[acs & 1 o o ¢ A o [y
nsnanWsulsauuinaanasuyanasmugUnioiinfoudeld

WIURAND 5330

InpfinnsidudruniisnasnsfneaunangasUsygineimaa suntmdia
§VITINYIFEA TAaNAILADT NMAITIAINTINABNAIGDT
AMAAINTINANFAT PRININIIWWIINE G Y

Jn1sdnun 2554

uwﬁmﬂ'@LL@zLLﬁwﬁmﬂmﬁuLﬁmm@ﬁﬁ@%ﬂ%@ﬂ&ﬂm%%g?gﬁﬁ%ﬂ%ﬂﬁﬂumﬁqﬁtyzywﬂw (CUIR)

Wuundeyaestdndaeana Bnusnasi w1 ugsananae
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

DEVELOPMENT OF PERSONAL CLOUD FILE SYSTEM FRAMEWORK FOR PORTABLE DEVICES

Mr.Smith Dhumbumroong

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2011

Copyright of Chulalongkorn University

Thesis Title DEVELOPMENT OF PERSONAL CLOUD FILE SYSTEM FRAME-
WORK FOR PORTABLE DEVICES

By Mr.Smith Dhumbumroong
Field of Study Computer Science
Thesis Advisor Assistant Professor Krerk Piromsopa, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of

the Requirements for the Master’s Degree

............................. Dean of the Faculty of Engineering

(Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

THESIS COMMITTEE

............................. Chairman

(Assistant Professor Natawut Nupairoj, Ph.D.)

............................. Thesis Advisor
(Assistant Professor Krerk Piromsopa, Ph.D.)

............................. Examiner

(Assistant Professor Kultida Rojviboonchai, Ph.D.)

............................. External Examiner

(Pongtawat Chippimolchai, Ph.D.)

iv

a & 0 [acs &1 o @ ¢ A
gANT 533019 MRawINITATTuULANAaNasIuyaaad I TugUn IolARan
el (DEVELOPMENT OF PERSONAL CLOUD FILE SYSTEM FRAMEWORK
FOR PORTABLE DEVICES) 0. AN AN BnRuinan ; weas.nsn Asudlann,

89 M.

IWATB A TIIERa W TSR TP UAN AR IUYANR LAt QAN LAKYDS

wauisasuuuiuaandamyanasg insiisueududaya (file) 6199 ladnazduuiy

'
= 1

o A A ¢ A a) 'Y & A Yy o A
°llauﬂaﬂﬂﬂﬂ’]ﬂlulﬂiaﬂﬂa&lwqL@]ail’ﬂiaﬂt@] Ujﬂ%LL@WﬂGIWGL@ai (folder) I8 LLV\INTQN“QVIE]E]

U

]
A

Tushaaas ludnsmeidlfnuiuanfuadaniiuiudayamariiivag masuluangd
Woud (mount point) a9 sNIA T TzuDURNAsNAEIwYAna LagWsuidTassuuuiunae
fuyaas ladnsldnafinaesszuuuiudayaydw (unification file system) \afiazvine
Huuiladayafiagludnlnamasidrdaiu uenaniilsudsaszuuuiiunandaiuyana
gneanuuuun iaiusuuwnsisutuuuanais (disconnected operation) lagszuyuazyil
nsuas (cache) Mg nfivliieldnulugisiadadng (network) [ewldlalossaluda
snndasnysnvsansuisaszuyuiluaandsiuyaasdansueiduluunagais (modular)
snInfiezlfunldsumshasasisanuaunanliiuszunldimunis 10 Module wan
mﬂﬁw\liuLﬁ%ﬂs:uuLLﬂuﬂanﬁdauqﬂﬂaﬂ’avlé?ﬁmmﬁuﬂa"l,ﬂﬁﬁ%a'ﬁ’l Branch Tag G4.iu

naknAvi A lFvnusn1safiazszyuiudayauszlwainasidasnisnazldwlalasase

'
= [}

Al mgssu1snfiagld Branch Tag tWausaududayafignizuusauszninguuaauniy

oA v Y acs 9 &1 A
Tulnaeesladnale szuuduuu (prototype) BastsuIsaTzuULANAIAEIMYAAST
%a1 Simple Protocol Agnostic File System 2 (SPAFS2) ladgnwaimanunszuudjia
N38UNG (Linux) KAIINNIINAFIUNITVININDBIFTUUABUULTIAAUIITZUUAUILUU DD
wanddaszuuuiuasnaavyaaanndlszantamlunmsdswfeuiriuszlworensd
Aigandrszuuudu (file system) due NgUaNTALIzANNTUTaURDENIITEULAULLLDY

8

a6 61
RUBHY L?ﬁﬂSZUULL‘WNﬂL‘H'}@ﬁ'}%uﬂﬂ

M3 Sainstuaaufaas AYNTaRFN

5170487021: MAJOR COMPUTER SCIENCE
KEYWORDS: DISTRIBUTED FILE SYSTEMS / PORTABLE DEVICES / DISCONNECTED
OPERATION / FILE ORGANIZATION
SMITH DHUMBUMROONG : DEVELOPMENT OF PERSONAL CLOUD FILE SYS-
TEM FRAMEWORK FOR PORTABLE DEVICES. ADVISOR : ASST.PROF. KRERK

PIROMSOPA, 89 pp.

This work describes Personal Cloud File System Framework, a modular userspace file sys-
tem framework for accessing and manipulating data on multiple personal computers and portable
devices. One of Personal Cloud File System Framework’s unique characteristic that distinguishes
it from other distributed file systems is the way it presents local and remote files and folders to
the user. Personal Cloud File System Framework uses mechanisms similar to those employed
by various unification file systems to present a virtually unified view of remote files and folders
to the user. From the user’s perspective, both local and remote files and folders from different
machines appear as if they reside together locally in the Personal Cloud File System Framework’s
mount point. Personal Cloud File System Framework is also designed to support disconnected
operation. When used, files are cached for offline usage automatically. When the cache is full,
Personal Cloud File System Framework discards files using a replacement policy specified by the
user. Personal Cloud File System Framework also implements Branch Tag, an extension of the
fundamental concepts of unification file systems that enables the user to directly specify a file to
operate on using the branch’s name as well as shows files and folders that have been hidden by
the framework during the process of unifying contents of multiple directories. Also, the modular
nature of Personal Cloud File System Framework makes it trivial to modify or extend the frame-
work via IO Module. Simple Protocol Agnostic File System 2 (SPAFS2), a prototype of Personal
Cloud File System Framework, have been implemented on Linux operating system and prelimi-
nary benchmark results have shown that the prototype’s performance is equal to and in some cases

surpass other file systems that are less complex and have less features than SPAFS2.

Department: Computer Engineering Student’s Signature

Field of Study: Computer Science Advisor’s Signature

Acknowledgements

This dissertation would not have been completed without the help of many people to whom

I am forever indebted.

First and foremost, I would like to express my deepest gratitude to my advisor, Dr. Krerk
Piromsopa, who provided invaluable guidance and assistance throughout my time as a student at
Chulalongkorn University. Dr. Krerk was always available and willing to help with any problem

I was facing.

I would also like to express my utmost gratitude to my thesis committee: Dr. Natawut
Nupairoj, Dr. Kultida Rojviboonchai, and last but not least Dr. Pongtawat Chippimolchai. They
provided essential guidance, especially in finishing my dissertation, and their invaluable com-

ments, suggestions, and criticisms improved the quality of my dissertation immensely.

During my time at Chulalongkorn University, I have been very fortunate to enjoy the advise,

support, and encouragement of my friends and colleagues. Thank you all, my friends.

Finally, I would like to thank my father and mother who always believed in me. I could not

have done it without their support.

Contents

Page

Abstract (Thai) e iv

Abstract (English) \%

Acknowledgements vi

Contents vii

Listof Tables X

Listof Figures e xi
Chapter

1 Imtroduction 1

1.1 Rational Behindthe Name 2

1.2 Problem Statement e e 2

1.3 Objectives v v e e 3

14 SCOPES . . o o e e e e e 3

1.5 Organization of the Dissertation 3

2 Related Work e 4

2.1 Distributed File Systems oo o Lo 4

2.1.1 Sun’s Network File System 4

2.1.2 Andrew File System -~~~ .. L L 5

213 Coda WM-FTmm—M 5

2.14 SSHFS. ... 3WilaNflatkdwldngilas 6

2.1.5 YaFS UHULALUNGRURN UNIVEROLIY 6

2.1.6 SSHFES-MUX 6

2.2 Unification File Systems 7

2.2.1 Fundamental Concepts of Unification File Systems 7

2211 Branch 7

2.2.1.2 Whiteout and Opaque Directory 8

2213 CopyUp. . o oo 8

2.2.2 Plan9’s Union Directory 8

2.2.3 44BSD-Lite’sUnionMount 9

224 Unionfs L 9

2.3 SUmMMArY o e e e e e e 10

3 Design e 11

Chapter

3.1 Design’sGoals
3.2 High-level Overview
3.3 System’s COMPONENLS v v v vt e e e e e e e e e e
33.1 Interface
3.3.2 ListManagement
3.3.3 Cache Management
3.4 How the Framework Handles Duplicate Files or Folders
3.5 How the Framework Handles Modification to Read-Only Branches
3.5.1 Delete Files or Folders Inside Read-Only Branch.
3.5.2 Modify Files or Folders Inside Read-Only Branch
3.6 BranchTag e

37 SUMMATY . . . o e e e e e e e e e e

4 TImplementation0 L e
4.1 Simple Protocol Agnostic File System 2 (SPAFS2)
4.1.1 Interface oL 0 e

4.1.2 ListManagement oot v e e e e e e

413 IOModule oo

4.2 How Simple Protocol Agnostic File System 2 Parses Branch’s List

4.3 Resolving Conflict and Maintain Namespace Consistency

4.4 How Simple Protocol Agnostic File System 2 Conducts Files and Folders Lookup

4.5 How Simple Protocol Agnostic File System 2 Implements Branch Tag

4.6 Simple Protocol Agnostic File System 2’s Limitation

4.7 Attempts at Implementing a Functional Cache Management Component in Sim-

ple Protocol Agnostic File System 2

4.8 Summary e e e

5 Performance Evaluation
5.1 Experimental Setup
5.2 Benchmark Tool e

5.3 Resultsand Analysis

5.3.1 Benchmark Results and Analysis of SPAFS2’s Local Disk I0 Module

Performance e

viii

ix

Chapter Page
5.3.2 Benchmark Results and Analysis of SPAFS2’s SSH Network 10 Module

Performance 35

54 SUMMAry o ot e e e e e e e e e e 36

6 Conclusion 39

6.1 Contributions e e 40

6.2 Future Works e 41

Appendix e e 46

Appendix A Evolution of Personal Cloud File System Framework’s Prototypes . . . 46

A.l DummyFS e 46

A2 SPAFS . . o 46

A3 PyUnionFS o 50

A4 PySSHES . . o e e 51

AS Summary ... L e e 51

Appendix B DummyFS’s Source Code 52

B.1 DummyFS’s Main Program 52

Appendix C SPAFS’sSource Code 55

C.1 SPAFS’sMainProgram - . .~ .. L 55

C.2 SPAFS’s List Management Module 58

Appendix D PyUnionFS’s Source Code 61

D.1 PyUnionFS’s Main Program 61

Appendix E PySSHFS’s Source Code 65

E.1 PySSHFS’s Main Program 65

Appendix F SPAFS2’s Source Code 68

F1 SPAFS2’s Main Program uuie.... 68

F2 SPAFS2’sLocal DiskIOModule 74

E3 SPAFS2’s SSH Network IOModule 75

Appendix G List of Publications 77

Biography 78

List of Tables
Table Page
2.1 Unification file systems feature comparison. 10
4.1 List of file system operation methods that SPAFS2 implements. 23
42 10 Module’sinterface L 24

5.1 Micro-benchmark results of SPAFS2’s Local Disk 10 Module and other file systems . . . 34
5.2 Miro-benchmark results of SPAFS2’s SSH Network I0 Module and other dis-

tributed file systems 35

X1

List of Figures

Figure Page
3.1 The architecture of Personal Cloud File System Framework 12
3.2 Components of Personal Cloud File System Framework 12
3.3 Personal Cloud File System Framework’s mount point when there are no duplicate

34

3.5
3.6
3.7

3.8

39

3.10

3.11
3.12
3.13
5.1
5.2
53
A.l
A2

filesorfolders. e 14

When two machines have files with the same name, which one should Personal

Cloud File System Framework shows in its mount point? 15
Using branch’s priority to handle duplicate files 15
Alternative way of arranging branch’s priority to resolve duplicate files. 16

The user deletes the Video.avi file in the 2™ branch, which have Read-Only (RO)
PEIMSSION « . . o o v ot it e e e e e e e e e e e e e e e 17
Personal Cloud File System Framework creates a whiteout for that file instead of
deletesit L e e 17
When the user modifies the Thesis.tex file in 3™ branch, which have Read-Only
(RO) permission 0 /i e e e e e e e 18
Personal Cloud File System Framework copy the file up to the highest branch,

which always have Read-Write (RW) permission, before letting the user modify

thecopyofthefile 19
Personal Cloud File System Framework’s mount point without Branch Tag 19
Personal Cloud File System Framework’s mount point with Branch Tag enable 20
Using Branch Tag to access hidden files directly 20
Network diagram of the experimental setup. 32
Throughput of SPAFS2’s Local Disk IO Module and other file systems 37

Throughput of SPAFS2’s SSH Network 10 Module and other distributed file systems . 38
The initial design of Personal Cloud File System Framework. 47

How SPAFS handles file system calls from the user and applications. 48

CHAPTER

INTRODUCTION

As the price-performance ratio of personal computers and portable devices continues to
increase, it has become increasingly common for people to own more than one personal computer

or portable device.

Sooner or later, the majority of people who own multiple machines will realize that manag-
ing their personal data that are scattered across multiple personal computers or portable devices

is a slow, tedious, and error-prone task, especially if done so manually.

Over the years, various tools to help automate and simplify the task of managing personal
data across multiple machines have been created. These tools can be roughly categorized into two

groups: file synchronizers and distributed file systems.

A file synchronizer, such as Unison[1] or Dropbox [6], works by synchronizing contents of
two or more folders so that in the end the contents of every folder that has been synchronized are
identical. Most modern file synchronizers can synchronize both local and remote directories and
can deal with conflict during synchronization process either automatically or manually through

user intervention.

While using a file synchronizer can guarantee that every machine will always have the same
set of files available, it also means that each machine must have enough storage space to store all
the data that have been synchronized, which might not be possible especially on portable devices

which usually have limited resources.

A distributed file system, such as NFS [14] or SSHES [19], enables the user to instantly
access and use remote files and folders transparently as if they are local ones without having to

know about the real location of each file.

The downside of a distributed file system is that most distributed file systems require con-
stant network connection, which renders most distributed file systems unsuitable for portable
devices, which do not have constant network connection. While there are some distributed file
systems that do support offline operation, also known as disconnected operation, such as Coda
[15], they usually require complicated setup procedures as well as its own dedicate servers, which

make them unsuitable for personal usage.

In this work, we propose Personal Cloud File System Framework, a modular userspace file
system framework, as another approach to help manage personal data that are dispersed across
multiple personal computers and portable devices. One of the unique characteristic of Personal
Cloud File System Framework that sets it apart from the previously mentioned solutions is the

way it presents files and folders from both local and remote machines to the user.

Personal Cloud File System Framework uses the same concepts as those used by unification
file systems and presents a virtually unified view of files and folders from different locations to
the user. From the user’s perspective, all of these files and folders from various locations will
appear as if they reside together, locally, inside the Personal Cloud File System Framework’s
mount point. Like most distributed file systems, the user can interact with remote files and folders

transparently as if they are local ones.

The modular design of Personal Cloud File System Framework also makes it trivial to
extend the framework to support new features such as a new network protocol, or modify how the

framework functions.

We also aim to make Personal Cloud File System Framework supports offline operation.
The framework should automatically caches files for offline usage and, once the cache is full,

discards files according to replacement policy specified by the user.

1.1 Rational Behind the Name

The name was chosen because the ultimate goal of the framework that we have envisioned

is to create the system that provides the benefits of cloud storage for personal usage.

By using Personal Cloud File System Framework, the user can combine storage device
on all of his machines into one virtual storage device that he can write and read data to and
from transparently without having to know about the actual location of the file. The user can
also increase or decrease the overall size of the said virtual storage device by simply adding and

removing machines from the union.

1.2 Problem Statement

Given the user who owns multiple personal computers or portable devices, how to make it

easier for him to:

e Access, use, and manage his personal data that are dispersed across multiple machines.

e Create files on any machines of his choosing.

1.3 Objectives

This work have the following objectives.

1. Design Personal Cloud File System Framework
2. Implement the prototype of Personal Cloud File System Framework

3. Measure the performance of the Personal Cloud File System Framework’s prototype and

compare the result against other file systems

1.4 Scopes

The scopes of this dissertation is as follows.

1. Personal Cloud File System Framework is designed to manage personal data only.

2. The prototype of Personal Cloud File System Framework only supports Linux operating

system.
3. For Network 10 Module, we only implement and test SSH Network IO Module.

4. We only measure the Personal Cloud File System Framework’s performance in local area

network (LAN) environment.

1.5 Organization of the Dissertation

This dissertation is organized as follows. Section 2 discusses related work and we describe
the design of Personal Cloud File System Framework in Section 3. The implementation details of
the Personal Cloud File System Framework’s prototype is given in Section 4. Section 5 presents

and analyzes the prototype’s benchmark results and we conclude in Section 6.

CHAPTER II

RELATED WORK

In this chapter, we describe distributed file systems and unification file systems. We begins
by discussing prominent distributed file systems in Section 2.1. Section 2.2 describes notable

unification file systems and we conclude with a brief summary in Section 2.3.

2.1 Distributed File Systems

A distributed file system enables the user to access and operate on remote files and folders
transparently as if they are local ones. Distributed file systems have a long history, stretching
back to the 1970s and early 1980s with systems such as Datacomputer [17], which supported
an FTP-like service for clients which have limited amount of local storage, and Woodstock File
Server [18] from XEROX PARC, which made it possible for the user to access single pages of a
file. Other distributed file systems such as XDFS [9], LOCUS [13], and Swallow [16] were also
developed during this period. The late 1980s and the early 1990s saw the creation of the three
most influential distributed file systems in the academia: Sun’s Network File System, Andrew File

System, and Coda.

In this section, we describe the following prominent distributed file systems that are most
closely related the our work: Sun’s Network File System, Andrew File System, Coda, SSHFS,
YaFS, and SSHFS-MUX.

2.1.1 Sun’s Network File System

Sun’s Network File System (NFS) [14], a distributed file system developed by Sun Mi-
crosystems in 1985, is one of the oldest distributed file system still being used today on UNIX

and UNIX-like operating systems.

The primary reason for NFS’s longevity and popularity is due to the fact that when the
first version of NFS was released back in 1985, Sun disclosed the NFS protocol’s specification
to the public. Thanks to this, NFS is supported by many operating systems and is still being
actively developed today. Also, the ubiquitous nature of NFS, especially on UNIX and UNIX-

like operating systems, has led many to consider it to be a de facto standard.

NEFS servers are stateless. Stateless servers do not store information about the state of client

accesses to its files. The main benefit of stateless servers is that should one of the server crashes,

no information is lost and the system can recover almost immediately.

However, stateless servers cannot control the concurrent accesses to its files. Since NFS’s
servers are stateless, this means that NFS cannot maintain the consistency of its file system and
different clients can have different and conflicting copies of the same file or directory in their local
cache. Also, as a consequences of having stateless servers, NFS is unable to perform files locking
and atomic transactions. Another consequence of having stateless servers is the fact that it can
take up to 60 seconds before a modification to the file system in one client is perceived by other

clients.

2.1.2 Andrew File System

Andrew File System (AFS) [7], a distributed file system developed by researchers at
Carnegie-Mellon University (CMU) during the 1980s, is one of the first distributed file system
to focus on scalability. Its goal was to create a distributed file system that is capable of sharing
data among thousands of machines. AFS achieves this goal by offloading most operations to
clients, relying on clients to perform most of the works. When a client open a file, a part of the
file are transferred from the server to the client. All subsequent operations are then performs on

the local copy. Once the file is modified and closed, it is transferred back to the server.

Another problem that arise as a consequence of AFS supporting a large number of clients
is security. To put it simply, with so many clients, it is impossible to trust all of them without
compromising the security of the whole system. AFS solves the security problem by using the

Kerberos protocol for clients and servers authentication.

AFS also supports replication and provides a location independent namespace which allows
data to be moved transparently between servers. These two features can be used to perform load

balancing and increase the system’s fault tolerance.

2.1.3 Coda

Coda [15], a descendant of AFS, is one of the first major distributed file system to sup-
port disconnected operation. Using Venus, a cache manager, the user can set relative importance
of files to ensure that his or her desired files will always be cached (or in Coda’s terminology,

hoarded) for offline usage.

During offline operation, the user can access and use files that have been cached by Venus.

Once the connection to the servers is reestablished, Coda propagates changes made to the files

during offline operation to the servers. If any conflicts should occur, such as modification to the
same file by different clients, Coda provides tools that the user can use to decide how to best

resolve the conflicts.

Like AFS, Coda also supports replication and use Kerberos protocol for clients and servers

authentication.

2.1.4 SSHFS

Developed by Miklos Szeredi, who is also the author of FUSE [20], Secure Shell File
System (SSHFS) [19] is a simple distributed file system implemented as a userspace file system

using FUSE. It uses SSH protocol to access data on a remote machine.

While SSHEFS lacks many features found in other major distributed file systems, such as
replication or striping, it has a relatively advance cache mechanism that help improves its perfor-
mance. SSHFS is also very simple to install and use. Most Linux distributions already come with
SSH daemon installed and configured. Therefore, all the user needs to do in order to use SSHFS
to access his data on remote computers which run Linux is to install SSHFS itself. Which is a
simple thing to do on a modern Linux distribution that have a package management system. As

such, SSHEFS is particularly suitable for personal usage.

2.1.5 YaFS

YaFS [8] is an extensible distributed file system framework that supports multiple proto-
cols, storage backends, and is extensible through plugin. YaFS also supports offline operation.
However, the offline operation support in YaFS is rather limited. The user can only create new
files and access files that have been created during offline operation. During offline operation, the

user cannot access files stored on the servers.

Another unique characteristic of YaFS is that it stripes data into chunks before storing them
on the servers using unique bandwidth-saving method. This also allows YaFS to store a file that
is larger than the server allows. However, the fact that YaFS stripes its data also means that we

cannot access the data stored on the servers without using YaFS.

2.1.6 SSHFS-MUX

SSHFS-MUX (SSHFS Multiplex) is one of the tools that are used to build GMount [4],
an ad-hoc grid file system. SSHFS-MUX is basically a modified version of SSHFS that have

been extended with the ability to unify multiple remote directories. All directories that are to
be unified by SSHFS-MUX have Read-Write permission. As a consequence, SSHFS-MUX does
not support Whiteout or Copy Up concepts of unification file systems. Since SSHFS-MUX is
technically a fork of SSHFS, it also inherits SSHFS’s cache mechanism that also help improves

its performance.

The limitations of SSHFS-MUX is that it does not support offline operation and only sup-

ports SSH protocol.

2.2 Unification File Systems

In this section, we describe unification file systems. As its name implied, an unification file
system unifies contents of two or more directories and presents a unified view to the user. The
user can access and use files inside the mount point of the unification file system transparently,

without having to know about the real location of the files.

We begin by describing 3 fundamental concepts that most modern unification file systems
shared in Section 2.2.1 and then proceed to describe Plan 9’s Union Directory in Section 2.2.2.
4.4BSD-Lite’s Union Mount is presented in Section 2.2.3 and we describe Unionfs in Section

2.24.

2.2.1 Fundamental Concepts of Unification File Systems

Although each unification file system have its own unique set of features and capabilities,
almost all of the major unification file systems share the following fundamental concepts in or-
der to transparently unify contents of multiple directories and support features such as branch’s

permission.

2.2.1.1 Branch

Each directory that is going to be unified by an unification file system is called a branch.

Each branch have a priority and permission associated with it.

Branch’s priority is basically the order of each branch when they are supplied to the unifi-
cation file system by the user. The first branch in the list of branches is usually referred to as the

highest (or the top) branch, while the last branch in the list is referred to as the lowest branch.

Branch’s priority is used to resolve any potential conflicts that might arise during file sys-

tem operations. Specifically, branch’s priority is used to decide which files or folders are to be

presented to the user when there are files or folders with the same name in the same path on

multiple branches.

Traditionally, when a conflict arises between two or more branches, files and folders from
the higher branch are shown, while files and folders with the same name from branches which
have lower priority are hidden. This leads to a consistent directory namespace where there are no

duplicate files or folders.

Each branch also have a permission associated with it. The permission can be either one
of: Read-Write (RW), which in most unification file systems is usually the default permission for
every branch, and Read-Only (RO). Branch’s permission is pretty much self-explanatory: they are

used to control write access to each branch.

2.2.1.2 Whiteout and Opaque Directory

Whiteout and Opaque Directory are mechanisms that are used to handle the case when the

user try to modify or delete files or folders in a branch that have Read-Only permission.

When the user deletes a file in the branch which have Read-Only permission, instead of
returning an error message informing the user that the operation is not permitted and then abort
the operation, a whiteout is created for that file instead. When the user list the contents of the
directory, files that have whiteout created for them are hidden from the user’s view, thus creating
an illusion that the files have been deleted while in reality they still exist in their original location.

Opaque Directory is the same concept, but apply to a dictionary instead of a file.

2.2.1.3 Copy Up

Copy Up is another mechanism that is used by unification file systems to deal with mod-
ification to files or folders in a Read-Only branch. When the user tries to modify a file in a
Read-Only branch, the unification file system will copy that file up to the highest branch that have
Read-Write permission, and then let the user modify the copy instead of the original file. This
ensures that the branch’s permission is preserved while at the same time lets the user modifies

files in any branches that he wishes.

2.2.2 Plan 9’s Union Directory

Developed by Bell Labs for research purposes and as the successor to UNIX, Plan 9 [12] is

a distributed operating system with many innovative features. One of the unique feature of Plan 9

is the union directory. Plan 9 creates an union directory by merging multiple directories into one

namespace.

Plan 9’s Union Directory supports adding and removing directory to the top or bottom of
an union directory. It is also unique in that it is one of the few unification file systems that does
not hide duplicate files. If the user tries to access the file that have duplicates, the file that is in
the first directory from the list of directories that have been merged by Plan 9 is chosen. Another

unique characteristic of Plan 9’s Union Directory is that it does not unify subdirectory.

Plan 9’s Union Directory does not support branch’s permission or Whiteout. It implicitly
assumes that every branch have Read-Write permission. Plan 9’s Union Directory also does not

support Copy Up mechanism.

2.2.3 4.4BSD-Lite’s Union Mount

4.4BSD-Lite’s Union Mount [11], which was implemented on 4.4BSD-Lite operating sys-
tem, merges directories and their contents to present a unified view. Like Plan 9, 4.4BSD-Lite’s
Union Mount supports dynamically adding or removing directory from either the top or bottom

of the union. Unlike Plan 9, 4.4BSD-Lite’s Union Mount unify subdirectory.

When a lookup operation is performed in a lower branch, 4.4BSD-Lite’s Union Mount
creates the same directory tree in the top branch, called a shadow directory. 4.4BSD-Lite’s Union
Mount does not support branch’s permission. Unlike Plan 9’s union directory, however, 4.4BSD-
Lite’s Union Mount assumes that all branches except the highest one have Read-Only permission.
This means that all modifications to a file in lower branches will result in the said file being copied
up to the top branch into its corresponding shadow directory. Deleting a file in lower branches
will result in the creation of a whiteout for the said file that marks the file as deleted to Union

Mounts.

Also, 4.4BSD-Lite’s Union Mount only allows file systems that are derived from FFS to be

the top branch.

2.2.4 Unionfs

Unionfs [25] is long considered by many to be a de facto standard for unification file sys-
tem on Linux operating system. Unionfs was implemented using stackable file systems technique.
Like 4.4BSD-Lite’s Union Mount, Unionfs supports Whiteout, Copy Up, and subdirectory unifi-

cation. Unionfs also allows lower branches to have either Read-Write or Read-Only permission.

Table 2.1: Unification file systems feature comparison.

10

Feature Plan 9’s Union | 4.4BSD-Lite’s Unionfs
Directory Union Mount

Recursive unification 4 v
Permission preservation on copy up (4
Multiple writable branches v v
Dynamic insertion & removal of any branch v
Dynamic insertion & removal of the top branch | ¢/ v v

No file system type restrictions v v
Creating shadow directories v v
Copy Up 4 v
Whileout 4 v
Operating systems supported Plan 9 4.4BSD-Lite Linux

Unionfs supports dynamic insertion and removal of any branch not only just the top and the bot-

tom. Unionfs creates shadow directory only on write operations and errors. Like Plan 9’s Union

Directory, Unionfs does not have restriction on which file system can be used as the top branch.

Also, unlike both Plan 9’s Union Directory and 4.4BSD-Lite’s Union Mount, Unionfs preserves

ownership of each file that have been copied up.

Table 2.1 summaries and compares Unionfs’s features against 4.4BSD-Lite’s Union Mounts

and Plan 9’s Union Directory.

2.3 Summary

In this chapter, we describe prominent distributed file systems and unification file systems

that are closely related to our work.

CHAPTER III

DESIGN

This chapter describes the design of Personal Cloud File System Framework. We begin
by outlining the design’s goals of Personal Cloud File System Framework in Section 3.1. The
high-level overview of the framework is presented in Section 3.2. Section 3.3 describes system’s
components of Personal Cloud File System Framework. We then describe how the framework
handles duplicate files and folders in Section 3.4. The next section, Section 3.5, describes how
our Personal Cloud File System Framework handles modification to files and folders inside a
branch that have Read-Only permission. The concept of Branch Tag is presented in Section 3.6

and we give a brief summary in Section 3.7.

3.1 Design’s Goals

Our design’s goals for Personal Cloud File System Framework are as follows.

e Create a framework that helps automate and simplify the management of dispersed personal
data by utilizing techniques from unification file systems and distributed file systems to

present a unified view of files and folders from multiple locations

e Create a framework that works on both personal computers and portable devices, the letter

of which have limited resources and network connectivity

e Create a framework that provides support for multiple network protocols

In order to create a framework that works equally well on both personal computers and
portable devices, our framework must support offline operation to ensure that the framework can

continue to operate even when there is no network connection.

To support multiple network protocols, we design Personal Cloud File System Framework

to be a modular framework in order to facilitate any attempts to modify or extend the framework.

3.2 High-level Overview

As shown in Figure 3.1, Personal Cloud File System Framework have a single client-

multiple servers architecture.

Personal Cloud File System Framework does not have its own dedicated server. Instead,

12

Personal Cloud File System Framework

FTP daemon %

SSH daemon

NFS daemon SSH daemon

Figure 3.1: The architecture of Personal Cloud File System Framework

Personal Cloud File System Framework uses existing network protocols, such as FTP or SSH, to

communicate with remote machines.

3.3 System’s Components

Personal Cloud File System Framework have 3 main components: Interface, List Manage-

ment and Cache Management. Figure 3.2 shows a block diagram that illustrates the relationship

among components within the framework.

A
&%
—
User Y
A

Local Machine

Applications

Personal Cloud
File System Framework

l_T

Interface

List Management

=

Storage Device

v v v v
Cache 10 10 10
Management Module Module Module

Remote Machines

Figure 3.2: Components of Personal Cloud File System Framework

13

3.3.1 Interface

Interface component of Personal Cloud File System Framework provides standard file sys-
tem interface that users and applications can interact with. Interface component is also responsible
for passing file system calls invoked by the user or application to other components of the frame-
work, such as List Management or Cache Management. Each component then operates on the
received file system call and returns the result of the operation back to the user or application

through Interface component.

3.3.2 List Management

List Management component stores and manages a list of branches that has been supplied
by the user when the framework was mounted. The list of branches that List Management com-

ponent manages also consists of other information about each branch, namely:

Branch’s priority

Branch'’s protocol

Branch’s permission

— Can be either Read-Write (RW) or Read-Only (RO)

Path to directory

These branch’s information must also be given by the user when mounting the framework.

List Management uses the list of branches and branch’s information to conduct files or
folders lookup and handle duplicate files or folders. List Management is also responsible for
performing operations on either local or remote files or folders through 10 Module, which is a
self-contained sub-component of List Management that implements methods necessary to operate

on either local or remote files and folders using various network protocols.

3.3.3 Cache Management

Cache Management component stores and manages files that have been locally cached. It
caches files up to the amount specified by the user and uses replacement policy specified by the
user to decide which file to discard when the cache is full. Cache Management cannot directly
access local or remote files or folders. Instead, it uses List Management to access and modify

both local and remote files and folders.

14

3.4 How the Framework Handles Duplicate Files or Folders

This section and the next describe how Personal Cloud File System Framework maintains
its mount point’s namespace consistency by using concepts of branch’s priority, whiteout (opaque
directory) and copy up, which are the same concepts used by unification file systems to make sure
that there are no files or folders with duplicate name in its mount point. For more information on

unification file systems’ fundamental concepts, please refer to Section 2.2.1.

We start with the ideal case: when there are no duplicate files or folders name in the frame-

work’s mount point and thus no conflict. Figure 3.3 shows this ideal state.

In this case, as there are no files or folders with the same name in any of the branches, we

can simply shows files and folders from all branches together in the framework’s mount point.

a
€3
¥

Personal Cloud File System Framework's Mount Point

=2 & 7] []

Photo.png Vldeo avi The51s tex Paper.tex \

User

-

Photo.png Video.avi Thesis.tex Paper.tex

Figure 3.3: Personal Cloud File System Framework’s mount point when there are no duplicate files or
folders.

When two or more machines have files or folders with the same name as shown in Figure
3.4, where there is a file named Photo.png on two machines, in this case which file should

Personal Cloud Figure System Framework shows in its mount point?

In order to make that decision, we need to have more data. The data we need is the branch’s
priority of each branch, implicitly supplied by the user when he mounts Personal Cloud File

System Framework.

When the user mounts Personal Cloud File System Framework, he must give a list of

branches that are to be unified by the framework. Usually, the first branch in the list of branches

15

i

¥

Personal Cloud File System Framework's Mount Point

<,
Q)
Sl
/ Video.avi /Thesis.tex

User

Video.avi Thesis.tex \ Photo.png

Figure 3.4: When two machines have files with the same name, which one should Personal Cloud File
System Framework shows in its mount point?

that the user supplied to the framework 1s given the highest priority, the second branch in the list

is given a lower priority than the first branch and so on.

Figure 3.5 shows how Personal Cloud File System Framework uses the concept of branch’s
priority to decide which duplicates to shows in the framework’s mount point. As we can see from
the figure, since the Phot o . png file from the machine on the left handed side is in the 1% branch,
which have higher priority than the 3 branch, Personal Cloud File System Framework shows the
Photo.png file from the machine on the left handed side in the framework’s mount point and

hides another file with the same name from the machine on the right handed side.

b

v

User

Personal Cloud File System Framework's Mount Point
o,
@9
> v "L
Photo.png Video.avi / Thesis.tex
1st Branch 2nd Branch 3rd Branch

e
mr

Photo.png Video.avi Thesis.tex Photo.png

Figure 3.5: Using branch’s priority to handle duplicate files

16

What if the user wishes to access the Phot o . png file from the machine on the right handed
side? In that case, he needs to unmount Personal Cloud File System Framework, rearrange priority
of each branch so that machine on the right handed side is assigned with higher priority than that

of machine on the left handed side, and then remount the framework.

As shown in Figure 3.6, once the user have rearrange each branch’s priority so that machine
on the right handed side is now the 1% branch, Personal Cloud File System Framework will shows
the Photo . png file from machine on the right handed side and hides the same file from machine

on the left handed side.

While this method works well enough, it is unfortunately very cumbersome. In Section 3.6,
we present another method to view and operate on hidden files and folders in lower branches that

does not require the user to remount the framework.

2

:

User

Personal Cloud File System Framework's Mount Point
= "oy
& 5 ==
3 4
Video.avi Thesis.tex\ Photo.png
3rd Branch 2nd Branch 1st Branch

Photo.png Video.avi Thesis.tex Photo.png

Figure 3.6: Alternative way of arranging branch’s priority to resolve duplicate files.

3.5 How the Framework Handles Modification to Read-Only Branches

What if the user wishes to modify files or folders in branch that have Read-Only permis-
sion? We could just abort the operation and return error messages to the user, informing him that

the operation is not permitted.

However, as the reader shall discover in this section, by applying concepts of whiteout and
copy up from unification file systems, Personal Cloud File System Framework enables the user to
modify files and folders inside a Read-Only branch as much as he wants while still respects each

branch’s permission.

17

3.5.1 Delete Files or Folders Inside Read-Only Branch

If the user attempts to delete a file inside a Read-Only branch, such as the Video.avi file

in the 2" Branch in Figure 3.7, instead of deleting the file as the user instructed, Personal Cloud

File System Framework would create a whiteout for the given file.

w

v

User

—

Photo.png

Personal Cloud File System Framework's Mount Point

@@

ideo.avi

/ Thesis.tex

1st Branch

e
~

2nd Branch (RO)

Photo.png

Video.avi

3rd Branch

Thesis.tex Photo.png

Figure 3.7: The user deletes the Video.avi file in the 2"¢ branch, which have Read-Only (RO) permission

Once the whiteout have been created for the Video. avi file, as shown in Figure 3.8, when

the user lists contents of Personal Cloud File System Framework’s directory tree, the framework

will not show the Video. avi file or any other files which have whiteouts created for them.

i

+

User

|

Photo.png

Personal Cloud File System Framework's Mount Point

/ Thesis.tex

1st Branch

Photo.png

2nd Branch (RO)

)
>

b.avi

.Video.avi.whiteout

Thesis.tex Photo.png

Figure 3.8: Personal Cloud File System Framework creates a whiteout for that file instead of deletes it

18

3.5.2 Modify Files or Folders Inside Read-Only Branch

If the user wishes to modify files inside a Read-Only branch, for example the Thesis.tex
file in the 3™ branch in Figure 3.9, Personal Cloud File System Framework will copy the
Thesis.tex file that the user wishes to modify up to the first branch of the framework, which
always have Read-Write permission, and let the user modifies the copy instead of the original file.

Figure 3.10 shows the result of a copy up operation.

w

v

Personal Cloud File System Framework's Mount Point
e & “
L Ny

Photo.png / Video.avi / sis.tex

1st Branch - 3rd Branch (RO)

e
==

Photo.png Video.avi Thesis.tex Photo.png

User

Figure 3.9: When the user modifies the Thesis.tex file in 3" branch, which have Read-Only (RO) permission

As can be seen in Figure 3.10, Personal Cloud File System Framework lets the user modifies
the copy instead of the original Thesis. tex file, thereby ensuring that each branch permission

is observed.

3.6 Branch Tag

Branch Tag is Personal Cloud File System Framework’s extension of the basic unification
file system concepts. It is used to directly specify a file to operate on using the branch’s name. It
can also be used to show files and folders in lower branches that have been hidden by Personal
Cloud File System Framework. Branch Tag was inspired by quFile’s raw view [24]. In quFile,
the user can access what is called a “raw view” of a file by referring to the file with the suffix
.quF'ile, which will then show all current versions of the file. The user can then choose which

version of the file he wish to access.

Branch Tag implements a similar functionality in Personal Cloud File System Framework.
In Personal Cloud File System Framework, during a normal mode of operation, when there are

files with the same name in more than one branches, we use branch’s priority to control which file

19

w

¥

Personal Cloud File System Framework's Mount Point

©,
-
> . "L
Photo.png Video.avi /ﬂesis.tex

2nd Branch 3rd Branch (RO)

RS . =
Photo.png TheSiS-te’Wi_/Fhesisltex Photo.png

Figure 3.10: Personal Cloud File System Framework copy the file up to the highest branch, which always
have Read-Write (RW) permission, before letting the user modify the copy of the file

User

1st Branch

to be hidden and which file to be shown. Figure 3.11 shows such a case, where the Photo.png
file from the machine on the right handed side is hidden because it is in the lowest priority branch.

¢’\\
W9

$1sl

Personal Cloud File System Framework's Mount Point

e < S,
L '
T4 Ny
Photo.png Video.avi / Thesis.tex

User

1st Branch 2nd Branch 3rd Branch
-
'

Photo.png Video.avi Thesis.tex Photo.png

Figure 3.11: Personal Cloud File System Framework’s mount point without Branch Tag

Now if the user passes the “1s +raw” command instead of the usual “1s” to the shell,
Personal Cloud File System Framework will return contents of its mount point, but this time all
files and folders inside the mount point will have branch’s name appended to its name, as shown

in Figure 3.12.

With this, the user not only know which branch a file belongs to, but can also see files and

folders that have been previously hidden.

20

User

$1s +rawl

Personal Cloud File System Framework's Mount Point

Photo.png+Branch_: ﬁ;avwhranch 2/Thes'15 tex+branch 3/Photo.

png+branch_3

1st Branch 2nd Branch
ﬂ; |
4 W
Photo.png Video.avi Thesis.tex Photo.png

Figure 3.12: Personal Cloud File System Framework’s mount point with Branch Tag enable

Now, if the user wishes to specify a file in a specific branch to operate on, he can do so by

appending a plus sign (+) follows by the branch’s name after the file name.

For example, as Figure 3.13 shows, to open the Phot o . png file in the 3™ branch, the user

simply have to refer to the Photo.png file as Photo.png+branch_3.

)

User
$ gimp Photo.png+branchA3l

Personal Cloud File System Framework's Mount Point

" 4
Photo.png+Branch_ lﬁ;avwbranch 2%«5:15 tex+branch_3/Photo.png+branch_3

1st Branch 2nd Branch
-]
Photo.png Video.avi Thesis.tex Photo.png

Figure 3.13: Using Branch Tag to access hidden files directly

We can also use Branch Tag to create a new file or folder on a specific branch. For example,
if we wish to create a new file called hello_world on the 2" branch, we can simply do so by

using the following command.

S touch hello _world+branch 2

In conclusion, Branch Tag allows the user to have greater control over how he can access
or create data in our framework. Branch Tag is also one of the key mechanism that we planned to

use to implement Cache Management component of Personal Cloud File System Framework in

21

the future.

3.7 Summary

In this chapter, we describe various aspects of the design of Personal Cloud File System
Framework, as well as how various components of the framework interact with one another. We
also show how Personal Cloud File System Framework applies the concepts of unification file
systems to solve problems that might arise during the process of unifying multiple directories.
We also present Branch Tag, a mechanism that enables the user to easily specify a file to operate
on using the branch’s name as well as show files and folders in lower branches that have been

hidden.

CHAPTER IV

IMPLEMENTATION

This chapter describes the implementation of Simple Protocol Agnostic File System 2
(SPAFS2), the prototype of Personal Cloud File System Framework. We begin by describ-
ing SPAFS2 and its various components in Section 4.1. We then describe how SPAFS2 parses
branch’s list in Section 4.2, follows by Section 4.3 which describes how SPAFS2 maintains its
mount point’s namespace consistency. Section 4.4 describes how SPAFS2 conducts files and
folders lookup. Section 4.5 describes how SPAFS2 implements Branch Tag. Section 4.6 de-
scribes the limitation of SPAFS2 and we describe the past attempts at implementing SPAFS2’s
Cache Management component in Section 4.7. ' We conclude the chapter with a brief summary in

Section 4.8

4.1 Simple Protocol Agnostic File System 2 (SPAFS2)

We use Python programming language [23] to implement Simple Protocol Agnostic File
System 2 (SPAFS2), the prototype of Personal Cloud File System Framework. We choose to use
Python because it facilitates rapid prototyping, has a very comprehensive standard library, and is

cross-platform.

Similar to the design of Personal Cloud File System Framework, SPAFS2 consists of 2
components: Interface and List Management. The reason for the absent of Cache Management

component in SPAFS?2 is given in Section 4.7.

4.1.1 Interface

We implement the Interface component of SPAFS2 as a userspace file system, using Python

binding of FUSE [20].

Table 4.1 shows the list of file system operation methods that SPAFS2’s Interface compo-
nent implements. Note that all link and symlink related methods as well as support for advance
features such as access control list (ACL) are not implemented because most network protocol

does not support them.

The file system operation methods shown in Table 4.1 also doubles as a basis for which the

23

Table 4.1: List of file system operation methods that SPAFS2 implements.

Method | Description

getattr Get a file or folder attributes
readdir | Read the content of a directory

mkdir Create a directory
rmdir Remove a directory
read Read a file

mknod Create a new file node
write Write to an existing file

rename Rename a file or folder
truncate | Truncate a file

unlink Delete a file

chmod Change the permission bits of a file

chown Change the owner and group of a file

utime Change the access and/or modification times of a file
statfs Get file system’s statistics

interface of IO Module is derived from.

4.1.2 List Management

Currently, we implement List Management as a part of Interface component. This means
that aside from providing file system interface to the user and application, Interface component,
which is a userspace file system, also stores and manages list of branches and branch’s informa-
tion. Interface component is also responsible for other tasks such as maintaining mount point’s

namespace consistency, the creation of whiteouts, etc.

4.1.3 10 Module

The 10 Module sub-component is implemented as a class inside a separate Python module

that is imported and used by Interface component of SPAFS2.

Two 10 Modules were created. The first one is Local Disk IO Module, which implements
support for manipulating local files and folders. The second 10 Module is SSH Network 10 Mod-
ule, which implements support for manipulating remote files and folders through SSH protocol

using Paramiko library [10].

Table 4.2 presents the interface of IO Module. Aside from the file system operation meth-
ods, which are roughly the same as those that are implemented in Interface component of SPAFS2,

there are 6 new methods that are unique to the I0 Module.

The connect and close_connect methods deal with establishing connection with

or terminating connection to a remote machine. The path_exists method is used to check

24

whether the file or folder exists in a given path. The makedirs method is used to recursively
create folders up to the leaf node of the given path. The create_whiteout method is, as its
name implied, used to create a whiteout for a given file or folder and lastly, the open method is

used to open a file and return the file object.

Table 4.2: 10 Module’s interface

| Method | Description
connect Establishing a new connection
close_connection | Close the existing connection
path_exists Check if a path exists
makedirs Recursively create directories up to the leaf node
create_whiteout Create a whiteout for a given file or folder
open Open and return a file object
Istat Get a file or folder attributes
listdir Read the content of a directory
mkdir Create a directory
rmdir Remove a directory
read Read a file
mknod Create a new file node
write Write to an existing file
rename Rename a file or folder
truncate Truncate a file
unlink Delete a file
chmod Change the permission bits of a file
chown Change the owner and group of a file
utime Change the access and/or modification times of a file
statfs Get file system’s statistics

Each of SPAFS2’s IO Module have its own root path that every file operations will originate
from. Each 10 Module can only have one root path. The root path can be on the local or remote

machine.

Also, each IO Module have its own unique protocol associated with it.

4.2 How Simple Protocol Agnostic File System 2 Parses Branch’s List

The user mounts SPAFS2 by giving a list of branches separated by a hash symbol (#) using

the command similar to the following example.

S spafs2 -o branch=PROTOCOL:ADDRESS:PERMISSION#... MOUNTPOINT

The order of the list of branches that the user gives here is important, as it is used by

SPAFS2 to determine each branch’s priority.

25

SPAFS2 then parses the list of branches that is given by the user and separates each item in

the list of branches into the following components using a semicolon symbol (;) as a separator.

PROTOCOL Inform SPAFS2 which IO Module to use for this branch
ADDRESS Passed onto the IO Module as an argument
PERMISSION Branch’s permission (optional)

e Can be either Read-Write (RW) (default) or Read-Only (RO)

The components of each item in the list of branches are then added to a Python’s dictionary
according to the order in which they are given. This dictionary is then later used to construct

another dictionary called the TO_modules dictionary.

Each item of the TO0_modules dictionary is a key-value pair where the key is the index
number of each branch and the value is the tuple, containing the instant of the IO Module class
as specified by the PROTOCOL component and the branch’s permission as specified by the PER-
MISSION component. The instant of the IO Module class of for each branch is created using the

ADDRESS component as an argument.

In this sense, each branch have its own instant of the IO Module class that are, in effect,
isolated from each other. This means that we are able to use the same 10 Module class in more

than one branches.

The resultant T0_modules dictionary is the workhorse data structure of SPAFS2 and is

used in every file system operations in SPAFS2.

4.3 Resolving Conflict and Maintain Namespace Consistency

As previously described in Section 3.4, It is inevitable that during the course of unifying
contents of two or more directories, we will end up in a situation where the resultant unified direc-
tory contains files and folders with the same name. The act of trying to resolve the aforementioned
situation so that in the end all files and folders in the mount point have a unique name is called

resolving conflict or maintaining consistency of the file system’s namespace.

The key insight we have gained during the development of SPAFS2 is that in order to
maintain file system’s namespace consistency and prevent any occurrence of conflicts during files

lookup operation, we only need to keep the namespace of file system’s root directory consistent

26

and the rest will take care of themselves. In a sense, we are using the directory’s structure of the

file system’s root directory itself to maintain consistency for all sub-directories.

Algorithm 1 Algorithm used in SPAFS2’s readdir method for resolving conflict and maintaining namespace
consistency.

(TR LINT3 ”)

I: dir_entries_list.append(*.”, .
2: for index, (branch_io_module, permission) in 10_modules do
3. if path = “/” then

4 branch_dir_entries_list < branch_io_module.listdir(“.")
5. else
6: branch_dir_entries_list < branch_io_module.listdir(path)
7 end if
8: for entry in branch_dir_entries_list do
9: if entry not in dir_entries_list then
10: whiteout_file < “” + entry + “.white_out”
11: if not branch_io_module.path_exists(whiteout_file) then
12: dir_entries_list.append(entry)
13: return dir_entries_list
14: end if
15: end if
16: end for
17: end for

To do so, we extend SPAFS2’s readdir method to use Algorithm 1, which will only add
a file or folder to the dir_entries_list, the list of files and folders to be shown to the user, if the

said file or folder fulfills the following criteria.

1. Does not currently exists in the dir_entries_list

2. Does not have a whiteout created for it

Since the order in which files and folders get added to the dir_entries_list follows the
order of the branches in /O_modules dictionary, we can guarantee that when there are files and
folders of the same name in two or more branches the files and folders in the higher up branches

will always be the ones that are shown to the user.

4.4 How Simple Protocol Agnostic File System 2 Conducts Files and Folders Lookup

When the user performs operations on a file or folder, SPAFS2 performs a check on each
branch, starting from the first one all the way down to the last, to see which branch contains the
file or folder that the user wishes to operate on. Once the branch that contains the file or folder is

found, SPAFS2 terminates the loop and operates on the file or folder.

Algorithm 2 which is used in SPAFS2’s read method is one such example. It received a

path to file from the user, iterates over each branch in TO0_modules dictionary, checking with

27

Algorithm 2 Algorithm used in SPAFS2’s read method

1: for index, (branch_io_module, permission) in IO_modules do

2. if branch_io-module.path_exists(path) then
3 branch_io_module.read(path)

4 return

5: endif

6: end for

each branch’s instant of 10 module class to see which one contains the path to file. Once the
match is found, SPAFS2 performs a read operation on the file in the branch, and then exit the

loop.

Using this algorithm, we can make sure that the read operation will always occur on the file

that have been shown to the user without the need to implement any other checking mechanisms.

Algorithm 3 Algorithm used in SPAFS2’s mknod method

1: dir_component < extract_dir_component(path)

2: if dir_component =*/” then

3: I0_modules[1%_branch].io_module.mknod(path)
4: else

5. for index, (branch_io_module, permission) in IO_modules do
6: if branch_io_module.path_exists(path) then
7: if permission = “rw” then
8: branch_io_module.mknod(path)
9: return
10: else
11: if not O _modules[1% _branch].io_module.path_exists(dir _component) then
12: 10 _modules[1* _branch].io_module.makedirs(dir _component)
13: end if
14: 10 _modules[1% _branch].io_module.mknod(path)
15: return
16: end if
17: end if
18: end for
19: end if

Similar algorithm is also used when creating a new file or folder. Algorithm 3, which is
used in SPAFS2’s mknod method is one such algorithm. It checks if the directory component of
the path supplied by the user is the root path or not. If it is the root path, then SPAFS2 defaults to

creating the new file in the first branch.

If the path given is not the root path, SPAFS2 performs a check similar to one used in Al-
gorithm 2 but instead of finding the exact path to file, it finds which branch contains the directory

component of the path and then create the new file there.

Lastly, if it turns out that the branch that contains directory component have Read-Only
permission, then SPAFS2 will use the copy up concept and creates the new file, along with the

directory component if there is any, in the first branch.

28

This also means that in SPAFS2, the first branch always have Read-Write permission.

Algorithm 4 Algorithm used in SPAFS2’s rmdir method

1: for index, (branch_io_module, permission) in IO_modules do
2: if branch_io_module.path_exists(path) then
3 if permission = “rw” then

4 branch_io_module.read(path)

5: return
6

7

8

9

else
branch_io_module.create_whiteout(path)
return
end if
10: end if
11: end for

Algorithm 4, which is used in rmdir method and is derived from Algorithm 2, is an
example of the algorithm that handles whiteout creation. It basically works the same way as
Algorithm 2 does, but includes the if statement that checks the permission of the branch. If the
branch that contains folder that the user wishes to delete have Read-Only permission, then instead

of deleting the file, a whiteout is created for it.

Algorithm 5 Algorithm used in SPAFS2’s write method

1: for index, (branch_io_module, permission) in IO _modules do

2 if branch_io_module.path_exists(path) then

3 if permission = “rw” then

4 branch_io_module.write(path)

5: return

6 else

7 dir_component < extract_dir_component(path)

8 if not 7O _branches[1% _branch].io_module.path_exists(dir _component) then
9: I10_branches[1* _branch].io_module.makedirs(dir _component)
10 end if

11: src_path < branch_io_module.open(path)

12: dst_path < I0_modules[1% _branch].io_module.open(path)

13: copyfile(src_path, dst_path)

14: 10 _modules[1%_branch].io_module.write(dst_path)

15: return

16: end if

17: end if

18: end for

Another type of algorithm that is also derived from Algorithm 2 is the algorithm that sup-

ports Copy Up when we try to modify the existing file in a Read-Only branch.

Algorithm 5 is an example of such algorithm. It checks to see which branch contains the
file that the user wishes to write to and if the permission of the branch is Read-Write allows the
user to write the file. If the permission of the branch is Read-Only then the algorithm copies the

file up to the first branch, and then lets the user writes to the copy instead of the original file.

29

4.5 How Simple Protocol Agnostic File System 2 Implements Branch Tag

As previously described in Section 3.6, Branch Tag is a mechanism that enables the user to
directly specify a file to operate on using the branch’s name by appending a plus sign (+) follows
by the branch’s name to the file name. For example, the following command deletes the rc.conf

file in the 4™ branch.

$ rm rc.conf+branch_4

Implementing Branch Tag mechanism in SPAFS is a pretty straight forward process. Algo-
rithm 6 shows the algorithm we used to implements Branch Tag functionality in SPAFS2’s read

method.

Algorithm 6 Branch Tag algorithm used in SPAFS2’s read method

1: if branch_tag then

2: splited_path < path.split(“+”)

3 if length_of(split_path) > 1 then

4 branch_name < splited_path[-1]

5: 10_modules[branch_name].io_module.read(path[0])
6

7

8:

return
end if
end if

The algorithm begins by checking whether the user enables Branch Tag functionality. If the
user enables Branch Tag, then the algorithm splits all paths that have been given by the user using
the plus sign (+) as a separator and stores the resultant list into the splited_path variable. The
algorithm then checks the length of the splited_path list. If the length of the list is greater than 1,
then the algorithm uses the last item in the splited_path list as the branch’s name and reads data
from the given path using the instant of IO Module class from the branch that have the same name

as the one that user specified.

By using this algorithm, we can implements Branch Tag support into SPAFS2’s read
method without having to modify other part of the read method’s code. We implements Branch

Tag into other SPAFS2’s methods using algorithms that are similar to Algorithm 6.

Another use of Branch Tag is to show files and folders in lower branches which have been
hidden because they have the same name as the files and folders in the higher branches. Again,
we extend SPAFS2’s readdir method to support this feature of Branch Tag by using another
variation of Algorithm 6 that checks if the user passes +raw as an argument for a 1 s command.
If the user uses the command “1s +raw” to list contents of a directory in SPAFS2 instead of the

normal “1s” command, SPAFS2 will append branch’s name to each file or folder’s name before

30

adding them to the dir_entries_list variable.

This method not only show which file or folder belongs to which branch, it also shows all
files and folders in lower branches that have been hidden during the normal mode of operation.
This is because with branch’s name appended to every file and folder’s name in every branch, all
files and folders’ name are now unique and thus SPAFS2 can show the contents from all branches

without having to worry about duplicate files or folders.

4.6 Simple Protocol Agnostic File System 2’s Limitation

One limitation of SPAFS2 worth mention is that the rename operation only works in a
certain circumstance. Specifically, it only works on files and folders inside the same branch. This
limitation arises due in part mostly to the difficulty of moving files and folders from one remote

branch to either a local or another remote branch.

4.7 Attempts at Implementing a Functional Cache Management Component in Simple

Protocol Agnostic File System 2

After successfully implemented Interface component, List Management functionality, as
well as 2 proof-of-concept IO Modules, the next logical step in the development of SPAFS2 is to

try and implement Cache Management component.

The first attempt at implementing Cache Management component in SPAFS?2 tries to im-
plement it as a part of Interface component, like what we did with List Management component.

However, we quickly ran into problems with this approach.

The first problem we had was the performance impact when caching large files. This prob-
lem should be easily solved by creating a new thread to handle file caching in the background, but
then we ran into another issue in that creating a new thread in Python FUSE often leads to race

condition and then deadlock.

Another solution that we have tried was starting a new process to handle files caching, but
we ran into yet another problem here. Basically, after a connection to remote machine has been
established, any attempts to pass SFTP objects, such as file objects, between processes will result
in Paramiko throwing exceptions. After further investigation, we have found that this is the known

limitation of Paramiko library.

In conclusion, with the current implementation of Interface component using Python FUSE,

31

it is unlikely that we can implement Cache Management component as a part of Interface compo-
nent the same way we had done with List Management component largely because of performance
impact that caching large files will incur as well as other issues that prevented us from creating a

new thread or process to cache files.

Due to time constraints, we are unable to investigate other approaches to implement Cache
Management component for SPAFS2. But from what we have known so far, it seems to us that
in order to avoid all of the aforementioned problems, Cache Management component of SPAFS2
needs to be a separate process from Interface component that handles files caching through Inter-

face component just like any other applications.

This also means that for Cache Management component as a separate process from Inter-
face component to work, SPAFS?2 itself needs some mechanism to specify which branch to write
data to. That mechanism is, of course, the Branch Tag which we have described in Section 3.6

and implemented in SPAFS2 as shown in Section 4.5.

4.8 Summary

In this chapter, we present Simple Protocol Agnostic File System 2 (SPAFS2), the prototype
of Personal Cloud File System Framework. We also shows how various components of SPAFS2
are implemented and what tools were used to implement them. Various algorithms that were used
in SPAFS2 are also described and we explain the problems we faced when trying to implement

the Cache Management component of SPAFS2.

CHAPTER V

PERFORMANCE EVALUATION

In this chapter, we measure and analyze the performance of Simple Protocol Agnostic File
System 2 (SPAFS2), the current prototype of Personal Cloud File System Framework, against
other file systems. We begin by describing our experimental setup in Section 5.1. The benchmark
tool used in the experiment is presented in Section 5.2. We present and analyze the benchmark

results in Section 5.3 and we conclude the chapter with a summary in Section 5.4.

5.1 Experimental Setup

We use two machines in the experiment.

e A desktop machine with 2.0GHz AMD Athlon 64 3200+ processor, 2GB of RAM, and
250GB SATA hard disk drive formatted with the ext4 file system.

e An ASUS Eee PC model 901 with 1.6GHz Intel Atom N270 processor, 1GB of RAM, and
two solid state drives, one 4GB and another 16GB. Both drives are formatted with the ext4

file system.

Both machines run Arch Linux and were connected wirelessly through an 802.11b/g wire-

less router. Figure 5.1 shows network diagram of the experimental setup.

4

Desktop machine

802.11b/g
wireless router

L

—/
L]

Eee PC Model 901

Figure 5.1: Network diagram of the experimental setup.

SPAFS?2 as well as other file systems that are being compared against it are deployed on the

netbook, while the desktop simply acts as a server, running SSH daemon.

33

We divide the experiment into two parts. The first part of the experiment compares

SPAFS2’s Local Disk IO module performance against the following file systems.

o ext4

DummyFS

SPAFS

PyUnionFS

The ext4 or fourth extended file system is a journaling file system for Linux operating
system. It is the successor to the ext3 file system and supports features such as extents and delayed
allocation. The ext4 file system also has an improved design and better performance compared to
the ext3 file system. Most major Linux distributions of today, such as Ubuntu and Fedora, use the

ext4 file system as the default file system [2, 22].

For more details on DummyFS, SPAFS and PyUnionFS, please consult Section A.1, Sec-

tion A.2 and Section A.3, respectively.

The second part of the experiment compares SPAFS2’s SSH Network 10 module perfor-

mance against the following distributed file systems.

o SSHES

e PySSHFS

Secure Shell File System (SSHFS) [19] is a distributed file system that uses SSH protocol

to communicate with remote computers. For more details on SSHFS, please refer to Section 2.1.4

More information on PySSHEFS can be found in Section A.4.

5.2 Benchmark Tool

We choose to use Filebench [21] because it is a very flexible and versatile benchmark tool,

capable of generating various different kinds of workloads via workload personality.

For our experiment, we use the following pre-defined micro-benchmark workload person-

alities:

34

Create Files Create 10,000 files, write up to 16KB of data and then close all of them.
Random Reads Perform random reads on a 1GB file for 60 seconds.
Random Writes Perform random writes on a 1GB file for 60 seconds.

Delete Files Delete 10,000 files. Each file is no larger than 16KB.

All of the workloads were run on the netbook.

5.3 Results and Analysis

Section 5.3.1 presents and analyzes the benchmark results of SPAFS2’s Local Disk 10 Mod-
ule, while Section 5.3.2 presents and analyzes the benchmark results of SPAFS2’s SSH Network
10 Module.

5.3.1 Benchmark Results and Analysis of SPAFS2’s Local Disk I0 Module Performance

As we can see from the results in Table 5.1, SPAFS2 performance in general is not only
on par with DummyFS but actually surpasses it in few types of workloads, namely Creates Files
and Random Writes. It also outperforms its predecessors, SPAFS and PyUnionFS, despite having

more complex code base, modular architecture, and more features.

Table 5.1: Micro-benchmark results of SPAFS2’s Local Disk IO Module and other file systems

Create Random | Random | Delete
Files Reads Writes Files
extd ops/sec 749.483 | 1351.467 | 398.140 | 526.249
latency (ms) 554 0.5 2.3 29.8
DummvES ops/sec 173.237 | 491.753 91.115 | 227.240
y Tatency (ms) | 2743 8 10.3 68.7
ops/sec 4.665 178.439 | 109.523 2.710
SPAES latency (ms) | 10274.1 5.3 8.8 5901.1
. ops/sec 105.9 475.4 102.2 103.1
PyUnionkS ey (ms) | 4512 .8 95 153.0
ops/sec 249.7 476.1 3154 188.7
SPAFS2 latency (ms) 189.5 1.8 2.8 83.5

The reason that SPAFS2 out performs SPAFS is simple: SPAFS2 does not need to use
database in order to function, while SPAFS was designed from the ground up to store branch’s
data in the database and uses these data inside the database to conduct files lookup. This design
choice results in every file system operations invoking at least one database query. This of course
leads to terrible performance even during file system operations that only involve reading data

from the database and abysmal performance during file system operations that involve writing

35

data to the database, where not only does SPAFS have to write data to files in the file system, it
also have to compute and add or update metadata of each and every files that have been written to

the database.

In contrast, SPAFS2 learns from the mistake made by SPAFS and abandons the use of
database to conduct files lookup altogether. Instead, SPAFS2 relies on using only built-in data
structures of Python, specifically list and dictionary, to store data necessary to conduct files
lookup. This results in SPAFS2 easily performs 2 to 60 times faster than SPAFS, as the benchmark

results clearly show.

In the case of PyUnionFS, we believe that SPAFS2 performs better than PyUnionFS be-
cause PyUnionFS operates on a list of paths, while SPAFS2 operates on a list of objects inside a
dictionary. This might sound trivial, but it means that for every file operations PyUnionFS have
to perform more works than SPAFS2. This is because while SPAFS2 can use paths that are sup-
plied by the user or application instantly, PyUnionFS have to parse these paths first before it can
operate on them. The overhead from these individual parsing operations might be insignificant,
but combined they can really have an impact on the performance of PyUnionFS as the benchmark

results have shown.

Lastly, as to the reason why SPAFS2’s performance is on par with, and even in some cases
surpasses that of DummyFS, we do not believe that the current benchmark results provide enough
data to answer this question. More in-dept profiling of both DummyFS and SPAFS?2 is needed
before we can understand why the performance of SPAFS2, with all of its features and modular

architecture is on par with that of DummyFS, a bare-bone loopback file system.

5.3.2 Benchmark Results and Analysis of SPAFS2’s SSH Network 10 Module Performance

From Table 5.2, the results clearly show that in general SPAFS2 performs worse than both
SSHFS and PySSHFS.

Table 5.2: Miro-benchmark results of SPAFS2’s SSH Network IO Module and other distributed file systems

Create | Random | Random | Delete
Files Reads Writes Files
SSHFS | graney e | 2023|175 28 | a7¢
PySSHES 1at2§23/ys?fns) 15230 ég:g ggg 17999%7
SPAFS2 1at2§2;5?fns) 2&328.4 ;431:2 5212 f()92.56

This is as we have expected, because unlike SSHFES or PySSHFS, SPAFS2 must loop over

36

a list of objects inside a dictionary and checking which branch the given file or folder is in before
it can performs operation on the said file or folder. While the overhead of each check is quite

small, they eventually added up and affect the performance nonetheless.

5.4 Summary

In this chapter, we present the benchmark results of SPAFS2 under various different kinds
of micro-benchmark workloads. The benchmark results clearly show that SPAFS2 performance
is acceptable, especially when we consider the complexity of SPAFS2’s code base as well as the
fact that SPAFS2 have modular architecture and more features than most of the other file systems

that are being compared against it.

However, as the reader might have already noticed, the benchmark workloads used in the
experiment are only micro-benchmark workloads, which only show the overhead of various file

system operations and not the indication of overall file system performance.

The reason for this omission is that while there are many general-purpose benchmarks to
choose from, and even Filebench itself can functions as one if we use the appropriate workload
personality, the problem is that most general-purpose benchmarks does not generate workload that
accurately reflexes how people would use their personal computer or portable device. Therefore,
we decided to omit using a general-purpose benchmark to evaluate SPAFS2 until we can find a
general-purpose benchmark that can generates workload that accurately reflexes how layperson

uses their machine.

Throughput (ops/sec)

1400
B extd 1
DummyFS KX
SPAFS &z
PyUnionFS
SPAFS2 E==1
L e .
L e =
BOO [.
0T e e .
400 | fe = SEE o T IS .
N
N
200 | e G e N
’ p
%‘9/ (%00' %O'
c 4, %, %,

Micro-benchmark workload

Figure 5.2: Throughput of SPAFS2’s Local Disk IO Module and other file systems

37

Throughput (ops/sec)

350

300

250

200

150

100

50

SSHFS 1
PySSHFS &%
SPAFS2 ez

<

X
4
XX

XA
O
X

'ov
RBK

dolele!
RRR

%
>

v
KX
%
XK

|

T

X
et

1%

Micro-benchmark workload

Figure 5.3: Throughput of SPAFS2’s SSH Network 10 Module and other distributed file systems

38

CHAPTER VI

CONCLUSION

In this dissertation, we present the design of Personal Cloud File System Framework, a
modular userspace file system framework for accessing and manipulating files and folders on
multiple personal computers and portable devices. We also implement Simple Protocol Agnostic

File System 2 (SPAFS2), the prototype of our framework.

Since Personal Cloud File System Framework combines ideas and concepts from dis-
tributed file systems and unification file systems, our framework shared many similarities with

both distributed file systems and unification file systems.

Our framework is similar to SSHFES-MUX [4], which is a distributed file system that also
capables of merging multiple remote directories into one unified view. Unlike SSHFS-MUX,
Personal Cloud File System Framework is capable of merging both remote and local directories
while also supports other features such as branch’s permission, Whiteout, and Copy Up. Personal
Cloud File System Framework is also extensible through IO Module, unlike SSHFS-MUX which

only supports SSH protocol.

Another distributed file system that is extensible and also supports multiple network pro-
tocols is YaFS [8]. Like our framework, YaFS also does not have its own servers. Unlike our
framework, YaFS stripes data before storing them on the servers. While this method of storing
data have many benefits, such as bandwidth efficiency, it also means that the user cannot access
his data on the servers without using YaFS. The user also cannot use YaFS to access his existing

data on the remote machine.

The design of Personal Cloud File System Framework’s Cache Management component

and how the framework handles offline operation have been inspired by Coda [15].

Just like Unionfs [25], Personal Cloud File System Framework supports all fundamental
concepts of unification file systems: branch’s priority and permission, Whiteout, Copy Up, and
recursive unification. Personal Cloud File System Framework also supports a mixture of Read-
Write and Read-Only branches on the condition that the top branch’s permission must always
be Read-Write. Unlike Unionfs, Personal Cloud File System Framework only creates a shadow
directory when performing a copy up operation. Personal Cloud File System Framework also does
not support dynamic insertion or removal of branches. Also, just like Plan 9’s Union Directory

[12] and 4.4BSD-Lite’s Union Mount [11], our framework does not preserve ownership of each

40

file that have been copied up.

Thanks to the fact that Personal Cloud File System Framework is implemented as a
userspace file system, it can run on all Linux distributions as well as other UNIX-like operat-
ing systems that support Python binding of FUSE [20] as well as other libraries required by the

framework.

We have measured the performance of SPAFS2 against other file systems that have similar
functionality using micro-benchmark workloads of Filebench [21]. The results show that the
performance of SPAFS2 is on par with and in some workloads even exceeds other file systems

that are being compared against it.

6.1 Contributions

With SPAFS2, the prototype of Personal Cloud File System Framework, we have not only
created a working prototype of our framework, but also shown that a modular userspace file system
that combines the idea of unification file systems and distributed file systems is feasible and that
the performance of such file system is acceptable with minimum overhead. The prototype that we
have created can also be used as a building-block to create more sophisticated file systems in the

future.

We also abstracts and summaries the code and algorithms needed to create a functional
unification file systems and shows that these algorithms are general enough to work on both local

and remote files and folders.

We present the design and implementation of Branch Tag, an extension of fundamental
concepts of unification file systems that enables the user to directly specify which file in which
branch to operate on as well as show files and folders that have been hidden by the framework. By
implementation Branch Tag, We also show that our prototype is capable of supporting alternative

conflict resolution methods.

Also, as by-products of us trying to implement the working prototype of Personal Cloud
File System Framework, several fully functional proof-of-concept userspace file systems have

been created.

We have also gained valuable knowledge on how to implement a userspace file system
using FUSE’s Python binding. We have also described, in great detail, our experiences in trying

to implement the working prototype of our framework.

41

6.2 Future Works

While the core functionalities of Personal Cloud File System Framework is in place, specif-
ically the ability to unify multiple remote and local directories into one unified view and the mod-
ular architecture that supports extending the framework via IO module, there is still a lot of work

left to do.

We still have yet to implement and test Cache Management, one of the major component

in the design of Personal Cloud File System Framework.

Our current design and implementation is specific to Linux and other UNIX-like operating
system and is not really cross-platform. The current implementation and algorithms used is heav-
ily ties to how FUSE, especially how Python binding of FUSE, works. Future work that explores
how to adapt our design and implementation to other platforms that are not Linux or UNIX-like

might be worthwhile.

Also, an in-dept performance analysis of SPAFS2 is also a worthwhile pursuit.

References

[1] Jerome Vouillon Benjamin C. Pierce. 2004. Whats in unison? a formal specification and ref-
erence implementation of a file synchronizer. Technical Report MS-CIS-03-36, University

of Pennsylvania.

[2] Canonical Ltd. 2009. Release Notes. [Online]. Available from:

https://wiki.ubuntu.com/JauntyJackalope/ReleaseNotes . [2011, April 5].

[3] Irmen de Jong. 2010. Pyro - Python Remote Objects. [Online]. Available from:
http://irmen.home.xs4all.nl/pyro3/ . [2011, March 10].

[4] Nan Dun, K. Taura, and A. Yonezawa. 2008. Gmount: Build your grid file system on the fly.
In Proceedings of the 2008 9th IEEE/ACM International Conference on Grid Computing,
GRID ’08, pp. 328-333, Washington, DC, USA. IEEE Computer Society. ISBN 978-
1-4244-2578-5. doi: http://dx.doi.org/10.1109/GRID.2008.4662817. [Online]. Available
from: http://dx.doi.org/10.1109/GRID.2008.4662817 .

[5] D. Richard Hipp. 2011. SQLite. [Online]. Available from: http://www.sqlite.org/ .
[2011,April 17].

[6] Drew Houston and Arash Ferdowsi. 2011. Dropbox. [Online]. Available from:
https://www.dropbox.com/ . [2011, April 4].

[7]1 John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. West. 1988. Scale and per-
formance in a distributed file system. ACM Trans. Comput. Syst. 6:51-81. ISSN
0734-2071. doi: http://doi.acm.org/10.1145/35037.35059. [Online]. Available from:
http://doi.acm.org/10.1145/35037.35059 .

[8] Yutong Lu, Huajian Mao, and Jie Shen. 2009. A distributed filesystem framework

for transparent accessing heterogeneous storage services. In IPDPS ’09: Proceedings

of the 2009 IEEE International Symposium on Parallel&Distributed Processing, pp.
1-8, Washington, DC, USA. IEEE Computer Society. ISBN 978-1-4244-3751-1. doi:
http://dx.doi.org/10.1109/IPDPS.2009.5161180.

[9] James G. Mitchell and Jeremy Dion. 1982. A comparison of two network-based file servers.
Commun. ACM 25:233-245. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/358468.
358475. [Online]. Available from: http://doi.acm.org/10.1145/358468.358475 .

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

43

Paramiko Team. 2011. Paramiko. [Online]. Available from: http://www.lag.net/paramiko/ .

[2011, January 2].

Jan-Simon Pendry and Marshall Kirk McKusick. 1995. Union mounts in 4.4bsd-
lite. In Proceedings of the USENIX 1995 Technical Conference Proceedings, TCON’95,
pp. 3-3, Berkeley, CA, USA. USENIX Association. [Online]. Available from:
http://portal.acm.org/citation.cfm?id=1267411.1267414 .

Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. 1990. Plan 9 from bell labs.
In In Proceedings of the Summer 1990 UKUUG Conference, pp. 1-9.

G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel. 1981.
Locus a network transparent, high reliability distributed system. SIGOPS Oper. Syst. Rev.
15:169-177. ISSN 0163-5980. doi: http://doi.acm.org/10.1145/1067627.806605. [Online].
Available from: http://doi.acm.org/10.1145/1067627.806605 .

R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon. 1988. Innovations in inter-
networking. chapter Design and implementation of the Sun network filesystem, pp. 379-390.
Artech House, Inc., Norwood, MA, USA. ISBN 0-89006-337-0. [Online]. Available from:
http://dl.acm.org/citation.cfm?id=59309.59338 .

Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H.
Siegel, and David C. Steere. 1990. Coda: A highly available file system for a distributed
workstation environment. IEEE Trans. Comput. 39:447—459. ISSN 0018-9340. doi: http://
dx.doi.org/10.1109/12.54838. [Online]. Available from: http://dx.doi.org/10.1109/12.54838

Liba Svobodova. 1981. A reliable object-oriented data repository for a dis-
tributed computer system. SIGOPS Oper. Syst. Rev. 15:47-58. ISSN 0163-
5980. doi: http://doi.acm.org/10.1145/1067627.806591. [Online]. Available from:
http://doi.acm.org/10.1145/1067627.806591 .

Liba Svobodova. 1984. File servers for network-based distributed systems. ACM Comput.
Surv. 16:353-398. ISSN 0360-0300. doi: http://doi.acm.org/10.1145/3872.3873. [Online].
Available from: http://doi.acm.org/10.1145/3872.3873 .

Daniel Swinehart, Gene McDaniel, and David Boggs. 1979. Wfs a simple shared file

system for a distributed environment. In Proceedings of the seventh ACM symposium on

Operating systems principles, SOSP °79, pp. 9-17, New York, NY, USA. ACM. ISBN 0-

89791-009-5. doi: http://doi.acm.org/10.1145/800215.806564. [Online]. Available from:
http://doi.acm.org/10.1145/800215.806564 .

44

[19] Miklos Szeredi. 2011. SSH Filesystem. [Online]. Available from:
http://fuse.sourceforge.net/sshfs.html . [2011, March 9].

[20] Miklos Szeredi. 2011. FUSE: Filesystem in Userspace. [Online]. Available from:

http://fuse.sourceforge.net/ . [2011, January 2].

[21] Vasily Tarasov. 2011. FileBench. [Online]. Available from: http://filebench.sourceforge.net/
. [2011, September 13].

[22] The Beat Writers. 20009. Release Notes. [Online]. Available from:
http://docs.fedoraproject.org/en-US/Fedora/1 1/html/Release_Notes . [2011, April 5].

[23] Guido van Rossum. 2011. Python programming language. [Online]. Available from:

http://www.python.org/ . [2011, June 3].

[24] Kaushik Veeraraghavan, Jason Flinn, Edmund B. Nightingale, and Brian Noble. 2010.
qufiles: the right file at the right time. In Proceedings of the 8th USENIX conference on
File and storage technologies, FAST’ 10, pp. 1-1, Berkeley, CA, USA. USENIX Associa-
tion. [Online]. Available from: http://dl.acm.org/citation.cfm?id=1855511.1855512 .

[25] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan, David P. Quigley, Erez
Zadok, and Mohammad Nayyer Zubair. 2006. Versatility and unix semantics in namespace
unification. Trans. Storage 2:74-105. ISSN 1553-3077. doi: http://doi.acm.org/10.1145/
1138041.1138045. [Online]. Available from: http://doi.acm.org/10.1145/1138041.1138045

APPENDICES

APPENDIX A

EVOLUTION OF PERSONAL CLOUD FILE SYSTEM
FRAMEWORK’S PROTOTYPES

In this chapter, we describe the evolution of Personal Cloud File System Framework’s pro-

totypes.

We begin by describing DummyFS, a simple userspace file system that we implemented in
order to learn FUSE’s Python binding, in Section A.1. Next, we describe SPAFS, the framework’s
first prototype, in Section A.2, then proceed to talk about PyUnionFS, the proof-of-concept file
system that implements early version of the algorithms that were later used in SPAFS2, in Section
A.3. PySSHEFS, the proof-of-concept for SPAFS2’s SSH Network 10 Module, is discussed next

in Section A.4 and we conclude with a brief summary in Section A.5.

A.1 DummyFS

Dummy File System (DummyFES) is a simple userspace file system implemented using
Python [23] and Python binding of FUSE [20] that provides access to existing files or folders

from its mount point.

It is the first userspace file system that we have created in order to learn how to use FUSE’s
Python binding. Despite this, DummyFS supports all of the basic file system operations and is

actually usable as a makeshift loopback file system.

All of userspace file systems that we later created are derived from DummyFS.

A.2 SPAFS

Simple Protocol Agnostic File System (SPAFS) is the first prototype of Personal Cloud
File System Framework that successfully merges contents of two or more directories by using a

database to store branch’s data and using these data inside the database to conduct files lookup.

SPAFS only implement 2 out of 3 major components of Personal Cloud File System Frame-
work: Interface and List Management. Consequently, SPAFS does not support caching of file for

offline usage.

47

During the development of SPAFS, we try to adherent as closely as possible to the initial
design of Personal Cloud File System Framework, which, as shown in Figure A.1, have List

Management as a separate component from Interface component.

User 8
A

Local Machine Applications
Personal Cloud
File System Framework
Interface
Cache .
Management List Management

Network : Network Network
Module Module Module
b ——

Storage Device

Remote Machines

Figure A.1: The initial design of Personal Cloud File System Framework.

This results in the first version of SPAFS implements List Management as a separate dae-
mon process, communicates with Interface component through RPC using Python’s Pyro library

[3] and stores branch’s directory trees inside a SQLite [5] database.

We implement Interface component of SPAFS as userspace file system using FUSE’s

Python binding.

While this implementation technique works well enough as long as the objects that are
passed between Interface and List Management component are pickable, we quickly grew frus-
trated with this constraint as it limits what we can do with List Management. For example, We
cannot pass file objects between Interface and List Management component, meaning that we can-
not have List Management handles any file system operations whether directly or through other

modules. We are also concerned about performance overhead that Pyro might causes.

For these reasons, we abandon the idea of implementing List Management as a separate

48

process and, in the second version of SPAFS, implement it as a Python module instead.

Aside from having List Management as a Python module that is directly imported and used
by Interface component, the second version of SPAFS is pretty much identical to the first one.
We still use Python FUSE to implement Interface component and List Management still stores

branch’s data in the SQLite database.

The decision to implement List Management as a Python module turns out to be a correct
one as it simplify how Interface component communicates with List Management component, as

well as giving us greater flexibility and freedom on how to implement List Management’s features.

During file system’s initialization period, SPAFS walks each branch’s directory tree recur-
sively and adds all file and folder from each branch as well as other “metadata” information about

each file or folder, such as path to the said file or folder, hash of file’s name, etc., to the database.

User ¢
A
‘ A
Local Machine Applications
SPAFS v
Interface
|
1 v

List Management

v

A .

Storage Device SQLite Database

Figure A.2: How SPAFS handles file system calls from the user and applications.

SPAFS operates by passing file or folder path that Interface component received from the
user or applications onto List Management component. List Management then used the supplied
path to query the database, looking for the matching file and folder name and, once the match is
found, return the file or folder “real” path to Interface component to operate on. Figure A.2 shows

how SPAFS handles file system calls from the user.

SPAFS is where we first implement the algorithm that hides duplicate directory entry when

the user lists SPAFS’s mount point contents. A modified version of this algorithm were later used

49

by both PyUnionFS and SPAFS2.

Algorithm 7 Algorithm used by SPAFS to hide duplicate directory entry

(TR ENTIRE]

1. dir_entries_list.append(*.”’, “..”)
2: if path = “/” then
3: for branch_path in branch_paths_list do

4: branch_dir_entries_list < os.listdir(branch_path,)
5: for entry in branch_dir_entries_list do

6: if entry not in dir_entries_list then

7: dir_entries_list.append(entry)

8: return dir_entries_list

9: end if

10: end for

11: end for

12: else

13: queried_path < list_management.request_path(path)
14: branch_dir_entries_list < os.listdir(queried_path)
15: for entry in branch_dir_entries_list do

16: dir_entries_list.append(entry)
17: return dir_entries_list

18: end for

19: end if

As shown in Algorithm 7, the algorithm works by first check if the path supplied is the root
path or not. If the path supplied is the root path, then the algorithm loop over a list of branch’s
paths, listing and adding contents of every branch’s root path to dir_entries_list, which in our
implementation is a Python’s list. The exceptions are, of course, files and folders that are already

in dir_entries_list.

If the path supplied is not the root path, then the algorithm pass the path onto List Man-
agement. List Management then query the database to find the matching folder name and, once
the match is found, return the “real” path to folder back to the algorithm, which then proceed to
add contents of the folder to dir_entries_list. Note that in this case we do not need to check for
duplicate files or folders in subfolder before adding its contents to dir_entries_list because every

subfolder’s namespace is already consistence.

After the algorithm have finished populating dir_entries_list, the list is then used by FUSE

to satisfy user’s request to list directory.

Another important breakthrough we had with SPAFS is the finding that Python FUSE use
getattr method to check for the existence of a file or folder before creating it and that Python FUSE

will only create new file or folder if the getattr method return error value -errno.ENOENT (-2).

This means that for Interface component to work correctly, we must make sure that getattr

method return error value -2 for every files and folders that does not exist.

50

We had planned to implement Cache Management component for SPAFS, as well as creat-
ing plugin interface for List Management. However, after preliminary benchmark results shown
that SPAFS have unacceptable performance, we decided to abandon the idea of using a database

to store branch information.

A.3 PyUnionFS

After the abysmal benchmark results of SPAFS show us that relying on a database for most
of file system operations is probably not a good idea, at least performance wise, we decided to
start over from the beginning and try to implement file system that can unify contents of multiple

directories without having to rely on a database or any other form of persistence storage.

Python Unification File System (PyUnionFS), a proof-of-concept unification userspace file

system implemented entirely in Python using Python FUSE, is the result of this rewrite.

The first iteration of PyUnionFsS tries to emulate how SPAFS works, but instead of storing
branch’s data inside a database, PyUnionFS stores branch’s data in the memory (in a Python’s
list, to be precise). While preliminary evaluation of PyUnionFS shows that it performs better than
SPAFS, we still need to walk each branch’s directory tree and store the data inside PyUnionFS’s
memory during file system’s initialization process, which can take considerable amount of time if

the branch’s directory tree contains large amount of files and folders.

Later, having been inspired by the simplicity of SSHFS-MUX [4] way of handling files
and folders lookup, which basically boils down to looping through each branch while trying to
perform operations on the file or folder and stop once the operations complete successfully, we

implement a new lookup algorithm that uses similar concept.

The new lookup algorithm works by simply looping over a list of branch’s paths, using the
user supplied path to check for the existence of file for folder that the user wish to operate on.

Once the file or folder is found, we operate on it.

This new lookup algorithm enables us to implement code necessary for merging the con-

tents of multiple directories without having to first store data of each branch.

Another nice benefit of this new lookup method is that since we use the structure of direc-
tory tree itself for files and folders lookup, any changes in any of the branches will also shows up
in our file system, while in SPAFS if any changes are made directly to the branch without going

through SPAFS’s mount point it will causes an error during lookup operations because now the

51

branch’s directory tree is different than the one SPAFS had stored in its database.

With PyUnionFS, we are able to not only implement directory unification, but other fea-
tures of unification file system, such as branch’s permission, whiteout, and copy up, have also
been successfully implemented. Most of the algorithms used to implemented these features in
PyUnionFS will later be used in Simple Protocol Agnostic File System 2 (SPAFS2), the current

prototype of Personal Cloud File System Framework.

Performance evaluation of PyUnionFS shows that the new file system performs signifi-
cantly better than SPAFS, thanks in large part to the new lookup algorithm that does not require

storing branch’s data in a database or any other storages at all.

A4 PySSHFS

Python Secure SHell File System (PySSHFS) is an userspace file system that let the user
operating on files on a remote machine using SFTP subsystem of SSH. It is implemented as a

proof-of-concept for SPAFS2’s SSH Network 10 Module.

Like its name implies, PySSHFS is implemented in Python using Python FUSE just like
SPAFS and PyUnionFS. SSH and SFTP support for PySSHFS were implemented using Paramiko
library [10].

While PySSHFS supports most basic file operations, it does not have any caching mech-
anism. Couple this with the fact that Paramiko library is written entirely in Python means that

while PySSHES is functional, its performance is less than desirable.

A.5 Summary

In this chapter, we describe early prototypes of Personal Cloud File System Framework.
The lessons learned from each of these prototypes are used in the design and implement of both
Personal Cloud File System Framework itself and SPAFS2, the current prototype of the framework

at the time of this writing.

APPENDIX B

DUMMYFS’S SOURCE CODE

This chapter presents the full source code of Dummy File System (DummyFS).

B.1 DummyFS’s Main Program

#1/usr/bin/env python

#—w— coding: utf—8—w—

DummyFS — FUSE based Dummy Filesystem
#

Author: Smith Dhumbumroong <zodmaner@gmail . com>

import os
import stat
import errno

import logging
import fuse
fuse . fuse_python.api = (0, 2)

class DummyStat(fuse. Stat):
def __init__(self):
self.st_mode = 0
self .st.ino = 0
self.st.dev = 0
self.st-nlink = 2
self.st_uid =0
self.st.gid = 0
self .st-size = 4096
self . st_atime = 0
self.st.mtime = 0

self .st_ctime = 0

class DummyFS(fuse.Fuse):

def __init__(self, =args,

Initialize file system class

fuse.Fuse. -.init__(self, xargs, sxkw)

self.root = os.path.expanduser(’~")

self.logging = False

self.log-dir = os.path.expanduser(’/tmp/Dummyfs’)

self . log_file = os.path.join(self.log.dir, 'Dummylog’)

def fsinit(self):

Initialize file system.

os.chdir(self.root)

if self.logging:
if os.path.exists(self.log_dir):
if os.path.exists(self.log-file):
os.rename(self.log_file , os.path.join(self.
log_dir ,
"Dummylog. old *))
else:

os. makedirs (self.log-dir)

logging . basicConfig(filename=self.log_file ,

level=logging .DEBUG,)

logger = logging . getLogger (*DummyFS. fsinit)
logger.debug(method.called)

logger.debug (*currentoroot.path_is_{0}.format(self.root)

def getattr(self, path):

Get file/folder attributes.
if self.logging:
logger = logging.getLogger(’DummyFS. getattr)

logger . debug (’path-is—{0} . format(path))

stat = DummyStat ()

os.st = os.Istat(”.” + path)
stat.st.mode = os.st.st.mode
stat.st.ino = os.st.st.ino
stat.st.dev = os._st.st.dev
stat.st-nlink = os.st.st-nlink
stat.st.uid = os.st.st_uid

stat.st.gid = os_.st.st_gid

stat.st.size = os.st.st-size

stat.st.atime = os.st.st.atime
stat.st.mtime = os.st.st_mtime
stat.st.ctime = os-st.st-ctime

return stat

def readdir(self, path, offset):

Read directory.
if self.logging:
logger = logging.getLogger(’DummyFS. readdir’)
logger.debug (' path_is_.{0},.offset_is_{1} . format(path,
offset))

Id = os.listdir(”.” + path)

for r in (7.7, 7..7):

1d . append(r)

for i in Id:

yield fuse.Direntry (i)
def mkdir(self, path, mode):
Create a directory.
if self.logging:
logger = logging.getLogger (’DummyFS. mkdir)

logger.debug(path_is~{0},~mode_is_{1} .format(path, mode
)

os.mkdir(”.” + path, mode)
def rmdir(self, path):

Remove a directory.

if self.logging:

logger = logging . getLogger ('DummyFS. rmdir*)

logger.debug(path_is_{0} . format(path))

os.rmdir(”.” + path)

def read(self, path, size, offset):

Read data from an open file .

if self.logging:
logger = logging.getLogger (*DummyFS. read’)

logger.debug(path_.is {0} ,_size_is_{1},~offset_is_{2} .

format (path ,
size , offset))
with open(”.”

file .seek(offset)

+ path, ’r’) as file:

return file.read(size)

def mknod(self, path, mode, dev):

Create a file node.

if self.logging:
logger = logging.getLogger(DummyFS.mknod’)
logger.debug(path_is_{0},-mode~is_{1},~dev_is_{2}".
format (path ,
mode, dev))

os.mknod(”.” + path, mode, dev)

def write(self, path, buf, offset):

Write data to an open file.

if self.logging:
logger = logging.getLogger (’DummyFS. write 7)

logger.debug (*pathis_{0},cbuf_is-{1lr},coffsctois {2}

format (

path, buf, offset))

with open(”.”
file .seek(offset)
file . write (buf)

+ path, ’r+’) as file:

return len (buf)

def rename(self, path, pathl):

Rename a file .

if self.logging:
logger = logging.getLogger (’DummyFS.rename’)
logger.debug (’path_is_{0},_pathl_is_{1}".format(path,
pathl))
os.rename(”.”

+ path, * + pathl)

def truncate (self, path, size):

Change the size of a file.

if self.logging:
logger = logging . getLogger ('DummyFS. truncate)
logger.debug (" path_is_{0},_size~is-{1} . format(path,
))

with open(”.” + path, “a”) as file:

file . truncate (size)

def unlink (self, path):

Remove a file .

if self.logging:
logger = logging. getLogger (*DummyFS. unlink *)
logger.debug(’ path_is_{0} .format(path))

os.unlink (”.” + path)

def readlink (self, path):

size

53

Read the target of a symbolic link.

if self.logging:
logger = logging.getLogger(’DummyFS.readlink’)
logger.debug (*path_is.{0}".format(path))

return os.readlink (”.”

+ path)

de

<Y

symlink (self , path, pathl):

Create a symbolic link.

if self.logging:
logger = logging.getLogger(’DummyFS.symlink ')
logger.debug(path_is_{0},_pathl_is_{1} .format(path,
pathl))

os.symlink (path, ”.” + pathl)

de

<Y

link (self , path, pathl):

Create a hard link to a file.
if self.logging:
logger = logging.getLogger('DummyFS. link ")
logger.debug(path_is_{0},opathl_is_{1} .format(path,
pathl))

os.link(”.” + path, 7.” + pathl)

def chmod(self, path, mode):

Change the permission bits of a file.

if self.logging:

logger = logging.getLogger (DummyFS.chmod ")

logger.debug(path_is.{0},.mode_is_{1} .format(path, mode
))

os.chmod(”.” + path, mode)

def chown(self , path, user, group):

Change the owner and group of a file.
if self.logging:
logger = logging.getLogger (DummyFS.chown ")
logger.debug(path_is_{0} ,~user—is—{1},~group—is_{2} .
format (path ,
user, group))

os.chown(”.” + path, user, group)

def utime(self , path, times):

Change the access and/or modification times of a file.
if self.logging:
logger = logging.getLogger (’DummyFS. utime)
logger.debug(’path_is.{0},otimes_is.{1} . format(path,
times))

os.utime (+ path, times)

def statfs(self):

Get file system statistics.

if self.logging:
logger = logging.getLogger('DummyFS. statfs”)
logger.debug(method_called’)

os.statvfs(”.”)
def fsdestroy(self):

if self.logging:
logger = logging . getLogger ('DummyFS. fsdestroy)

logger.debug('method~called)

def main(self , *args, #xkw):

Filesystem main method

self.root = os.path.realpath(self.root)

return fuse.Fuse.main(self , xargs, sxkw)

def main():
usage=fuse.Fuse.fusage +\
"\nDummyFS: _A_toy_filesystem_that_I_create—_in_.order—_to~learn_-Python—

FUSE.”

server = DummyFS(version="%prog.” + fuse.__version__,
usage=usage ,
dash.s.do="setsingle ')

server.parser.add_option (mountopt="root’,

metavar="PATH" ,
default=server.root,

help=\

“mirror~filesystem_from_under PATH-(default: %default)”)

if

server.parser.add_option(’—1",

—logging’,
action="store_true”,
dest="logging ",
default=server.logging ,

help="enable_logging_to-a_file”)

server.parse (values=server , errex=1)

if server.logging:

54

print ’Start_logging~to~file:-{0}\n’.format(server.log-file)

server.main ()

--name..

main ()

To-main..’:

APPENDIX C

SPAFS’S SOURCE CODE

This chapter presents the full source code of Simple Protocol Agnostic File System

(SPAFS) and its List Management.

C.1 SPAFS’s Main Program

#!/usr/bin/env python

SPAFS — Single Point Access Filesystem
#

Author: Smith Dhumbumroong <zodmaner@ gmail . com>

import os
import stat
import errno
import logging

import ConfigParser

import fuse
import pynotify

import list_management
fuse . fuse_python_api = (0, 2)

class SPAStat(fuse. Stat):
def __init__(self):
self.st_mode = 0
self .st_ino = 0
self.st.dev = 0
self.st-nlink = 2
self.st_uid =0
self.st.gid = 0
self.stosize = 4096
self . st_atime = 0
self.st.mtime = 0

self . st-ctime = 0

class SPAFS(fuse.Fuse):

def __init__(self, sargs, s*kw):

Initialize file system class

fuse.Fuse. __init__(self, =args, #ikw)
self .root = 7.7

self.logging = False
self.log.file = '/tmp/SPALog’

self.config-file = "/tmp/spa.conf’
self.branch = None

def local_walk (self, path):

Reimplementation of Python’s os.walk using stat
dirs , nondirs = [], []

names = os.listdir (path)

for name in names:

joined-path = os.path.join(path, name)

mode = os.lstat(joined_-path).st.mode
if stat.S_ISDIR (mode):

dirs . append (name)
else:

nondirs . append (name)

module

yield path, dirs, nondirs

for name in dirs:
new.path = os.path.join(path, name)
for i in self.local_walk(new_path):

yield i

def fsinit(self):

Initialize file system.
if self.logging:

if os.path.exists(self.log_file):

os.rename(self.log-file , */tmp/SPALog.old")

logging . basicConfig(filename=self.log-file , level=logging
.DEBUG.)
logger = logging.getLogger(’SPAFS. fsinit’)
logger.debug(method~called)
logger.debug(’current.root_path_is.{0} . format(self.root))
for i in range(len(self.splited_-branches)):

logger.debug(branch_{0}_is {1} .format(i + 1,

self.

splited-branches[i]))

os.chdir(self.root)

pynotify . init ("SPA_Filesystem”)

list_-management.create-db ()

n = pynotify.Notification ("SPA~Filesystem”,
“Populate_database_with_brach’s_directory.structure”,
“gtk—harddisk™)

n.set-timeout (0)

n.show ()

num-list = iter (range(100))

for branch._path in self.splited-branches:
logger.debug (" walk—-into-{0} .format(branch_path))
branch_name = \

str(num-list.next()) + '.’ + os.path.basename(branch_path
for path, dirs, files in self.local_.walk (branch_path):

list.management.pop.db(path, dirs, files, branch.name

n.update ("SPA-Filesystem”™, "Database_populated”, "gtk—
harddisk™)
n.set_timeout(2000)

n.show ()

def local.getattr(self, path):

Query database for path to file/folder and return its

attributes

if path == "/":

return os.lstat(self.splited-branches[0])

if list-management.request-path_Istat(self.splited-branches ,

path) ==

errno .ENOENT:
return errno .ENOENT
else:

gpath =\

list_management.request-path_lstat(self.splited-branches ,

path)

return os.lstat (gpath)

def getattr (self, path):

def mkdir(self ,

S

Get file/folder

attributes .

logger = logging.getLogger(SPAFS. getattr)
logger.debug(’path_is_{0} .format(path))

if self.local-getattr(path) == errno.ENOENT:
return —errno .ENOENT
else:

entry.st = self.local_getattr(path)

stat = SPAStat()

stat.st.mode = entry._st.st.mode
stat.st.ino = entry.st.st.ino
stat.st.dev = entry_st.st.dev
stat.st_nlink = entry_st.st_nlink
stat.st.uid = entry.st.st-uid
stat.st.gid = entry_st.st_gid
stat.st.size = entry.st.st.size
stat.st-atime = entry.st.st.atime
stat.st.mtime = entry_st.st.mtime
stat.st.ctime = entry.st.st_ctime
return stat

readdir (self ,

path, offset):

Read directory .

logger = logging . getLogger ('SPAFS. readdir)
logger.debug(path_is_{0},~offset_is_{1}.format(path,
))

if path == */’:
for branch_path in self.splited-branches:

Idd = os.listdir(branch_path)

for i in ldd:
if i not in 1d:
1d.append (i)
else:
gpath =\

list_management.request-path_listdir (self.
splited-branches , path)
ldd = os.listdir (qpath)
for i in ldd:

1d .append(str(i))

for r

in (

1d . append(r)

for i in Id:

yield fuse.Direntry (i)
path , mode):

Create a directory.

logger = logging.getLogger(’SPAFS. mkdir’)

offset

logger.debug (*path—is_{0},—mode_is_{1}".format(path, mode))

qpath =\

list_management.request.path_create (self.splited_-branches ,

path, *True’)

os . mkdir (gpath , mode)

def rmdir(self,

def mknod(self ,

def write (self ,

def truncate (self ,

path):

Remove a directory.
logger = logging . getLogger (’SPAFS. rmdir’)
logger.debug(path_is_{0} . format(path))

gpath = list.management.request.path_rmdir(self.
splited-branches , path)
os.rmdir(qpath)

def read(self, path, size, offset):

Read data from an open file .

logger = logging. getLogger (’SPAFS.read’)

56

logger.debug (' path_is_{0},_size_is—-{1},~offset_is_{2} . format

(path,

size , offset))
gqpath = list_management.request_path_read(self.
splited-branches , path)
with open(qpath, “r”) as file:
file .seek (offset)
return file.read(size)

path, mode, dev):

Create a file node.

logger = logging.getLogger(SPAFS.mknod)

logger.debug(path_is_{0},cmode_is_{1},odev_is_{2} . format(

path ,

mode, dev))

qpath =\

list_management.request_path_create(self.splited_branches ,

path)
os.mknod(qpath , mode)
buf,

path, offset):

Write data to an open file .

logger = logging.getLogger(SPAFS. write ’)
logger.debug(’path_is.{0},_offset_is_{1} . format(path,
))

qpath = list_management.request_path_read (self.
splited_branches , path)
with open(qpath, "r+”7) as file:
file .seek (offset)
file . write (buf)
return len (buf)
def rename(self, path, dest.path):

Rename a file .

logger = logging . getLogger (’SPAFS. rename’)

offset

logger.debug(path_is_{0},_dest_path_is_{1}".format(path,

dest-path))

return —errno .EPERM

path, size):

Change the of a file.

size
logger = logging.getLogger (SPAFS. truncate’)
logger.debug(’path_is.{0},_size_is.{1} . format(path,

qpath = list_management.request-path_read(self.
splited_branches , path)
with open(qpath, “a”) as file:

file .truncate (size)

size))

57

def unlink (self, path):
e os.statvfs(self.splited_branches[0])

Remove a file .

def fsdestroy(self):

logger = logging.getLogger (’SPAFS. unlink *)

logger.debug(path.is_{0}".format(path)) Called when filesystem is unmount

qpath =\ logger = logging.getLogger(’SPAFS. fsdestroy)

list_management.request-path_unlink (self.splited-branches , logger.debug (" method_called ™)

path)

os. unlink (qpath) n = pynotify. Notification ("SPA.Filesystem”, ”Filesystem.
unmount™,

def readlink (self, path): “gtk—harddisk™)

e n.set_timeout (pynotify .EXPIRES_.DEFAULT)

Read the target of a symbolic link. n.show ()

logger = logging. getLogger ('SPAFS. readlink) def main(self, wa, sxkw):

logger.debug(’path_is_{0}.format(path))
Filesystem main method
return —errno .EPERM
self .root = os.path.realpath(self.root)
def symlink(self , path, pathl):
config = ConfigParser.RawConfigParser ()
Create a symbolic link.
e branch_section = ’List_of_branch_.to_unified’
logger = logging.getLogger(SPAFS.symlink ")
logger.debug(’path_is_{0},opathl_is_{1} . format(path, pathl)) if os.path.isfile(self.config_file):
config.read (self.config-file)
return —errno .EPERM
self .branch = config.get(branch_section, ’branch’)
def link (self, path, pathl):
else:

Create a hard link to a file. config.add_section(branch_section)

config.set(branch_section, ’branch’, 'None’)
logger = logging.getLogger(’SPAFS.link ")
logger.debug (’pathis_{0},opathl_is.{1} . format(path, pathl)) with open(self.config_file , 'wb’) as configfile:
config.write (configfile)

return —errno .EPERM

if self.branch != ’None’:
def chmod(self, path, mode): self.splited_-branches = self.branch.split(”:")
e for i in range(len(self.splited_branches)):
Change the permission bits of a file. self.splited-branches[i] =\

os.path.realpath(self.splited-branches[i])
logger = logging.getLogger(’SPAFS.chmod™)

logger.debug (*path-is_{0},omode_is_{1}".format(path, mode)) return fuse.Fuse.main(self, #a, skw)

return —errno .EPERM def main():

usage
def chown(self, path, user, group): SPAFS: Single Point Access Filesystem

+ fuse.Fuse. fusage

Change the owner and group of a file.

e server = SPAFS(version="%prog.” + fuse.__version__,
logger = logging. getLogger (’SPAFS.chown’) usage=usage ,
logger.debug(’path_is_{0},~user—is_{1},~group_is_{2} . format(dash_s.do="setsingle ')
path server.parser.add_option(mountopt = ’branch’,
user, group)) metavar = "PATHI:PATH2:...",
default = server.branch,
return —errno .EPERM help = "List_.of_folder’s_PATH.to._merge.

separated.\

def utime(self, path, times): by.—colon™)

server.parser.add.option(’—1", —Ilogging’,

Change the access and/or modification times of a file. action="store-true”,

dest="logging ",

logger = logging.getLogger (’SPAFS. utime) default=server.logging ,

logger.debug(’path_is_{0},~times_is_{1} . format(path, times)) help="enable_-logging~to-a_file”)
server.parse (values=server , errex=1)

gpath = list_management.request_path_read(self.

splited_branches , path) if server.logging:

os.utime (qpath , times) # Tell user where we put the log file.

print ’Start.logging_to_file:-{0}\n’.format(server.log-file)
def statfs(self):

o server.main ()
Get file system statistics.

nn if __name.. == ’__main..":

logger = logging.getLogger (*SPAFS. statfs) main ()

logger.debug(method.called)

C.2 SPAFS’s List Management Module

SPAFS’s List Management module.

import os
import errno
import sqlite3
import hashlib

db_file = */tmp/spalist.db’

def create-db():

Create database.
conn = sqlite3 .connect(db_file)
c =
c.execute ('’ 'CREATE TABLE IF NOT EXISTS fs-namespace
(id INTEGER PRIMARY KEY, path TEXT, name TEXT,
is.dir TEXT, path-hash TEXT UNIQUE,
logical-name TEXT, logical-path-hash TEXT)’’’)

conn. cursor ()

branch-name TEXT,

conn.commit ()

c.close ()
hash_path (path):

Find hash of path to file/folder.

return hashlib.md5(path).hexdigest()

add-entry (path, name, is-dir, path_hash, branch.name ,

logical-name , logical_.path_hash):

Add file/folder into database.

path = path.decode(’utf.8")

name = name.decode(utf_-8")

branch_name = branch_name.decode(utf_8")

logical_name = logical_name . decode (" utf_8")

t = (path, name, is_dir, path_hash, branch_name,

logical_name , logical_path_hash)
conn = sqlite3 .connect(db_file)
c =

.execute ('’ 'INSERT OR IGNORE INTO fs-namespace

conn. cursor ()

°

(path, is.dir, path_hash, branch-name,

name ,
logical-name , logical_path_hash)
VALUES (2, 7, 2, 72, 2, 2, 7)7"", t)
conn . commit ()

c.close ()

remove.entry (path_hash):

Remove file/folder from database.

t = path_-hash,

conn = sqlite3.connect(db-file)
¢ = conn.cursor ()

c.execute ('DELETE_LFROM.fs_namespace .WHERE_.path_hash _LIKE.?", t)
conn.commit ()

c.close ()

def retrieve-db.entries (is-dir=None):

Retrieve data from database.
if is.dir == None:
conn = sqlite3.connect(db_file)
¢ = conn.cursor ()

c.execute ("SELECT.+._FROM.fs_namespace .ORDER_BY_branch_name ")
unified-namespace = c.fetchall ()

c.close ()

<4

58

return unified-namespace

else:
conn = sqlite3.connect(db_file)
¢ = conn.cursor ()
t = is.dir,
c.execute ('’ 'SELECT % FROM fs_-namespace WHERE is.dir LIKE ?

ORDER BY branch.name’’’, t)
f_namespace = c.fetchall ()

c.close ()

return f_namespace

pop-db(path, dirs, files , branch_name):

Populate the database.

Populate the database with directory tree like the one obtained
from
Python’s os.walk method.

conn = sqlite3.connect(db-file)

¢ = conn.cursor ()
for file in files:
file.namespace = retrieve.db_entries (’False’)
file)

hash_path(joined_path)

joined_path = os.path.join(path,
path_hash =
into unicode

Convert string

path = path.decode(utf_.8°

file .decode(utf_8"

file =

branch.name = branch.name.decode(utf.8")

for i in file_namespace:
if file == i[2]:
logical-file.name = file +

L
os.path.join (path,

+ branch.name + °]°
joined_logical_path =

logical_-file.name)
logical_path_hash = hash_path(joined_logical_path)

t = (path, file, ’False’, path_hash, branch.name,

logical_file_name ,

'""INSERT OR IGNORE INTO fs_namespace

logical_path_hash)
c.execute (

(path, name, is.dir, path-hash, branch-name

logical-name , logical.-path_hash)

VALUES (?, 2, 7, 2, 2, 2, 2)""", t)

t = path, file, ’False’, path_hash, branch.name, file ,

path_hash
c.execute (' INSERT OR IGNORE INTO fs_namespace
(path, name, is-dir, path_hash, branch.name,

logical _name

VALUES (?, 2, 2, ?, 7, 7,

logical_path_hash)
2)7,)
for dir in dirs:

folder-namespace = retrieve.db.entries(True’)

joined_path = os.path.join(path, dir)

path_hash = hash_path(joined_path)
Convert siring into unicode
path = path.decode(utf_.8’

dir.decode(utf.8")

dir =
branch_name = branch-name.decode(utf_.8")
for i

if dir ==

in folder.namespace:
i[2]:
logical_dir_name = dir + "_[* + \
branch_name + ']’
joined.logical_path =\
os.path.join(path, logical_.dir.name)
logical_path_hash = hash.path(joined-logical_path)

t = (path, dir, ’True’, path_hash, branch_name,

logical-dir-name ,

c.execute ('’ 'INSERT OR IGNORE INTO fs-namespace

logical_path_hash)

(path, name, is-dir, path-hash, branch-name

logical-name , logical-path-hash)

VALUES (?, 2, 2, 2, 2, 2, 2)""", t)

t = path, dir, 'True’, path_hash, branch.name, dir, path.hash
c.execute ('’ 'INSERT OR IGNORE INTO fs_namespace
(path, name, is_dir,

path_hash, branch-name ,

logical-name , logical-path-hash)

VALUES (2, 7, 2, 7, 2, 2, 7)77",t)
conn.commit ()
c.close ()
def request.path_listdir(branch_list, path):
Return a path to directroy.
name = os.path.basename(path)
dir-name = os.path.dirname(path)
folder_namespace = retrieve.db_entries (’True’)

if dir-name == °/7:
for i in folder_.namespace:
for branch_path in branch_list:
if i[1] == branch_path:
if i[2] == name:
joined-path = os.path.join(i[l], i[2])

return joined_path

for i in folder-namespace:
if dir_name in i[1]:
if i[2] == name:
joined-path = os.path.join(i[l], i[2])
return joined._.path

def request_path_lstat(branch_list, path):

Return path to file/folder (lstat).
name = os.path.basename(path)

dir-name = os.path.dirname(path)

if dir.name == */’:
t = name,
conn = sqlite3.connect(db_file)
¢ = conn.cursor ()
c.execute ("' 'SELECT = FROM fs-namespace WHERE name = ?
ORDER BY branch_name’’’, t)

f.info = c.fetchone ()

c.close ()

if f.info:
joined_path = os.path.join(f.info[1], f.info[2])

return joined.path

t = (name, "% + dir.name)
conn = sqlite3.connect(db-file)

¢ = conn.cursor ()

c.execute (’’’SELECT FROM fs_namespace WHERE name = ? and path
like 7
ORDER BY branch-name’’’ ., t)
f.info = c.fetchone ()
c.close ()
if f.info:

joined-path = os.path.join(f-info[1], f_.info[2])

return joined._path

return errno .ENOENT

def request_path-rmdir(branch_list, path):

Return path to folder (rmdir).

name = os.path.basename(path)

dir-name = os.path.dirname (path)

59

if dir_name AN

t = (name, 'True’)
conn = sqlite3.connect(db-file)
¢ = conn.cursor ()
c.execute ("' 'SELECT % FROM fs_namespace WHERE name = ? and
is-dir = ?
ORDER BY branch_name’’’, t)

f.info = c.fetchone ()

if f_info:
joined_path = os.path.join(f.info[l], f.info[2])
path_hash = hash_path(joined-path)

t = path_hash,

¢.execute ('DELETELFROM_fs_namespace WHERE_path_hash _LIKE.
77, 0t)

conn.commit ()

c.close ()

return joined_path

t = (name, '%’ + dir.name, ’True’)
conn = sqlite3.connect(db_file)
¢ = conn.cursor ()

c.execute (' 'SELECT = FROM fs.-namespace WHERE name = ? and path
like ?
and is.dir = ? ORDER BY branch.name’’’, t)

f.info = c.fetchone ()

if f.info:
joined-path = os.path.join(f-info[1], f.info[2])
path_hash = hash_path(joined_path)

t = path_hash,

c.execute ('DELETE_.FROM.fs_namespace -WHERE_path_hash_.LIKE.? ",
t)

conn.commit ()

c.close ()

return joined_path

def request-path_unlink (branch_list, path):

Return path to file (unlink).
name = os.path.basename(path)

dir-name = os.path.dirname (path)

if dir.name == */:
t = name,

conn = sqlite3 .connect(db_file)

¢ = conn.cursor ()
c.execute (' 'SELECT % FROM fs-namespace WHERE name = ?
ORDER BY branch_name’’’, t)

f.info = c.fetchone ()

if f.info:
joined_path = os.path.join(f.info[1], f_.info[2])
Remove file/folder data from database .

path_hash = hash_path(joined_path)

t = path_hash,

c.execute ('DELETE.FROM_fs_namespace -WHERE_path_hash _LIKE.
77, t)

conn . commit ()

c.close ()

return joined_path

t = (name, ‘% + dir.name)

conn = sqlite3.connect(db_file)

¢ = conn.cursor ()

c.execute (' 'SELECT = FROM fs-namespace WHERE name = ? and path

like ?
ORDER BY branch-name’’’, t)

f_info = c.fetchone ()

if f.info:
joined_path = os.path.join(f_info[1], f_info[2])
Remove file/folder data from database.
path_hash = hash_path(joined.path)

t = path_hash ,

c.execute ('DELETE_FROM..fs_namespace .WHERE_path_hash_LIKE_?",

t)
conn.commit ()
¢.close ()

return joined.path

def request.path_read (branch_list, path):

Return path to file/folder (read).
name = os.path.basename(path)

dir_name = os.path.dirname(path)

if dir-name == */’:
t = name,
conn = sqlite3.connect(db-file)

¢ = conn.cursor ()

c.execute (' 'SELECT % FROM fs_namespace WHERE name = ?
ORDER BY branch-name '’ , t)

f_.info = c.fetchone ()

c.close ()

if f.info:
joined.path = os.path.join(f.info[1], f-info[2])

return joined.path

t = (name, % + dir_name)
conn = sqlite3 .connect(db-file)
¢ = conn.cursor ()

°

.execute ('’ 'SELECT FROM fs-namespace WHERE name = ? and path
like ?
ORDER BY branch.name’’’, t)
f.info = c.fetchone ()

c.close ()
if f.info:
joined_path = os.path.join(f_info[1], f.info[2])

return joined.path

request_path_create (branch_list ., path, is_dir="False’):

Return path to new file/folder that are to be created (write).
name = os.path.basename(path)

dir_name = os.path.dirname(path)

folder.name = os.path.basename(dir_name)

folder-path = os.path.dirname(dir-name)

if dir.name == */’:
joined.path = os.path.join(branch-list[0], name)
path_hash = hash_path(joined_path)
branch.name = '0.° + os.path.basename(branch_list[0])
add.entry (branch_list[0], name, is.dir , path_-hash,
branch_name ,
name, path_hash)

return joined-path

60

elif folder_path == °/":
t = (folder.name, ’True’)
conn = sqlite3.connect(db-file)
¢ = conn.cursor ()
c.execute ("' 'SELECT % FROM fs_namespace WHERE name = ? and
is-dir = ?
ORDER BY branch_name’’’, t)

f.info = c.fetchone ()

if f_info:
path_to-folder = os.path.join(f.info[1], f.info[2])
joined-path = os.path.join(path_-to_-folder , name)

path_hash = hash_path(joined_path)

path_to_folder = path_to_folder.decode(utf_8")
name = name.decode(utf.8")

branch_.name = f_info [5].decode(utf-8")
logical_name = name.decode(utf_8")

logical-path-hash = path_hash

t = (path_to_folder , name, is_dir ., path_hash ., branch_name

logical-name , logical_-path_hash)

c.execute (' 'INSERT OR IGNORE INTO fs_namespace
(path, name, is_dir, path_hash, branch_name
logical-name , logical_path_hash)
VALUES (7, 2, 72, 72, 2, 7, 2)777, t)
conn.commit ()
c.close ()

return joined_path

t = (folder-name, °%’ + folder.path, 'True’)
conn = sqlite3.connect(db_file)
¢ = conn.cursor ()
c.execute (' 'SELECT = FROM fs.-namespace WHERE name = ? and path
like ?
and is.dir = ? ORDER BY branch.name’’’, t)

foinfo = c.fetchone ()

if f.info:
path.to_folder = os.path.join(f.info[1], f.info[2])
joined_path = os.path.join(path_to_folder , name)

path-hash = hash_path (joined-path)

path_to_folder = path_to_folder.decode(utf_8")
name = name.decode(utf_8")

branch.name = f.info [5].decode(utf-8")
logical_-name = name.decode (*utf_8")

logical_.path_hash = path_hash

t = (path_to_folder , name, is.dir, path_hash, branch_name,

logical_name , logical_.path_hash)

c.execute ("' "INSERT OR IGNORE INTO fs.namespace
(path, name, is-dir, path-hash, branch-name,
logical_name , logical_path_hash)
VALUES (2, 2, 72, 72, 2, 2, 2)"7", t)
conn.commit ()
c.close ()

return joined.path

APPENDIX D

PYUNIONEFS’S SOURCE CODE

This chapter presents the full source code of Python Unification File System (PyUnionFS).

D.1 PyUnionFS’s Main Program

#1/usr/bin/env python

#—w— coding: utf—8—w—

PyUnionFS — FUSE based Union File System
#

Author: Smith Dhumbumroong <zodmaner@gmail . com>

import os

import stat

import errno
import collections
import shutil

import logging
import fuse
fuse. fuse_python_api = (0, 2)

class PyUnionStat(fuse. Stat):
def __init_._(self):
self.st.mode = 0
self.st.ino = 0
self .st.dev = 0
self.stonlink = 2
self .st-uid =0
self.st.gid = 0
self.stosize = 4096
self .st_atime = 0
self.st.mtime = 0

self.st_ctime = 0

class PyUnionFS(fuse.Fuse):

def __init..(self, sargs, #xkw):

Initialize file system class
fuse .Fuse. __init__(self , xargs, sxkw)

self .branch = os.path.realpath(’™")

self.logging = False

self.log-dir = os.path.expanduser(’/tmp/PyUnionfs’)

self.log.-file = os.path.join(self.log.-dir,

def resolve.path(self, path, branch.list,
return-paths=False):
Return a tuple containing absolute path to

well as

*PyUnionlog)

create=False ,

file or folder as

permission of the branch that contain the said file or folder

Alternatively ,
folder

(needed by readdir method to unify contents

entry.name = os.path.basename(path)

entry_path = os.path.dirname (path)

branch_path_list = self.branch_list.keys ()

if return_paths:

return a list of one or more absolute path to

of subfolders).

list_.of_paths = []

if entry_path == "/ :
if create:

return (os.path.join(branch_path_list[0], path[1l:]),

for path_to_branch, branch.perm in branch.list.
iteritems () :

abs_path = os.path.join(path-to-branch, path[1:])

if os.path.exists(abs_path):
if return_paths:
list.of_-paths .append(abs_path)
else:
return (abs_path, branch_perm)
else :

for path_to.branch, branch_perm in branch_list.iteritems

(O
if create:
path_to_entry = os.path.join(path_to.branch,
entry-path[1:])
if os.path.exists(path_to_entry):
return (os.path.join(path_-to.branch, path
[1:1),

branch_perm)
else:

abs_path = os.path.join(path_to_branch, path[1:])

if os.path.exists(abs_path):
if return_paths:
list.of_paths .append(abs_path)
else:

return (abs.path, branch_perm)

if return_paths:

return list.of_paths
return (errno.ENOENT,)
source=None, dest=

def return_cow._path(self ., path, copy=False ,

None) :

Create and return a path to copy—up file or folder.
abs_entry_path = os.path.join(self.branch_path_list[0],
os.path.dirname (path)[1:])

if os.path.isdir(abs.entry-path):
if copy:
shutil.copyfile (source, dest)
return os.path.join(self.branch_path_list[0], path[1:])
else:
os.makedirs(abs_entry._path)
if copy:
shutil.copyfile (source, dest)

return os.path.join(self.branch_path_list[0], path[1:])

def create-white_out(self, path):

Create whiteout of a given file or folder.

entry.name = os.path.basename(path)
entry_path = os.path.dirname(path)

white_out_file = *.’ + entry.name + '.white_out’

if entry_path == ’/":
for path_to.branch, branch_perm in self.branch_list.
iteritems () :
path_to_entry = os.path.join(path_to_branch ,

entry-name)

if os.path.exists(path_to_entry):
os.mknod(os.path.join(path_to_branch ,
white.out-file))
else:
for path_to.branch, branch.perm in self.branch._list.
iteritems () :
path_to_entry = os.path.join(path_to_branch ,

entry.-path [1:])

if os.path.exists(path.to.entry):
os.mknod(os.path.join(path_to-entry ,

white_out_file))

def fsinit(self):

Initialize file system.

os.chdir(self.branch_path_list[0])

if self.logging:
if os.path.exists(self.log-dir):
if os.path.exists(self.log-file):
os.rename(self.log_file , os.path.join(self.
log.dir ,
"PyUnionlog.old”))
else:

os.makedirs (self.log_dir)

logging . basicConfig (filename=self.log_file ,
level=logging .DEBUG,)

logger = logging.getLogger(PyUnionFS. fsinit’)
logger.debug(’ method.called’)

logger.debug(current_rootopath_is_{0} . format(self.root))

def getattr(self, path):

Get file/folder atiributes.

logger = logging. getLogger (' PyUnionFS. getattr ')
logger.debug(’path_is_{0} . format(path))

real_path = self.resolve_path(path, self.branch_list)

stat = PyUnionStat()

if path == "/ :

os.st = os.lstat(self.branch_path_list[0])

stat.st-mode = os.st.st-mode
stat.st.ino = os.st.st.ino
stat.st.dev = os_st.st.dev
stat.st-nlink = os.st.st-nlink
stat.st.uid = os_st.st_uid

stat.st.gid = os_st.st_gid

stat.st.size = os.st.st.size

stat.st.atime = os.st.st.atime
stat.st.mtime = os.st.st-mtime
stat.st.ctime = os.st.st.ctime

return stat

elif real_path[0] == errno.ENOENT:
return —errno .ENOENT

else:

os.st = os.lstat(real_path[0])

stat.st.mode = os.st.st.mode

stat.st.ino = os_st.st_.ino

62

stat.st.dev = os.st.st.dev
stat.st.nlink = os_st.st.nlink
stat.st.uid = os.st.st_uid

stat.st.gid = os.st.st.gid

stat.st.size = os_st.st.size

stat.st.atime = os._st.st_atime
stat.st-mtime = os-st.st-mtime
stat.st.ctime = os.st.st.ctime

return stat

def readdir(self, path, offset):

Read directory .

logger = logging. getLogger(PyUnionFS.readdir’)

logger.debug(path_is-{0},_offset_is.{1}".format(path, offset
))

dir_entries = [".°, ".."]

if path == °/°:
for branch_path in self.branch_path_list:
bdir.entries = os.listdir (branch_path)
for entry in bdir_entries:
if entry mot in dir_entries:
if .’ + entry + '.white_out’ not in
dir_entries:
dir-entries .append(entry)
else:
list.of_paths = self.resolve.path(path, self.branch_list,

return-paths=True)

for path_to_dir in list.of_paths:
bdir.entries = os.listdir(path_to.dir)
for entry in bdir_entries:
if entry mot in dir_entries:
if .7 + entry + '.white_out’ not in

dir_entries:

dir-entries .append(entry)

for entry in dir_entries:

yield fuse.Direntry(entry)

def mkdir(self, path, mode):

Create a directory.
logger = logging.getLogger(’PyUnionFS. mkdir’)
logger.debug(’pathois_{0},.mode_is_{1}".format(path, mode))

real_path = self.resolve_path(path, self.branch_list, create=
True)
if real_path[I] == "rw’:

os.mkdir(real_path [0], mode)
else:

cow_path = self.return_cow_path(path)

os . mkdir (cow.path , mode)

def rmdir(self , path):

Remove a directory .
logger = logging. getLogger (’PyUnionFS.rmdir’")
logger.debug(’path_is_{0}".format(path))
real_path = self.resolve_path(path, self.branch_list)
if real_path[l] == "rw’

os.rmdir(real_path [0])
else:

self.create-white_out(path)

def read(self, path, size, offset):

Read data from an open file .

logger = logging.getLogger(PyUnionFS.read’)
logger.debug (’pathis_{0},sizevis—{1},o0ffsetois.{2} . format
(path,

size , offset))

real_path = self.resolve_path(path, self.branch_list)

with open(real_path[0], "r’) as file:
file .seek(offset)

return file.read(size)

def mknod(self ,

path, mode, dev):

Create a file node.

logger = logging . getLogger (' PyUnionFS . mknod")
logger.debug(path_is_{0},_mode_is_{1}.~dev_is_{2} . format(
path , mode,
dev))
self.branch_list,

real_path = self.resolve_path(path, create=

True)

if real_path[1] == 'rw’:
os.mknod(real-path [0], mode, dev)

else:

cow._path = self.return.cow._path (path)

os .mknod(cow_path , mode, dev)

def write(self, path, buf, offset):

Write data to an open file.

logger = logging. getLogger (' PyUnionFS. write”)
logger.debug (" path_is_{0},~buf_is_{1!r},_offset_is_{2} .
format (path ,

buf, offset))

real_path = self.resolve_path(path, self.branch_list)
if real_path[l] == ‘rw’:

with open(real_path[0], “r+’) as file:
file.seek (offset)
file . write (buf)
return len(buf)
else:
cow.path = self.return.cow._path (path,
copy=True ,
source=real_path[0],
dest=os.path.join (
self.branch_path_list[0],
path [1:]))
with open(cow.path, “r+’) as file:
file .seek (offset)
file . write (buf)
return len (buf)

def rename(self , path, pathl):

Rename a file .
logger = logging.getLogger(PyUnionFS.rename’)
logger.debug(’path_is_{0},opathl_is_{1} . format(path, pathl))
self.branch_list)

real_pathl = self.resolve_path(path,

real_path2 = self.resolve_path(pathl, self.branch_list,

create=True)
if real_path2[1] == "rw’:
os.rename(real-pathl[0], real-path2[0])
else:
cow_path = self.return_cow_path (pathl)

os.rename(real_pathl [0], cow_path)

def truncate (self ,

Y

8

Y

63

path, size):

Change the size of a file.
logger = logging.getLogger(’PyUnionFS. truncate’)
logger.debug(path_is-{0},_size-is-{1} . format(path, size))

real_path = self.resolve_path(path, self.branch_list)

if real_path[1] == "rw

with open(real_path[0], “a”) as file:
file.truncate (size)
else:
cow_path = self.return_cow_path (path,

copy=True ,
source=real_path[0],
dest=o0s.path.join (
self.branch_path_list[0],
path[1:]))

with open(cow._path , 7) as file:

file .truncate (size)

unlink (self , path):

Remove a file.

logger = logging . getLogger(’PyUnionFS. unlink *)
logger.debug (' path_is_{0} . format(path))
real_path =

self.resolvepath (path, self.branch_list)

if real_path[I] == "rw’:
os.unlink (real_path[0])
else:

self.create_white_out(path)

readlink (self ,

path):

Read the target of a symbolic link.

logger = logging . getLogger(’PyUnionFS. readlink *)
logger.debug (' path_is_{0} .format(path))
real_path =

self.resolve.path (path, self.branch_list)

return os.readlink (real_path[0])

symlink (self , path, pathl):

Create a symbolic link.

logger = logging . getLogger (*PyUnionFS. symlink)
logger.debug (' path_is_{0},—pathl_.is_{1} .format(path, pathl))

real_pathl = self.resolve-path(os.path.normpath(os.path.join (

e

path)),
self.branch.list)
real_path2 = self.resolve_-path(pathl, self.branch.list ,

create=True)

if real_.path2[1] == "rw’:
os.symlink (real_pathl[0], real_path2[0])
else:
cow._path = self.return_cow_path (pathl)

os.symlink (real_pathl [0], cow.path)

link (self , path, pathl):

Create a hard link to a file.

logger = logging. getLogger(PyUnionFS.link ")
logger.debug(’pathois.{0},_pathlis_{1}’.format(path, pathl))
real_pathl = self.resolve_path(path, self.branch_list)

real_path2 = self.resolve_path(pathl, self.branch_list,

64

create=True) os.utime (cow._path, times)

if real_path2[1] == rw’: def statfs(self):
os.link(real_-pathl [0], real_-path2[0])
else: Get file system statistics.

cow._path = self.return-cow-path(pathl)

logger = logging.getLogger(PyUnionFS. statfs)

os.link (real_pathl[0], cow_path) logger.debug(method.called)
def chmod(self, path, mode): os.statvfs(self.branch_path_list[0])
Change the permission bits of a file. def fsdestroy(self):

logger = logging.getLogger(’PyUnionFS. fsdestroy

logger = logging . getLogger (' PyUnionFS .chmod ") logger . debug (" method.called *)
logger.debug(’path_is_{0},-mode_is_{1} . format(path, mode))
def main(self , sargs, skkw):

real_path = self.resolve.path(path, self.branch_list)

Filesystem main method

if real_path[l] == "rw’: e
os.chmod(real_path [0], mode) raw_branch_list = self.branch.split(’:")
else:
cow_path = self.return_cow_path(path, for index, path in enumerate(raw_branch_list):
copy=True , if path = *:
source=real_-path [0], del raw_branch.list[index]
dest=os. path.join (
self.branch_path_list[0], self.branch_list = []
path [1:1))
for item in raw_branch_list:
os.chmod(cow_path, mode) splited-item = item.split(’#")
if len(splited.item) == 1:
def chown(self, path, user, group): self.branch_list.append((os.path.realpath (
splited-item [0]) ,
Change the owner and group of a file . rw’))
else:
logger = logging.getLogger(PyUnionFS.chown’) self.branch_list.append((os.path.realpath(
logger.debug (pathois_{0},cusercis_{1},ogroup_is_{2} . format(splited_item [0]) ,
path , splited_item [1]))
user, group))
self.branch_list = collections.OrderedDict(self.branch_list)

real_path = self.resolve_path(path, self.branch_.list)

self.branch_path_list = self.branch_list.keys()

if real_path([1] rw
os.chown(real_path[0], user, group) return fuse.Fuse.main(self, sargs, sxkw)
else :
cow.path = self.return.cow.path (path, def main():
copy=True , usage="
source=real_path[0], PyUnionFS: A simple unification file system.
dest=os.path.join (+ fuse.Fuse.fusage
self.branch_path_list[0],
path[1:])) server = PyUnionFS(version="%prog.” + fuse.__version..,
usage=usage ,
os.chown(cow_path, user, group) dash_s_do="setsingle)
server.parser.add.option (mountopt="branch’,
def utime(self, path, times): metavar=\
e "PATHI1[#ro/rw]:PATH2[#r0 /rw] :PATH3[#r0/tw]:... "7,
Change the access and/or modification times of a file. default=server.branch,
help=\
logger = logging.getLogger(’PyUnionFS.utime’) “list.of_paths_to_.directory_to_unify_separated._by.colon”)
logger.debug(path_is_{0},-times—_is-{1} . format(path, times)) server.parser.add.option('—1", —Ilogging ",
action="store-true”,
real_path = self.resolve_path (path, self.branch_list) dest="logging "’ ,
default=server.logging ,
if real_path[l] == ‘rw’: help="enable-logging~to-a-file”)
os.utime (real_path [0], times) server.parse (values=server, errex=1)
else:
cow_path = self.return_cow_path (path, if server.logging:

copy=True , print ’Start.logging_to_file:.{0}\n’.format(server.log-file)
source=real.path [0],
dest=o0s.path.join(server.main ()
self.branch_path_list[0],

path[1:])) if __name__ Co-main-.’:

main ()

APPENDIX E

PYSSHFS’S SOURCE CODE

This chapter presents the full source code of Python Secure SHell File System (PySSHEFS).

E.1 PySSHFS’s Main Program

#!/usr/bin/env python os.rename(self.log_file , os.path.join(self.
#—¥— coding: utf—8—#— log-dir ,

*PySSHlog. old”))

PySSHFS — FUSE based SFTP Filesystem else:

os.makedirs(self.log-dir)

Author: Smith Dhumbumroong <zodmaner@ gmail . com>

logging . basicConfig (filename=self.log-file ,

import os level=logging .DEBUG,)

import sys

import stat logger = logging.getLogger(PySSHFS. fsinit ")

import errno logger.debug(method_called ")

import logging logger.debug(’ current_root_path_is.{0}".format(self.root)
import getpass)

import socket
self.client = paramiko.SSHClient ()
import fuse self.client.load.system_-host.keys ()
import paramiko self.client.set-missing_host_key_policy (paramiko.

AutoAddPolicy ())

fuse . fuse_python.api = (0, 2) self.client.connect(hostname=self.hostname, port=int(self.
port),
class PySSHStat(fuse. Stat): username=self .username, pkey=self.key,
def __init--(self): password=self . password)

self .st.mode = 0
self.st.ino = 0 self .sftp = self.client.open-sftp ()
self .st.dev = 0
self.st_nlink = 2 self .sftp.chdir(self.remote_root)

self.st.uid = 0
0

self.st_gid = def getattr (self, path):
self.st_size = 4096
self.st_atime = 0 Get file/folder attributes.
self .st.mtime = 0 i
self.st_ctime = 0 if self.logging:
logger = logging.getLogger(PySSHFS. getattr ')
class PySSHFS(fuse.Fuse): logger.debug(’path_is_{0} . format(path))
def init..(self, sargs, sxkw):

stat = PySSHStat()

Initialize file system class

os.st = self.sftp.lstat(”.” + path)
fuse.Fuse. -_init__(self, =xargs, sxkw)
stat.st.mode = os.st.st.mode
self.root = os.path.expanduser(’ ™) stat.st-uid = os-st.st-uid
stat.st_gid = os_st.st_gid
self .logging = False stat.st.size = os.st.st.size
stat.st.atime = os-st.st.atime
self.log.dir = os.path.expanduser(’/tmp/PySSHfs") stat.st.mtime = os.st.st_mtime
self.log_file = os.path.join(self.log.dir, 'PySSHlog’)
return stat
self . host =
self.port = 22 def readdir(self, path, offset):
self.key = None
self.password = None Read directory.
self.auth = “key’
if self.logging:
def fsinit(self): logger = logging . getLogger('PySSHFS. readdir*)
logger.debug(path_is_{0},~offset_is_{1} .format(path,
Initialize file system. offset))
os.chdir(self.root) 1d = self.sftp.listdir(”.” + path)
if self.logging: for r in (7.7, ”..”):
if os.path.exists(self.log-dir): 1d . append(r)

if os.path.exists(self.log_file):

for i in Id:

yield fuse.Direntry (i.encode(utf—8"))

def mkdir(self , path, mode):

Create a directory.
if self.logging:

logger = logging.getLogger (’PySSHFS. mkdir’)

logger.debug (" path_is_{0},.mode—is {1} .format(path, mode
))

self.sftp.mkdir(”.” + path, mode)

def rmdir(self, path):

Remove a directory .
if self.logging:
logger = logging.getLogger(PySSHFS.rmdir’)
logger.debug(’path_is_{0}".format(path))

self.sftp.rmdir(”.” + path)

def read(self, path, size, offset):

Read data from an open file.
if self.logging:
logger = logging.getLogger(PySSHFS.read”)
logger.debug(path_is_ {0} ,_sizeiso{1},coffsetois {2} .
format (path ,
size , offset))

file = self.sftp.open(”.” + path, 'r’)
file .seek(offset)
buf = file.read(size)

file.close ()

return buf

def mknod(self, path, mode, dev):

Create a file node.
if self.logging:
logger = logging.getLogger (PySSHFS.mknod’)
logger.debug(’path_is_{0},omode_is.{1},_dev_is_.{2} .
format (path ,
mode, dev))

file = self.sftp.open(”.” + path, 'w’)

file .close ()

def write(self, path, buf, offset):

Write data to an open file.

if self.logging:
logger = logging . getLogger('PySSHFS. write ')
logger.debug(path_is_{0},-buf_is_{1!r} ,~offset_is_{2} .
format (

path, buf, offset))

file = self.sftp.open(
file .seek(offset)
file . write (buf)

+ path, "r+’)

file.close ()

return len(buf)

def rename(self, path, pathl):

Rename a file .

if self.logging:
logger = logging.getLogger(PySSHFS.rename’)
logger.debug(’path_is_{0},_pathl_is_{1} . format(path,
pathl))

self.sftp.rename(”.” + path, 7.” + pathl)

def truncate (self, path, size):

Change the size of a file.

if self.logging:
logger = logging.getLogger ('PySSHFS. truncate ’)
logger.debug(path_is~{0},~size_is_{1} . format(path,
))

file = self.sftp.open(”.” + path, 7a”)

file . truncate (size)

def unlink(self, path):

Remove a file.

if self.logging:
logger = logging.getLogger(PySSHFS. unlink ")
logger.debug(’path_is_{0} . format(path))

self.sftp.unlink(”.” + path)

def readlink (self, path):
Read the target of a symbolic link.
if self.logging:
logger = logging.getLogger (*PySSHFS. readlink *)
logger.debug(path_is_{0} . format(path))
return self.sftp.readlink(”.” + path)
def symlink (self , path, pathl):

Create a symbolic link.
if self.logging:
logger = logging.getLogger (’PySSHFS.symlink ")
logger.debug(path_is-{0},.pathl_is_.{1}".format(path,
pathl))

self.sftp.symlink (path, + pathl)

def link(self, path, pathl):

Create a hard link to a file.
if self.logging:
logger = logging. getLogger (PySSHFS. link ")
logger.debug (*path_is.{0},.pathl_is_.{1}".format(path,
pathl))

return —errno .EPERM

def chmod(self , path, mode):

Change the permission bits of a file.

if self.logging:
logger = logging. getLogger (’PySSHFS.chmod”)

66

size

logger.debug (*path_is.{0},.mode_is_{1}".format(path, mode

))

self.sftp.chmod(”.” + path, mode)

def chown(self , path, user, group):

Change the owner and group of a file.
if self.logging:
logger = logging. getLogger (’PySSHFS.chown’)
logger.debug(’path_is_.{0},ouser_is.{1},ogroupis_{2}"
format (path ,

user , group))

self.sftp.chown(

def utime(self, path,

Change
if self.logging:
logger =

the access and/or modification

+ path, user, group)

times):

times of a file.

logging . getLogger ("PySSHFS . utime *)

logger . debug (patheis_{0},—times—is-{1}".format(path ,

times))

self.sftp.utime(”.

def statfs (self):

Get file

system

if self.logging:
logger =

+ path, times)

statistics .

logging . getLogger ("PySSHFS. statfs)

logger . debug (*method-called)

return —errno .EPERM

def fsdestroy(self):
if self.logging:
logger =

logging . getLogger ("PySSHFS. fsdestroy ’)

logger.debug(method.called)

self.sftp.close ()

self.client.close ()

def main(self, =args,

*kkw) o

Filesysiem main method

host_splited =

self . host.split('@")

if len(host.splited) ==

self.username

host.and-dir

= host_splited [0]
host.splited [1].split(’:")

if len(host.and._dir) ==

self.hostname ,

else:

self . hostname =

self.remote-root =

else:
self . username

host.and.dir

self.remote.root = host.and.dir

host_.and_dir [0]

= os.environ[USER"]
host-splited [0]. split(:")

if len(host-and-dir) ==

self . hostname ,

else:

self .hostname =

self.remote.root =

self .remote.root = host_and_dir

host_.and_dir [0]

if sys.argv[l] != —h’ and sys.argv[l] != —help’:
if self.auth == ‘key’:
path_rsa = os.path.join(os.environ['HOME'], ’.ssh’
id_rsa’)
path_dss = os.path.join(os.environ['HOME'], ’.ssh’,
id.dsa’)
if os.path.exists(path_rsa):

try:

password)

67

self .key = paramiko.RSAKey.\
from_private_key_file (path_rsa)
except paramiko.PasswordRequiredException :
password = getpass.getpass(’RSA_key._password:
self.key = paramiko.RSAKey.\

from_private_key-file (path.rsa ,

elif os.path.exists (path.dss):

password)

try:
self .key = paramiko.DSSKey.\
from._private_-key-file (path.dss)
except paramiko.PasswordRequiredException:
password = getpass.getpass ('RSA_key_password :
self.key = paramiko.DSSKey.\

from_private_key_file (path_dss ,

else:

elif self.auth ==

self.password =

return fuse.Fuse.main(self .,

def main():

self.password = getpass.getpass ()
“plain’:
getpass . getpass ()

wargs , xrkw)

usage=fuse . Fuse.fusage + "\n” + \

“\nPySSHFS : _A_simple SFTP_file .system.”

server =

server. multithreaded =

PySSHFS (version="%prog..”

+ fuse.__version._,
usage=usage ,
dash.s.do="setsingle ")

False

server.parser.add.option (mountopt="host ",

metavar="[USER@]HOST[:DIR]",
default=server.host,

help="host_to_connect_to”)

server.parser.add_option (mountopt="port’,

default)”)

metavar="PORT"” ,
default=server.port,

help="port_to_connect_to_(default: %

server.parser.add.option(mountopt="auth’,

metavar="key/plain”,
default=server.auth,

help=\

“which_.authentication_method.to_use.(default: _%default)”)

server.parser.add_option("—1",

server.parse (values=server ,

'—Ilogging ",
action="store-true”,
dest="logging ",
default=server.logging ,

help="enable_logging._to_.a_file”)

errex=1)

if server.logging:

print ’Start.logging.to_file:o{0}\n’.format(server.log.file)

server.main ()

if __name.. ==

main ()

To-main..’:

APPENDIX F

SPAFS2’S SOURCE CODE

This chapter presents the full source code of Simple Protocol Agnostic File System 2

(SPAFS2) as well as its IO Modules.

F.1 SPAFS2’s Main Program

#!/usr/bin/env python2
—w— coding: utf—8—w—

SPAFS2 — Simple Protocol Agnostic File System 2

os.rename (self.log_file , os.path.join(self.

log-dir ,

*SPAlog.old "))

else:

os.makedirs (self.log.dir)
Author: Smith Dhumbumroong <zodmaner@ gmail . com>

logging . basicConfig(filename=self.log-file ,
import os level=logging .DEBUG,)
import stat
import errno logger = logging.getLogger(SPAFS2. fsinit’)
import collections logger.debug(method_called)
import shutil
import logging for index, items in self.io.modules.iteritems():
import getpass items [0].connect ()

import re

self.fb.io-.module = self.io.modules.items () [0][1][0]

import fuse

def getattr(self, path):
import local.disk-module %
import ssh_network_module Get file/folder attributes.

fuse. fuse_python_api = (0, 2)

class SPAStat(fuse.Stat):
def __init_._(self):

self .st.mode = 0

if self.logging:
logger = logging.getLogger(’SPAFS2. getattr’)

logger.debug(path_is_{0} . format(path))

stat = SPAStat()

self.st.ino = 0
self .st.dev = 0 if self.show._branch:
self.stonlink = 2 path = os.path.normpath(self.raw_pattern.matching.sub(’",
self.st.uid = 0 path))
self.st.gid = 0 path = self.branch_pattern_matching.sub(’’, path)
self.st_size = 4096
self.st_atime = 0 splited_path = path.split(’+")
self.st.mtime = 0
self.st_ctime = 0 if len(splited-path) > 1:
branch_name = splited_path[—1]
class SPAFS2(fuse.Fuse):
def __init._(self, =args, sxkw): if self.io.modules[branch.name][0].\
e path_exists (splited_path[0]):
Initialize file system class
os_st = self.io-modules[branch-name][0].\
fuse.Fuse. __init__(self , xargs, sxkw) Istat (splited_path [0])
self.logging = False stat.st.mode = os.st.st.mode
stat.st.uid = os.st.st_uid
self.log-dir = os.path.expanduser(’/tmp/SPAfs") stat.st.gid = os.st.st_gid
self.log_file = os.path.join(self.log.dir, *SPAlog’) stat.st_size = os.st.st_size
stat.st_atime = os_st.st.atime
self.branch = ’None:None’ stat.st.mtime = os-st.st-mtime
self .cow = False
self.show._branch = False return stat
self.raw_pattern.matching = re.compile(*(/\+raw|\+raw)’) elif self.fb_.io.module.path_exists(splited-path[0]):
self.branch_pattern_matching = re.compile(*(\+branch_\d*)’) os.st = self.fb_io.module.lstat(splited_path[0])
def fsinit(self): stat.st.mode = os.st.st-mode
stat.st.uid = os.st.st_uid
Initialize file system. stat.st.gid = os.st.st_gid
e stat.st.size = os.st.st.size
if self.logging: stat.st_atime = os_st.st.atime
if os.path.exists(self.log-dir): stat.st-mtime = os_st.st-mtime

if os.path.exists(self.log_file):

return stat

if path == '/:
os-st = self.fb-io-module.lIstat(’.")
stat.st.mode = os.st.st.mode
stat.st-uid = os_st.st-uid

stat.st.gid = os_st.st_gid

stat.st.size = os.st.st.size
stat.st-atime = os.st.st-atime
stat.st.mtime = os._st.st.mtime

return stat
else:
for index, items in self.io-modules.iteritems():
if items[0].path_exists(path):

os.st = items [0].Istat (path)

stat.st-mode = os_st.st.mode
stat.st.uid = os._st.st_uid

stat.st.gid = os.st.st_gid

stat.st_size = os_st.st.size
stat.st.atime = os.st.st_atime
stat.st-mtime = os-st.st-mtime

return stat

return —errno .ENOENT

def readdir(self , path, offset):

Read directory .
if self.logging:
logger = logging.getLogger(’SPAFS2.readdir’)
logger.debug(’pathois_{0}.coffsetois{1} . format(path,
offset))

dir_entries = [*.7, ".."]

show_branch_name = False

if self.show.branch:

splited_path = path.split(’+")

if len(splited-path) > 1:
if splited_path[—1] == ’'raw’:
show._branch.name = True
path = splited-path[0]
else:

branch.name = splited.path[—1]

branch.dir_entries = \
self.io-modules[branch_name J[0]. listdir (

splited_path [0])

for entry in branch.dir-entries:

if entry not in dir_entries:

white_out_file = /.’ + entry + ’
white-out’
if not self.io_modules[branch.name][0].\
path_exists (white_out_file):
if not show._branch.name:
dir_entries .append(entry)
else:
dir_entries.append(entry + '+ +
index)
if path e

for index, items in self.io.modules.iteritems():

branch.dir-entries = items[0].listdir(’.")

for entry in branch.dir_entries:

if entry not in dir_entries:

white_out_file = /.’ + entry + ’.white_out’
if not items[0].path_exists(white_out_file):
if not show_branch_name:

dir_entries .append(entry)

inde

els

whit

69

else:

dir_entries .append(entry + "+’ +

X)
e:
for index ., items in self.io_.modules.iteritems():
if items[0].path_exists(path):
branch_dir-entries = items[0]. listdir (path)
for entry in branch._dir-entries:
if entry not in dir_entries:
white_out_file = *.7 + entry + ~
e.out’
real-white.out_path = os.path.join(path,
white_out_file

if not items[0].path_exists(

real_white-out.path):

if not show_branch-name:
dir_entries .append(entry)
else:

dir-entries .append(entry + '+’ +

index)

for

entry in dir-entries:

yield fuse.Direntry (entry)

def mkdir(self , path, mode):

Create a directory .

if

))

if

split

self.logging:
logger = logging.getLogger(SPAFS2. mkdir’)
logger.debug(path_is.{0},omode_is_{1} . format(path, mode

self.show_branch:

splited_path = path.split(’+")

if len(splited_path) > 1:
branch.name = splited_path[—1]
if self.io.modules[branch.name][1] == 'rw’:
self.io-modules[branch-name J[0]. mkdir (
ed_path[0],

mode)
return
else:

entry-path = os.path.dirname(splited-path[0])

if not self.fb_io.module.path_exists(entry-path):

self.fb_io_module. makedirs (entry_path)

self.fb.io.module.mkdir(splited-path [0], mode)

return

entry_path = os.path.dirname(path)

if

entry_path == ’/’:
self.fb_io.module . mkdir(path, mode)

else:

for index, items in self.io-modules.iteritems ():
if items[0].path_exists(entry_path):

if items[1]

items [0]. mkdir(path ., mode)
else:

if not self.fb_io.module.path_exists(

entry_path):

def rmd

Rem

if

self.fb.io-module . makedirs(entry-path)

self.fb_io_module . mkdir (path, mode)

ir(self , path):

ove a directory.

self.logging:

logger = logging.getLogger(SPAFS2. rmdir”)
logger.debug(path_is_{0} .format(path))

if self.show.branch:

splited_path = path.split(’+")

if len(splited-path) > 1:

branch_name = splited_path[—1]

if self.io-modules[branch.name][1] == ‘rw’:
self.io.modules[branch_name J[0]. rmdir (

splited_path [0])

return
else:
self.io_modules[branch.name][0].\

create-whiteout(splited-path [0])
return

for index, items in self.io-modules.iteritems ():
if items[0].path_exists(path):
if items[1] == 'rw’
items [0]. rmdir (path)

else:

items [0]. create.whiteout (path)
def read(self, path, size, offset):

Read data from an open file .
if self.logging:
logger = logging.getLogger(’SPAFS2.read’)
logger.debug(path_is_-{0},.size_is-{1},coffset_is.{2} .
format (path ,

size, offset))

if self.show._branch:

splited_path = path.split('+")

if len(splited_path) > 1:
branch_name = splited_path[—1]

return self.io_.modules[branch_name J[0].read(
splited_path [0],
S1ZCT

offset)

for index, items in self.io-modules.iteritems ():
if items[0].path_exists (path):

return items [0].read (path, size, offset)
def mknod(self , path, mode, dev):

Create a file node.
if self.logging:
logger = logging.getLogger(’SPAFS2.mknod”)
logger.debug(path_is_{0},.mode.is.{1},_dev_is_.{2}".
format (path ,
mode ,

dev))

if self.show_branch:

splited.path = path.split(’+")

if len(splited-path) > I:

branch.name = splited-path[—1]
if self.io.modules[branch.name][1] == "rw’:
self.io-modules[branch_name][0].mknod (
splited_path [0],
mode ,

dev)

return
else:

entry_path = os.path.dirname(splited_path[0])

70

if not self.fb_io.module.path_exists(entry_path):

self.fb_io_module . makedirs (entry_path)

self.fb_io.module .mknod(splited_path [0], mode,
dev)

return
entry.-path = os.path.dirname(path)

if entry.path == "/’
self.fb_.io.module.mknod(path, mode, dev)
else:
for index, items in self.io-modules.iteritems():
if items[0].path_exists(entry_path):
if items[l] == "rw’:
items [0].mknod(path, mode, dev)
else:
if not self.fb.io.module.path_exists(
entry.-path):

self .fb_io_.module . makedirs (entry_path)
self . fb_.io_.module.mknod(path, mode, dev)

def write(self , path, buf, offset):

Write data to an open file.

if self.logging:
logger = logging.getLogger(SPAFS2. write ')
logger.debug(path_is_{0} ,~offset_is_{2} .\
format (path , buf, offset))

if self.show.branch:

splited_path = path.split('+')

if len(splited_path) > 1:

branch_name = splited_path[—1]

if self.io.modules[branch.name][l] == "rw’
self.io.modules[branch.name J[0]. write (
splited-path [0],
buf, offset

return
else:

entry-path = os.path.dirname(splited-path[0])

if not self.fb_io.module.path_exists(entry-path):

self.fb_io_module. makedirs (entry_path)

file.src = items[0].open(splited_path[0], 'r’)
file_.dst = self.fb_io.module.open(splited_path

shutil . copyfileobj(file_src , file.dst)

self.fb.io.module. write (splited-path[0], buf,
offset)

return

for index, items in self.io-modules.iteritems():
if items[0].path_exists(path):
if items[1] == 'rw’:
return items[0]. write(path, buf, offset)
else:

entry-path = os.path.dirname (path)

if not self.fb_io.module.path_exists(entry_path):

self . fb_io-module . makedirs (entry_path)

file_src = items[0].open(path, 'r’)

file.dst = self.fb.io.module.open(path, 'w’)

shutil.copyfileobj(file_src , file.dst)

return self.fb_io.module.write(path, buf, offset)

def rename(self, src_path, dst_path):

Rename a file .

if self.logging:
logger = logging . getLogger (' SPAFS2. rename ")
logger.debug(path_is_{0},—pathl_is—-{1} .format(src-path ,
dst_path)

if self.show_branch:

splited-path = path.split(’+")

if len(splited_path) > 1:
branch.name = splited-path[—1]
if self.io.modules[branch.name][1] == "rw’:

dst-entry-path = os.path.dirname(dst-path)

if dst.entry_path == '/":
self.io-modules[branch.name][0].rename (
src.path ,
dst_path
)
elif self.io.modules[branch_name][0].\
path_exists (dst.entry.path):
self.io_modules[branch_.name][0].rename (
src.path ,
dst-path
)

else:
return —errno .EPERM
else:

return —errno . EROFS

for index, items in self.io_modules.iteritems():
if items[0].path_exists(src.path):
if items[1] == "rw’

dst_entry_path = os.path.dirname(dst_path)

if dst_entry_path == "/~
items [0].rename (src.path , dst-path)
elif items[0].path_exists(dst-entry_path):
items [0].rename(src_path , dst_path)
else:
return —errno .EPERM
else:

return —errno .EROFS

def truncate(self, path, size):

Change the size of a file.
if self.logging:
logger = logging.getLogger(SPAFS2. truncate)
logger.debug(path_is_-{0},.size_is.{1} .format(path, size
))

if self.show.branch:

splited-path = path.split(’+")

if len(splited-path) > 1:

branch_name = splited_path[—1]

if self.io-modules[branch_name][1] == ‘rw’
self.io.modules[branch_.name |[0]. truncate (
splited_path [0],

size)

return
else:

entry_path = os.path.dirname(splited_path [0])

if not self.fb_io_module.path_exists(entry_path):

self.fb_io-module . makedirs(entry_path)

71

file_src = items[0].open(splited_path[0], "r’)
file.dst = self.fb_io_module.open(splited_path

shutil.copyfileobj(file-src , file-dst)

self.fb_io.module.truncate (splited_path[0], size)
return

for index, items in self.io-modules.iteritems():
if items[0].path_exists(path):
if items[1] == "rw’:
items [0]. truncate (path, size)
else:

entry-path = os.path.dirname (path)

if not self.fb_io.module.path_exists(entry_path):

self . fb_io-module . makedirs (entry_path)

file.src = items[0].open(path, ’r’)
file.dst = self.fb.io.module.open(path, 'w’)

shutil.copyfileobj(file_src , file.dst)

self.fb_io_.module. truncate (path, size)

def unlink(self, path):

Remove a file .

if self.logging:
logger = logging. getLogger (*SPAFS2. unlink *)
logger.debug(path_is_{0} . format(path))

if self.show.branch:

splited_path = path.split(’+")

if len(splited-path) > 1I:

branch_name = splited_path[—1]

if self.io-modules[branch.name][1] == "rw’:
self.io.modules[branch_.name][0]. unlink (

splited-path [0])

return
else:
self.io.modules[branch_.name][0].\

create.whiteout(splited_path [0])
return

for index, items in self.io-modules.iteritems():
if items[0].path_exists(path):
if items[1] == 'rw’:
items [0]. unlink (path)
else:

items [0].create.whiteout (path)

def readlink (self, path):

Read the target of a symbolic link.

if self.logging:
logger = logging.getLogger (’SPAFS2.readlink ’)
logger.debug(’path_is.{0} . format(path))

return —errno .ENOSYS
def symlink(self , path, pathl):

Create a symbolic link.

if self.logging:
logger = logging.getLogger(SPAFS2.symlink ")
logger.debug(path_is_{0},opathl_is_{1} .format(path,
pathl))

return —errno .ENOSYS

def link (self, path, pathl):

Create a hard link to a file.

if self.logging:
logger = logging. getLogger(’SPAFS2. link *)
logger.debug(path_.is_{0},—pathl_is_{1} .format(path,
pathl))

return —errno .ENOSYS
def chmod(self, path, mode):

Change the permission bits of a file.

if self.logging:
logger = logging.getLogger (*SPAFS2.chmod®)

logger.debug(path_is_{0},-mode~is-{1} . format(path, mode

))

if self.show.branch:

splited_path = path.split('+")

if len(splited_path) > 1:
branch_name = splited_path[—1]
if self.io.modules[branch.name][1l] == ‘rw’:
self.io.modules[branch-name J[0].chmod(
splited-path [0],

mode)

return
else:

entry.path = os.path.dirname(splited.path[0])

if not self.fb_io-module.path_exists (entry_path):

self.fb.io.module.makedirs(entry_path)

file.src = items[0].open(splited-path[0], 'r’)
file.dst = self.fb_io.module.open(splited-path
[0]. "w’)

shutil.copyfileobj(file_src , file_dst)

self.fb_.io.module.chmod(splited-path [0], mode)

return

for index, items in self.io_modules.iteritems ():
if items[0].path_exists(path):
if items[1] == "rw’:
items [0].chmod(path , mode)
else:

entry-path = os.path.dirname(path)

if not self.fb.io.module.path_exists(entry-path):

self.fb.io.module . makedirs(entry_path)

Copy file between branches

file.src = items[0].open(path, 'r’)

file.dst = self.fb_io.module.open(path, 'w’)

shutil.copyfileobj(file_src , file.dst)

self.fb_io.module.chmod(path, mode)

def chown(self, path, user, group):

Change the owner and group of a file .

if self.logging:
logger = logging . getLogger ('SPAFS2.chown’)
logger.debug (' path_is_{0},—user—is_.{1}.—group_is_{2} .
format (path ,

user, group))

72

if self.show._branch:

splited_path = path.split(’+")

if len(splited_path) > 1I:
branch_name = splited_path[—1]
if self.io.modules[branch.name][l] == ’rw’
self.io.modules[branch.name][0].chown (
splited-path [0],

user , group

)
return
else:
entry_path = os.path.dirname(splited_path[0])
if not self.fb_io.module.path_exists(entry-path):
self . fb_io_module.makedirs(entry_path)
file.src = items[0].open(splited-path[0], 'r’)
file.dst = self.fb_io_module.open(splited_path
(01, "w’)
shutil . copyfileobj(file_src , file_dst)
self.fb_io_module.chown(splited_path[0], user,
group)

return

for index, items in self.io-modules.iteritems():
if items[0].path_exists(path):
if items[1] == 'rw’:
items [0].chown(path, user, group)
else:

entry.path = os.path.dirname (path)

if not self.fb.io_module.path_exists(entry_path):

self.fb.io_module.makedirs(entry_path)

file.src = items[0].open(path, 'r’)

file.dst = self.fb.io.module.open(path, ’w’)

shutil.copyfileobj(file-src , file-dst)

self.fb_io.module.chown(path, user, group)

def utime(self, path, times):

Change the access and/or modification times of a file.

if self.logging:
logger = logging.getLogger(SPAFS2.utime’)
logger.debug(path_is_{0}.otimes_is_{1} .format(path,

times))

if self.show._branch:

splited-path = path.split('+")

if len(splited_path) > 1:
branch.name = splited_path[—1]
if self.io_.modules[branch.name][1] == "rw’:
self.io.modules[branch_name J[0]. utime (
splited_path [0],

times)

return
else:

entry.path = os.path.dirname(splited-path[0])

if mot self.fb.io.module.path_exists (entry-path):

self.fb.io_.module. makedirs(entry_path)

file.src = items[0].open(splited_path[0], 'r’)
file_.dst = self.fb_io_module.open(splited_path

de

de

shutil.copyfileobj(file_src , file_dst)

self.fb_io.module.utime(splited_-path [0], times)

return

for index, items in self.io_modules.iteritems ():
if items[0].path_exists (path):
if items[1] == "rw’:
items [0]. utime (path , times)
else:

entry.-path = os.path.dirname(path)

if not self.fb.io.module.path_exists(entry_-path):

self.fb_io.module.makedirs(entry_path)

file.src = items[0].open(path, 'r’)

file.dst = self.fb_io.module.open(path, ’w’)
shutil.copyfileobj(file_src , file_.dst)
self.fb_io-module.utime (path, times)
f statfs(self):
Get file system statistics.

if self.logging:
logger = logging.getLogger(SPAFS2. statfs’)
logger.debug(method.called)

self.fb_io.module.statfs ()

f fsdestroy (self):
if self.logging:
logger = logging.getLogger(’SPAFS2. fsdestroy ’)
logger.debug (’method.called’)
for index, items in self.io_modules.iteritems():
items [0]. close_connection ()
f main(self , sargs, #xkw):

Filesystem main method

raw_branch_list = self.branch.split ("#°)

for index, address in enumerate(raw_branch_list):

if address ==

del raw_branch_list[index]

address-list = []

for index, item in enumerate(raw_branch_list):

splited.items = item.split(’:")

if len(splited.items) > 2:
if self.cow:
address_list.append ((index , # Index
(splited.items [0], #
Protocol
splited_items [1], # Address
splited-items [2]))) #
Permission
else:
address._list.append ((index ,
(splited.items [0],
splited-items [1],
tw’)))
else:
address-list.append ((index ,
(splited-items [0],
splited_items [1],
tw’)))

addresses = collections.OrderedDict(address_list)

73

io_module_list = []

for index, items in addresses.iteritems ():
For Local Disk Module
if items[0] == local’:

real.path = os.path.realpath(items[1])
disk-io.module = local.disk-module.DiskIO(real.path)

io.module_list.append (("branch_’ + str(index), #
Index
(disk-io-module , # 10
module
items[2]))) #

Permission

if items[0] == ’ssh’:

pkey = None

host-splited = items[1].split(’'@")

if len(hostosplited) == 2:

username = host-splited [0]

conn-items = host.splited [1].split('%")
else:

username = os.environ[USER’]

conn_items = host_splited [0].split(%)

if len(conn.items) > 3:

host = conn_.items[0] # Host address
auth = conn.items[1] # Authenticate method
port = conn-items[2] # Port

root.dir = conn.items[3] # Remote root path
else:

If no dir is given, default to user’s home.
host = conn_items[0] # Host address
auth = conn-items|[1] # Authenticate method

port = conn_items[2] # Port

root_dir = .’ # Remote root path
if auth == "key’:
path.rsa = os.path.join(os.environ[HOME], ’.ssh
Tid.rsa’)
path_dss = os.path.join(os.environ[HOME], ’.ssh

Tid.dsa’)
if os.path.exists(path_rsa):
try:
pkey = ssh_network_module . paramiko .RSAKey

from_private_key_file (path_rsa)
except ssh_network.module.paramiko.\
PasswordRequiredException:
password = getpass.getpass (RSA_key.
password:.")

pkey = ssh_network-module.paramiko.RSAKey

AN
from._private_-key-file (path_rsa ,
password)
elif os.path.exists(path_dss):
try:
pkey = ssh_network_module.paramiko.DSSKey
AN

from_private_key-file (path.dss)
except ssh_network_module.paramiko.\
PasswordRequiredException :
password = getpass.getpass (DSS_key-
password:.")

pkey = ssh_network-module . paramiko . DSSKey

from_private_key_file (path_dss ,
password)

elif auth == ’“plain’:

password = getpass.getpass (' Password—-for_user—

{0}:7\
.format(username))
ssh_io_module = ssh_network_module.SSH(host, port,
username ,
pkey . password
root.dir)
io.module_list.append ((*branch_.’ + str(index), #
Index
(ssh.io-module , # 10
module
items[2]))) #
Permission
self.io-.modules = collections.OrderedDict(io-module-list)

return fuse.Fuse.main(self , sargs, sxkw)

def main():

usage=fuse .Fuse.fusage + \

SPAFS2: Simple Protocol Agnostic File System 2."""
server = SPAFS2(version="%prog.” + fuse.__version__,
usage=usage ,
dash_s_do="setsingle)

server. multithreaded = False

server.parser.add-option(mountopt="branch’,

F.2 SPAFS2’s Local Disk 10 Module

#1/usr/bin/env python2

—w— coding: utf —8—w—
Local Disk Module

Part of SPAFS2

N N S

Author: Smith Dhumbumroong <zodmaner@ gmail . com>
import os

class DiskIO(object):

def __init__(self, root_path):

self.root.path = root-path

def connect(self):

return self.root_path

def close_connection(self):

return True

def path_exists(self, path, check.path.dirname=False):
real_path = os.path.join(self.root.path, path[1:])

if check_path_dirname:

entry-path = os.path.dirname(path)

real_entry_path = os.path.join(self.root_path, entry_path

L1

return os.path.exists(real_entry_path)
else:

return os.path.exists(real_path)

def makedirs(self, path, mode=0777):

path_created =

splited.path = path.split(’/")

for folder in splited_path:
if folder

74

metavar=\

“”PROTOCOL: ADDRESSI [: rw / ro |#PROTOCOL: ADDRESS2[: rw/ro | #...7,
default=server.branch ,
help=\

”list.of_branch_to_unify._separated _by._hash”)

server.parser.add.option (—cow’,
action="store-true”,
dest="cow ",
default=server.cow,
help=\

“enable..copy—on—write . (warning : .experimental)”)

server.parser.add.option (—branch—tag ",
action="store-true”,
dest="show_branch’,
default=server.show_branch,
help=\

“enablebranch_tag.(warning:.experimental)”)

server.parser.add.option(’—1", logging *,
action="store_true”,
dest="logging ",
default=server.logging ,
help="enable._logging_.to.a_file”)

server.parse (values=server, errex=1)

if server.logging:

print Start_logging_to_file:_{0}\n’.format(server.log.file)

server. main ()

if __name.. == ’__main__":

main ()

continue
if path_created == "":

first_-folder = os.path.join(self.root-path, folder)

try:
os.mkdir(first_folder , mode)
except OSError:

pass

path_created = first_folder
else:

path_created = os.path.join(path_created , folder)

try:
os. mkdir(path_created , mode)
except OSError:

pass
def create.whiteout(self, path):
entry_name = os.path.basename(path)
entry.path = os.path.dirname(path)
real_path = os.path.join(self.root_path, entry_path[1:])

white.out-file = + entry-name + °.white_out’

real_white_out_path = os.path.join(real_path, white_out_file)

os.mknod(real-white.out_path)

def open(self, path, mode):
real_path = os.path.join(self.root_path, path[1:])

return open(real_path , mode)

def lstat(self, path):
real_-path = os.path.join(self.root-path, path[1:])

return os.lstat(real_path)

def listdir(self, path):

real_path = os.path.join(self.root.path, path[1l:

return os.listdir(real_path)

def mkdir(self, path, mode):

real_path = os.path.join(self.root_path, path[1l:

os.mkdir(real-path , mode)

de

<8

rmdir (self , path):

real_path = os.path.join(self.root-path, path[1:

os.rmdir(real.path)

def read(self, path, size, offset):

real_path = os.path.join(self.root.path, path[1:

with open(real_path, "r’) as file:
file .seek(offset)

return file.read(size)

def mknod(self ., path, mode, dev):

real_path = os.path.join(self.root_path, path[l

os.mknod(real_path , mode, dev)

def write(self, path, buf, offset):
real_path = os.path.join(self.root_path, path[1l

with open(real_path, "r+’) as file:
file .seek(offset)
file . write (buf)

return len(buf)
def rename(self, current.path , new_path):
real_current_path = os.path.join(self.root_path
[1:1)
real-new_path = os.path.join(self.root_path, ne

os.rename(real_current_path , real_new_path)

def truncate(self, path, size):

1)

1)

, current_path

w.-path [1:])

F.3 SPAFS2’s SSH Network 10 Module

#1/usr/bin/env python2

#—w— coding: utf—8—w—

SSH Network Module
#

Part of SPAFS2

#

Author: Smith Dhumbumroong <zodmaner@gmail . com>

import os
import paramiko

import errno

class SSH(object):
def __init__(self, hostname, port, username, pkey.
root.path):
self .hostname = hostname
self.port = port
self . username = username
self .pkey = pkey
self.password = password

self .root-path = root_path

def connect(self):
self.client = paramiko.SSHClient()

self.client.load.system_host_keys ()

password ,

75

real_path = os.path.join(self.root_path, path[1:])

with open(real_path, *a’) as file:

file.truncate (size)

def unlink (self, path):
real_-path = os.path.join(self.root-path, path[1:])

os.unlink (real_path)

def readlink (self, path):
real_path = os.path.join(self.root_path, path[1:])

return os.readlink (real_path)

:.
e,

f symlink (self , source, link_name):
real_source = os.path.join(self.root-path, source[l:])

real_link-name = os.path.join(self.root_path, link.name[1:])
os.symlink (real_source , real_link_name)

def link(self, source, link_name):
real_source = os.path.join(self.root-path, source[l:])

real-link-name = os.path.join(self.root_path, link-name[1:])

os.link (real-source , real-link_-name)

a
e
%

chmod(self , path, mode):
real_-path = os.path.join(self.root-path, path[1:])

os.chmod(real_path , mode)

def chown(self, path, user, group):
real_path = os.path.join(self.root_path, path[1:])
os.chown(real_path , user,

group)

def utime(self, path, times):

real_path = os.path.join(self.root_path, path[1:])

os.utime (real_path , times)

de

=

statfs (self):

return os.statvfs(self.root_path)

self . client.set.missing_host_key_policy (paramiko.
AutoAddPolicy ())
self.client.connect(hostname=self .hostname, port=int(self.
port),
username=self.username, pkey=self.pkey,

password=self . password)

self.sftp = self.client.open.sftp ()

self.sftp.chdir(self.root_path)

def close_connection(self):
self.sftp.close ()

self.client.close ()

def path_exists(self, path):
try:
if self.sftp.stat(path[1:]):
return True
except IOError:

return False

def makedirs(self, path, mode=0777):

path.created =

splited-path = path.split(’/")

for folder in splited-path:

<8

if folder == °’: buf = file.read(size)

continue file .close ()

if path.created == "": return buf
first.folder = folder

def mknod(self, path, mode, dev):

try: file = self.sftp.open(path[1:], "w’)
self.sftp .mkdir(first_folder , mode) file .close ()

except OSError:

pass def write(self , path, buf, offset):
file = self.sftp.open(path[1:], "r+’)
path_created = first_folder file .seek (offset)
else: file . write (buf)
path_created = os.path.join(path_created , folder) file.close ()
try: return len(buf)

self.sftp.mkdir(path_created , mode)

except OSError: def rename(self, current.path , new._path):
pass self .sftp.rename(current_path[1:], new_path[1:])
create-whiteout(self, path): def truncate (self, path, size):
entry_name = os.path.basename(path) file = self.sftp.open(path[1:], "a”)
entry.path = os.path.dirname(path[1:]) file . truncate (size)
file.close ()
white_out_file = .’ + entry.name + ’.white_out’

real_white_out_path = os.path.join(entry_path, white_.out_file def unlink (self, path):

self.sftp.unlink(path[1:])

self.sftp.mknod(real_-white_out_path) def readlink(self, path):

return self.sftp.readlink (path[1:])
open(self, path, mode):
return self.sftp.open(path[1:], mode) def symlink(self, source, link-name):
return errno .ENOSYS

Istat(self, path):
return self.sftp.Istat(path[1:]) def link (self, source, link-name):
return errno .ENOSYS

listdir (self, path):
return self.sftp.listdir(path[1:]) def chmod(self, path, mode):
self.sftp.chmod(path[1:], mode)
mkdir(self, path, mode):
self.sftp.mkdir(path[1:], mode) def chown(self , path, user, group):
self.sftp.chown(path[l:], user, group)
rmdir (self, path):
self.sftp.rmdir(path[1:]) def utime (self , path, times):
self.sftp.utime(path[1:], times)
read (self , path, size, offset):
file = self.sftp.open(path[1:], "r”) def statfs(self):

file .seek (offset) return errno .ENOSYS

APPENDIX G

LIST OF PUBLICATIONS

Parts of this work are published in the following article.

International Conference Proceedings

1. Smith Dhumbumroong and Krerk Piromsopa, ‘“Personal Cloud Filesystem: A distributed
unification filesystem for personal computer and portable device”, Eighth International Joint

Conference on Computer Science and Software Engineering (JCSSE), Thailand, 2011

78
Biography

Smith Dhumbumroong was born in Bangkok, Thailand, on April, 1985. He received Bach-

elor of Arts in Economics from Thammasat University, Thailand, on 2007.

	Cover (Thai)
	Cover (English)
	Accepted

	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	List of tables

	List of Figures
	Chapter 1 Introduction
	Chapter 2 Related work

	Chapter 3 Design

	Chapter 4 Implementation

	Chapter 5 Performance evaluation

	Chapter 6 Conclusion

	References
	Appendix
	Appendix A Evolution of personal cloud file system framework's prototypes

	Appendix B Dummyfs's source code

	Appendix C Spafs's source code

	Appendix D Pyunionfs's s0urce code

	Appendix E Pysshfs's source code

	Appendix F Spafs2's source code

	Appendix G List of publications

	Vita

