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CHAPTER I

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

For many years, wavelet transform has been shown to detect singularities.

Independently, Jaffard(1991) and Holschneider and Tchamitchian(1991) gave a

characterization of point singularities by using the continuous wavelet trans-

form. In fact, while the continuous wavelet transform is able to detect singular-

ities of function, it lacks the ability to capture directional and linear singularity.

Since then, there are several transforms which are similar to wavelet transform,

such as curvelet transform, Smith transform and shearlet transform. They all

have parabolic scaling and are able to detect directional and linear singularity.

The shearlet transform is extended from the classical wavelet transform. The

continuous shearlet transform is defined via a collection of scaling, shearing and

translating of a single function. Moreover, the shearlet transform have a simple

reconstruction formula. Kutyniok and Labate(2009) obtained the decay rates of

continuous shearlet transform of distributions with point, linear or polygonal

singularities. Recently, Lakhonchai, Sampo and Sumetkijakan(2010) proposed

the linear singularity of functions satisfying a set of directional Holder regular-

ities. They obtained the same decay rates as the results of Kutyniok et al.
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This thesis is organized as follows. In the Preliminaries we recall the nota-

tions and definitions of Hölder regularities, the continuous wavelet transform,

the continuous curvelet transform and then introduce the continous shearlet

transform. In Chapter 2 we will investigate vanishing directional moments and

decay properties of shearlet functions. In Chapter 3 we show a relationship of

linear singularities of function and the decays of its continuous curvelet trans-

form and continuous shearlet transform. The main result of this work is proved

in Chapter 4, in which we give a local version of the Lakhonchai et al., where

the singularity line is replaced by a singularity line segment. We then consider

the situation where singularity on a line segment in a perpendicular direction is

significantly lower than that in the direction along the line in a neighborhood.
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1.2 Preliminaries

In this section, we recall necessary definitions and properties involving our

work.

Notation

All through this thesis, we will consider

1. x ∈ R2 is a column vector, that is x = (x1, x2)
T .

2. ξ ∈ R̂2 (the frequency domain) is a row vector, that is ξ = (ξ1, ξ2).

3. For x = (x1, x2), y = (y1, y2) ∈ R2 and ν = (ν1, ν2) ∈ N2
0,

• x+ y = (x1 + y1, x2 + y2)

• ax = (ax1, ax2) where a ∈ R

• ‖x‖ =
√
x2

1 + x2
2

• |ν| = ν1 + ν2

• xν =
∏2

i=1 x
νi
i

• ∂νf = ∂ν11 f∂
ν2
2 f

The L2- spaces : Let f in R2 be a real measurable function on (R2,L, λ) (here

L is the Lebesgue measurable sets, and λ is Lebesgue measure on R2 ).We shall

denote the integral of f with respect to Lebesgue measure by
∫

R2 f(x)dx. Then

f ∈ L2(R2) iff
∫

R2

|f(x)|2dx <∞,

and ‖f‖2 =
(∫

R2 |f(x)|2dx
) 1

2 .



4

Theorem 1.1. (Fubini’s theorem) If f(x, y) is Lebesgue measurable on R2 and∫
R

∫
R |f(x, y)|dxdy <∞, then

∫
R

∫
R
|f(x, y)|dxdy =

∫
R

[∫
R
|f(x, y)|dy

]
dx

=

∫
R

[∫
R
|f(x, y)|dx

]
dy.

A Hilbert space H is a real or complex inner product space that is also a

complete metric space with respect to the distance function induced by the inner

product. 〈·, ·〉 : H ×H → F is an inner product if

• 〈v, u〉 is the complex conjugate of 〈u, v〉 :

〈v, u〉 = 〈u, v〉

• 〈u, v〉 is a linear in its first argument

〈au1 + bu2, v〉 = a〈u1, v〉+ b〈u2, v〉, for all a, b ∈ C.

• The inner product 〈·, ·〉 is positive definite :

〈x, x〉 ≥ 0,

where the case of equality holds precisely when x = 0.

A standard example of a Hilbert space is L2(R2), with 〈f, g〉 =
∫

R2 f(x)g(x)dx.

A standard inequality in a Hilbert space is the Cauchy-Schwarz inequality,

|〈v, w〉| ≤ ‖v‖‖w‖.
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Fourier Transform

The Fourier transform of f ∈ L1(R2) is defined by

f̂ (ξ) =

∫
R2

f(x)e−2πiξxdx

where x = (x1, x2)
T is a column vector and ξ = (ξ1, ξ2) is a row vector in R2.

The Fourier transform of f ∈ L2(R2) is defined in the limit. So the Plancherel’s

formula becomes

〈f, g〉 = 〈f̂ , ĝ〉.

Inversion of the Fourier transform is then given by

f(x) =

∫
R2

f̂(ξ)e2πiξxdξ.

Hölder Regularities

Hölder regularities of a bivariate function is defined as follows.

Definition 1.2. Let α ∈ (0,∞) r N and u ∈ R2. The function f : R2 → R is said

to be pointwise Hölder regular with exponent α at u, denote by f ∈ Cα(u), if

there exists a polynomial P = Pu of degree less than α and a constant C = Cu

such that for all x in a neighborhood of u

|f(x)− P (x− u)| ≤ C‖x− u‖α. (1)

Let Ω be an open subset of Rd. If there exists a uniform constant C so that for

all u ∈ Ω there is a polynomial Pu of a degree less than α such that (1) holds for

all x ∈ Ω, then we say that f is uniformly Hölder regular with exponent α on

Ω or f ∈ Cα(Ω).
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For a fixed unit vector v ∈ Rd, f is said to be pointwise Hölder regular

with exponent α at u in the direction v, denoted by f ∈ Cα(u; v), if there exist

a constant C = Cu,v and a polynomial P = Pu,v of a degree less than α such

that (1) holds for all x in an open line segment that contains the point u and is

parallel to v.

Let Ω1 be a subset of Rd and Ω2 be an open neighborhood of Ω1. Then f is

said to be in Cα(Ω1,Ω2; v) if there exists a constant C = Cv so that for all u ∈ Ω1

there is a polynomial P = Pu,v of a degree less than (1) holds for all x ∈ Ω2 on

the line passing through u and parallel to v. If Ω1 = Ω2 is open, then we denote

Cα(Ω1,Ω2; v) by Cα(Ω1; v).

Continuous Wavelet Transform

Let us recall the definition of the wavelet transform. Continuous wavelet trans-

form (CWT) is an integral transform like the Fourier-transform defined in the

previous section.

Definition 1.3. (Continuous Wavelet Transform) The continuous wavelet trans-

form of an L2(R) function f is defined by

Wf (a, b) =

∫
R
f(x)ψa,b(x)dx =

1

a

∫
R
f(x)ψ

(
x− b
a

)
dx

where this Lebesgue integral is well-defined for all a ∈ (0,∞) , b ∈ R, ψ ∈

L2(R) and ψa,b(x) = a−1ψ(a−1(x− b)). The parameter b is a position(translation)

parameter and a is interpreted as a scale parameter. ψ is called Mother wavelet

which satisfies vanishing moment, i.e.∫
R
ψ(t)dt = 0.
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This means that a wavelet should have a zero-order vanishing moment. Also

higher order vanishing moments are demanded. For comparsion, curvelets and

shearlets have directional vanishing moment defined in Definition 1.6, which

wavelets do not necessary have. Moreover ψ satisfies admissible condition that

ensure the existence of inverse transform, i.e.

0 < cψ =

∫ ∞
0

|ψ̂(aξ)|da
a2

<∞ for a.e. ξ ∈ R2.

Then (see Daubechies [1]) for f, g ∈ L2(R)∫ ∞
0

∫
R
Wf (a, b)Wg(a, b)

dbda

a3
= cψ〈f, g〉.

We have Parseval’s Formula that for f ∈ L2(R),∫ ∞
0

∫
R
|Wf (a, b)|2

dbda

a3
= cψ‖f‖22.

The local regularity of a function implies an equivalent local decrease of its

wavelet coefficients at small scale as shown by the following theorem.

Theorem 1.4. Let f be a bounded and f ∈ Cα(u) at some point u ∈ R. Then its

wavelet transform with respect to a wavelet ψ satisfies

Wf (a, b) ≤ C(aα + |b− u|α) α ∈ (0, 1]

where C independent of a, b. The wavelet is supposed to satisfy ψ ∈ L1(R),

xαψ ∈ L1(R) and
∫
ψ = 0.

Continuous Curvelet Transform

There exists different constructions of curvelets, we choose definition in Can-

des and Donoho(2005). Continuous Curvelet Transform (CCT) is defined in the
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polar coordinates (r, w) of the Fourier/frequency domain. Let W be a positive

real-valued function supported inside (1/2, 2), called a radial window, and let V

be a real-valued function supported on [−1, 1], called an angular window. Func-

tions W and V have the following admissibility conditions:

∫ ∞
0

W (r)2dr

r
= 1 and

∫ 1

−1

V (w)2dw = 1.

At each scale a, 0 < a < a0, γa00 is defined by

γ̂a00(r cos(w), r sin(w)) = a
3
4W (ar)V (w/

√
a) for r ≥ 0 and w ∈ [0, 2π).

For each 0 < a < a0, b ∈ R2 and θ ∈ [0, 2π), a curvelet γabθ is defined by

γabθ(x) = γa00(Rθ(x− b)) , for x ∈ R2.

Notice that now curvelets have a little bit different generating function γ for

each scale. This is different from wavelet transform. Also, because of definition

of radial window, γabθ are high frequency functions.

The continuous curvelet transform is defined as, an integral transform

Γf (a, b, θ) := 〈γabθ, f〉 where 0 < a < a0, b ∈ R2 and θ ∈ [0, 2π).

Notice that Candes and Donoho(2005) assume V andW areC∞, even though

we can assume onlyCN forN large enough for which curvelets and their deriva-

tives up to desired order decay fast enough. Lemma 1.6 will show that curvelets

have vanishing directional moments with increasing number of directions when

a decreases.
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The admissibility conditions and the polar coordinate design of curvelets

yields the following reconstruction formula for all f ∈ L2(R2).

Theorem 1.5. There exists a bandlimited purely radial function Φ such that for

all f ∈ L2(R2),

f =

∫
R2

〈Φb, f〉Φbdb+

∫ a0

0

∫ 2π

0

∫
R2

〈γabθ, f〉dbdθ
da

a3
,

where Φb(x) = Φ(x− b).

For analysis of singularities, the low frequency part
∫

R2〈Φb, f〉Φbdb is not a

problem as it is always C∞.

Properties of Curvelet Transform

For any vectors v and v
′ in R2, let us denote the angle from v to v′ in clockwise

direction by ∠(v, v
′
).

Lemma 1.6. There existsC <∞ (independent of a, b and θ) such that the curvelet

functions γabθ have directional vanishing moments of any order L < ∞ along

all directions v that satisfy π/2 ≥ |∠(vθ, v)| ≥ Ca1/2.

Some results on the decay of γabθ are given below.

Lemma 1.7. Suppose that the windows V and W in the definition of CCT are

C∞ and have compact supports. Then for each N = 1, 2, ... there is a constant

CN such that

∀x ∈ R2 |∂vγabθ(x)| ≤ CNa
−3/4−|v|

1 + ‖x− b‖2Na,θ

where ‖x− b‖a,θ = ‖D1/aR−θ(x− b)‖.
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Continuous Shearlet Transform

We choose definition in Kutyniok and Labate(2009).

Definition 1.8. Given ψ1 and ψ2 ∈ L2(R), let ψ ∈ L2(R2) be defined by

ψ̂(ξ) = ψ̂1(ξ1)ψ̂2(
ξ2
ξ1

) for ξ = (ξ1, ξ2) ∈ (R r {0})× R.

Then ψ is called a continuous shearlet function if:

i. ψ1 ∈ L2(R) satisfies the admissibility condition, that is∫ ∞
−∞
|ψ̂1(aξ)|2

da

a
= 1 for a.e. ξ ∈ R,

and ψ̂1 ∈ C∞(R) with supp ψ̂1 ⊂ [−2,−1
2
] ∪ [1

2
, 2] ;

ii. ‖ψ2‖2 = 1, ψ̂2 ∈ C∞(R) with supp ψ̂2 ⊂ [−1, 1] and ψ̂2 > 0 on (−1, 1).

A continuous shearlet system is the set of functions generated by ψ, namely,

{ψast = a−
3
4ψ(M−1

as (· − t)) : a ∈ I ⊂ R+, s ∈ S ⊂ R, t ∈ R2},

where Mas = BsDa, Bs is the shear matrix

 1 −s

0 1

 and Da is the diagonal

matrix

 a 0

0
√
a

. The continuous shearlet transform of f ∈ L2(R2) is then de-

fined by

SHψf(a, s, t) = 〈f, ψast〉, for a ∈ (0, 1), s ∈ [−2, 2] and t ∈ R2.

Here I = (0, 1) (a set of parabolic scales) and S = [−2, 2] (a set of shear parame-

ters). A direct computational shows that

ψ̂ast(ξ) = a−
3
4 e−2πiξtψ̂(aξ1,

√
a(ξ2 − sξ1))
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= a−
3
4 e−2πiξtψ̂1(aξ1)ψ̂2(

1√
a

(
ξ2
ξ1
− s)).

Then, each function ψ̂ast is supported on the set

suppψ̂ast ⊆ {(ξ1, ξ2) : ξ1 ∈
[
−2

a
,− 1

2a

]
∪
[

1

2a
,

2

a

]
,

∣∣∣∣ξ2ξ1 − s
∣∣∣∣ ≤ √a}.

Let E ⊂ R̂2 be given by E = {(ξ1, ξ2) ∈ R̂2 : |ξ1| ≥ 2 and
∣∣∣ ξ2ξ1 ∣∣∣ ≤ 1} and define

L2(E)∨ = {f ∈ L2(R2) : suppf̂ ⊂ E}. Then, there is a reconstruction formula

for functions in this proper subspace.

Theorem 1.9. Let ψ ∈ L2(R2) be a shearlet function. Then, for all f ∈ L2(E)∨,

f =

∫
R2

∫ 2

−2

∫ 1

0

〈ψast, f〉ψast
da

a3
dsdt in L2(E∨).

Moreover, we obtain a reproducing formula for all f ∈ L2(R2) by defining a

vertical shearlet function ψ(v) by

ψ̂(v)(ξ) = ψ̂(v)(ξ1, ξ2) = ψ̂1(ξ2)ψ̂2(
ξ1
ξ2

)

where ψ̂1, ψ̂2 are defined as in Definition 1.8 above.

The shearlets ψ(v)
ast are defined by ψ

(v)
ast = a−3/4ψ((M v

as)
−1(· − t)), where M (v)

as =

B
(v)
s D

(v)
a such that B(v)

s =

 1 0

−s 1

 and D
(v)
a =


√
a 0

0 a

. Therefore {ψvast}

is the continuous shearlet system for L2(E(v))∨ where E(v) = {(ξ1, ξ2) ∈ R2 :

|ξ2| ≥ 2 and |ξ1/ξ2| ≤ 1} and the associated vertical continuous shearlet trans-

form is SH(v)
ψ f(a, s, t) = 〈f, ψ(v)

ast〉.
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Properties of shearlet functions

Definition 1.10. The function f of two variables is said to haveL - order vanishing

directional moments along the direction v = (v1, v2)
T 6= 0 if

∫
R
bnf(bv + w)db = 0, for all w ∈ R2 and 0 ≤ n < L.

Lakhonchai et al.(2010) proved vanishing directional moments and decay

of shearlet functions, which are used frequently in our regularity analysis and

shown below.

Lemma 1.11. For all a ∈ (0, 1), s ∈ [−2, 2] and t ∈ R2, the following hold.

1. The shearlet function ψast has vanishing directional moments of any order

L <∞ along any direction v = (v1, v2)
T satisfying |v2s+ v1| > |v2|

√
a.

2. For each N = 1, 2, ..., there is a constant CN independent of a, s and t such

that

|∂νψast(x)| ≤ CNa
−3/4−|ν|(

√
a+ |s|)ν2

1 + ‖D1/aB−s(x− t)‖2N

for all x ∈ R2 and ν ∈ N2
0.



CHAPTER II

VANISHING DIRECTIONAL MOMENTS AND DECAY

PROPERTIES

In this section we will investigate vanishing directional moments and decay

properties of ψast. This properties will be needed in proving theorems in Chap-

ter III.

Vanishing Directional Moments and Properties of Shearlet Function

We define definition of an L - order vanishing directional moments along a di-

rection v.

Definition 2.1. The function f of two variables is said to have L - order vanishing

directional moments along the direction v = (v1, v2)
T 6= 0 if

∫
R
bnf(bv + w)db = 0, for all w ∈ R2 and 0 ≤ n < L.

The above definition mean essentially that any 1-D slices of the function have

vanishing moments of order L. Notice from the definition that f has vanishing

directional moment along direction v if and only if the same holds along direc-

tion −v.

In the following Lemma, we found a condition under which ψast have vanishing

directional moments of any order L <∞ along the direction v.
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Lemma 2.2. The shearlet function ψast has vanishing directional moments of

any order L <∞ along any direction v = (v1, v2)
T satisfying |v2s+ v1| > |v2|

√
a.

Proof. Because supp(ψ̂a0t) ⊆ {(ξ1, ξ2) : 1
2a
≤ |ξ1| ≤ 2

a
and ξ2 ≤

√
a|ξ1|} and

|s + v1
v2
| >

√
a, it follows that supp(ψ̂a0t) ∩ {(ξ1, ξ2) : ξ2 = (s + v1

v2
)ξ1} = ∅.

Consequently, we have that all partial derivatives of ̂ψa(s+ v1
v2

)t vanish on the ξ1-

axis. Next, we show that ψa(s+ v1
v2

)t has vanishing directional moments along the

direction of x2-axis of any order L. Let g(x1) :=
∫
xn2ψa(s+ v1

v2
)t(x1, x2)dx2. For each

ξ1 ∈ R̂,

ĝ(ξ1) =

∫
g(x1)e

−2πx1ξ1dx1

=

∫ ∫
xn2ψa(s+ v1

v2
)t(x1, x2)e

−2πx1ξ1dx1dx2

= ( ̂xn2ψa(s+ v1
v2

)t)(ξ1, 0)

= (−2πi)−n∂n2 ̂ψa(s+ v1
v2

)t(ξ1, 0)

= 0,

so g(x1) ≡ 0. Therefore ψa(s+ v1
v2

)t has vanishing moments along the direction

(0, 1)T . Hence ψast has vanishing moments along the direction B− v1
v2

(0, 1)T = 1 v1
v2

0 1

 (0, 1)T = (v1
v2
, 1)T , i.e. ψast has vanishing moments along the direc-

tion v. Finally, If v2 = 0, then we use the fact that, for all a > 0, t ∈ R2 and

s ∈ [−2, 2], supp(ψ̂ast) ∩ {(ξ1, ξ2) : ξ1 = 0} = ∅} and hence, by the same line of

proof, we have ψast has vanishing moments along the direction (1, 0)T .

In the following lemma we obtain a decay property of all partial derivatives

of shearlet functions.
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Lemma 2.3. For each N = 1, 2, ..., there is a constant CN independent of a, s and

t such that

|∂νψast(x)| ≤ CNa
−3/4−|ν|(

√
a+ |s|)ν2

1 + ‖D1/aB−s(x− t)‖2N

for all x ∈ R2 and ν ∈ N2
0.

Proof. We restrict first to the case s = 0 and t = 0. Fix an index vector ν := (ν1, ν2)

and define

ha(x) := ψa00(Dax) and ga(x) := ∂νha(x) = aν1+
ν2
2 (∂νψa00)(Dax).

By a straightforward computation we have

ĝa(x) = (2πξ)ν ĥa(ξ)

= (2πξ)νa−3/2 ˆψa00(D1/aξ)

= (2πξ)νa−3/2a−3/4ψ̂(ξ)a3/2

= (2πξ)νa−3/4ψ̂(ξ).

Now, replacing x byD1/ax in the equation (−4π2‖x‖2)kga(x) =
∫

R2 ∆kĝa(ξ)e
2πixξdξ,

where ∆ is the Laplacian, yields

∣∣(−4π2‖D1/ax‖)k(∂νψa00)(x)
∣∣ =

∣∣(−4π2‖D1/ax‖)ka−(ν1+ν2/2)ga(D1/ax)
∣∣

= a−(ν1+ν2/2)

∣∣∣∣∫
R2

(∆kĝa)(ξ)e
2πixξdξ

∣∣∣∣
≤ a−(3/4+ν1+ν2/2)

∫
R2

∣∣∣∆k((2πξ)νψ̂(ξ))
∣∣∣ dξ

≤ Cka
−(3/4+ν1+ν2/2).

In the last step we used the notation that
∫

R2

∣∣∣∆k((2πξ)νψ̂(ξ))
∣∣∣ dξ ≤ Ck where Ck
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is in fact independent of k. Consequently, if k = 0 then we have inequality

|(∂νψa00)(x)| ≤ Ca−(3/4+ν1+ν2/2).

Since

(1 + (2π)2k)‖D1/ax‖2k)|∂ν(ψa00)(x)| = |∂ν(ψa00)(x)|+
∣∣(4π2‖D1/ax‖2)k(∂νψa00)(x)

∣∣
≤ Ca−(3/4+ν1+ν2/2),

We have

|∂ν(ψa00)(x)| ≤ Ca−3/4−ν1−ν2/2

1 + (2π)2k‖D1/ax‖2k
≤ Ca−3/4−ν1−ν2/2

1 + ‖D1/ax‖2k
.

Next, we show how to estimate for general s ∈ R :

∂ν22 ∂
ν1
1 ψas0(x) = ∂ν22 ∂

ν1−1
1 (∂1ψas0(x))

= ∂ν22 ∂
ν1−1
1 (∂1ψas0(x1 + sx2, x2))

= ∂ν22 (∂ν11 ψas0(x1 + sx2, x2))

=

ν2∑
l=0

 ν2

l

 sν2−l∂ν1+ν2−l
1 ∂l2ψa00(x1 + sx2, x2).

Therefore, we have

|∂ν22 ∂
ν1
1 ψas0(x)| ≤

ν2∑
l=0

 ν2

l

 |s|ν2−l|∂ν1+ν2−l
1 ∂l2ψa00(x1 + sx2, x2)|

≤
ν2∑
l=0

 ν2

l

 |s|ν2−l Ca−3/4−ν1−ν2+l− l
2

1 + ‖D1/a(x1 + sx2, x2)T‖2k

=
Ca−3/4−ν1−ν2

1 + ‖D1/ax‖2k
ν2∑
l=0

 vν

l

 |s|ν2−la l2
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=
Ca−3/4−ν1−ν2(

√
a+ |s|)ν2

1 + ‖D1/ax‖2k

=
Ca−3/4−|ν1|(

√
a+ |s|)ν2

1 + ‖D1/ax‖2k
.

It is clear that all above hold also for a general t because translation does not

change regularity properties.



CHAPTER III

LINEAR SINGULARITIES AND DECAY OF TRANSFORMS

In this chapter, we show a relationship between linear singularities of bivariate

function and decay rates of its continuous curvelet transform (and continuous

shearlet transform).

Continuous Curvelet Transform

Theorem 3.1 (Sampo and Sumetkijakan(2009)). If a bounded function f ∈ Cα(R2),

then there exist a constant C and a fixed coarsest scale a0 for which

|〈γabθ, f〉| ≤ Caα+ 3
4

for all 0 < a < a0, b ∈ R2 and θ ∈ [0, 2π).

Pointwise Hölder regularity estimates are harder to obtain than those for

uniform regularity. The following theorem gives decay of curvelet transform

for pointwise Hölder regularity.

Theorem 3.2 (Sampo and Sumetkijakan(2009)). Let f ∈ Cα(u) then there exists

C <∞ such that

|〈γabθ, f〉| ≤ Ca
α
2
+ 3

2 (1 + ‖b− u
a1/2

‖)α

for all 0 < a < a0, b ∈ R2 and θ ∈ [0, 2π).



19

Next, the following theorem be the case of directional Hölder regularities

and decay of its.

Theorem 3.3 (Sampo and Sumetkijakan(2009)). Let f be bounded with local

Hölder exponent α ∈ (0, 1] at points u and f ∈ C2α+1+ε(R2, vθ) for some θ0 ∈

[0, 2π) with any fixed ε > 0. Then there exist α′ ∈ [α − ε, α] and A,C < ∞ such

that for a > 0 and b ∈ R2,

|〈γabθ, f〉| ≤


Caα+ 5

4 , if θ /∈ θ0 + Aa1/2[−1, 1],

Caα
′
+ 3

4 (1 + ‖ b−u
a
‖α
′
), if θ /∈ θ0 + Aa1/2[−1, 1].

Continuous Shearlet Transform

In the following, we will examine the behavior of the continuous shearlet

transform of several distributions containing different types of singularities.

This will be useful to illustrate the basic properties of the shearlet transform,

before stating a more general result in the next section. Indeed, the rate of decay

of the continuous shearlet transform exactly describes the location and orienta-

tion of the singularities. Interestingly, despite the different mathematical struc-

ture, the decay rates found for the continuous shearlet transform are consistent

with those found using the continuous curvelet transform in by Candes and

Donoho(2005).

In order to state our results, let us recall computations of decay rates of the

continuous shearlet transform of some distributions with point and linear sin-

gularities by Kutyniok and Labate(2009). They extended the definition of con-

tinuous shearlet transforms to the tempered distributions, so that it is defined
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for the Dirac δ and the linear delta distribution νp(x1, x2) = δ(x1 + px2), p ∈ R.

They showed that

for t = 0, SHψδ(a, s, t) ∼ a−
3
4 as a→ 0

and for t 6= 0,

SHψδ(a, s, t) decays repidly as a→ 0.

And if t1 = −pt2 and s = p, we have

SHψνp(a, s, t) ∼ a−
1
4 as a→ 0.

In all other cases, SHψνp(a, s, t) decays rapidly as a→ 0.

For f be a distribution on R2,SHψf(a, s, t) be defined as in Definition 1.7, and

let r ∈ R. Then SHψf(a, s, t) decays rapidly as a→ 0, if

SHψf(a, s, t) = O(ak) as a→ 0 for every k ≥ 0.

We use the notation: SHψf(a, s, t) ∼ ar as a→ 0, if there exist constants 0 < α ≤

β <∞ such that

αar ≤ SHψf(a, s, t) ≤ βar as a→ 0.

The following theorem gives decay of shearlet transforms for Hölder regu-

larity.

Theorem 3.4 (Lakhonchai et al.(2010)). If a bounded function f ∈ Cα(R2), then

there exists a constant C such that

|〈ψast, f〉| ≤ Caα+ 3
4

for all 0 < a < 1, s ∈ [−2, 2] and t ∈ R2.
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Proof. Since uniform regularity is translation invariant, we can without loss of

generality assume that t = 0. By assumption f ∈ Cα(R2), there exists a constant

C > 0 such that for each x ∈ R, there exists a polynomial PBs(0,x2)T such that for

all x1 ∈ R,

|f(Bsx)− PBs(0,x2)T (Bsx−Bs(0, x2)
T )| ≤ C‖Bsx−Bs(0, x2)

T‖α

≤ C‖Bs(x1, 0)T‖α

≤ Cc(s)α‖(x1, 0)‖α = C|x1|α,

when c(s) = ‖Bs‖op =
(
a+ s2/2 + (s2 + s4/4)1/2

)1/2 ≤ √3 +
√

8 = 1 +
√

2 (By

Lakhonchai, Sampo, Sumetkijakan (2010)). By the rapid decay of shearlets ψast

the integral

∫
R2

∫
R2

|PBs(0,x2)T (Bsx−Bs(x1, 0)T )ψa00(x1, x2)|dx1dx2 <∞

So by the assumption that ψa00 has vanishing directional moments of any order

along the x1 - axis for a ∈ (0, 1) and Fubini’s theorem, we have

∫
R2

∫
R2

|PBs(0,x2)T (Bsx−Bs(x1, 0)T )ψa00(x1, x2)|dx1dx2

=

∫
R2

(∫
R2

|PBs(0,x2)T (Bsx−Bs(x1, 0)T )ψa00(x1, x2)|dx1

)
dx2

=

∫
R

0dx2 = 0.

Therefore

|〈ψas0f〉| =
∣∣∣∣∫

R2

f(Bsx)− PBs(0,x2)T (Bsx−Bs(x1, 0)T )ψa00(x)dx

∣∣∣∣
≤
∫

R2

|f(Bsx)− PBs(0,x2)T (Bsx−Bs(x1, 0)T )||ψa00(x)|dx



22

≤ C

∫
R2

|x1|α
∣∣∣∣ a−3/4

1 + ‖D1/ax‖2N

∣∣∣∣ dx
= C

∫
R2

|ay1|α
∣∣∣∣ a−3/4

1 + ‖y‖2N

∣∣∣∣ dx
≤ Caα+3/4.

Next, a function is a pointwise regularity estimates on the shearlet transform.

Theorem 3.5 (Lakhonchai et al.(2010)). If a bounded function f ∈ Cα(u) then

there exists C <∞ such that

|〈ψast, f〉| ≤ Ca
α
2
+ 3

4 (1 + ‖t− u
a1/2
‖α)

for all 0 < a < 1, s ∈ [−2, 2] and t ∈ R2.

Proof. By definition, the polynomial approximation property holds only in some

neighborhood of point u but f is bounded and so this property holds in all R2.

Since ∫
R2

ψast(x)Pu(x− u)dx =

∫
R2

ψa00Pu(Bs(x− u) + t)dx = 0.

Therefore

|〈ψast, f〉| ≤
∫

R2

|ψast(x)||f(x)− Pu(x− u)|dx

≤ Ca−3/4

∫
R2

‖x− u‖α

1 + ‖D1/aB−s(x− t)‖2N
dx

≤ Ca−3/4+3/2

∫
R2

‖BsDay + t− u‖α

1 + ‖y‖2N
dy

≤ Ca3/4

∫
R2

‖BsDay‖α + ‖t− u‖α

1 + ‖y‖2N
dy
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= Ca3/4

∫
R2

c(s)αaα/2‖y‖α + ‖t− u‖α

1 + ‖y‖2N
dy

≤ Ca3/4+α/2

(
1 + ‖t− u

a1/2
‖α
)
,

since we can choose N as large enough so that the last integral is finite. We have

also used the fact that BsDa is a bounded linear operator with norm ‖BsDa‖ =

c(s)a1/2 and c(s) ≤ 1 +
√

2.

DIRECTION OF SINGULARITY

In the following theorems, for any givenL > 0, s0 ∈ [−2, 2] and u = (u1, u2) ∈

R2, let Γu denote the vertical line passing through u and let Γu,s0 denote the line

passing through u with slope − 1
s0

. Observe that we may write Γu = Γu,0 so that

(x1, x2) ∈ Γu,s0 if and only if x1 = −s0(x2 − u2) + u1. Recall that for a subset N

of R2, N(L) denotes the L-neighborhood of N , i.e. the set of all points whose

distance to N is less than L.

Theorem 3.6 (Lakhonchai et al.(2010)). Let f be bounded with f ∈ Cα(Γ(u1,0),R2; (1, 0))

when α ∈ (0, 1] and f ∈ C2α+1+ε(R2; (0, 1)) for any fixed ε > 0 and u1 ∈ R. Then

there exist C <∞ such that for 0 < a < 1, t = (t1, t2) ∈ R2, and s ∈ [−2, 2],

|〈ψast, f〉| ≤


Caα+ 5

4 , if |s| >
√
a,

Caα+ 3
4 (1 + | t1−u1

a
|)α, if |s| ≤

√
a.

Proof. For u1 ∈ R and |s| ≤
√
a, we have that

|〈ψastf〉| =
∣∣∣∣∫

R2

(f(x)− f(u1, x2))ψast(x)dx

∣∣∣∣
≤ C

∫
R2

|x1 − u1|α
(

a−3/4

1 + ‖D1/aB−s(x− t)‖2N

)
dx
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= C

∫
R2

|ay1 − s
√
ay2 + t1 − u1|α

(
a3/4

1 + ‖y‖2N

)
dy

≤ C

∫
R2

(|ay1|α + (|a||y2|)α + |t1 − u1|α)

(
a3/4

1 + ‖y‖2N

)
dy

= Caα+3/4

(
1 +

∣∣∣∣t1 − u1

a

∣∣∣∣α) .
Next, let |s| >

√
a. We denote the rectangle Ra := [−a−c, a−c]2 for some 0 <

c < 1/2, to be determined later. We notice that BsDaRa is sheared similar to

the essential support of ψast and Ra → R2 while BsDaRa → 0 when a → 0.

We will also use here the notation v(x) := (x1,
x1

|s|). Since the line x2 = x1

|s| is

parallel to major axis of BsDaRa, v(x) lies on major axis of BsDaRa and v(x)− x

is always parallel to x2 - axis. Let ht(y) := f(y + t). By assumption if f we have

ht ∈ C2α+1+ε(R2, (0, 1)).

|〈ψastf〉| = |〈ψas0, ht〉|

=

∣∣∣∣∫
R2

(ht(x)− Pv(x)(x− v(x)))ψas0(x)dx

∣∣∣∣
≤
∣∣∣∣∫

R2rBsDaRa
(ht(x)− Pv(x)(x− v(x)))ψas0(x)dx

∣∣∣∣
+

∣∣∣∣∫
BsDaRa

(ht(x)− Pv(x)(x− v(x)))ψas0(x)dx

∣∣∣∣ .
Since ht is bounded by M . So the first integral can be bounded by∣∣∣∣∫

R2rBsDaRa
(ht(x)− Pv(x)(x− v(x)))ψas0(x)dx

∣∣∣∣
≤ Ca−3/4

∫
R2rBsDaRa

|ht(x)− Pv(x)(x− v(x))|
1 + ‖D1/aB−sx‖2N

dx

≤ Ca3/4

∫
R2rRa

M + Py′(C
′‖y‖)

1 + ‖y‖2N
dy (for some C ′ > 0)

= Ca3/4+c(2N−1−degreePy′ )
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where y′ = v(BsDay). Since c is fixed, we can choose N such that 3/4 + c(2N −

1− degreePy′) as large as necessary.

Assume that f ∈ C2α+1+ε(R2, (0, 1)). Thus, for every y ∈ R2, there exists a

polynomial Py such that for x in a neighborhood of y such that (x− y)||(0, 1)

|f(x)− Py(x− y)| ≤ C‖x− y‖2α+1+ε

Since a is small enough, we can choose r > 0 with BsDaRa ⊂ B(0, r). Therefore,

for x ∈ BsDaRa, ‖x− v(x)‖ is less than the length l of the part of the line parallel

to the x2 - axis lying inside the rectangle BsDaRa. Observe that |l| ≤ 2a1/2−c,

hence

|f(x)− Pv(x)(x− v(x))| ≤ C‖x− v(x)‖2α+1+ε ≤ C|l|2α+1+ε ≤ Ca(1/2−c)(2α+1+ε)

Note that we can choose any c ∈ (0, 1/2) and hence for any small ε we can

choose c = ε
4α+2+2ε

. With this c, we obtain an estimate for the second integral∣∣∣∣∫
BsDaRa

(f(x)− Pv(x)(x− v(x)))ψas0(x)dx

∣∣∣∣
≤
∫
BsDaRa

|f(x)− Pv(x)(x− v(x)))||ψas0(x)|dx

≤ C

∫
BsDaRa

a(1/2−c)(2α+1+ε)a−3/4

1 + ‖D1/aB−sx‖2N
dx

≤ C

∫
Ra

a(1/2−c)(2α+1+ε)a3/4

1 + ‖y‖2N
dy

≤ Ca(2α+1+ε)(1/2−c)+3/4 ≤ Caα+5/4.

Theorem 3.7 (Lakhonchai et al.(2010)). Let u1 ∈ R and f be bounded with f ∈

Cα(Γ(u1,0),Γ(u1,0)(L); (1, 0)) when α ∈ (0, 1], L > 1 and f ∈ C2α+1+ε(Γ(u1,0)(L); (0, 1))
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for any fixed ε > 0 and u1 ∈ R. Then there exists C < ∞ is that, for 0 < a < 1

and a0 < 1, if 0 < a < a0 and t = (t1, t2) ∈ Γ(u1,0)(r) with r < L/2 and s ∈ [−2, 2],

we have

|〈ψast, f〉| ≤


Caα+ 5

4 , if |s| >
√
a,

Caα+ 3
4 (1 + | t1−u1

a
|)α, if |s| ≤

√
a.

Proof. We assume that u1 = 0, the general case follows by the simple translation.

Let |s| ≤
√
a. Since

|〈ψastf〉| =
∣∣∣∣∫

R2

(f(x)− f(0, x2))ψast(x)dx

∣∣∣∣
≤ C

∫
R2

|x1|α
(

a−3/4

1 + ‖D1/aB−s(x− t)‖2N

)
dx

= C

∫
R2

|ay1 − s
√
ay2 + t1|α

(
a3/4

1 + ‖y‖2N

)
dy

≤ C

∫
R2

(|ay1|α + (|a||y2|)α + |t1|α)

(
a3/4

1 + ‖y‖2N

)
dy

≤ C

∫
R2

((2a‖y‖)α + |t1|α)

(
a3/4

1 + ‖y‖2N

)
dy

= Caα+3/4

(
1 +

∣∣∣∣t1a
∣∣∣∣α) .

Next, let |s| >
√
a. We denote the rectangle Ra := [−a−c, a−c]2 for some 0 <

c < 1/2, to be determined later. We notice that BsDaRa is sheared similar to the

essential support of ψast and Ra → R2 while BsDaRa → 0 when a → 0. We will

also use here the notation v(x) := (x1,
x1

|s|). Since the line x2 = x1

|s| is parallel to

major axis of BsDaRa, v(x) lies on major axis of BsDaRa and v(x) − x is always

parallel to x2 - axis. Let t ∈ Γ(u1,0)(r) and ht(y) := f(y + t). By assumption of f

we have ht ∈ C2α+1+ε(Γ(u1,0)(r), (0, 1)) and ht is bounded.

|〈ψastf〉| = |〈a−3/4ψ(D1/aB−s(· − t)), f(·)〉|
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= |〈a−3/4ψ(D1/aB−s(·)), f(·+ t)〉|

= |〈a−3/4ψ(D1/aB−s(·)), ht(·)〉|

= |〈ψas0, ht〉|

=

∣∣∣∣∫
R2

(ht(x)− Pv(x)(x− v(x)))ψas0(x)dx

∣∣∣∣
≤
∣∣∣∣∫

R2rBsDaRa
(ht(x)− Pv(x)(x− v(x)))ψas0(x)dx

∣∣∣∣
+

∣∣∣∣∫
BsDaRa

(ht(x)− Pv(x)(x− v(x)))ψas0(x)dx

∣∣∣∣ .
By the proof of previous Theorem, we have that the first integral can be bounded

by ∣∣∣∣∫
R2rBsDaRa

(ht(x)− Pv(x)(x− v(x)))ψas0(x)dx

∣∣∣∣ ≤ CaK

where y′ = v(BsDaRay) and K can be chosen arbitrary large.

Let a0 < 1 be such that, for all 0 < a < a0 and s ∈ [−2, 2], BsDaRa ⊆ Γ(u1,0)(r) ⊆

Γ(u1,0)(L). Since ht ∈ C2α+1+ε(Γ(u1,0)(r), (0, 1)) i.e. for every y ∈ R2 there exists a

polynomial Py such that

|ht(x)− Py(x− y)| ≤ C‖x− y‖2α+1+ε , when (x− y)||(0, 1)

for all x in some neighborhood of y. Hence, for x ∈ BsDaRa, ‖x − v(x)‖ less

than the length l of the part of the line parallel to the x2 - axis lying inside the

rectangle BsDaRa is at most |l| ≤ Ca1/2−c and so

|ht(x)− Pv(x)(x− v(x))| ≤ C‖x− v(x)‖ ≤ C|l|2α+1+ε ≤ Ca(1/2−c)(2α+1+ε)

We can choose any c ∈ (0, 1/2) and hence for any small ε we can choose c =
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ε
4α+2+2ε

. With this c, we obtain an estimate for the second integral∣∣∣∣∫
BsDaRa

(f(x)− Pv(x)(x− v(x)))ψas0(x)dx

∣∣∣∣
≤
∫
BsDaRa

|f(x)− Pv(x)(x− v(x)))||ψas0(x)|dx

≤ C

∫
BsDaRa

a(1/2−c)(2α+1+ε)a−3/4

1 + ‖D1/aB−sx‖2N
dx

≤ C

∫
Ra

a(1/2−c)(2α+1+ε)a3/4

1 + ‖y‖2N
dy

≤ Ca(2α+1+ε)(1/2−c)+3/4 ≤ Caα+5/4.

Lemma 3.8 (Lakhonchai et al.(2010)). Let L > 0 and f be bounded with f ∈

Cα(Γu1,s0 ,R2; (1, 0)) for some s0 ∈ [−2, 2] and u = (u1, u2) ∈ R2. Then f ◦ Bs0 ∈

Cα(Γ(u1+s0u2,0),R2; (1, 0)).

Moreover, if f ∈ Cα(Γu1,s0 ,Γu1,s0(L); (1, 0)) for some s0 ∈ [−2, 2] and u =

(u1, u2) ∈ R2. then f ◦Bs0 ∈ Cα(Γ(u1+s0u2,0),Γ(u1+s0u2,0)(L); (1, 0))

Proof. Assume that f ∈ Cα(Γu1,s0 ,R2; (1, 0)). Then, for each x ∈ Γu1,s0 there

exists a polynomial Px and a constant C > 0 such that

|f(y)− Px(y − x)| ≤ C‖y − x‖α , when (y − x)||(1, 0).

We have that Bs0Γ(u1+s0u2,0) = Γu1,s0 and Bs0(1, 0) = (1, 0). Then, for x′ ∈

Γ(u1+s0u2,0) and y′ ∈ R2 with Bs0(y
′ − x′)||(1, 0). Therefore

|f ◦Bs0(y
′)− Px′ ◦Bs0(y

′ − x′)| ≤ C‖Bs0(y
′ − x′)‖α ≤ C‖y′ − x′‖α.

So we have that f ◦ Bs0 ∈ Cα(Γ(u1+s0u2,0), (1, 0)). The latter part of the Lemma

can be proved in a similar way.
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Lemma 3.9 (Lakhonchai et al.(2010)). Let f be bounded with f ∈ Cα(R2;Bs0(0, 1))

for some s0 ∈ [−2, 2]. Then f ◦Bs0 ∈ Cα(R2; (0, 1)).

Moreover, if f ∈ Cα(Γu,s0(L);Bs0(0, 1)) for some s0 ∈ [−2, 2] and u = (u1, u2) ∈

R2. then f ◦Bs0 ∈ Cα(Γ(u1+s0u2,0)(L); (0, 1)).

Proof. Assume f ∈ Cα(R2;Bs0(0, 1)). Then, for each y ∈ R2, there exist a poly-

nomial Py and constant C > 0 such that

|f(x)− Py(x− y)| ≤ C‖x− y‖α , when (x− y)||Bs0(0, 1).

Let (x− y)||(0, 1). For s0 ∈ [−2, 2], we have Bs0(x− y)||Bs0(0, 1). So

|f ◦Bs0(x)− Py ◦Bs0(x− y)| ≤ C‖Bs0(x− y)‖α ≤ C‖x− y‖α.

From this inequality we have f ◦ Bs0 ∈ Cα(R2; (0, 1)). The latter part of the

Lemma can be proved in a similar way.

Theorem 3.10 (Lakhonchai et al.(2010)). Let f be bounded with f ∈ Cα(Γu1,s0 ,R2; (1, 0))

when α ∈ (0, 1] and f ∈ C2α+1+ε(R2;Bs0(0, 1)) for some s0 ∈ [−2, 2] with any

fixed ε > 0 and u = (u1, u2) ∈ R2. Then there exists C < ∞ such that for

0 < a < 1, t = (t1, t2) ∈ R2 and s ∈ [−2, 2],

|〈ψast, f〉| ≤


Caα+ 5

4 , if |s− s0| >
√
a,

Caα+ 3
4

(
1 + |t1 + s0t2 − u1 − s0u2

a
|α
)
, if |s− s0| ≤

√
a.

Proof. Consider

〈ψast, f〉 = a−3/4〈ψ(D1/aB−s(· − t)), f(·)〉
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= a−3/4〈ψ(D1/aB−sBs0B−s0(· − t)), f(Bs0B−s0·)〉

= a−3/4〈ψ(D1/aB−sBs0(B−s0 · −B−s0t)), f(Bs0B−s0 ·)〉

= a−3/4〈ψ(D1/aB−sBs0(· −B−s0t)), f(Bs0 ·)〉

= a−3/4〈ψ(D1/aB−(s−s0)(· −B−s0t)), f(Bs0·)〉

= 〈ψa(s−s0)B−s0 t
, f ◦Bs0〉.

By the two previous Lemmas, f ◦ Bs0 ∈ Cα(Γ(u1+s0u2,0),R2; (1, 0)) and f ◦ Bs0 ∈

C2α+1+ε(R2; (0, 1)). Using Theorem 1.9 with above equation we have

|〈ψast, f〉| = 〈ψa(s−s0)B−s0 t
, f◦Bs0〉 ≤


Caα+ 5

4 if |s− s0| >
√
a,

Caα+ 3
4

(
a+

∣∣ t1+s0t2−u1−s0u2

a

∣∣α) if |s− s0| ≥
√
a.

Theorem 3.11 (Lakhonchai et al.(2010)). Let f be bounded with f ∈ Cα(Γ(u1,u2),s0 ,Γ(u1,u2),s0(L); (1, 0))

when α ∈ (0, 1], L > 1 and f ∈ C2α+1+ε(Γ(u1,u2),s0(L);Bs0(0, 1)) for some s0 ∈

[−2, 2] with any fixed ε > 0 and u = (u1, u2) ∈ R2. Then there exists C < ∞ is

that, for 0 < a < 1 and a0 < 1, if 0 < a < a0 and t = (t1, t2) ∈ Γu1,s0(r) with

r < L/2 and s ∈ [−2, 2], we have

|〈ψast, f〉| ≤


Caα+ 5

4 , if |s− s0| >
√
a,

Caα+ 3
4 (1 + | t1+s0t2−u1−s0u2

a
|α), if |s− s0| ≤

√
a.

Proof. By Lemma 3.8, Lemma 3.9 and the same way of the proof of theorem 3.10,

the proof is complete.

Theorem 3.10 says essentially that, a bounded function f has low regularity

on L in the horizontal direction (f ∈ Cα(Γu1,s0 ,R2; (1, 0)) is that the continuous
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shearlet transform 〈ψast, f〉 decays like aα+ 5
4 in directions away from the direc-

tion of L and that needed decay rate in directions near the line is half an order

lower and depends also on the horizontal distance from the line to the parallel

line containing the t. Theorem 3.11 can be considered as the same result with

weakened conditions where only regularity information on a neighborhood of

the singularity line is assumed.
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Figure 3.1: (a) An illustration of regularity in Theorem 3.6. (b) An illustration of

regularity in Theorem 3.10

Figure 3.2: (a) An illustration of regularity in Theorem 3.7. (b) An illustration of

regularity in Theorem 3.11



CHAPTER IV

LOCAL LINEAR SINGULARITIES AND DECAY OF THE

CONTINUOUS SHEARLET TRANSFORM

In this chapter, we will prove the main result that singularity on a line segment

of a function in a perpendicular direction is significantly lower than that in the

direction along the line in a neighborhood. These results are similar to those in

[10].

Notation of line segment

First, we give notations of a line segment and its neighborhood. Let s0 ∈ [−2, 2]

be given and P (u1, u2) and Q(v1, v2) be points in R2 for which the slope of line

segment PQ joining P and Q is − 1
s0

i.e v1−u1

v2−u2
= −s0. Observe that (x1, x2) ∈ PQ

if and only if x1 = −s0(x2−u2)+u1. For L > 0 and a vector (w1, w2)
T not parallel

to PQ, let PQ(L : (w1, w2)) denote the set of all points whose distance to PQ in

the direction (w1, w2)
T is less than L. It is easy to see that PQ(L : (w1, w2)) is the

interior of the parallelogram whose the four corners are (u1+mρ, u2+mρ) , (u1−

mρ, u2−mρ), (v1 +mρ, v2 +mρ) and (v1−mρ, v2−mρ) where ρ = L√
(w2/w1)2+1

and

m = w2

w1
. Note that such a parallelogram can be written as a shear (Bs0) of a corre-

sponding parallelogram whose vertices are P ′(u1 +s0u2, u2) andQ′(u1 +s0u2, v2)

that is Bs0P
′Q′(L′ : B−s0(1, s0)) = PQ(L : (1, s0)) where L′ = L

√
s40+3s30+1

s20+1
.
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Denote P ∗Q∗ ⊆ PQ where P ∗((u1 + (u1 + v1)/2)/2, (u2 + (u2 + v2)/2)/) and

Q∗((v1 +(u1 +v1)/2)/2, (v2 +(u2 +v2)/2)/2).DenoteD =
√

(u1 − v1)2 + (u2 − v2)2

and 0 < δ < 1, let P δQδ ⊆ PQ defined by P δ(u1 ± δDs0

2
√
s20+1

, u2 ± δD

2
√
s20+1

) and

Qδ(v1 ± δDs0

2
√
s20+1

, v2 ± δD

2
√
s20+1

) depend on P and Q.

Decay of the Continuous Shearlet Transform

Let us first consider the case where the line PQ is vertical (u1 = v1).

Theorem 4.1. Let 0 < α ≤ 1, 0 < δ < 1 and r ∈ [−2, 2]. Suppose f : R2 → R is

bounded and let P (u1, u2), Q(u1, v2) ∈ R2 and L > 0 be given.

1. If f ∈ Cα(PQ,PQ(L : (1, r)); (1, r)) then there exist a constant C < ∞

such that for all a ∈ (0, 1), t ∈ P δQδ((1 − δ)L : (1, r)) and s ∈ [−2, 2] if

|s+ 1/r| ≥
√
a and |s| ≤

√
a, then

|〈ψast, f〉| ≤ Ca3/4(aα + |t1 − u1|α)

2. If f ∈ C(1+ε)β(PQ(L : (1, r); (0, 1))) then there exists a constant C <∞ and

a fixed coarse scale a0 ∈ (0, 1) such that for all a ∈ (0, a0), t ∈ P ∗Q∗(L/2 :

(1, r)) and s ∈ [−2, 2] if |s| ≥
√
a, then

|〈ψast, f〉| ≤ Ca
β
2
+ 3

4

3. If f ∈ C(1+ε)β(PQ(L : (1, r); (0, 1))) and 0 < γ < ε
1+ε

< 1
2

then there exists

C < ∞ and a fixed coarse scale a0 ∈ (0, 1) such that for all a ∈ (0, a0),

t ∈ P ∗Q∗(L/2 : (1, r)) and s ∈ [−2, 2] if |s| ≥ aγ , then

|〈ψast, f〉| ≤ Caβ+ 3
4
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Proof. Let u1 ∈ R. For each (x1, x2) ∈ PQ(L : (1, r)) there exist y = (y1, y2) ∈ PQ

such that x2−y2
x1−y1 = r. In fact y = (u1, r(x1 − u1) + u2) and (x − y)//(1, r). Hence

there exists a polynomial Py = f(u1, r(x1 − u1) + x2) such that for all z ∈ R2 and

(z − y)//(1, r),

|f(z)− f(y)| ≤ C‖z − y‖α.

Since ψast has rapid decay (Lemma 1.11(1)), the integral

∫
R

∫
R
f(u1, r(x1 − u1) + x2)ψast(x1, x2)dx1dx2 <∞.

So we use Fubini’s theorem, letting p1 = (x1−u1)− rx2 and p2 = r(x1−u1) +x2.

Since |s + 1/r| ≥
√
a, Lemma 1.11(2) implies that ψast has vanishing directional

moment of any order along (1, r)T . So we have

∫
R

∫
R
f(u1, r(x1 − u1) + x2)ψast(x1, x2)dx1dx2

=

∫
R

∫
R
f(u1, p2)ψast

(
rp2 + p1

r2 + 1
+ u1,

p2 − rp1

−r2 + 1

) ∣∣∣∣∂(x1, x2)

∂(p1, p2)

∣∣∣∣ dp1dp2

=

∫
R

(∫
R
f(u1, p2)ψast

(
p1

(
1

r2 + 1
,

r

r2 + 1

)
+

(
rp2

r2 + 1
+ u1,

p2 + 2rp1

r2 + 1

)) ∣∣∣∣ 1

r2 + 1

∣∣∣∣) dp2

=

∫
R

0dp2 = 0.

Therefore we have that

|〈ψast, f〉| =
∣∣∣∣∫

R2

f(x)ψast(x)dx

∣∣∣∣
≤
∣∣∣∣∫

R2

(f(x)− f(u1, r(x1 − u1) + x2))ψast(x)dx

∣∣∣∣
+

∣∣∣∣∫
R2

f(u1, r(x1 − u1) + x2)ψast(x)dx

∣∣∣∣
=

∣∣∣∣∫
R2

(f(x)− f(r(x1 − u1) + x2))ψast(x)dx

∣∣∣∣+ 0
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=

∣∣∣∣∫
PQ(L:(1,r))

(f(x)− f(r(x1 − u1) + x2))ψast(x)dx

∣∣∣∣
+

∣∣∣∣∫
R2rPQ(L:(1,r))

(f(x)− f(r(x1 − u1) + x2))ψast(x)dx

∣∣∣∣
≡ Iin + Iout.

Consider Iin : By a change of variable y = D1/aB−s(x− t) in (3), the assumption

|s| ≤
√
a in (4) and the fact that (a+ b)α ≤ 2α(aα + bα) in (5), we have

Iin ≤
∫
PQ(L:(1,r))

|(f(x)− f(u1, r(x1 − u1) + x2)| |ψast(x)| dx

≤ C

∫
R2

‖(x1 − u1, r(x1 − u1))‖α
(

a
−3
4

1 + ‖D1/aB−s(x− t)‖2N

)
dx

= C‖(1, r)‖α
∫

R2

|x1 − u1|α
(

a
−3
4

1 + ‖D1/aB−s(x− t)‖2N

)
dx (3)

≤ Ca
3
4

∫
R2

∣∣ay1 − s
√
ay2 + t1 − u1

∣∣α( 1

1 + ‖y‖2N

)
dy (4)

≤ Ca
3
4

∫
R2

(a|y1|+ a|y2|+ |t1 − u1|)α
(

1

1 + ‖y‖2N

)
dy

≤ Ca
3
4

∫
R2

(a‖y‖+ a‖y‖+ |t1 − u1|)α
(

1

1 + ‖y‖2N

)
dy

≤ Ca
3
4

∫
R2

(2a‖y‖+ |t1 − u1|)α
(

1

1 + ‖y‖2N

)
dy (5)

≤ Ca
3
4

∫
R2

2α((2a‖y‖)α + |t1 − u1|α)

(
1

1 + ‖y‖2N

)
dy

= Ca
3
4

[
aα
∫

R2

2α‖y‖α

1 + ‖y‖2N
dy + |t1 − u1|α

∫
R2

1

1 + ‖y‖2N
dy

]
≤ Ca

3
4 [Caα + C|t1 − u1|α]

≤ Ca
3
4 (aα + |t1 − u1|α) .

Consider Iout : Since f is bounded and decay properties of ψast (Lemma 1.11(2)),

we have
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Iout <

∣∣∣∣∫
R2rPQ(L:(1,r))

(f(x)− f(u1, r(x1 − u1) + x2)ψast(x)dx

∣∣∣∣
≤ C

∫
|x1−u1|≥L or r(x1−u1)+u2>x2 or x2>r(x1−u1)+v2

a
−3
4

1 + ||D1/aB−s(x− t)||2N
dx.

By a change of variable y = D1/aB−s(x− t), so x = BsDay+ t and dy = a−
3
2dx so

Iout ≤Ca
3
4

∫
|ay1+s

√
ay2+t1−u1|≥L or r(x1−u1)+u2>

√
ay2+t2 or

√
ay2+t2>r(x1−u1)+v2

1

1 + ||y||2N
dy.

Since s <
√
a,a <

√
a, |t1− u1| < (1− δ)L and r(x1− u1) + u2− δ(v2− u2) < t2 <

r(x1 − u1) + v2 − δ(v2 − u2)

Iout ≤ Ca
3
4

∫
|ay1+ay2|≥δL or δ(v2−u2)≤ray1+(r−1)ay2 or (r+1)ay2−ray1≥δ(v2−u2)

1

1 + ||y||2N
dy

By another change of variable z = ay, so y = a−1z and dz = ady. Denote

A := {(z1, z2) : |z1 + z2| ≥ δL or δ(v2 − u2) ≤ rz1 + (r − 1)z2 or (r + 1)z2 − rz1 ≥ δ(v2 − u2)}

Iout ≤ Ca
3
4

∫
A

a−1

1 + || z
a
||2N

dz

≤ Ca
3
4

∫
A

a2N−1

a2N + ||z||2N
dz

≤ Ca2N−1+ 3
4

∫
A

1

a2N + ||z||2N
dz

≤ Ca2N−1+ 3
4

∫
A

1

||z||2N
dz

≤ Ca2N−1+ 3
4

We just choose N as large that the integral is finite.

To prove supposition 2,3 we assume without loss of generality that u1 = 0.

Let c ∈ (0, 1/2) to be chosen later depending on which statement we want to

prove and Ra = [−a−c, a−c]2, then DaRa = [−a1−c, a1−c] × [−a 1
2
−c, a

1
2
−c], and
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hence BsDaRa −→ {0} while Ra −→ R2 as a −→ 0+. We notice that BsDaRa

is sheared similarly to essential support of ψast, let vx = (x1,
x1

−s) so x − vx =

(0, x2 + x1

s
). For w ∈ R, denote lw = {(w, x2) : x2 ∈ R2}. For each x ∈ BsDaRa =

Bs

(
[−a1−c, a1−c]× [−a1/2−c, a1/2−c]

)
, x ∈ Bslw1 where |w1| ≤ a1−c. Therefore ‖x−

vx‖ =
∣∣x2 + x1

s

∣∣ =
∣∣w1

s

∣∣ ≤ a1−c

s
.

Let AB be such that for each t ∈ P ∗Q∗(L/2 : (1, r)), (AB + t)(L/2 : (1, r)) ⊆

P ∗Q∗(L/2 : (1, r)). Choosing a0 < 1 be such that for all 0 < a < a0 and s ∈

[−2, 2], BsDaRa ⊆ A∗B∗(L/2 : (1, r)). Let t ∈ P ∗Q∗(L/2 : (1, r)) and denote

ht(x) = f(x + t). Then ht ∈ C(1+ε)β(AB(L/2 : (1, r))). Hence, for each x ∈

BsDaRa ⊆ A∗B∗(L/2 : (1, r)) and |s| ≥
√
a, |x1| ≤ |a1−c + sa1/2−c| so

∣∣ x1

−s

∣∣ ≤
a1−c

s
+a1/2−c ≤ 2a1/2−c. Therefore vx ∈ AB(L/2 : (1, r)), there exists a polynomial

Pvx of a degree less than (1 + ε)β such that

|ht(x)− Pvx(x− vx)| ≤ C‖(x− vx)‖(1+ε)β ≤ Ca(1−c)(1+ε)β.
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Figure 4.1: A picture of parallelogram involved in the proof of Theorem 4.1(2).
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If |s| ≥
√
a, choosing c = ε

2(1+ε)
, we have |f(x+ t)− Pvx((x− vx)| ≤ Caβ/2.

While if |s| ≥ aγ then |f(x+ t)− Pvx((x− vx)| ≤ Ca(1−c−γ)(1+ε)β . Choosing c =

ε
1+ε
− γ, so |f(x+ t)− Pvx((x− vx)| ≤ Caβ . Consider

|〈ψast, f〉| = |〈ψas0, ht〉|

≤
∣∣∣∣∫

R2

ht(x)ψas0(x)dx

∣∣∣∣
≤
∣∣∣∣∫

R2

(ht(x)− Pvx(x− vx))ψas0(x)dx

∣∣∣∣
≤
∣∣∣∣∫

R2rBsDaRa
(ht(x)− Pvx(x− vx))ψas0(x)dx

∣∣∣∣
+

∣∣∣∣∫
BsDaRa

(f(x+ t)− Pvx(x− vx))ψas0(x)dx

∣∣∣∣
This inequality on BsDaRa for |s| ≥ aγ yields the estimate,∣∣∣∣∫
BsDaRa

(f(x+ t)− Pvx(x− vx))ψas0(x)dx

∣∣∣∣ ≤ C

∫
BsDaRa

(
aβ−

3
4

1 + ‖D1/aB−sx‖2N

)
dx

= Caβ+ 3
4

∫
Ra

1

1 + ‖y‖2N
dy

≤ Caβ+ 3
4 ,

If we only assume |s| ≥
√
a, similar we have∣∣∣∣∫

BsDaRa

(f(x+ t)− Pvx(x− vx))ψas0(x)dx

∣∣∣∣ ≤ Ca
β
2
+ 3

4 .

Next, we will bound the integral on R2 r BsDaRa. By the decay estimate of

ψas0 from Lemma 1.11(2) and change of variable x = BsDaRay, if M is an upper

bound of |f(·+ t)| ,∣∣∣∣∫
R2rBsDaRa

(ht(x)− Pvx(x− vx))ψas0(x)dx

∣∣∣∣ ≤ Ca
−3
4

∫
R2rBsDaRa

|ht(x)− Pvx(x)|
1 + ‖D1/aB−sx+ t‖2N

dx

≤ Ca
3
4

∫
R2rRa

M + Py′(C
′‖y‖)

1 + ‖y‖2N
dy (for some C ′ > 0)
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≤ Ca
3
4

∫
‖z‖>1

M + Py′(C
′a−c‖z‖)

1 + ‖z‖2N
a−cdz

≤ Ca
3
4

∫
‖z‖>1

C ′(a−c‖z‖)degPy′

1 + ‖a−cz‖2N
a−cdz

≤ Ca
3
4
+c(−1−degPy′ )

∫
‖z‖>1

C ′(‖z‖)degPy′

1 + ‖a−cz‖2N
dz

= Ca
3
4
+c(2N−1−degPy′ )

∫
‖z‖>1

(‖z‖)degPy′

ac(2N) + ‖z‖2N
dz

≤ Ca
3
4
+c(2N−1−degPy′ )

∫
‖z‖>1

‖z‖degPy′−2Ndz

= Ca
3
4
+c(2N−1−degPy′ )

= CaK

where y′ = vBsDay and K can be chosen arbitrary large as c is fixed and N is

arbitrary.

The following Lemma extends Lemma 5.1 in Lakhonchai, Sampo and Sumetk-

ijakan(2010).

Lemma 4.2. Let 0 < α ≤ 1, P (u1, u2), Q(v1, v2) ∈ R2, L > 0 and f : R2 → R be a

bounded function.

• If f ∈ Cα(PQ,PQ(L : (1, s0)); (1, s0)) then f ◦ Bs0 ∈ Cα(P ′Q′, P ′Q′(L′ :

B−s0(1, s0));B−s0(1, s0)).

• If f ∈ Cα(PQ(L : (1, s0)); (−s0, 1)) then f◦Bs0 ∈ Cα(P ′Q′(L′ : B−s0(1, s0)); (0, 1)).

Proof. Assume f ∈ Cα(PQ,PQ(L : (1, s0)); (1, s0)), so there exist C > 0 such

that for each y ∈ PQ there is a polynomial Py degree less than α ,

|f(x)− Py(x− y)| ≤ C‖x− y‖α
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for all x ∈ PQ(L : (1, s0)) and (x − y)T//(1, s0)
T . Since Bs0P

′Q′ = PQ, for

each y′ ∈ P ′Q′ we have Bs0y
′ ∈ PQ. there exists a polynomial Py′ such that for

all x ∈ P ′Q′(L′ : B−s0(1, s0)) and Bs0x
′ − Bs0y

′ = Bs0(x
′ − y′)T//(1, s0)

T that is

(x′ − y′)T//B−s0(1, s0)
T we obtain

|f ◦Bs0(x
′)− PBs0y′(x

′ − y′)| ≤ C‖Bs0(x
′ − y′)‖α

≤ C‖Bs0‖αop(x′ − y′)‖α

≤ C‖(x′ − y′)‖α,

where ‖Bs0‖op =
(
1 + s2/2 + (s2 + s4/4)1/2

)1/2 ≤ √3 +
√

8 = 1 +
√

2 (See Ku-

tyniok, Labate( 2009)). Next, sinceBs0(0, 1) = (−s0, 1) so we prove similarly.

The following Theorem generalized Theorem 4.1 to the case with a sheared

singularity line segment.

Theorem 4.3. Let 0 < α ≤ 1 and 0 < δ < 1. Suppose f : R2 → R is a bounded

and let P (u1, u2), Q(v1, v2) ∈ R2 and L > 0 be given.

• If f ∈ Cα(PQ,PQ(L : (1, s0)); (1, s0)) then there exist a constant C < ∞

such that for all a ∈ (0, 1), t ∈ P δQδ((1 − δ)L : (1, r)) and s ∈ [−2, 2] if

|s− s0| ≤
√
a, then

|〈ψast, f〉| ≤ Ca3/4(aα + |t1 + s0t2 − u1 − s0u2|α)

• If f ∈ C(1+ε)β(PQ(L : (1, s0); (−s0, 1))) and 0 < γ < ε
1+ε

< 1
2

then there

exists C <∞ and a fixed coarse scale a0 ∈ (0, 1) such that for all a ∈ (0, a0),
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t ∈ P ∗Q∗(L/2 : (1, s0)) and s ∈ [−2, 2] ,

|〈ψast, f〉| ≤


Ca

β
2
+ 3

4 if |s− s0| ≥
√
a

Caβ+ 3
4 if |s− s0| ≥ aγ.

Proof. Since Bs0P
′Q′(L′ : B−s0(1, s0)) = PQ(L : (1, s0)). It is easy to see that

|〈ψast, f〉| = |〈ψa(s−s0)B−s0 t
, f ◦ Bs0〉| and using Lemma 4.2, we have f ◦ Bs0 ∈

Cα(P ′Q′, P ′Q′(L′ : B−s0(1, s0));B−s0(1, s0)).Since t ∈ P δQδ((1 − δ)L : (1, s0)), so

B−s0t ∈ (P δ)′(Qδ)′(((1−δ)L)′ : B−s0(1, s0)). ConsiderB−s0(1, s0) = (1+s2
0, s0) we

see that |(s − s0) +
1+s20
s0
| = |s + 1

s0
|. Next, we will show that for each s ∈ [−2, 2]

if |s − s0| ≤
√
a then |s + 1

s0
| ≥

√
a. In case s0 = 0, trivially. For s0 > 0,

since (s0 − 1)2 ≥ 0 we have s0 + 1
s0
≥ 2. Since 0 < a ≤ 1, s0 + 1

s0
≥ 2
√
a. So

− 1
s0

+
√
a ≤ s0 −

√
a. While if s0 < 0, Let m = −s0 > 0 by above case we got

1
m

+
√
a ≤ −t−

√
a then 1

s0
+
√
a ≥ −s0 +

√
a. So clearly on the real line we have

that |s+ 1
s0
| ≥
√
a. So by Theorem 6 we have,

|〈ψast, f〉| = |〈ψa(s−s0)B−s0 t
, f ◦Bs0〉| ≤ Ca3/4(aα + |t1 + s0t2 − u1 − s0u2|α).

Supposition 2 we prove similarly.

As a result of theorem, we model a linear singularity situation.

Corollary 4.4. Let 0 < α ≤ 1, P (u1, u2), Q(v1, v2) ∈ R2, s0 ∈ [−2, 2] and 0 < γ <

ε
1+ε

< 1
2
. Suppose f : R2 → R is a bounded in Cα(PQ,PQ(L : (1, s0)); (1, s0)),

CN(PQ(L : (1, s0)) r PQ; (1, s0)) and C(1+ε)N(PQ(L : (−s0, 1)) r PQ; (−s0, 1))

for some L > 0. Then there is a constant C < ∞ and a0 < 1 such that for all
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a ∈ (0, a0), t ∈ P ∗Q∗(L/2 : (1, s0)) and s ∈ [−2, 2],

|〈ψast, f〉| ≤



Caα+ 3
4 if s = s0 and t ∈ P ∗Q∗

CaN+ 3
4 if s = s0 and t /∈ P ∗Q∗

CaN+ 3
4 if |s− s0| ≥ aγ.

Consequently, for s = s0 and t ∈ P ∗Q∗, |〈ψast, f〉| = O(aα+3/4) as a → 0+ for all

other cases |〈ψast, f〉| = O(aN+3/4) as a→ 0+.

Proof. Let t ∈ PQ(L : (1, s0)). If s = s0 and t is on the line P ∗Q∗ then |s − s0| =

0 ≤
√
a and s0(t2 − u2) + (t1 − u1) = 0. So Theorem 4.3 gives |〈ψast, f〉| ≤ Caα+ 3

4

for all 0 < a ≤ 1.

Let s = s0 and t /∈ P ∗Q∗. In light of Theorem 4.3 on the line P ∗Q∗, the

assumption that f ∈ CN(PQ(L : (1, s0)) r PQ; (1, s0)) implies that |〈ψast, f〉| ≤

CaN+ 3
4 for all 0 < a ≤ 1.

If |s−s0| ≥ aγ then, by Theorem 4.3, |〈ψast, f〉| ≤ CaN+ 3
4 for all 0 < a ≤ a0.
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Figure 4.2: An illustration of a vertical line segment singularity in Theorem 4.1.

(a): directional Hölder regularity of function. (b): decay rate of the continu-

ous shearlet transform in a direction (1, r)T . (c): decay rate of the continuous

shearlet transform in a direction (0, 1)T .



46

Figure 4.3: An illustration of a sheared line segment singularity in Theorem 4.3.

(a): directional Hölder regularity of function. (b): decay rate of the continu-

ous shearlet transform in a direction (1, s0)
T . (c): decay rate of the continuous

shearlet transform in a direction (−s0, 1)T .
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