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CHAPTER I

INTRODUCTION

A function f : [0,∞) → [0,∞) is said to be metric-preserving if for every

metric space (X, d), f ◦ d is a metric on X and it is said to be strongly metric-

preserving if for every metric space (X, d), f ◦ d is a metric on X that is

topologically equivalent to d.

These functions were first studied by Sreenivasan ([6]) in 1947 and after that, a

significant literature has developed on the subject of metric-preserving functions

by many mathematicians. In 1999, Paul Corazza ([3]) proved the relationship

between strongly metric-preserving functions and continuity and surveyed some

of the results on differentiability in the context of metric-preserving functions.

In our investigation, we study some other important properties of metric-

preserving functions and strongly metric-preserving functions.

The next chapter consists of basic definitions, examples, theorems and some

interesting properties that will be used in our investigation. In chapter III, we

consider some basic properties of metric-preserving functions and strongly metric-

preserving functions. In the final chapter, we give theorems concerning the com-

pleteness and totally boundedness of the metric d and the metric f ◦ d, and also

some other important properties of these functions.



CHAPTER II

PRELIMINARIES

In this chapter, we consider briefly fundamental definitions, examples, theorems

and some interesting properties that will be used in the proceeding chapters.

Definition 2.1. A metric space is a nonempty set X together with a function

d : X ×X → [0,∞) satisfying the following three conditions:

(M1) For all x, y ∈ X, d(x, y) = 0 if and only if x = y,

(M2) for all x, y ∈ X, d(x, y) = d(y, x), and

(M3) for all x, y, z ∈ X, d(x, y) + d(y, z) ≥ d(x, z).

A function d with the above properties is called a metric on X. We denote the

metric space X with the metric d on X by (X, d).

Example 2.2. The function de : Rn × Rn → [0,∞) defined by

de(x, y) = [
n∑

i=1

(xi − yi)
2]1/2

where x = (x1, x2, ..., xn), y = (y1, y2, ..., yn), is a metric on Rn called the Eu-

clidean metric.

For each n ∈ N, if the metric on Rn is the Euclidean metric de we will write

Rn instead of (Rn, de).

Example 2.3. For any nonempty set X, the metric d on X defined by

d(x, y) =





0 if x = y,

1 if x 6= y

is called the discrete metric on X.
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Definition 2.4. Let (X, d) be a metric space, x ∈ X and ε be a positive real

number. We call the set {y ∈ X|d(x, y) < ε} the open ball with center x and

radius ε and denote it by Bd(x, ε), that is

Bd(x, ε) = {y ∈ X|d(x, y) < ε}.

Definition 2.5. Let (X, d) be a metric space. A subset G of X is said to be

d-open or open in (X, d) if for any point x of G, there is a positive real number

ε such that Bd(x, ε) ⊆ G.

Definition 2.6. Two metrics d and d′ on a space X are said to be numerically

equivalent if there exist positive constants m, k such that for all (x, y) ∈ X ×X,

we have

md(x, y) ≤ d′(x, y) ≤ kd(x, y).

Definition 2.7. Let (X, d) and (Y, %) be metric spaces. A function g : (X, d) →
(Y, %) is said to be continuous if for every open set V in (Y, %), g−1(V ) is open

in (X, d).

Definition 2.8. Metric spaces (X, d) and (Y, %) are homeomorphic if there

exists a 1-1, onto, continuous function g : X → Y such that g−1 is continuous.

Such a function g is called a homeomorphism (from X to Y ).

Definition 2.9. Two metrics d and d′ on a space X are said to be topologically

equivalent if the identity mapping of (X, d) onto (X, d′) is a homeomorphism.

Note. 1. Two metrics d and d′ on a space X are topologically equivalent if and

only if the collections of all open sets of (X, d) , and of all open sets of (X, d′)

coincide.

2. If the collections of all open sets of (X, d) , and of all open sets of (X, d′)

coincide, then (X, d) and (X, d′) are homeomorphic.
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3. Two metrics d and d′ on a space X are topologically equivalent if for

each x ∈ X and for each ε > 0, there exists a δ > 0 such that for all y ∈ X,

d(x, y) < δ implies d′(x, y) < ε

and d′(x, y) < δ implies d(x, y) < ε.

4. Any metric d on X which is equivalent to the discrete metric is also

called a discrete metric on X.

Example 2.10. ([4], p.293) In R, the Euclidean metric de(x, y) = |x − y| is

topologically equivalent to the metric dϕ(x, y) = | x
1+|x| − y

1+|y| | since the latter is

derived from the homeomorphism x 7→ x/(1 + |x|) of R and (−1, 1).

Remark 2.11. Numerically equivalent metrics d and d′ are topologically equiv-

alent. The converse is not true, for example in R with d(x, y) = |x − y| and

d′(x, y) = min {1, d(x, y)}, are topologically equivalent but not numerically equiv-

alent.

Definition 2.12. A function f : [0,∞) → R is said to be subadditive if for all

x, y ≥ 0, f(x + y) ≤ f(x) + f(y).

Definition 2.13. A function f : [0,∞) → [0,∞) is said to be convex on [0, c] if

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y) for all α ∈ (0, 1) (2.1)

whenever 0 ≤ x < y ≤ c.

Moreover, f is strictly convex if (2.1) holds when ≤ is replaced by <.

Definition 2.14. A function f : [0,∞) → [0,∞) is said to be concave on [0,∞)

if −f is convex on [0, c] for all c > 0.

Definition 2.15. A metric space (X, d) is complete or we say that d is complete

if every Cauchy sequence in X converges (to some point in X).
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Definition 2.16. A metric space (X, d) is said to be totally bounded (or

precompact) if for each ε > 0, there exists a finite subset F of X say F =

{x1, x2, ..., xn} such that X =
n⋃

i=1

Bd(xi, ε). We sometime say that d is totally

bounded (on X), instead of saying that (X, d) is totally bounded.

Definition 2.17. A space X is compact if and only if every open cover of X has

a finite subcover. That is, for any collection G = {Gα | α ∈ A} of open subsets of

X such that
⋃
α∈A

Gα = X, there is a finite subset F of A such that
⋃
α∈F

Gα = X.

Example 2.18. R is not compact since the cover of R by the open sets (−n, n)

for n ∈ N, has no finite subcover.

Remark 2.19. R is complete but not compact.

Remark 2.20. Every compact space (X, d) is totally bounded. But the converse

is not true.

Theorem 2.21. ([4], p.298) A metric space (X, d) is compact if and only if it is

both complete and totally bounded.



CHAPTER III

METRIC-PRESERVING FUNCTIONS

In this chapter, we will consider some basic properties of metric-preserving func-

tions and strongly metric-preserving functions. Some of the results will play a key

role in the proof of our main theorems in the next chapter.

Definition 3.1. A function f : [0,∞) → [0,∞) is said to be metric-preserving

if for all metric spaces (X, d), f ◦ d is a metric on X.

Definition 3.2. A function f : [0,∞) → [0,∞) is said to be strongly metric-

preserving if for all metric spaces (X, d), f ◦ d is a metric on X that is topolog-

ically equivalent to d.

From now on, we denote by M the set of all metric-preserving functions and

by SM the set of all strongly metric-preserving functions.

Definition 3.3. Let f : [0,∞) → [0,∞). Then f is said to be amenable if for

any x ∈ [0,∞) we have f(x) = 0 if and only if x = 0.

The next proposition identifies a basic property of all metric-preserving func-

tions:

Proposition 3.4. ([3]) Every metric-preserving function is subadditive.

Proof. Let f be a metric-preserving function, a, b ∈ [0,∞) and d the Euclidean

metric on R. Then

f(a) + f(b) = (f ◦ d)(0, a) + (f ◦ d)(a, a + b) ≥ (f ◦ d)(0, a + b) = f(a + b).
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Corollary 3.5. ([3]) Given f : [0,∞) → [0,∞), suppose that f is strictly convex

on [0, c] for some c > 0 and f(0) = 0. Then f is not metric-preserving.

Proof. Let c be a positive number for which f is strictly convex on [0, c]. Then

f(c/2) < f(c)/2, and therefore f(c/2) + f(c/2) < f(c), which violates subaddi-

tivity.

Borśik and Doboš ([1]) extend the result in Corollary 3.5; we state their result

in Theorem 3.37. The proof makes use of the symmetry between subadditive and

convex amenable functions, which is developed in the following remark:

Remark 3.6. ([1], [3])

(i) Suppose f : [0,∞) → [0,∞) is subadditive. Then for all positive integers

n, f(nx) ≤ nf(x) and f(x/2n) ≥ f(x)/2n whenever x ≥ 0.

(ii) Suppose f is amenable and convex on [0, c]. Then for all positive integers

n, f(x/2n) ≤ f(x)/2n whenever 0 ≤ x ≤ c.

Proof. (i) We will show that for all n ∈ N, f(nx) ≤ nf(x), by induction.

Basic step. For n = 1, f(x) ≤ f(x) is true.

For n = 2, f(2x) = f(x + x) ≤ f(x) + f(x) = 2f(x).

Induction step. Let k ≥ 2. Assume that f(kx) ≤ kf(x).

Thus f((k + 1)x) = f(kx + x) ≤ f(kx) + f(x) ≤ kf(x) + f(x) = (k + 1)f(x).

Next, we will show that for all n ∈ N, f(x/2n) ≥ f(x)/2n.

Basic step. For n = 1, f(x) = f(x/2 + x/2) ≤ f(x/2) + f(x/2) = 2f(x/2).

So f(x/2) ≥ f(x)/2.

Induction step. Let k ∈ N. Assume that f(x/2k) ≥ f(x)/2k.

So f( x
2k+1 ) = f(1

2
· x

2k ) ≥ 1
2
f( x

2k ) ≥ 1
2

f(x)
2k = f(x)

2k+1 .

(ii) Suppose f is amenable and convex on [0, c].

We will show that for all n ∈ N, f(x/2n) ≤ f(x)/2n when 0 ≤ x ≤ c.
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Basic step. For n = 1, f(x
2
) = f(x+0

2
) ≤ f(x)+f(0)

2
= f(x)

2
.

Induction step. Let k ∈ N. Assume that f(x/2k) ≤ f(x)/2k.

So f( x
2k+1 ) = f( x

2k·2) ≤ f(x/2k)
2

≤ f(x)
2k·2 = f(x)

2k+1 .

While subadditivity is an important necessary condition for f to be metric-

preserving, the function

f(x) =





x if 0 ≤ x ≤ 1,

1
2

otherwise

shows that subadditivity is not sufficient for an amenable function to be metric-

preserving ([7]). However, adding “nondecreasing” to subadditivity does yield a

sufficient condition:

Proposition 3.7. ([3]) If f is amenable, subadditive, and nondecreasing, then f

is metric-preserving.

Proof. Let (X, d) be a metric space. We show that f ◦ d is a metric on X.

Properties (M1) and (M2) are easy to check. For (M3), let x, y, z ∈ X, and let

a = d(x, y), b = d(y, z), and c = d(x, z). It suffices to show that f(a)+f(b) ≥ f(c).

But

f(a) + f(b) ≥ f(a + b) (subadditive)

≥ f(c) (nondecreasing),

as required.

The next proposition shows that concave amenable functions must be subad-

ditive and nondecreasing, we can use Proposition 3.7 to conclude that they are

metric-preserving.
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Proposition 3.8. ([2]) If f : [0,∞) → [0,∞) is a concave amenable function,

then f is metric-preserving.

Proof. Since f is amenable, for any x ∈ [0,∞) we have f(x) = 0 if and only if

x = 0.

Since f is concave on [0,∞), for all α ∈ (0, 1) and for all a, b ∈ [0,∞) we have

f(αa + (1− α)b) ≥ αf(a) + (1− α)f(b). (3.1)

Let x, y ∈ [0,∞) be such that x < y.

From (3.1) when we choose 1−α = x
y
, a = 0 and b = y we have α = 1− x

y
= y−x

y
.

So f(x) ≥ x
y
· f(y). Thus yf(x)− xf(y) ≥ 0.

When we put α = x
y
, a = x and b = x + y we obtain 1− α = 1− x

y
= y−x

y
.

So

f(y) = f(
x2 + y2 − x2

y
) = f(

x2

y
+

(y − x)(x + y)

y
) ≥ x

y
f(x) + (

y − x

y
)f(x + y).

Thus yf(y)−xf(x)
y−x

≥ f(x + y).

But

yf(y)− xf(x)

y − x
=

yf(x) + yf(y)− xf(x)− xf(y)− yf(x) + xf(y)

y − x

=
(y − x)(f(x) + f(y))

y − x
− yf(x)− xf(y)

y − x

= f(x) + f(y)− yf(x)− xf(y)

y − x
.

Therefore f(x) + f(y) ≥ f(x) + f(y)− yf(x)−xf(y)
y−x

≥ f(x + y).

By the assumption when we put α = 1
2
, a = 0 and b = 2x we have f(x) ≥ f(2x)/2.

Thus f(x) + f(x) = 2f(x) ≥ f(2x) = f(x + x).

Therefore for all x, y ∈ [0,∞) we have f(x + y) ≤ f(x) + f(y), that is f is

subadditive.
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Now suppose that there are x, y ∈ [0,∞) such that x < y and f(x) > f(y).

Put z = yf(x)−xf(y)
f(x)−f(y)

. So z ≥ 0.

Put α = f(y)
f(x)

, a = x and b = z. Then 1− α = f(x)−f(y)
f(x)

. By (3.1) we have

f(
f(y)

f(x)
· x + (

f(x)− f(y)

f(x)
)(

yf(x)− xf(y)

f(x)− f(y)
)) ≥ f(y)

f(x)
· f(x) + (

f(x)− f(y)

f(x)
) · f(z).

So f(y) ≥ f(y) + (1 − f(y)
f(x)

) · f(z). Thus (1 − f(y)
f(x)

) · f(z) ≤ 0. Then f(z) ≤ 0,

which contradicts to the assumption. Therefore for all x, y ∈ [0,∞), x ≤ y implies

f(x) ≤ f(y), that is f is nondecreasing. By Proposition 3.7, f ∈M.

Example 3.9. ([3]) The function f with f(x) = loga(1 + x), for a > 1, and the

function g with g(x) = xr, where 0 < r ≤ 1, are metric-preserving.

It is known that f is amenable and nondecreasing, so it is enough to show that

f is subadditive. Let x, y ∈ [0,∞) be such that x ≤ y.

So 1 + (x + y) ≤ 1 + x + y + xy = (1 + x)(1 + y).

Thus

loga(1 + (x + y)) ≤ loga(1 + x)(1 + y) (nondecreasing)

= loga(1 + x) + loga(1 + y),

that is f(x + y) ≤ f(x) + f(y). Therefore f is subadditive. By Proposition 3.7,

we have f ∈M.

The function g : [0,∞) → [0,∞) defined by g(x) = xr, with 0 < r ≤ 1 is

metric-preserving, since it is concave and amenable.

Our examples so far have been both nondecreasing and continuous. A simple

example of a discontinuous nondecreasing metric-preserving function is

f(x) =





0 if x = 0,

c otherwise,
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where c is a positive constant. Proposition 3.7 ensures that this function is metric-

preserving. It is also possible to obtain a continuous, metric-preserving function

that fails to be nondecreasing. In order to construct this and other related exam-

ples, we need the notion first a triangle triplet, which is used to characterize

metric-preserving functions. This notion first appeared in Sreenivasan’s early pa-

per ([6]).

Definition 3.10. A triangle triplet is a triple (a, b, c) of nonnegative reals for

which a ≤ b + c, b ≤ a + c, and c ≤ a + b; equivalently, |a− b| ≤ c ≤ a + b.

We denote by 4 the set of all triangle triplets.

Remark 3.11.

(i) For all a ∈ [1,∞), (a, a + 1, a + 2) ∈ 4.

(ii) For all x ∈ 4, for all k > 0, kx ∈ 4.

(iii) For all x ∈ 4, for all permutations P on x, Px ∈ 4.

Proof. (i) Let a ∈ [1,∞). Since

a ≤ a + 1 ≤ (a + 1) + (a + 2),

a + 1 ≤ a + 2 ≤ (a + 2) + a,

and a + 2 = a + 1 + 1 ≤ (a + 1) + a,

we have (a, a + 1, a + 2) ∈ 4.

Next, we will show that for all a ∈ [0, 1), (a, a + 1, a + 2) ∈ 4 is not true.

Choose a = 1
2
. Since 5

2
� 4

2
= 1

2
+ 3

2
, we have (1

2
, 3

2
, 5

2
) /∈ 4.

Now we show (ii). Let (a, b, c) ∈ 4 and let k > 0. Claim that (ka, kb, kc) ∈ 4.

Since a ≤ b + c and k > 0, we have ka ≤ kb + kc. Similarly we have kb ≤ ka + kc

and kc ≤ ka + kb. So we have the claim.
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Next we show (iii). Let (a1, a2, a3) ∈ 4. Let S be the set of all permutations

on x. Then

S = {(a1, a2, a3), (a1, a3, a2), (a3, a2, a1), (a2, a1, a3), (a3, a1, a2), (a2, a3, a1)}.
It is clear that for each b ∈ S, b ∈ 4.

Triangle triplets are precisely those triples of nonnegative reals that are of the

form (d(x, y), d(y, z), d(x, z)) for some metric space (X, d) and some x, y, z ∈ X.

This observation follows from Proposition 3.12 and the proof of Proposition 3.14.

Proposition 3.12. ([3]) If (X, d) is a metric space and x, y, z ∈ X, then

(d(x, y), d(y, z), d(x, z)) ∈ 4.

Proof. This is immediate from the triangle inequality.

Lemma 3.13. ([2]) Every metric-preserving function is amenable.

Proof. Consider R and d(x, y) = |x − y| for each x, y ∈ R. Let f be a metric-

preserving function. Then (R, f ◦ d) is a metric space and for each a ∈ [0,∞) we

have d(a, 0) = a. Let a ∈ [0,∞). Then 0 = f(a) = (f ◦ d)(a, 0) if and only if

a = 0.

Proposition 3.14. ([2], [3]) Let f : [0,∞) → [0,∞). Then f is metric-preserving

if and only if f is amenable and for each (a, b, c) ∈ 4, we have

(f(a), f(b), f(c)) ∈ 4.

Proof. (⇒). By Lemma 3.13 we have f is amenable. Next, given (a, b, c) ∈ 4,

let d be the Euclidean metric on R2. Choose u = (0, 0), v = (0, a) and w = (x, y)

where x = c2−b2+a2

2a
, y =

√
c2 − x2. Thus there are u, v, w ∈ R2 such that

d(u, v) = a, d(v, w) = b, and d(u,w) = c.

Since f ◦ d is a metric, by Proposition 3.12 we have
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(f(a), f(b), f(c)) = (f ◦ d(u, v), f ◦ d(v, w), f ◦ d(u,w)) ∈ 4.

(⇐). Given (X, d), we verify that f ◦d is a metric. Properties (M1) and (M2) are

immediate. For (M3), by Proposition 3.12 we obtain (d(x, y), d(y, z), d(x, z)) ∈ 4.

By assumption we have (f ◦ d(x, y), f ◦ d(y, z), f ◦ d(x, z)) ∈ 4.

So f ◦ d(x, y) ≤ f ◦ d(x, z) + f ◦ d(z, y).

Corollary 3.15. ([3]) For every metric-preserving function f , |f(a) − f(b)| ≤
f(|a− b|) for every a, b ∈ [0,∞).

Remark 3.16. ([3]) Let f : [0,∞) → [0,∞). Then f ∈ M if and only if f is

amenable and for each (a, b, c) ∈ 4, we have f(a) ≤ f(b) + f(c).

Proposition 3.17. ([3]) An amenable function f is metric-preserving if and only

if for each metric d on R2, f ◦ d is a metric on R2.

Proof. (⇒). Clear, by the definition of metric-preserving function.

(⇐). Assume that for each metric d on R2, f ◦d is a metric on R2. Let (a, b, c) ∈ 4
and let d be the Euclidean metric on R2. Choose u, v, w ∈ R2 as in the proof of

Proposition 3.14. Then d(u, v) = a, d(v, w) = b and d(u,w) = c. Since f ◦ d

is a metric on R2, (R2, f ◦ d) is a metric space. By Proposition 3.12, we have

(f ◦ d(u, v), f ◦ d(v, w), f ◦ d(u,w)) ∈ 4, that is (f(a), f(b), f(c)) ∈ 4. By

Proposition 3.14, we have f ∈M.

Lemma 3.18. ([2]) If f ∈ M, then for each a, b ∈ [0,∞), a ≤ 2b implies

f(a) ≤ 2f(b).

Proof. Let a, b ∈ [0,∞) be such that a ≤ 2b. Since |a− b| ≤ b ≤ a+ b, by Remark

3.16, we have f(a) ≤ f(b) + f(b) = 2f(b).
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Theorem 3.19. ([2]) Let f be metric-preserving. Then the following assertions

are equivalent:

(i) f is continuous on [0,∞),

(ii) f is continuous at 0,

(iii) for each ε > 0, there is an x > 0 such that f(x) < ε.

Proof. (i) ⇒ (ii). It is clear.

(ii) ⇒ (i). Assume that f is continuous at 0. To show that f is continuous on

[0,∞), let a > 0 and ε > 0. Then there is a γ > 0 such that for all x ∈ [0,∞)

with x < γ we have f(x) < ε. Put δ = min{γ
2
, a

2
}. Since δ < γ, we have f(x) < ε.

Let x ∈ [0,∞) with |x−a| < δ. Since |x−a| < δ ≤ x+a, by Proposition 3.14, we

have f(x) ≤ f(a) + f(δ) and f(a) ≤ f(x) + f(δ). Thus |f(x)− f(a)| ≤ f(δ) < ε.

Hence f is continuous at a.

(ii) ⇒ (iii). Assume that f is continuous at 0. Let ε > 0. Then there is a δ > 0

such that for all x ∈ [0,∞), if x < δ, then f(x) < ε. So f( δ
2
) < ε.

(iii)⇒ (ii). Let ε > 0. Then there is an a > 0 such that f(a) < ε
2
. By Lemma

3.18, we obtain for each x ∈ [0,∞) if x ≤ 2a, then f(x) ≤ 2f(a) < ε. Put δ = 2a.

Then for each ε > 0 there is a δ > 0 such that for all x ∈ [0,∞) with x < δ implies

f(x) < ε. Hence f is continuous at 0.

Proposition 3.20. ([3]) Suppose that f is metric-preserving.

(i) For each x0 > 0, there is an ε > 0 such that f(x) ≥ ε for each x ≥ x0.

(ii) If f is discontinuous at 0, then there is some ε > 0 such that f(x) > ε for

all x > 0.

Proof. (i) Suppose that the assertion is false. Then there is x0 > 0 such that for

all ε > 0 there exists x ≥ x0 such that f(x) < ε. So for all n ∈ N there exists

xn ≥ x0 such that f(xn) < 1
n
. Thus there is a sequence (xn) such that xn ≥ x0
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for all n ∈ N, and lim
n→∞

f(xn) = 0. Let k ∈ N be such that f(xk) < f(x0)/2.

Then (xk, xk, x0) ∈ 4. Since f(xk) < f(x0)/2, f(x0) � f(xk) + f(xk). Hence

(f(xk), f(xk), f(x0)) /∈ 4. This contradicts to Proposition 3.14.

(ii) Immediately from Theorem 3.19.

Proposition 3.20 shows that metric-preserving functions cannot have the x-axis

as a horizontal asymptote; thus, the function x/(1 + x2) is not metric-preserving.

Definition 3.21. An amenable function f is tightly bounded if there exists a

v > 0 such that f(x) ∈ [v, 2v] for all x > 0.

Proposition 3.22. ([2], [3]) If f is tightly bounded, then f is metric-preserving.

Proof. Let v > 0 be such that f(x) ∈ [v, 2v] for all x > 0, and let (a, b, c) ∈ 4.

Since the cases in which abc = 0 are trivial, we assume abc > 0. Therefore

f(a) ≤ 2v = v + v ≤ f(b) + f(c), and by Remark 3.16, we have f ∈M.

Now, we will see that a metric-preserving function can be strictly decreasing

on an interval (a,∞) where a ≥ 0. For each f : [0,∞) → [0,∞) and each r > 0

we define

Uf,r(x) =





0 if x = 0,

f(x) + r if x > 0.

Proposition 3.23. ([3]) Suppose f : [0,∞) → [0,∞) is bounded above. Then

there is an r0 > 0 such that Uf,r ∈M for all r ≥ r0.

Proof. Let r0 be an upper bound for f . We see that Uf,r is amenable for all r ≥ r0.

Claim that Uf,r is tightly bounded for all r ≥ r0. Let r ≥ r0. Let x > 0. Then

Uf,r(x) = f(x) + r. Thus r ≤ f(x) + r ≤ r0 + r ≤ r + r = 2r. So there exists an

r > 0 such that Uf,r(x) ∈ [r, 2r] for all x > 0, that is Uf,r is tightly bounded for

all r ≥ r0. By Proposition 3.22, Uf,r ∈M for all r ≥ r0.
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Example 3.24. ([3]) There is a metric-preserving function which is strictly de-

creasing on (0,∞). Define

g(x) =





0 if x = 0,

1 + 1
x+1

if x > 0.

Now, g = Uf,1 where

f(x) =





0 if x = 0,

1
x+1

if x > 0.

Since there is 1 > 0 such that f(x) ≤ 1 for all x ∈ [0,∞) and there is r0 = 1, by

Proposition 3.23, we have g ∈ M. Claim that g is strictly decreasing on (0,∞).

Let x, y ∈ (0,∞) be such that x < y. Thus x + 1 < y + 1.

So g(x) = 1 + 1
x+1

> 1 + 1
y+1

= g(y). Thus g ∈M and g is strictly decreasing on

(0,∞).

Lemma 3.25. ([2]) Let f be a real valued continuous function on [a, b], where

a, b ∈ R, a < b. Let f(a) = f(b). Then for all ε > 0, there are u, v ∈ [a, b] such

that 0 < |u− v| < ε and f(u) = f(v).

Proposition 3.26. ([2]) Let f be a real valued continuous function on [a, b], where

a, b ∈ R, a < b. Then for all ε > 0, there are x, y ∈ [a, b] such that 0 < |x−y| < ε

and f(x)−f(y)
x−y

= f(a)−f(b)
a−b

.

Proof. Define g : [a, b] → R by

g(x) = f(x) +
(f(a)− f(b)) · (a− x)

a− b
for each x ∈ [a, b].

Then g is a real valued continuous function on [a, b] such that g(a) = g(b). Thus

by Lemma 3.25 we have

for all ε > 0 there are x, y ∈ [a, b] such that 0 < |x− y| < ε and g(x) = g(y).
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Since g(x) = g(y), f(x) + (f(a)−f(b))·(a−x)
a−b

= f(y) + (f(a)−f(b))·(a−y)
a−b

.

Thus f(x)− f(y) = (f(a)−f(b))
a−b

(a− y − a + x). Hence f(x)−f(y)
x−y

= f(a)−f(b)
a−b

.

Proposition 3.27. ([2]) Suppose that f is metric-preserving and d, k > 0. Define

Tf,d,k : [0,∞) → [0,∞) by

Tf,d,k(x) = g(x) =





kx if x ∈ [0, d),

f(x) otherwise.

Then g is metric-preserving if and only if f(d) = kd and |f(x)− f(y)| ≤ k|x− y|
for all x, y ∈ [d,∞).

Proof. (⇒). Let g be metric-preserving. Since g is continuous at 0, by Theorem

3.19 we obtain that g is continuous on [0,∞). Thus

kd = lim
x→d−

g(x) = lim
x→d

g(x) = g(d) = f(d).

Suppose that there are x, y ∈ [d,∞) such that |f(x) − f(y)| > k|x − y|. Let

x < y. Since f|[d,∞)
= g|[d,∞)

is continuous, f is continuous on [x, y]. Then by

Proposition 3.26 we have there are u, v ∈ [x, y] such that 0 < |u − v| < d and

f(u)−f(v)
u−v

= f(x)−f(y)
x−y

. Hence

|f(u)− f(v)| = |u− v| · |f(x)− f(y)|
|x− y| > |u− v| · k|x− y|

|x− y| = k|u− v|.

Put a = u, b = v and c = |u− v|. Thus

|f(b)− f(a)| > kc. (3.2)

Since |a− b| ≤ c ≤ a + b and g ∈M,

|g(a)− g(b)| ≤ g(c) = kc. (3.3)

By (3.2), |g(a)− g)(b)| > kc, which contradicts to (3.3).
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(⇐). Let f(d) = kd and |f(x)− f(y)| ≤ k|x− y| for all x, y ∈ [d,∞).

Let a, b, c ∈ [0,∞) be such that |a− b| ≤ c ≤ a + b.

1) Suppose that a, b ∈ [0, d). Then c ∈ [0, 2d).

If c ∈ [0, d), then g(a) = ka ≤ kb + kc = g(b) + g(c).

If c ∈ [d, 2d), then kd− f(c) = f(d)− f(c) ≤ |f(c)− f(d)| ≤ k|c− d| = k(c− d),

which yields −f(c) ≤ k(c− 2d). Then ka− f(c) ≤ k(a + c− 2d).

Hence

g(a) = ka ≤ f(c) + k(a + c− 2d)

≤ k(a + (a + b)− 2d) + f(c)

≤ k(d + (d + b)− 2d) + f(c)

= g(b) + g(c).

2) Suppose that a ∈ [0, d), b ∈ [d,∞). Then c ∈ [0,∞).

If c ∈ [0, d), then kd − f(b) = f(d) − f(b) ≤ |f(b) − f(d)| ≤ k|b − d| = k(b − d),

which yields −f(b) ≤ k(b− 2d). Then ka− f(b) ≤ k(a + b− 2d).

Hence

g(a) = ka ≤ f(b) + k(a + b− 2d)

≤ f(b) + k(a + (a + c)− 2d)

≤ f(b) + k(d + (d + c)− 2d)

= f(b) + kc = g(b) + g(c).

If c ∈ [d,∞), then by Lemma 3.18 we obtain

for all x ∈ [0,∞) if d ≤ 2x, then f(d) ≤ 2f(x).

Hence for all x ∈ [0,∞) if x ≥ d
2
, then f(x) ≥ f(d)

2
= kd

2
.

Then g(a) = ka < kd = k d
2

+ k d
2
≤ f(b) + f(c) = g(b) + g(c).
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3) Suppose that a ∈ [d,∞), b ∈ [0, d). Then c ∈ [0,∞).

If c ∈ [0, d), then f(a)− kd = f(a)− f(d) ≤ |f(a)− f(d)| ≤ k|a− d| = ka− kd,

which yields f(a) ≤ ka. Then g(a) = f(a) ≤ ka ≤ kb + kc = g(b) + g(c).

If c ∈ [d,∞), then f(a)− f(c) ≤ |f(a)− f(c)| ≤ k|a− c| ≤ kb.

Thus g(a) = f(a) ≤ kb + f(c) = g(b) + g(c).

4) Suppose that a, b ∈ [d,∞). Then c ∈ [0,∞).

If c ∈ [0, d), then f(a) − f(b) ≤ |f(a) − f(b)| ≤ k|a − b| ≤ kc, which yields

g(a) = f(a) ≤ f(b) + kc = g(b) + g(c).

If c ∈ [d,∞), then g(a) = f(a) ≤ f(b) + f(c) = g(b) + g(c).

Thus for all a, b, c ∈ [0,∞) such that |a− b| ≤ c ≤ a+ b implies g(a) ≤ g(b)+g(c).

By Remark 3.16 we obtain g ∈M.

Example 3.28. ([3]) There is a metric-preserving, continuous function that is

strictly decreasing on (1,∞). Let g be as in Example 3.24. Define

T (x) =





3
2
x if x ∈ [0, 1],

g(x) otherwise.

Clearly, T is continuous and strictly decreasing on (1,∞). Since T = Tg,1, 3
2
,

Proposition 3.27 ensures that T ∈ M. This example shows that continuous

metric-preserving functions need not be nondecreasing.

Example 3.29. ([3]) There is a continuous, nondecreasing, metric-preserving

function that is not concave. Define

f(x) =





0 if x = 0,

1 if 0 < x < 2,

x− 1 if 2 ≤ x < 3,

2 otherwise.
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Since f is tightly bounded, by Proposition 3.22, we obtain f ∈M.

Define

T (x) =





x if x ∈ [0, 1],

f(x) otherwise.

Clearly, T is continuous and nondecreasing. T is not concave since

T (
a + b

2
) <

T (a) + T (b)

2

when a = 1 and b = 3. Since T = Tf,1,1, Proposition 3.27 can be applied to show

T ∈M.

Example 3.30. ([3]) The J̊uza’s function T is in M, where

T (x) =





x if x ≤ 2,

1 + 1
x−1

if x > 2.

Proof. Consider

g(x) =





0 if x = 0,

1 if 0 < x < 2,

1
x−1

if x ≥ 2.

So there is M = 1 > 0 such that g(x) ≤ 1 for all x ≥ 0. Thus g is bounded above.

Define

f(x) = Ug,1(x) =





0 if x = 0,

g(x) + 1 if x > 0.

By Proposition 3.23, we have f = Ug,1 ∈M. Consider

T (x) = Tf,2,1(x) =





x if 0 ≤ x < 2,

f(x) if x ≥ 2.
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Claim that T ∈ M. We have f(2) = 1
2−1

+ 1 = 1 + 1 = 2 = (1)(2). Let x, y ≥ 2.

Thus

|f(x)− f(y)| = | 1

x− 1
+ 1− 1

y − 1
− 1|

= | 1

x− 1
− 1

y − 1
|

= | y − 1− x + 1

(x− 1)(y − 1)
|

= |y − x| · | 1

x− 1
| · | 1

y − 1
|

≤ |x− y|

By Proposition 3.27, we have T ∈M.

Theorem 3.31. ([1], [2], [3] )

(i) If f, g ∈M and m > 0, then f ◦ g, f + g, mf and max {f, g} ∈ M.

(ii) If (hn) is a sequence of metric-preserving functions that converges point-

wise to a function h and h(x) > 0 for all x > 0, then h ∈M. Likewise, if
∑∞

i=1 hi

converges to a function h, where each function hi ∈M, then h ∈M.

(iii) Let S ⊆ M,S 6= φ. Let for all x > 0 the set Sx = { f(x) | f ∈ S } be

bounded. Define the function g : [0,∞) → [0,∞) by

g(x) = sup{ f(x) | f ∈ S } for each x ∈ [0,∞). Then g ∈M.

Proof. (i) Suppose that f, g ∈ M and m > 0. Claim that f ◦ g ∈ M. Let (X, d)

be a metric space. Since g ∈ M, g ◦ d is a metric. Since f ∈ M, f ◦ (g ◦ d) is a

metric. But (f ◦ g) ◦ d = f ◦ (g ◦ d). So (f ◦ g) ◦ d is a metric on X. We have

f ◦ g ∈M.

Claim that f + g ∈ M. It is easy to prove that f + g is amenable. Next, let

(a, b, c) ∈ 4. Since f, g ∈M, by Remark 3.16, we have

(f + g)(a) = f(a) + g(a) ≤ f(b) + f(c) + g(b) + g(c)

= (f + g)(b) + (f + g)(c).
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So by Remark 3.16 again we obtain f + g ∈M.

Claim that mf ∈M. It is easy to see that mf is amenable. Now, let (a, b, c) ∈ 4.

Since f ∈M, by Remark 3.16, we have f(a) ≤ f(b) + f(c). So

(mf)(a) = m(f(a)) ≤ m(f(b) + f(c))

= m(f(b)) + m(f(c))

= (mf)(b) + (mf)(c).

Thus mf ∈M.

Claim that max {f, g} ∈ M. It is easy to see that max {f, g} is amenable. Next,

let (a, b, c) ∈ 4. By Remark 3.16, we have

f(a) ≤ f(b) + f(c) ≤ max {f(b), g(b)}+ max {f(c), g(c)},

and g(a) ≤ g(b) + g(c) ≤ max {f(b), g(b)}+ max {f(c), g(c)},

which yields

(max {f, g})(a) = max {f(a), g(a)} ≤ max {f(b), g(b)}+ max {f(c), g(c)}

= (max {f, g})(b) + (max {f, g})(c).

By Remark 3.16, we obtain max {f, g} ∈ M.

(ii) We will prove that if (hn) is a sequence of metric-preserving functions that

lim
n→∞

hn(x) = h(x) and h(x) > 0 for all x > 0, then h ∈ M. Let (a, b, c) ∈ 4.

Since for all n ∈ N, hn ∈M, for all n ∈ N, hn(a) ≤ hn(b) + hn(c). Which yields

( lim
n→∞

hn)(a) = lim
n→∞

(hn(a)) ≤ lim
n→∞

(hn(b) + hn(c))

= lim
n→∞

hn(b) + lim
n→∞

hn(c)

= ( lim
n→∞

hn)(b) + ( lim
n→∞

hn)(c).

By Remark 3.16, we have lim
n→∞

hn ∈M.
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Next, we will show that if
∑∞

i=1 hi = h where for all i ∈ N, hi ∈ M, then

h ∈ M. Let n ∈ N. Put sn =
∑n

i=1 hi. By Theorem 3.31(i), we have for each

i ∈ N, si ∈ M. Let a > 0. Then for each i ∈ N, hi(a) > 0, which yields for all

n ∈ N, sn(a) =
∑n

i=1 hi(a) ≥ h1(a). Thus h(a) = lim
n→∞

(sn(a)) ≥ h1(a) > 0. By

the above proof, we have h ∈M.

(iii) Since for all x > 0 we have { f(x) | f ∈ S } ⊆ (0,∞), g(x) > 0. Then for all

x > 0 we have g(a) 6= 0. Thus g is amenable. Next, let (a, b, c) ∈ 4. Then for

all f ∈ S we have f(a) ≤ f(b) + f(c) ≤ g(b) + g(c). Thus g(a) ≤ g(b) + g(c). By

Remark 3.16, g ∈M.

Remark 3.32. By Theorem 3.31(i), we have

(i) If f, g ∈M, then f+g
2
∈M.

(ii) If f ∈M, then fn ∈M where fn = f ◦ fn−1 for all n ∈ N.

Example 3.33. ([3]) There is a discontinuous and metric-preserving function

that is not tightly bounded. Define

f(x) =





0 if x = 0,

1 + |x− 1| otherwise.

The function f is discontinuous at 0 and not tightly bounded. Now, f = max {g, h},
where g(x) = x and

h(x) =





0 if x = 0,

1 + |x− 1| if x ∈ (0, 2),

2 otherwise.

Since h is tightly bounded, by Proposition 3.22, we have h ∈ M. Since g is

amenable, subadditive and nondecreasing, g ∈ M. Since h and g ∈ M, by

Theorem 3.31(i), we have f ∈M.
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Lemma 3.34. ([3]) Suppose f ∈M. Then the following assertions are equivalent:

(i) f is discontinuous at 0,

(ii) f ◦ d is a discrete metric, for every metric d.

Proof. (i) ⇒ (ii). Assume that f is discontinuous at 0. Let (X, d) be a metric

space. Since f ∈ M and f is discontinuous at 0, by Proposition 3.20(ii), there is

an ε > 0 such that f(z) > ε for all z > 0. Then Bf◦d(x, ε) = {x} for each x ∈ X,

as required.

(ii) ⇒ (i). Let d be the Euclidean metric on R and let ε > 0 be such that

Bf◦d(0, ε) = {0}. Since the sequence ( 1
n
) converges to 0 (relative to d) but ε ≤

f(d( 1
n
, 0)) = f( 1

n
) for all n ∈ N, f is discontinuous at 0.

Theorem 3.35. ([3]) A metric-preserving function is strongly metric-preserving

if and only if it is continuous at 0.

Proof. (⇒). Assume that f ∈ SM. Claim that f is continuous at 0. Suppose

not, that is f is discontinuous at 0. Let d be the Euclidean metric on R. By

Lemma 3.34, we have f ◦ d is a discrete metric. Since f ∈ SM, f ◦ d and d are

topologically equivalent and then d is a discrete metric. This is impossible.

(⇐). Suppose that f is continuous at 0. Let (X, d) be any metric space. We will

show that f ◦ d and d are topologically equivalent. Let x ∈ X and ε > 0. By

continuity of f at 0, there is a γ > 0 such that for all z ∈ [0,∞) with 0 < z < γ

implies f(z) < ε. Choose δ = min {γ, ε
2
}. So there exists a δ ≤ ε such that

f(z) < ε whenever 0 ≤ z < δ. Claim that Bd(x, δ) ⊆ Bf◦d(x, ε). Let y ∈ Bd(x, δ).

So d(x, y) < δ. Thus f ◦ d(x, y) = f(d(x, y)) < ε. Then y ∈ Bf◦d(x, ε). Therefore

Bd(x, δ) ⊆ Bf◦d(x, ε).

Since x ∈ X and ε > 0, by Proposition 3.20(i), we obtain an r > 0 such that

f(z) ≥ r for all z ≥ ε. Claim that Bf◦d(x, r) ⊆ Bd(x, ε). Let y ∈ Bf◦d(x, r). So
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f(d(x, y)) = f ◦ d(x, y) < r. Thus d(x, y) < ε. Then y ∈ Bd(x, ε). Therefore

Bf◦d(x, r) ⊆ Bd(x, ε).

Theorem 3.36. ([2], [3]) Suppose f ∈ M. Then the following assertions are

equivalent:

(i) f ∈ SM,

(ii) f is continuous at 0,

(iii) f is continuous on [0,∞),

(iv) for each ε > 0, there is an x > 0 such that f(x) < ε.

Proof. By Theorem 3.19 and Theorem 3.35.

Theorem 3.37. ([1], [3]) If f ∈ M and f is convex on [0, c] where c > 0, then

f is linear on [0, c].

Proof. Assume that f ∈ M and f is convex on [0, c] where c > 0. Claim that

for each x ∈ [0, c] and each positive integer n, we have f(x/2n) = f(x)/2n. Since

f ∈M, by Proposition 3.4, we have f is subadditive. By Remark 3.6(i), we have

f(x/2n) ≥ f(x)/2n for each positive integer n. Since f ∈M, f is amenable. Since

f is amenable and convex on [0, c], by Remark 3.6(ii), we have f(x/2n) ≤ f(x)/2n

for each positive integer n. So

f(x/2n) = f(x)/2n for each positive integer n. (3.4)

Next, from the convexity we obtain

for all a, b ∈ (0,∞) with 0 < a ≤ b ≤ c implies
f(a)

a
≤ f(b)

b
. (3.5)

We will show that f(x) = (f(c)/c)x for each x ∈ [0, c]. Since this relation is

obvious for x = 0, let x ∈ (0, c]. Let n ∈ N be such that c
n

< x. From 2n > n we
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obtain c
2n < c

n
< x. So

f(c)

c
=

f(c)

2n
· 2n

c
=

f(c/2n)

c/2n
(by (3.4))

≤ f(x)

x
(by (3.5))

≤ f(c)

c
(by (3.5)).

Then f(x)/x = f(c)/c. Hence f(x) = (f(c)/c)x.

Note. ([3]) Let f ∈ M and (X, d) be a metric space. Then if f is continuous at

0, then by Theorem 3.35 f ∈ SM, that is f ◦ d is topologically equivalent to d.

If f is discontinuous at 0, then by Lemma 3.34 f ◦ d is a discrete metric.



CHAPTER IV

SOME CONSERVATIVE PROPERTIES OF

METRIC-PRESERVING FUNCTIONS

In this chapter, we will prove our main results, stated in the Theorem 4.6 and

Theorem 4.9. The theorems say that if f ∈ SM, then f ◦d has a certain property

“P”if and only if d has.

It is noticed that if Q is a topological property (that is whenever a metric

space has the property, so does every metric space homeomorphic to it), then if

f ∈ SM then f ◦ d has the property Q if and only if d has.

We know that completeness and totally boundedness are not topological prop-

erties. However we will show that for any f ∈ SM, f ◦ d is complete if and only

if d is; and f ◦ d is totally bounded if and only if d is.

Theorem 4.1. Let d be a metric on X. Let fn ∈M for all n ∈ N such that fn ◦d

is numerically equivalent to d, that is for each n ∈ N, there are mn, kn > 0 such

that for all (x, y) ∈ X ×X : mnd(x, y) ≤ fn ◦ d(x, y) ≤ knd(x, y).

Suppose that {mn|n ∈ N} and {kn|n ∈ N} are bounded and mn keep away from

zero for all n ∈ N. That is there is a δ > 0 such that mn > δ for all n ∈ N.

If fn → f on [0,∞) and f(x) > 0 for all x > 0, then f ∈ M such that f ◦ d is

numerically equivalent to d.

Proof. Assume that fn → f on [0,∞). Since fn ∈ M for all n ∈ N and f(x) > 0

for all x > 0, by Theorem 3.31(ii), we have f ∈M.

Next, we will show that f ◦ d is numerically equivalent to d.
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We will see that for each n ∈ N, there are mn, kn > 0 such that

for all (x, y) ∈ X ×X : mnd(x, y) ≤ fn ◦ d(x, y) ≤ knd(x, y). (4.1)

Choose m = inf { mn | n ∈ N } and k = sup { kn | n ∈ N }. Then 0 < m ≤ k.

Let (x, y) ∈ X ×X.

We have md(x, y) ≤ mnd(x, y) ≤ fn ◦ d(x, y) = fn(d(x, y)) for each n ∈ N.

Then

md(x, y) ≤ lim
n→∞

fn(d(x, y)) = f(d(x, y)) = f ◦ d(x, y). (4.2)

From (4.1), fn ◦ d(x, y) ≤ knd(x, y) ≤ kd(x, y) for each n ∈ N.

Thus f(d(x, y)) = lim
n→∞

fn(d(x, y)) ≤ kd(x, y), that is

f ◦ d(x, y) ≤ kd(x, y). (4.3)

From (4.2)and (4.3), we have md(x, y) ≤ f ◦ d(x, y) ≤ kd(x, y). So f ◦ d is

numerically equivalent to d.

Theorem 4.2. Let fn ∈ SM for all n ∈ N. If fn → f uniformly on [0,∞) and

f(x) > 0 for all x > 0, then f ∈ SM.

Proof. Suppose that fn → f uniformly on [0,∞).

Since fn ∈ SM, by Theorem 3.36 fn is continuous on [0,∞) for each n ∈ N. Then

f is continuous on [0,∞) and by Theorem 3.31 f ∈ M. Since f ∈ M and f is

continuous on [0,∞), by Theorem 3.36, f ∈ SM.

Theorem 4.3. If f ∈ M and (X, d) is a metric space, then if a subset G of X

is open in (X, d) then it is open in (X, f ◦ d).

Proof. Assume that f ∈M and (X, d) is a metric space. Let G be open in (X, d).

Let x ∈ G. Then there is an ε > 0 such that Bd(x, ε) ⊆ G. By Proposition 3.20,

there is a δ > 0 such that f(z) ≥ δ for all z ≥ ε. (4.4)
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To show that Bf◦d(x, δ) ⊆ Bd(x, ε), let z ∈ Bf◦d(x, δ).

Then f(d(x, z)) = f ◦ d(x, z) < δ. By (4.4) d(x, z) < ε. So z ∈ Bd(x, ε).

Thus Bf◦d(x, δ) ⊆ Bd(x, ε) ⊆ G. So G is open in (X, f ◦ d).

Corollary 4.4. Let f ∈ SM. Then for any metric space (X, d), a subset G of

X is open in (X, d) if and only if it is open in (X, f ◦ d).

It is known that compactness is a topological property, that is if (X, d1) and

(Y, d2) are homeomorphic, then (X, d1) is compact if and only if (Y, d2) is compact,

but completeness is not a topological property as shown in the following example.

Example 4.5. ([5]) Let N be the set of all positive integers. Let d be the usual

absolute value metric on N, that is d(m,n) = |m − n| for all m,n ∈ N. Then

(N, d) is a complete metric space, since the only Cauchy sequences in N are those

sequences which are constant from some point on.

Now define a metric d′ on N by

d′(m,n) = |1/m− 1/n|, for m,n ∈ N.

It can be easily verified that d′ is a metric on N, and (N, d) is homeomorphic to

(N, d′). However, (N, d′) is not a complete metric space, since the sequence (sn),

n ∈ N, in N defined by sn = n for each n ∈ N is a Cauchy sequence, but does not

converge.

Although the condition that (X, d1) and (X, d2) are homeomorphic is not

enough to yield that the space is complete if another is, the condition that f

belongs to the class SM guarantees that if d is complete, then f ◦ d is complete

and conversely. A part of the result follows from Theorem 3.20(i) which stated

that “ If f ∈ M, then for each x0 > 0, there is an ε > 0 such that f(x) ≥ ε for

each x ≥ x0 ”

The result can be stated precisely as the following theorem.
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Theorem 4.6. Let f ∈ SM. Then (X, d) is a complete metric space if and only

if (X, f ◦ d) is a complete metric space.

Proof. (⇒). Assume that (X, d) is a complete metric space. Claim that (X, f ◦d)

is a complete metric space. Let (xn) be a Cauchy sequence in (X, f ◦ d). By

Proposition 3.20,

for any ε > 0 there is an ε′ > 0 such that f(z) ≥ ε′ for all z ≥ ε. (4.5)

Let ε be any positive real number, and ε′ obtained from ε by (4.5). Since (xn) is

a Cauchy sequence in (X, f ◦ d), there exists a K ∈ N, such that for all n, m ≥ K

we have f ◦ d(xn, xm) < ε′. By (4.5) we have d(xn, xm) < ε. Then for all ε > 0

there exists a K ∈ N such that for all n,m ≥ K, we have d(xn, xm) < ε. Thus

(xn) is a Cauchy sequence in (X, d). Thus there exists an x ∈ X such that (xn)

converges to x in (X, d).

Let ε > 0 be given. Since f ◦ d and d are topologically equivalent, there is a

δ > 0 such that for all y ∈ X with d(x, y) < δ implies f ◦ d(x, y) < ε. Since (xn)

converges to x in (X, d), there exists an N ∈ N such that for all n ≥ N we have

d(xn, x) < δ. Then for all n ≥ N , we have f ◦ d(xn, x) < ε. Hence lim
n→∞

xn = x in

(X, f ◦ d).

(⇐). Assume that (X, f ◦d) is a complete metric space. To show that (X, d) is

a complete metric space, let (xn) be a Cauchy sequence in (X, d). Since f ∈ SM,

f is continuous at 0. So

for any ε > 0 there is a δ > 0 such that

for all z ∈ [0,∞), with z < δ, we have f(z) < ε. (4.6)

Let ε > 0 be given, and δ be as in (4.6). Since (xn) is a Cauchy sequence in

(X, d), there exists a K ∈ N such that for all n,m ≥ K we have d(xn, xm) < δ.
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So by (4.6) we obtain f ◦ d(xn, xm) < ε. Thus for all ε > 0, there exists a K ∈ N
such that for all n, m ≥ K, f ◦ d(xn, xm) < ε. Then (xn) is a Cauchy sequence in

(X, f ◦ d). So there is an x ∈ X such that (xn) converges to x in (X, f ◦ d).

To show that (xn) converges to x in (X, d), let ε > 0 be given. Since f ◦ d and

d are topologically equivalent, there is a δ > 0 such that for all y ∈ X with

f ◦ d(x, y) < δ implies d(x, y) < ε. Since (xn) converges to x in (X, f ◦ d), there

exists an N ∈ N such that for all n ≥ N , we have f ◦ d(xn, x) < δ. Then for all

n ≥ N , we obtain d(xn, x) < ε. Hence lim
n→∞

xn = x in (X, d).

It is also known that the totally boundedness is not a topological property. The

following proposition shows that there exist homeomorphic metric spaces (X, d1)

and (X, d2) such that (X, d1) is totally bounded, but (X, d2) is not.

Proposition 4.7. ([4]) In R, the Euclidean metric de is not totally bounded but

the metric dϕ(x, y) = | x
1+|x| − y

1+|y| | is totally bounded.

Proof. To show de(x, y) = |x−y| is not totally bounded, suppose that de is totally

bounded. So there exists a finite subset F of R, say F = {y1, y2, ..., yn} such that

R =
⋃n

i=1 Bde(yi, 1).

For i ∈ {2, 3, ..., n}, we obtain

de(y1 − 1, yi) = de(y1 − 1, y1) + de(y1, yi)

= 1 + |y1 − yi|,

that is de(y1 − 1, yi) ≥ 1 for all i ∈ {2, 3, ..., n}. Then y1 − 1 /∈ Bde(yi, 1) for any

i ∈ {2, 3, ..., n}. So y1 − 1 /∈ ⋃n
i=1 Bde(yi, 1) = R. This is a contradiction. So de is

not totally bounded.

Now we will show that dϕ is totally bounded.

Let ε > 0 be given. Define f : R → R by f(x) = x
1+|x| . So lim

x→∞
x

1 + |x| = 1.

Thus there exists an N ∈ N such that for all x ≥ N , we have |f(x) − 1| < ε/2.
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Then for all x, y ≥ N , we obtain |f(x)− f(y)| < ε. That is there exists an N ∈ N
such that for each x ≥ N, dϕ(x,N) < ε. Since lim

x→−∞
f(x) = −1, there exists a

K ∈ Z− such that for any x ≤ K, we have |f(x) − (−1)| < ε/2. Then for all

x, y ≤ K, we obtain |f(x)− f(y)| < ε, that is there exists a K ∈ Z− such that for

each x ≤ K, dϕ(x,K) < ε. Choose M = max{|K|, |N |}. Thus there is an M ∈ N
such that

for any x ≥ M, dϕ(x, M) < ε (4.7)

and

for any x ≤ −M, dϕ(x,−M) < ε. (4.8)

Since f is uniformly continuous on [−(M + 1),M + 1], there is a δ > 0 with

0 < δ < 1 such that

for all y, z ∈ [−(M + 1),M + 1], |y − z| < δ implies dϕ(y, z) < ε. (4.9)

Pick xi = iδ
2

for all i ∈ {−m,−(m − 1), ...,−2,−1, 0, 1, 2, ..., m}, xm+1 = M and

x−(m+1) = −M where m ≥ (M + 1)2/δ.

Claim that
⋃m+1

i=−(m+1) Bdϕ(xi, ε) = R. Let x ∈ R.

If x ≥ M , then from(4.7), we obtain dϕ(x, xm+1) < ε.

If −M < x < M , then x ∈ [−(M + 1),M + 1].

Thus there exists an i ∈ {−m,−(m− 1), ...,−2,−1, 0, 1, 2, ..., m}
such that |x− xi| < δ. From (4.9), we obtain dϕ(x, xi) < ε.

If x ≤ −M , then from (4.8), we have dϕ(x, x−(m+1)) < ε. So x ∈ ⋃m+1
i=−(m+1) Bdϕ(xi, ε).

Hence
⋃m+1

i=−(m+1) Bdϕ(xi, ε) = R.

.

By the Proposition 4.7 we notice that eventhough de and dϕ are topologically

equivalent but de is not totally bounded while dϕ is. However, the next theorem
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will show that if f ∈ SM and if any one of the two spaces (X, d) or (X, f ◦ d) is

totally bounded, then the other is also totally bounded.

Lemma 4.8. Let f ∈ M. If (X, f ◦ d) is totally bounded, then (X, d) is totally

bounded.

Proof. Assume that (X, f ◦ d) is totally bounded. We will show that (X, d) is

totally bounded. Let ε > 0 be given. By Proposition 3.20,

there exists a δ > 0 such that f(z) ≥ δ for all z ≥ ε. (4.10)

Since (X, f ◦ d) is totally bounded, there is a finite subset F of X, say F =

{a1, a2, ..., an} such that X =
⋃n

i=1 Bf◦d(ai, δ). Claim that X ⊆ ⋃n
i=1 Bd(ai, ε). Let

x ∈ X. So x ∈ ⋃n
i=1 Bf◦d(ai, δ), that is x ∈ Bf◦d(ai, δ) for some i ∈ {1, 2, ..., n}.

Thus f ◦ d(ai, x) < δ. By (4.10), we have d(ai, x) < ε. Then x ∈ Bd(ai, ε).

Therefore x ∈ ⋃n
i=1 Bd(ai, ε). So X =

⋃n
i=1 Bd(ai, ε). Hence (X, d) is totally

bounded.

Theorem 4.9. Suppose that f ∈ SM. Then (X, d) is totally bounded if and only

if (X, f ◦ d) is totally bounded.

Proof. (⇒). Assume that (X, d) is totally bounded. We will show that (X, f ◦ d)

is totally bounded. Let ε > 0 be given. Since f ∈ SM, f is continuous at 0. So

there exists a δ > 0 such that

for all z ∈ [0,∞) with 0 < z < δ implies f(z) < ε. (4.11)

Since (X, d) is totally bounded, there is a finite subset F of X, say F = {a1, a2, ..., an}
such that X =

⋃n
i=1 Bd(ai, δ). To show that X ⊆ ⋃n

i=1 Bf◦d(ai, ε), let x ∈ X.

So x ∈ ⋃n
i=1 Bd(ai, δ), that is x ∈ Bd(ai, δ) for some i ∈ {1, 2, ..., n}. Thus

d(ai, x) < δ. By (4.11), we have f ◦ d(ai, x) < ε. Then x ∈ Bf◦d(ai, ε). Therefore
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x ∈ ⋃n
i=1 Bf◦d(ai, ε). So X =

⋃n
i=1 Bf◦d(ai, ε). Hence (X, f ◦d) is totally bounded.

(⇐). Follows from Lemma 4.8.

It is not difficult to show that if two metrics d and d′ on a space X are

numerically equivalent, then (X, d) is complete if and only if (X, d′) is complete

and (X, d) is totally bounded if and only if (X, d′) is totally bounded.

Remark 4.10. f : [0,∞) → [0,∞) defined by f(x) = min {1, x} is strongly

metric-preserving.

Proof. It is easy to show that f is amenable, subadditive and nondecreasing. Then

by Proposition 3.7, f ∈M. Since f is continuous at 0, by Theorem 3.36 we have

f ∈ SM.

Corollary 4.11. The space (Rn, r), where r(x, y) = min{1, de(x, y)}, is a com-

plete metric space. This metric is called the radar screen metric on Rn.

Proposition 4.12. In Rn, the radar screen metric r is topologically equivalent

but not numerically equivalent to de.

Proof. To show r is topologically equivalent to de, let x ∈ X and ε > 0.

Choose δ = min{1, ε}. Let y ∈ X be such that de(x, y) < δ.

So r(x, y) ≤ de(x, y) < δ ≤ ε, that is r(x, y) < ε.

Next, assume that r(x, y) < δ. Then de(x, y) = r(x, y) < δ ≤ ε. Thus r and

de are topologically equivalent.

Now, we will show that r is not numerically equivalent to de. Suppose that r

and de are numerically equivalent. Then there exist positive constants m, k such

that for all (x, y) ∈ Rn × Rn, we have mr(x, y) ≤ de(x, y) ≤ kr(x, y) ≤ k. Thus

de(x, y) ≤ k. This is a contradiction. Hence r is not numerically equivalent to

de.
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Remark 4.13. The condition that f ∈ SM is weaker than that f ◦ d and d are

numerically equivalent.

Conclusion. The Theorem 4.6 and 4.9 show that with the assumption that f is

strongly metric-preserving, which is weaker than that f ◦ d and d are numerically

equivalent, we still have the assertions that f ◦ d is complete if and only if d is,

and f ◦ d is totally bounded if and only if d is.
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