,pp,th_r); 
            CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
            iii=1; 
            for ii=1:size(dammy_dmy_1,1) 
                Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
                Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
                if ~isempty(Id_2) && ~isempty(Id_3) 
                    CSDm(ii,:)=CSD(iii,:); 
                    iii=iii+1; 
                end 
            end 
                     
            vm=ones(size(dammy_dmy_1,1),8)*NaN; 
            iii=1; 
            for jj=find(~isnan(vv)) 
                vm(:,jj)=x(iii); 
                iii=iii+1; 
            end 
            vm(:,8)=fval; 
            xlswrite(filename_f3,CSDm,[‘window’,num2str(rd)],’L2’); 
            xlswrite(filename_f3,vm,[‘window’,num2str(rd)],’AC2’); 
            dataoutput_v_f4=vm(:,1:end-1); 
            dataoutput_v_f4(:,2)=0; 
            xlswrite(filename_f4,dataoutput_v_f4,[‘window’,num2str(rd)], 
‘V2’); 
            xlswrite(filename_f4_bm,dataoutput_v_f4,[‘window’,num2str(rd)], 
‘V2’); 
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            dataoutput_v_f6=vm(:,1:end-1); 
            dataoutput_v_f6(:,7)=0; 
            xlswrite(filename_f6,dataoutput_v_f6,[‘window’,num2str(rd)], 
‘V2’); 
            dataoutput_v_f8=vm(:,1:end-1); 
            dataoutput_v_f8(:,4)=0; 
            xlswrite(filename_f8,dataoutput_v_f8,[‘window’,num2str(rd)], 
‘V2’); 
            xlswrite(filename_f8_bm,dataoutput_v_f8,[‘window’,num2str(rd)], 
‘V2’); 
                        
        end 
     end 
     [yy CSD] = fitness_sg_daily_f3(x,pp,th_r); 
     CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
     iii=1; 
     for ii=1:size(dammy_dmy_1,1) 
         Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
         Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
         if ~isempty(Id_2) && ~isempty(Id_3) 
             CSDm(ii,:)=CSD(iii,:); 
             iii=iii+1; 
         end 
     end 
                     
     vm=ones(size(dammy_dmy_1,1),8)*NaN; 
     iii=1; 
     for jj=find(~isnan(vv)) 
         vm(:,jj)=x(iii); 
         iii=iii+1; 
     end 
     vm(:,8)=fval; 
     xlswrite(filename_f3_bm,CSDm,[‘window’,num2str(rd)],’L2’); 
     xlswrite(filename_f3_bm,vm,[‘window’,num2str(rd)],’AC2’); 
           
     rd=rd+1; 
end 
  
  
  
%------------f4------------------ 
[input_11 txt_11 raw11] = xlsread(filename, ‘Sheet1’,’A1:AJ462’); 
[input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
[input_2 txt_2] = xlsread(‘historical-volatility_IBM.xls’, 
‘Sheet1’,’A2:D688’); 
[input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
  
  
  
dmy_1=zeros(size(txt_1,1),3); 
for i=1:size(txt_1,1) 
    dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
    dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
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    dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
end 
     
dmy_2=zeros(size(txt_2,1),3); 
for i=1:size(txt_2,1) 
    dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
    dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
    dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
end 
  
dmy_3=zeros(size(txt_3,1),3); 
for i=1:size(txt_3,1) 
    dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
    dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
    dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
end 
  
rd=0; 
  
while (size(dmy_1,1)-(step*rd)) > (windows-step) 
    if (size(dmy_1,1)-(step*rd))>=windows 
        ship=windows; 
    else 
        ship=(size(dmy_1,1)-(step*rd)); 
    end 
    pp=[]; 
    dammy_dmy_1=dmy_1(step*rd+1:step*rd+ship,:); 
    xlswrite(filename_f7,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
     
         
    for ii=1:size(dammy_dmy_1,1) 
        Id_1=find(dmy_1(:,1)==dammy_dmy_1(ii,1)& 
dmy_1(:,2)==dammy_dmy_1(ii,2)& dmy_1(:,3)==dammy_dmy_1(ii,3)); 
        Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
        Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
        if ~isempty(Id_2) && ~isempty(Id_3) 
            pp=[pp;[input_2(Id_2,[1 3]) input_1(Id_1,:) 
InterestRate(input_3(Id_3,:))]]; 
        end 
    end 
    options = optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-
6,’TolFun’,1e-6); 
     
    [input_1_v txt_1_v raw] = 
xlsread(filename_f4,[‘window’,num2str(rd)],’V2:AB462’); 
    input_1_v=cell2mat(raw); 
     
    vv =input_1_v(1,:); 
%     th_r=vv(6); 
    v=vv(~isnan(vv)); 
    for n=1:nmax_bm 
        [x,fval] = fminsearch(@(x) fitness_sg_daily_f4(x,pp,th_r),v,options); 
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        format short e 
        v=x; 
        str = 133print(‘function 4    iteration -> %d/%d    5 variables    
%d/%d/%d  ->  %d/%d/%d\n’,n,nmax_bm,dammy_dmy_1(1,:),dammy_dmy_1(end,:)); 
        disp(str); 
        str = 133print(‘    v-> %4.5f \n’,v); 
        disp(str); 
        if n==nmax 
            [yy CSD] = fitness_sg_daily_f4(x,pp,th_r); 
            CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
            iii=1; 
            for ii=1:size(dammy_dmy_1,1) 
                Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
                Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
                if ~isempty(Id_2) && ~isempty(Id_3) 
                    CSDm(ii,:)=CSD(iii,:); 
                    iii=iii+1; 
                end 
            end 
                     
            vm=ones(size(dammy_dmy_1,1),8)*NaN; 
            iii=1; 
            for jj=find(~isnan(vv)) 
                vm(:,jj)=x(iii); 
                iii=iii+1; 
            end 
            vm(:,8)=fval; 
            xlswrite(filename_f4,CSDm,[‘window’,num2str(rd)],’L2’); 
            xlswrite(filename_f4,vm,[‘window’,num2str(rd)],’AC2’); 
            dataoutput_v_f7=vm(:,1:end-1); 
            dataoutput_v_f7(:,7)=0; 
            xlswrite(filename_f7,dataoutput_v_f7,[‘window’,num2str(rd)], 
‘V2’); 
        end 
     end 
     [yy CSD] = fitness_sg_daily_f4(x,pp,th_r); 
     CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
     iii=1; 
     for ii=1:size(dammy_dmy_1,1) 
         Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
         Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
         if ~isempty(Id_2) && ~isempty(Id_3) 
             CSDm(ii,:)=CSD(iii,:); 
             iii=iii+1; 
         end 
     end 
                     
     vm=ones(size(dammy_dmy_1,1),8)*NaN; 
     iii=1; 
     for jj=find(~isnan(vv)) 
         vm(:,jj)=x(iii); 
         iii=iii+1; 
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     end 
     vm(:,8)=fval; 
     xlswrite(filename_f4_bm,CSDm,[‘window’,num2str(rd)],’L2’); 
     xlswrite(filename_f4_bm,vm,[‘window’,num2str(rd)],’AC2’); 
                
     rd=rd+1; 
end 
  
  
%------------f5------------------ 
[input_11 txt_11 raw11] = xlsread(filename, ‘Sheet1’,’A1:AJ462’); 
[input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
[input_2 txt_2] = xlsread(‘historical-volatility_IBM.xls’, 
‘Sheet1’,’A2:D688’); 
[input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
  
  
  
dmy_1=zeros(size(txt_1,1),3); 
for i=1:size(txt_1,1) 
    dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
    dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
    dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
end 
     
dmy_2=zeros(size(txt_2,1),3); 
for i=1:size(txt_2,1) 
    dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
    dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
    dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
end 
  
dmy_3=zeros(size(txt_3,1),3); 
for i=1:size(txt_3,1) 
    dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
    dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
    dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
end 
  
rd=0; 
  
while (size(dmy_1,1)-(step*rd)) > (windows-step) 
    if (size(dmy_1,1)-(step*rd))>=windows 
        ship=windows; 
    else 
        ship=(size(dmy_1,1)-(step*rd)); 
    end 
    pp=[]; 
    dammy_dmy_1=dmy_1(step*rd+1:step*rd+ship,:); 
            
    for ii=1:size(dammy_dmy_1,1) 
        Id_1=find(dmy_1(:,1)==dammy_dmy_1(ii,1)& 
dmy_1(:,2)==dammy_dmy_1(ii,2)& dmy_1(:,3)==dammy_dmy_1(ii,3)); 
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        Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
        Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
        if ~isempty(Id_2) && ~isempty(Id_3) 
            pp=[pp;[input_2(Id_2,[1 3]) input_1(Id_1,:) 
InterestRate(input_3(Id_3,:))]]; 
        end 
    end 
    options = optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-
6,’TolFun’,1e-6); 
     
    [input_1_v txt_1_v raw] = 
xlsread(filename_f5,[‘window’,num2str(rd)],’V2:AB462’); 
    input_1_v=cell2mat(raw); 
     
    vv =input_1_v(1,:); 
%     th_r=vv(6); 
    v=vv(~isnan(vv)); 
    for n=1:nmax 
        [x,fval] = fminsearch(@(x) fitness_sg_daily_f5(x,pp,th_r),v,options); 
        format short e 
        v=x; 
        str = 135print(‘function 5    iteration -> %d/%d    4 variables    
%d/%d/%d  ->  %d/%d/%d\n’,n,nmax,dammy_dmy_1(1,:),dammy_dmy_1(end,:)); 
        disp(str); 
        str = 135print(‘    v-> %4.5f \n’,v); 
        disp(str); 
     end 
     [yy CSD] = fitness_sg_daily_f5(x,pp,th_r); 
     CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
     iii=1; 
     for ii=1:size(dammy_dmy_1,1) 
         Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
         Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
         if ~isempty(Id_2) && ~isempty(Id_3) 
             CSDm(ii,:)=CSD(iii,:); 
             iii=iii+1; 
         end 
     end 
                     
     vm=ones(size(dammy_dmy_1,1),8)*NaN; 
     iii=1; 
     for jj=find(~isnan(vv)) 
         vm(:,jj)=x(iii); 
         iii=iii+1; 
     end 
     vm(:,8)=fval; 
     xlswrite(filename_f5,CSDm,[‘window’,num2str(rd)],’L2’); 
     xlswrite(filename_f5,vm,[‘window’,num2str(rd)],’AC2’); 
           
     rd=rd+1; 
end 
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%------------f6------------------ 
[input_11 txt_11 raw11] = xlsread(filename, ‘Sheet1’,’A1:AJ462’); 
[input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
[input_2 txt_2] = xlsread(‘historical-volatility_IBM.xls’, 
‘Sheet1’,’A2:D688’); 
[input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
  
  
  
dmy_1=zeros(size(txt_1,1),3); 
for i=1:size(txt_1,1) 
    dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
    dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
    dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
end 
     
dmy_2=zeros(size(txt_2,1),3); 
for i=1:size(txt_2,1) 
    dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
    dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
    dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
end 
  
dmy_3=zeros(size(txt_3,1),3); 
for i=1:size(txt_3,1) 
    dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
    dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
    dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
end 
  
rd=0; 
  
while (size(dmy_1,1)-(step*rd)) > (windows-step) 
    if (size(dmy_1,1)-(step*rd))>=windows 
        ship=windows; 
    else 
        ship=(size(dmy_1,1)-(step*rd)); 
    end 
    pp=[]; 
    dammy_dmy_1=dmy_1(step*rd+1:step*rd+ship,:); 
     
         
    for ii=1:size(dammy_dmy_1,1) 
        Id_1=find(dmy_1(:,1)==dammy_dmy_1(ii,1)& 
dmy_1(:,2)==dammy_dmy_1(ii,2)& dmy_1(:,3)==dammy_dmy_1(ii,3)); 
        Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
        Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
        if ~isempty(Id_2) && ~isempty(Id_3) 
            pp=[pp;[input_2(Id_2,[1 3]) input_1(Id_1,:) 
InterestRate(input_3(Id_3,:))]]; 
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        end 
    end 
    options = optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-
6,’TolFun’,1e-6); 
     
    [input_1_v txt_1_v raw] = 
xlsread(filename_f6,[‘window’,num2str(rd)],’V2:AB462’); 
    input_1_v=cell2mat(raw); 
     
    vv =input_1_v(1,:); 
%     th_r=vv(6); 
    v=vv(~isnan(vv)); 
    for n=1:nmax 
        [x,fval] = fminsearch(@(x) fitness_sg_daily_f6(x,pp,th_r),v,options); 
        format short e 
        v=x; 
        str = 137print(‘function 6    iteration -> %d/%d    5 variables    
%d/%d/%d  ->  %d/%d/%d\n’,n,nmax,dammy_dmy_1(1,:),dammy_dmy_1(end,:)); 
        disp(str); 
        str = 137print(‘    v-> %4.5f \n’,v); 
        disp(str); 
     end 
     [yy CSD] = fitness_sg_daily_f6(x,pp,th_r); 
     CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
     iii=1; 
     for ii=1:size(dammy_dmy_1,1) 
         Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
         Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
         if ~isempty(Id_2) && ~isempty(Id_3) 
             CSDm(ii,:)=CSD(iii,:); 
             iii=iii+1; 
         end 
     end 
                     
     vm=ones(size(dammy_dmy_1,1),8)*NaN; 
     iii=1; 
     for jj=find(~isnan(vv)) 
         vm(:,jj)=x(iii); 
         iii=iii+1; 
     end 
     vm(:,8)=fval; 
     xlswrite(filename_f6,CSDm,[‘window’,num2str(rd)],’L2’); 
     xlswrite(filename_f6,vm,[‘window’,num2str(rd)],’AC2’); 
           
     rd=rd+1; 
end 
  
  
%------------f7------------------ 
[input_11 txt_11 raw11] = xlsread(filename, ‘Sheet1’,’A1:AJ462’); 
[input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
[input_2 txt_2] = xlsread(‘historical-volatility_IBM.xls’, 
‘Sheet1’,’A2:D688’); 
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[input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
  
  
  
dmy_1=zeros(size(txt_1,1),3); 
for i=1:size(txt_1,1) 
    dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
    dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
    dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
end 
     
dmy_2=zeros(size(txt_2,1),3); 
for i=1:size(txt_2,1) 
    dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
    dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
    dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
end 
  
dmy_3=zeros(size(txt_3,1),3); 
for i=1:size(txt_3,1) 
    dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
    dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
    dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
end 
  
rd=0; 
  
while (size(dmy_1,1)-(step*rd)) > (windows-step) 
    if (size(dmy_1,1)-(step*rd))>=windows 
        ship=windows; 
    else 
        ship=(size(dmy_1,1)-(step*rd)); 
    end 
    pp=[]; 
    dammy_dmy_1=dmy_1(step*rd+1:step*rd+ship,:); 
     
         
    for ii=1:size(dammy_dmy_1,1) 
        Id_1=find(dmy_1(:,1)==dammy_dmy_1(ii,1)& 
dmy_1(:,2)==dammy_dmy_1(ii,2)& dmy_1(:,3)==dammy_dmy_1(ii,3)); 
        Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
        Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
        if ~isempty(Id_2) && ~isempty(Id_3) 
            pp=[pp;[input_2(Id_2,[1 3]) input_1(Id_1,:) 
InterestRate(input_3(Id_3,:))]]; 
        end 
    end 
    options = optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-
6,’TolFun’,1e-6); 
     
    [input_1_v txt_1_v raw] = 
xlsread(filename_f7,[‘window’,num2str(rd)],’V2:AB462’); 
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    input_1_v=cell2mat(raw); 
     
    vv =input_1_v(1,:); 
%     th_r=vv(6); 
    v=vv(~isnan(vv)); 
    for n=1:nmax 
        [x,fval] = fminsearch(@(x) fitness_sg_daily_f7(x,pp,th_r),v,options); 
        format short e 
        v=x; 
        str = 139print(‘function 7    iteration -> %d/%d    6 variables    
%d/%d/%d  ->  %d/%d/%d\n’,n,nmax,dammy_dmy_1(1,:),dammy_dmy_1(end,:)); 
        disp(str); 
        str = 139print(‘    v-> %4.5f \n’,v); 
        disp(str); 
     end 
     [yy CSD] = fitness_sg_daily_f7(x,pp,th_r); 
     CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
     iii=1; 
     for ii=1:size(dammy_dmy_1,1) 
         Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
         Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
         if ~isempty(Id_2) && ~isempty(Id_3) 
             CSDm(ii,:)=CSD(iii,:); 
             iii=iii+1; 
         end 
     end 
                     
     vm=ones(size(dammy_dmy_1,1),8)*NaN; 
     iii=1; 
     for jj=find(~isnan(vv)) 
         vm(:,jj)=x(iii); 
         iii=iii+1; 
     end 
     vm(:,8)=fval; 
     xlswrite(filename_f7,CSDm,[‘window’,num2str(rd)],’L2’); 
     xlswrite(filename_f7,vm,[‘window’,num2str(rd)],’AC2’); 
     
      
     rd=rd+1; 
end 
  
  
%------------f8------------------ 
[input_11 txt_11 raw11] = xlsread(filename, ‘Sheet1’,’A1:AJ462’); 
[input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
[input_2 txt_2] = xlsread(‘historical-volatility_IBM.xls’, 
‘Sheet1’,’A2:D688’); 
[input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
  
  
  
dmy_1=zeros(size(txt_1,1),3); 
for i=1:size(txt_1,1) 
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    dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
    dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
    dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
end 
     
dmy_2=zeros(size(txt_2,1),3); 
for i=1:size(txt_2,1) 
    dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
    dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
    dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
end 
  
dmy_3=zeros(size(txt_3,1),3); 
for i=1:size(txt_3,1) 
    dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
    dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
    dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
end 
  
rd=0; 
  
while (size(dmy_1,1)-(step*rd)) > (windows-step) 
    if (size(dmy_1,1)-(step*rd))>=windows 
        ship=windows; 
    else 
        ship=(size(dmy_1,1)-(step*rd)); 
    end 
    pp=[]; 
    dammy_dmy_1=dmy_1(step*rd+1:step*rd+ship,:); 
    xlswrite(filename_f9,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
    xlswrite(filename_f10,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
     xlswrite(filename_f10_bm,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
            
    for ii=1:size(dammy_dmy_1,1) 
        Id_1=find(dmy_1(:,1)==dammy_dmy_1(ii,1)& 
dmy_1(:,2)==dammy_dmy_1(ii,2)& dmy_1(:,3)==dammy_dmy_1(ii,3)); 
        Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
        Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
        if ~isempty(Id_2) && ~isempty(Id_3) 
            pp=[pp;[input_2(Id_2,[1 3]) input_1(Id_1,:) 
InterestRate(input_3(Id_3,:))]]; 
        end 
    end 
    options = optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-
6,’TolFun’,1e-6); 
     
    [input_1_v txt_1_v raw] = 
xlsread(filename_f8,[‘window’,num2str(rd)],’V2:AB462’); 
    input_1_v=cell2mat(raw); 
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    vv =input_1_v(1,:); 
%     th_r=vv(6); 
    v=vv(~isnan(vv)); 
    for n=1:nmax_bm 
        [x,fval] = fminsearch(@(x) fitness_sg_daily_f8(x,pp,th_r),v,options); 
        format short e 
        v=x; 
        str = 141print(‘function 8    iteration -> %d/%d    5 variables    
%d/%d/%d  ->  %d/%d/%d\n’,n,nmax_bm,dammy_dmy_1(1,:),dammy_dmy_1(end,:)); 
        disp(str); 
        str = 141print(‘    v-> %4.5f \n’,v); 
        disp(str); 
        if n==nmax 
            [yy CSD] = fitness_sg_daily_f8(x,pp,th_r); 
            CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
            iii=1; 
            for ii=1:size(dammy_dmy_1,1) 
                Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
                Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
                if ~isempty(Id_2) && ~isempty(Id_3) 
                    CSDm(ii,:)=CSD(iii,:); 
                    iii=iii+1; 
                end 
            end 
                     
            vm=ones(size(dammy_dmy_1,1),8)*NaN; 
            iii=1; 
            for jj=find(~isnan(vv)) 
                vm(:,jj)=x(iii); 
                iii=iii+1; 
            end 
            vm(:,8)=fval; 
            xlswrite(filename_f8,CSDm,[‘window’,num2str(rd)],’L2’); 
            xlswrite(filename_f8,vm,[‘window’,num2str(rd)],’AC2’); 
            dataoutput_v_f9=vm(:,1:end-1); 
            dataoutput_v_f9(:,2)=0; 
            xlswrite(filename_f9,dataoutput_v_f9,[‘window’,num2str(rd)], 
‘V2’); 
            dataoutput_v_f10=vm(:,1:end-1); 
            dataoutput_v_f10(:,7)=0; 
            xlswrite(filename_f10,dataoutput_v_f10,[‘window’,num2str(rd)], 
‘V2’); 
            xlswrite(filename_f10_bm,dataoutput_v_f10,[‘window’,num2str(rd)], 
‘V2’); 
        end 
     end 
     [yy CSD] = fitness_sg_daily_f8(x,pp,th_r); 
     CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
     iii=1; 
     for ii=1:size(dammy_dmy_1,1) 
         Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
         Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
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         if ~isempty(Id_2) && ~isempty(Id_3) 
             CSDm(ii,:)=CSD(iii,:); 
             iii=iii+1; 
         end 
     end 
                     
     vm=ones(size(dammy_dmy_1,1),8)*NaN; 
     iii=1; 
     for jj=find(~isnan(vv)) 
         vm(:,jj)=x(iii); 
         iii=iii+1; 
     end 
     vm(:,8)=fval; 
     xlswrite(filename_f8_bm,CSDm,[‘window’,num2str(rd)],’L2’); 
     xlswrite(filename_f8_bm,vm,[‘window’,num2str(rd)],’AC2’); 
          
     rd=rd+1; 
end 
  
  
%------------f9------------------ 
[input_11 txt_11 raw11] = xlsread(filename, ‘Sheet1’,’A1:AJ462’); 
[input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
[input_2 txt_2] = xlsread(‘historical-volatility_IBM.xls’, 
‘Sheet1’,’A2:D688’); 
[input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
  
  
  
dmy_1=zeros(size(txt_1,1),3); 
for i=1:size(txt_1,1) 
    dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
    dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
    dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
end 
     
dmy_2=zeros(size(txt_2,1),3); 
for i=1:size(txt_2,1) 
    dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
    dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
    dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
end 
  
dmy_3=zeros(size(txt_3,1),3); 
for i=1:size(txt_3,1) 
    dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
    dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
    dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
end 
  
rd=0; 
  
while (size(dmy_1,1)-(step*rd)) > (windows-step) 
    if (size(dmy_1,1)-(step*rd))>=windows 
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        ship=windows; 
    else 
        ship=(size(dmy_1,1)-(step*rd)); 
    end 
    pp=[]; 
    dammy_dmy_1=dmy_1(step*rd+1:step*rd+ship,:); 
             
    for ii=1:size(dammy_dmy_1,1) 
        Id_1=find(dmy_1(:,1)==dammy_dmy_1(ii,1)& 
dmy_1(:,2)==dammy_dmy_1(ii,2)& dmy_1(:,3)==dammy_dmy_1(ii,3)); 
        Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
        Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
        if ~isempty(Id_2) && ~isempty(Id_3) 
            pp=[pp;[input_2(Id_2,[1 3]) input_1(Id_1,:) 
InterestRate(input_3(Id_3,:))]]; 
        end 
    end 
    options = optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-
6,’TolFun’,1e-6); 
     
    [input_1_v txt_1_v raw] = 
xlsread(filename_f9,[‘window’,num2str(rd)],’V2:AB462’); 
    input_1_v=cell2mat(raw); 
     
    vv =input_1_v(1,:); 
%     th_r=vv(6); 
    v=vv(~isnan(vv)); 
    for n=1:nmax 
        [x,fval] = fminsearch(@(x) fitness_sg_daily_f9(x,pp,th_r),v,options); 
        format short e 
        v=x; 
        str = 143print(‘function 9    iteration -> %d/%d    6 variables    
%d/%d/%d  ->  %d/%d/%d\n’,n,nmax,dammy_dmy_1(1,:),dammy_dmy_1(end,:)); 
        disp(str); 
        str = 143print(‘    v-> %4.5f \n’,v); 
        disp(str); 
     end 
     [yy CSD] = fitness_sg_daily_f9(x,pp,th_r); 
     CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
     iii=1; 
     for ii=1:size(dammy_dmy_1,1) 
         Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
         Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
         if ~isempty(Id_2) && ~isempty(Id_3) 
             CSDm(ii,:)=CSD(iii,:); 
             iii=iii+1; 
         end 
     end 
                     
     vm=ones(size(dammy_dmy_1,1),8)*NaN; 
     iii=1; 
     for jj=find(~isnan(vv)) 
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         vm(:,jj)=x(iii); 
         iii=iii+1; 
     end 
     vm(:,8)=fval; 
     xlswrite(filename_f9,CSDm,[‘window’,num2str(rd)],’L2’); 
     xlswrite(filename_f9,vm,[‘window’,num2str(rd)],’AC2’); 
           
     rd=rd+1; 
end 
  
  
% ------------f10------------------ 
[input_11 txt_11 raw11] = xlsread(filename, ‘Sheet1’,’A1:AJ462’); 
[input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
[input_2 txt_2] = xlsread(‘historical-volatility_IBM.xls’, 
‘Sheet1’,’A2:D688’); 
[input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
  
  
  
dmy_1=zeros(size(txt_1,1),3); 
for i=1:size(txt_1,1) 
    dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
    dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
    dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
end 
     
dmy_2=zeros(size(txt_2,1),3); 
for i=1:size(txt_2,1) 
    dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
    dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
    dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
end 
  
dmy_3=zeros(size(txt_3,1),3); 
for i=1:size(txt_3,1) 
    dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
    dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
    dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
end 
  
rd=0; 
  
while (size(dmy_1,1)-(step*rd)) > (windows-step) 
    if (size(dmy_1,1)-(step*rd))>=windows 
        ship=windows; 
    else 
        ship=(size(dmy_1,1)-(step*rd)); 
    end 
    pp=[]; 
    dammy_dmy_1=dmy_1(step*rd+1:step*rd+ship,:); 
    xlswrite(filename_f11,raw11([1 
(step*rd+1:step*rd+ship)+1],:),[‘window’,num2str(rd)],’A1’); 
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    for ii=1:size(dammy_dmy_1,1) 
        Id_1=find(dmy_1(:,1)==dammy_dmy_1(ii,1)& 
dmy_1(:,2)==dammy_dmy_1(ii,2)& dmy_1(:,3)==dammy_dmy_1(ii,3)); 
        Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
        Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
        if ~isempty(Id_2) && ~isempty(Id_3) 
            pp=[pp;[input_2(Id_2,[1 3]) input_1(Id_1,:) 
InterestRate(input_3(Id_3,:))]]; 
        end 
    end 
    options = optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-
6,’TolFun’,1e-6); 
     
    [input_1_v txt_1_v raw] = 
xlsread(filename_f10,[‘window’,num2str(rd)],’V2:AB462’); 
    input_1_v=cell2mat(raw); 
     
    vv =input_1_v(1,:); 
%     th_r=vv(6); 
    v=vv(~isnan(vv)); 
    for n=1:nmax_bm 
        [x,fval] = fminsearch(@(x) 
fitness_sg_daily_f10(x,pp,th_r),v,options); 
        format short e 
        v=x; 
        str = 145print(‘function 10    iteration -> %d/%d    6 variables    
%d/%d/%d  ->  %d/%d/%d\n’,n,nmax_bm,dammy_dmy_1(1,:),dammy_dmy_1(end,:)); 
        disp(str); 
        str = 145print(‘    v-> %4.5f \n’,v); 
        disp(str); 
        if n==nmax 
            [yy CSD] = fitness_sg_daily_f10(x,pp,th_r); 
            CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
            iii=1; 
            for ii=1:size(dammy_dmy_1,1) 
                Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
                Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
                if ~isempty(Id_2) && ~isempty(Id_3) 
                    CSDm(ii,:)=CSD(iii,:); 
                    iii=iii+1; 
                end 
            end 
                     
            vm=ones(size(dammy_dmy_1,1),8)*NaN; 
            iii=1; 
            for jj=find(~isnan(vv)) 
                vm(:,jj)=x(iii); 
                iii=iii+1; 
            end 
            vm(:,8)=fval; 
            xlswrite(filename_f10,CSDm,[‘window’,num2str(rd)],’L2’); 
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            xlswrite(filename_f10,vm,[‘window’,num2str(rd)],’AC2’); 
            dataoutput_v_f11=vm(:,1:end-1); 
            dataoutput_v_f11(:,2)=0; 
            xlswrite(filename_f11,dataoutput_v_f11,[‘window’,num2str(rd)], 
‘V2’); 
        end 
     end 
     [yy CSD] = fitness_sg_daily_f10(x,pp,th_r); 
     CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
     iii=1; 
     for ii=1:size(dammy_dmy_1,1) 
         Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
         Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
         if ~isempty(Id_2) && ~isempty(Id_3) 
             CSDm(ii,:)=CSD(iii,:); 
             iii=iii+1; 
         end 
     end 
                     
     vm=ones(size(dammy_dmy_1,1),8)*NaN; 
     iii=1; 
     for jj=find(~isnan(vv)) 
         vm(:,jj)=x(iii); 
         iii=iii+1; 
     end 
     vm(:,8)=fval; 
     xlswrite(filename_f10_bm,CSDm,[‘window’,num2str(rd)],’L2’); 
     xlswrite(filename_f10_bm,vm,[‘window’,num2str(rd)],’AC2’); 
               
     rd=rd+1; 
end 
  
  
% ------------f11------------------ 
[input_11 txt_11 raw11] = xlsread(filename, ‘Sheet1’,’A1:AJ462’); 
[input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
[input_2 txt_2] = xlsread(‘historical-volatility_IBM.xls’, 
‘Sheet1’,’A2:D688’); 
[input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
  
  
  
dmy_1=zeros(size(txt_1,1),3); 
for i=1:size(txt_1,1) 
    dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
    dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
    dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
end 
     
dmy_2=zeros(size(txt_2,1),3); 
for i=1:size(txt_2,1) 
    dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
    dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
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    dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
end 
  
dmy_3=zeros(size(txt_3,1),3); 
for i=1:size(txt_3,1) 
    dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
    dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
    dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
end 
  
rd=0; 
  
  
while (size(dmy_1,1)-(step*rd)) > (windows-step) 
    if (size(dmy_1,1)-(step*rd))>=windows 
        ship=windows; 
    else 
        ship=(size(dmy_1,1)-(step*rd)); 
    end 
    pp=[]; 
    dammy_dmy_1=dmy_1(step*rd+1:step*rd+ship,:); 
     
         
    for ii=1:size(dammy_dmy_1,1) 
        Id_1=find(dmy_1(:,1)==dammy_dmy_1(ii,1)& 
dmy_1(:,2)==dammy_dmy_1(ii,2)& dmy_1(:,3)==dammy_dmy_1(ii,3)); 
        Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
        Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
        if ~isempty(Id_2) && ~isempty(Id_3) 
            pp=[pp;[input_2(Id_2,[1 3]) input_1(Id_1,:) 
InterestRate(input_3(Id_3,:))]]; 
        end 
    end 
    options = optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-
6,’TolFun’,1e-6); 
     
    [input_1_v txt_1_v raw] = 
xlsread(filename_f11,[‘window’,num2str(rd)],’V2:AB462’); 
    input_1_v=cell2mat(raw); 
     
    vv =input_1_v(1,:); 
%     th_r=vv(6); 
    v=vv(~isnan(vv)); 
    for n=1:nmax 
        [x,fval] = fminsearch(@(x) 
fitness_sg_daily_f11(x,pp,th_r),v,options); 
        format short e 
        v=x; 
        str = 147print(‘function 11    iteration -> %d/%d    7 variables    
%d/%d/%d  ->  %d/%d/%d\n’,n,nmax,dammy_dmy_1(1,:),dammy_dmy_1(end,:)); 
        disp(str); 
        str = 147print(‘    v-> %4.5f \n’,v); 
        disp(str); 
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     end 
     [yy CSD] = fitness_sg_daily_f11(x,pp,th_r); 
     CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
     iii=1; 
     for ii=1:size(dammy_dmy_1,1) 
         Id_2=find(dmy_2(:,1)==dammy_dmy_1(ii,1)& 
dmy_2(:,2)==dammy_dmy_1(ii,2)& dmy_2(:,3)==dammy_dmy_1(ii,3)); 
         Id_3=find(dmy_3(:,1)==dammy_dmy_1(ii,1)& 
dmy_3(:,2)==dammy_dmy_1(ii,2)& dmy_3(:,3)==dammy_dmy_1(ii,3)); 
         if ~isempty(Id_2) && ~isempty(Id_3) 
             CSDm(ii,:)=CSD(iii,:); 
             iii=iii+1; 
         end 
     end 
                     
     vm=ones(size(dammy_dmy_1,1),8)*NaN; 
     iii=1; 
     for jj=find(~isnan(vv)) 
         vm(:,jj)=x(iii); 
         iii=iii+1; 
     end 
     vm(:,8)=fval; 
     xlswrite(filename_f11,CSDm,[‘window’,num2str(rd)],’L2’); 
     xlswrite(filename_f11,vm,[‘window’,num2str(rd)],’AC2’); 
      
     rd=rd+1; 
end 
  
toc 
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Filename: fitness_sg_daily_f1.m 
 
function [yy CSDm] = fitness_sg_daily_f1(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
const_0 = xx(1); 
a_0 = xx(2); 
  
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0; 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Dprob(i,j)=1-exp(-h*HR(i,j)); 
    end 
end 
Dprob=[zeros(1,120);Dprob]; 
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%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0; 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
  
yy=sum((CSD*10000-ASD*10000).^2); 
CSD=CSD*10000; 
  
if  ~(q(end,end)>0 && q(end,end)<1)   
     yy=NaN; 
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end 
  
  
bo=0.2; 
th_r=normcdf(th_r); 
if ~(Recov(1,1)>(th_r-bo*abs(th_r)) && Recov(1,1)<(th_r+bo*abs(th_r)))       
    yy=NaN; 
end 
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Filename: fitness_sg_daily_f2.m 
 

function [yy CSDm] = fitness_sg_daily_f2(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
const_0 = xx(1); 
const_1 = xx(2); 
a_0 = xx(3); 
  
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0+const_1*j; 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
for j=1:120 
    for i=1:j 
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        Dprob(i,j)=1-exp(-h*HR(i,j)); 
    end 
end 
Dprob=[zeros(1,120);Dprob]; 
  
%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0; 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
  
yy=sum((CSD*10000-ASD*10000).^2); 
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CSD=CSD*10000; 
  
if  ~(q(end,end)>0 && q(end,end)<1)   
     yy=NaN; 
end 
  
  
bo=0.2; 
th_r=normcdf(th_r); 
if ~(Recov(1,1)>(th_r-bo*abs(th_r)) && Recov(1,1)<(th_r+bo*abs(th_r)))       
    yy=NaN; 
end 
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Filename: fitness_sg_daily_f3.m 
 
function [yy CSDm] = fitness_sg_daily_f3(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
b_0 = xx(1); 
const_0 = xx(2); 
const_2 = xx(3); 
a_0 = xx(4); 
  
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0+(const_2)/(SPT(i,j)^(b_0)); 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
for j=1:120 
    for i=1:j 
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        Dprob(i,j)=1-exp(-h*HR(i,j)); 
    end 
end 
Dprob=[zeros(1,120);Dprob]; 
  
%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0; 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
  
yy=sum((CSD*10000-ASD*10000).^2); 
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CSD=CSD*10000; 
if  ~(q(end,end)>0 && q(end,end)<1)   
     yy=NaN; 
end 
  
  
  
bo=0.2; 
th_r=normcdf(th_r); 
if ~(Recov(1,1)>(th_r-bo*abs(th_r)) && Recov(1,1)<(th_r+bo*abs(th_r)))       
    yy=NaN; 
end 
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Filename: fitness_sg_daily_f4.m 
 
function [yy CSDm] = fitness_sg_daily_f4(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
b_0 = xx(1); 
b_1 = xx(2); 
const_0 = xx(3); 
const_2 = xx(4); 
a_0 = xx(5); 
  
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0+(const_2)/(SPT(i,j)^(b_0+b_1*j)); 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Dprob(i,j)=1-exp(-h*HR(i,j)); 
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    end 
end 
Dprob=[zeros(1,120);Dprob]; 
  
%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0; 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
  
yy=sum((CSD*10000-ASD*10000).^2); 
CSD=CSD*10000; 
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if  ~(q(end,end)>0 && q(end,end)<1) 
     yy=NaN; 
end 
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Filename: fitness_sg_daily_f5.m 
 
function [yy CSDm] = fitness_sg_daily_f5(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
  
const_0 = xx(1); 
const_1 = xx(2); 
a_0 = xx(3); 
a_1 = xx(4); 
  
  
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0+const_1*j; 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
for j=1:120 
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    for i=1:j 
        Dprob(i,j)=1-exp(-h*HR(i,j)); 
    end 
end 
Dprob=[zeros(1,120);Dprob]; 
  
%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0+a_1*Dprob(i+1,j); 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
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yy=sum((CSD*10000-ASD*10000).^2); 
CSD=CSD*10000; 
 
  
if  ~(q(end,end)>0 && q(end,end)<1)   
     yy=NaN; 
end 
  
  
bo=0.2; 
th_r=normcdf(th_r); 
if ~(Recov(1,1)>(th_r-bo*abs(th_r)) && Recov(1,1)<(th_r+bo*abs(th_r)))       
    yy=NaN; 
end 
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Filename: fitness_sg_daily_f6.m 
 
 
function [yy CSDm] = fitness_sg_daily_f6(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
b_0=xx(1); 
const_0 = xx(2); 
const_2 = xx(3); 
a_0 = xx(4); 
a_1 = xx(5); 
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0+(const_2)/(SPT(i,j)^(b_0)); 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Dprob(i,j)=1-exp(-h*HR(i,j)); 
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    end 
end 
Dprob=[zeros(1,120);Dprob]; 
  
%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0+a_1*Dprob(i+1,j); 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
  
yy=sum((CSD*10000-ASD*10000).^2); 
CSD=CSD*10000; 
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if  ~(q(end,end)>0 && q(end,end)<1)   
     yy=NaN; 
end 
  
  
  
bo=0.2; 
th_r=normcdf(th_r); 
if ~(Recov(1,1)>(th_r-bo*abs(th_r)) && Recov(1,1)<(th_r+bo*abs(th_r)))       
    yy=NaN; 
end 
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Filename: fitness_sg_daily_f7.m 
 
function [yy CSDm] = fitness_sg_daily_f7(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
b_0 = xx(1); 
b_1 = xx(2); 
const_0 = xx(3); 
const_2 = xx(4); 
a_0 = xx(5); 
a_1 = xx(6); 
  
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0+(const_2)/(SPT(i,j)^(b_0+b_1*j)); 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
for j=1:120 
    for i=1:j 
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        Dprob(i,j)=1-exp(-h*HR(i,j)); 
    end 
end 
Dprob=[zeros(1,120);Dprob]; 
  
%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0+a_1*Dprob(i+1,j); 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
  
yy=sum((CSD*10000-ASD*10000).^2); 



169 
 

 
 

CSD=CSD*10000; 
  
if  ~(q(end,end)>0 && q(end,end)<1)   
    yy=NaN; 
end 
  
  
  
bo=0.2; 
th_r=normcdf(th_r); 
if ~(Recov(1,1)>(th_r-bo*abs(th_r)) && Recov(1,1)<(th_r+bo*abs(th_r)))       
    yy=NaN; 
end 
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Filename: fitness_sg_daily_f8.m 
 
function [yy CSDm] = fitness_sg_daily_f8(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
b_0 = xx(1); 
const_0 = xx(2); 
const_1 = xx(3); 
const_2 = xx(4); 
a_0 = xx(5); 
  
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0+const_1*j+(const_2)/(SPT(i,j)^(b_0)); 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Dprob(i,j)=1-exp(-h*HR(i,j)); 
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    end 
end 
Dprob=[zeros(1,120);Dprob]; 
  
%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0; 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
  
yy=sum((CSD*10000-ASD*10000).^2); 
CSD=CSD*10000; 
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if  ~(q(end,end)>0 && q(end,end)<1)   
     yy=NaN; 
end 
  
  
bo=0.2; 
th_r=normcdf(th_r); 
if ~(Recov(1,1)>(th_r-bo*abs(th_r)) && Recov(1,1)<(th_r+bo*abs(th_r)))       
    yy=NaN; 
end 
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Filename: fitness_sg_daily_f9.m 
 
function [yy CSDm] = fitness_sg_daily_f9(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
b_0 = xx(1); 
b_1 = xx(2); 
const_0 = xx(3); 
const_1 = xx(4); 
const_2 = xx(5); 
a_0 = xx(6); 
  
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0+const_1*j+(const_2)/(SPT(i,j)^(b_0+b_1*j)); 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
for j=1:120 
    for i=1:j 
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        Dprob(i,j)=1-exp(-h*HR(i,j)); 
    end 
end 
Dprob=[zeros(1,120);Dprob]; 
  
%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0; 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
  
yy=sum((CSD*10000-ASD*10000).^2); 
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CSD=CSD*10000; 
 
if  ~(q(end,end)>0 && q(end,end)<1)   
    yy=NaN; 
end 
  
bo=0.2; 
th_r=normcdf(th_r); 
if ~(Recov(1,1)>(th_r-bo*abs(th_r)) && Recov(1,1)<(th_r+bo*abs(th_r)))       
    yy=NaN; 
end 
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Filename: fitness_sg_daily_f10.m 
 
function [yy CSDm] = fitness_sg_daily_f10(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
b_0 = xx(1); 
const_0 = xx(2); 
const_1 = xx(3); 
const_2 = xx(4); 
a_0 = xx(5); 
a_1 = xx(6); 
  
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0+const_1*j+(const_2)/(SPT(i,j)^(b_0)); 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
for j=1:120 
    for i=1:j 
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        Dprob(i,j)=1-exp(-h*HR(i,j)); 
    end 
end 
Dprob=[zeros(1,120);Dprob]; 
  
%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0+a_1*Dprob(i+1,j); 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
  
yy=sum((CSD*10000-ASD*10000).^2); 
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CSD=CSD*10000; 
if  ~(q(end,end)>0 && q(end,end)<1)   
     yy=NaN; 
end 
  
  
bo=0.2; 
th_r=normcdf(th_r); 
if ~(Recov(1,1)>(th_r-bo*abs(th_r)) && Recov(1,1)<(th_r+bo*abs(th_r)))       
    yy=NaN; 
end 
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Filename: fitness_sg_daily_f11.m 
 
function [yy CSDm] = fitness_sg_daily_f11(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
b_0 = xx(1); 
b_1 = xx(2); 
const_0 = xx(3); 
const_1 = xx(4); 
const_2 = xx(5); 
a_0 = xx(6); 
a_1 = xx(7); 
  
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0+const_1*j+(const_2)/(SPT(i,j)^(b_0+b_1*j)); 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
for j=1:120 
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    for i=1:j 
        Dprob(i,j)=1-exp(-h*HR(i,j)); 
    end 
end 
Dprob=[zeros(1,120);Dprob]; 
  
%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0+a_1*Dprob(i+1,j); 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
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yy=sum((CSD*10000-ASD*10000).^2); 
CSD=CSD*10000; 
  
  
if a_1>0 
    yy=NaN; 
end 
  
if  b_0<0    
    yy=NaN; 
end 
  
if  b_1<0    
    yy=NaN; 
end 
  
if  const_0<0    
    yy=NaN; 
end 
  
if  const_2<0    
    yy=NaN; 
end 
  
if  ~(q(end,end)>0 && q(end,end)<1)   
     yy=NaN; 
end 
  
bo=0.2; 
th_r=normcdf(th_r); 
if ~(Recov(1,1)>(th_r-bo*abs(th_r)) && Recov(1,1)<(th_r+bo*abs(th_r)))       
    yy=NaN; 
end 
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APPENDIX B 
 
MATLAB source codes for comparing market CDS spreads with the CDS spreads calculated 
from our model. 
 
File name: main.m 
 
clc 
close all 
clear all 
tic 
  
name{1}=’MMM’;name{2}=’AA’;name{3}=’AXP’;name{4}=’T’;name{5}=’BAC’; 
name{6}=’BA’;name{7}=’CAT’;name{8}=’CVX’;name{9}=’CSCO’;name{10}=’KO’; 
name{11}=’DD’;name{12}=’XOM’;name{13}=’GE’;name{14}=’HPQ’;name{15}=’HD’; 
name{16}=’INTC’;name{17}=’IBM’;name{18}=’JNJ’;name{19}=’JPM’;name{20}=’KFT’; 
name{21}=’MCD’;name{22}=’MRK’;name{23}=’MSFT’;name{24}=’PFE’;name{25}=’PG’; 
name{26}=’TRV’;name{27}=’UTX’;name{28}=’VZ’;name{29}=’WMT’;name{30}=’DIS’; 
  
a0=[39.5 27.4 36.3 23.2 36.3 35.4 35.4 44.5 29.5 26.7 39.5 44.5 39.5 29.5... 
    34.4 29.5 29.5 26.7 36.3 26.7 39.5 32.7 29.5 32.7 26.7 36.3 39.5 36.3 
34.4 43.5]; 
  
MaxFun_Evals=1000; 
nmax=10; 
  
for nn=1:size(name,2) 
    filename=name{nn}; 
    [input_1 txt_1 raw1] = xlsread(filename, ‘Sheet1’,’A2:K462’); 
    vvv=zeros(size(input_1,1),7); 
    vvv(:,6)=norminv(a0(nn)/100); 
    xlswrite(filename,vvv,’Sheet1’, ‘V2’); 
  
    [input_2 txt_2] = xlsread([‘historical-volatility_’,filename,’.xls’], 
‘Sheet1’,’A2:D688’); 
    [input_3 txt_3] = xlsread(‘Interest Rate.xls’, ‘Daily’,’A2:J502’); 
    [input_1_v txt_1_v raw] = xlsread(filename, ‘Sheet1’,’V2:AB462’); 
    input_1_v=cell2mat(raw); 
  
    [input_s2 txt_s2 raws2] = xlsread(filename, ‘Sheet1’,’A1:U462’); 
    xlswrite(filename,raws2,’Sheet2’, ‘A1’); 
  
  
    dmy_1=zeros(size(txt_1,1),3); 
    for i=1:size(txt_1,1) 
        dmy_1(i,1)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),7)); 
        dmy_1(i,2)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),5)); 
        dmy_1(i,3)= str2double(datestr(datenum(txt_1{i},’mm/dd/yy’),10)); 
    end 
     
    dmy_2=zeros(size(txt_2,1),3); 
    for i=1:size(txt_2,1) 
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        dmy_2(i,1)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),7)); 
        dmy_2(i,2)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),5)); 
        dmy_2(i,3)= str2double(datestr(datenum(txt_2{i},’mm/dd/yy’),10)); 
    end 
  
    dmy_3=zeros(size(txt_3,1),3); 
    for i=1:size(txt_3,1) 
        dmy_3(i,1)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),7)); 
        dmy_3(i,2)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),5)); 
        dmy_3(i,3)= str2double(datestr(datenum(txt_3{i},’mm/dd/yy’),10)); 
    end 
  
  
    min_year=min(dmy_1(1,3)); 
    max_year=max(dmy_1(end,3)); 
  
    dataoutput_v=[]; 
    dataoutput_CSD=[]; 
    data_my=[]; 
    for year_i=min_year:max_year 
        minmax_month = unique(dmy_1(dmy_1(:,3)==year_i,2), ‘first’)’; 
        data_my=[data_my;[minmax_month’ year_i*ones(size(minmax_month’))]]; 
        for month_i=minmax_month 
            pp=[]; 
            dammy_dmy_1=dmy_1((dmy_1(:,2)==month_i) & 
(dmy_1(:,3)==year_i),:); 
            dammy_dmy_2=dmy_2((dmy_2(:,2)==month_i) & 
(dmy_2(:,3)==year_i),:); 
            dammy_dmy_3=dmy_3((dmy_3(:,2)==month_i) & 
(dmy_3(:,3)==year_i),:); 
                     
            dammy_input_1=input_1((dmy_1(:,2)==month_i) & 
(dmy_1(:,3)==year_i),:); 
            dammy_input_2=input_2((dmy_2(:,2)==month_i) & 
(dmy_2(:,3)==year_i),:); 
            dammy_input_3=input_3((dmy_3(:,2)==month_i) & 
(dmy_3(:,3)==year_i),:); 
            dammy_input_1_v=input_1_v((dmy_1(:,2)==month_i) & 
(dmy_1(:,3)==year_i),:); 
                     
                               
            for ii=1:size(dammy_dmy_1,1) 
                Id_2=find(dammy_dmy_2(:,1)==dammy_dmy_1(ii,1)); 
                Id_3=find(dammy_dmy_3(:,1)==dammy_dmy_1(ii,1)); 
                if ~isempty(Id_2) && ~isempty(Id_3) 
                    pp=[pp;[dammy_input_2(Id_2,[1 3]) dammy_input_1(ii,:) 
InterestRate(dammy_input_3(Id_3,:))]]; 
                end 
            end 
            options = 
optimset(‘Display’,’iter’,’MaxFunEvals’,MaxFun_Evals,’TolX’,1e-6,’TolFun’,1e-
6); 
           
            vv =dammy_input_1_v(1,:); 
            th_r=vv(6); 
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            v=vv(~isnan(vv)); 
            for n=1:nmax 
                [x,fval] = fminsearch(@(x) 
fitness_sg_daily_f11(x,pp,th_r),v,options); 
                v=x; 
                format short e 
                str = 184print(‘  %s    iteration -> %d/%d    7 variables    
%d/%d months  %d/%d 
years\n’,filename,n,nmax,month_i,minmax_month(end),year_i,max_year); 
                disp(str); 
                str = 184print(‘    v-> %4.5f \n’,v); 
                disp(str); 
            end 
           
            [yy CSD] = fitness_sg_daily_f11(x,pp,th_r); 
            CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
            iii=1; 
            for ii=1:size(dammy_dmy_1,1) 
                Id_2=find(dammy_dmy_2(:,1)==dammy_dmy_1(ii,1)); 
                Id_3=find(dammy_dmy_3(:,1)==dammy_dmy_1(ii,1)); 
                if ~isempty(Id_2) && ~isempty(Id_3) 
                    CSDm(ii,:)=CSD(iii,:); 
                    iii=iii+1; 
                end 
            end 
            dataoutput_CSD=[dataoutput_CSD;CSDm]; 
           
            vm=ones(size(dammy_dmy_1,1),8)*NaN; 
            iii=1; 
            for ii=find(~isnan(vv)) 
                vm(:,ii)=x(iii); 
                iii=iii+1; 
            end 
            vm(:,8)=fval; 
            dataoutput_v=[dataoutput_v;vm]; 
        end 
    end 
  
    xlswrite(filename,dataoutput_CSD,’Sheet1’, ‘L2’); 
    xlswrite(filename,dataoutput_v,’Sheet1’, ‘AC2’); 
  
    [input_1_v txt_1_v raw] = xlsread(filename, ‘Sheet1’,’AC2:AI462’); 
    input_1_v=cell2mat(raw); 
  
    dataoutput_CSD=ones(size(dmy_1((dmy_1(:,2)==data_my(1,1)) & 
(dmy_1(:,3)==data_my(1,2)),:),1),11)*NaN; 
  
    for my=2:size(data_my,1)     
         pp=[]; 
         dammy_dmy_1=dmy_1((dmy_1(:,2)==data_my(my,1)) & 
(dmy_1(:,3)==data_my(my,2)),:); 
         dammy_dmy_2=dmy_2((dmy_2(:,2)==data_my(my,1)) & 
(dmy_2(:,3)==data_my(my,2)),:); 
         dammy_dmy_3=dmy_3((dmy_3(:,2)==data_my(my,1)) & 
(dmy_3(:,3)==data_my(my,2)),:); 
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         dammy_input_1=input_1((dmy_1(:,2)==data_my(my,1)) & 
(dmy_1(:,3)==data_my(my,2)),:); 
         dammy_input_2=input_2((dmy_2(:,2)==data_my(my,1)) & 
(dmy_2(:,3)==data_my(my,2)),:); 
         dammy_input_3=input_3((dmy_3(:,2)==data_my(my,1)) & 
(dmy_3(:,3)==data_my(my,2)),:); 
         dammy_input_1_v=input_1_v((dmy_1(:,2)==data_my(my-1,1)) & 
(dmy_1(:,3)==data_my(my-1,2)),:); 
                     
         for ii=1:size(dammy_dmy_1,1) 
             Id_2=find(dammy_dmy_2(:,1)==dammy_dmy_1(ii,1)); 
             Id_3=find(dammy_dmy_3(:,1)==dammy_dmy_1(ii,1)); 
             if ~isempty(Id_2) && ~isempty(Id_3) 
                 pp=[pp;[dammy_input_2(Id_2,[1 3]) dammy_input_1(ii,:) 
InterestRate(dammy_input_3(Id_3,:))]]; 
             end 
          end 
           
          vv =dammy_input_1_v(1,:); 
          th_r=vv(6); 
          v=vv(~isnan(vv)); 
         [yy CSD] = fitness_sg_daily_f11(v,pp,th_r); 
         CSDm=ones(size(dammy_dmy_1,1),10)*NaN; 
         iii=1; 
         for ii=1:size(dammy_dmy_1,1) 
             Id_2=find(dammy_dmy_2(:,1)==dammy_dmy_1(ii,1)); 
             Id_3=find(dammy_dmy_3(:,1)==dammy_dmy_1(ii,1)); 
             if ~isempty(Id_2) && ~isempty(Id_3) 
                 CSDm(ii,:)=CSD(iii,:); 
                 iii=iii+1; 
             end 
         end 
         dataoutput_CSD=[dataoutput_CSD;[CSDm ones(size(CSDm,1),1)*yy]]; 
           
    end 
    xlswrite(filename,dataoutput_CSD,’Sheet2’, ‘L2’); 
end 
  
toc 
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File name: fitness_sg_daily_f11.m 
 

function [yy CSDm] = fitness_sg_daily_f11(xx,pp,th_r) 
yy=0; 
CSDm=[]; 
for i=1:size(pp,1) 
     p=pp(i,:); 
     [yy_d,CSD] = fitness_sg_p_nf(xx,p,th_r); 
     yy =yy+ yy_d; 
     CSDm=[CSDm;CSD’]; 
end 
  
  
function [yy,CSD] = fitness_sg_p_nf(xx,p,th_r) 
  
So = p(1); 
vol = p(2)*100; 
h = 0.083333; 
u = exp(vol*sqrt(h)/100); 
d = 1/u; 
  
b_0 = xx(1); 
b_1 = xx(2); 
const_0 = xx(3); 
const_1 = xx(4); 
const_2 = xx(5); 
a_0 = xx(6); 
a_1 = xx(7); 
  
%%%Interest Rate Term Structure 
IRTS=p(13:end); 
  
%%%Stock Price Tree 
SPT=zeros(120,120); 
SPT(1,1)=So; 
for j=2:120 
    SPT(1,j)=SPT(1,j-1)*u; 
    for i=2:j 
        SPT(i,j)=SPT(i-1,j-1)*d; 
    end 
end 
  
%%%Hazard Rate 
HR=zeros(120,120); 
for j=1:120 
    for i=1:j 
          HR(i,j)=const_0+const_1*j+(const_2)/(SPT(i,j)^(b_0+b_1*j)); 
  
    end 
end 
  
%%%Default Probability 
Dprob=zeros(120,120); 
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for j=1:120 
    for i=1:j 
        Dprob(i,j)=1-exp(-h*HR(i,j)); 
    end 
end 
Dprob=[zeros(1,120);Dprob]; 
  
%%%Recovery Rate 
Recov=zeros(120,120); 
for j=1:120 
    for i=1:j 
         Recov(i,j)=a_0+a_1*Dprob(i+1,j); 
    end 
end 
Recov=normcdf(Recov,zeros(size(Recov)),ones(size(Recov))); 
%%%q 
q=zeros(120,120); 
for j=1:120 
    for i=1:j 
        q(i,j)=(exp(IRTS(1,j)*h)/(1-Dprob(i+1,j))-d)/(u-d); 
    end 
end 
q=[zeros(1,120);q]; 
  
%%%State price 
Sprice=zeros(121,120); 
Sprice(2,1)=1; 
stotal=zeros(1,120); 
stotal(1,1)=sum(Sprice(:,1)); 
for j=2:120 
    for i=2:j+1 
        Sprice(i,j)=Sprice(i-1,j-1)*(1-Dprob(i-1,j-1))*(1-q(i-1,j-1))*exp(-
IRTS(1,j-1)*h)+Sprice(i,j-1)*(1-Dprob(i,j-1))*q(i,j-1)*exp(-IRTS(1,j-1)*h); 
    end 
    if mod(j-1,6)==0 
        stotal(1,j)=sum(Sprice(:,j)); 
    end 
end 
Sprice=[stotal;Sprice]; 
  
%%%Contingent Claim Payment 
Ccpayment=zeros(120,120); 
for j=1:120 
    for i=1:j 
        Ccpayment(i,j)= Sprice(i+2,j)*Dprob(i+1,j)*(1-Recov(i,j)); 
    end 
end 
M=[2 2 2 2 2 2 2 2 2 2]; 
% Calculated Spread 
CSD=zeros(10,1); 
for i=1:10 
    CSD(i)=sum(sum(Ccpayment(1:12*i,1:12*i)))/sum(stotal(1:12*i))*M(i); 
end 
  
ASD=p(3:12)’/10000; 
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yy=sum((CSD*10000-ASD*10000).^2); 
CSD=CSD*10000; 
  
if  ~(q(end,end)>0 && q(end,end)<1)   
    yy=NaN; 
end 
  
bo=0.02; 
th_r=normcdf(th_r); 
if ~(Recov(1,1)>(th_r-bo*abs(th_r)) && Recov(1,1)<(th_r+bo*abs(th_r)))       
    yy=NaN; 
end 
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APPENDIX C 
 
The sum of squared errors of each time window and of each reference entity for each model 
specification
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