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Chapter 1

Introduction

The phenomenon of Bose-Einstein condensation was predicted by

S.N. Bose and A. Einstein in 1924 [1], during the early days of quantum mechan-

ics. They studied the statistical properties of massive particles with integer spins,

which are known as bosons. It was found that not only it is possible for two or

more bosons to share the same quantum state, but also the bosons actually prefer

being in the same state. It was predicted that at a finite temperature, almost

all the particles of a bosonic system would occupy the ground state as soon as

the quantum wave functions of the particles start to overlap. In a Bose-Einstein

condensate millions of atoms occupy a single quantum state, thus bringing the

quantum world into the macroscopic regime.

In the 1930, Fritz London investigated superfluidity in liquid helium.

From the very beginning he realized that superfluidity could be a manifestation

of Bose-Einstein condensation. However, due to the strong interaction between

the helium atoms, the analyses have remained unsatisfactory.

After the huge success of the cooling atoms by laser light, a method

proposed by T.W. Hänsch and A. Schalow in 1975, researchers investigated the

possibility of producing a Bose-Einstein condensate using alkali atoms. In the

summer of 1995, BEC was reported by scientists at JILA (Boulder) [2], followed by

similar reports from Rice University (Texas) [3], MIT (Cambridge) [4], the MPQ

(Max-Planck Institute of quantum optics) group and the University of Munich.

The breakthrough was made possible by combining laser cooling with evaporative

cooling in a magnetic trap. The first evidence for condensation emerged from time
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of flight measurements. A sharp peak in the velocity distribution was observed

below a critical temperature.

In 1978 Thomas Greytak and Daniel Kleppner, leaders of a group at the

Massachusetts Institute of Technology, started intensive efforts to form BECs in

dilute hydrogen gases [5]. Twenty years later (in June 1998) they finally reached

their goal by using dilution refrigerators, magnetic trapping and evaporative cool-

ing. Hydrogen is a very interesting element to study BEC, because its small scat-

tering length makes it an almost ideal Bose gas. Furthermore a hydrogen atom is

generally appealing for basic studies because its structure and interactions can be

calculated from the first principle and should allow for more precise comparisons

with theories.

1.1 Hydrogen is Different

Hydrogen differs in several ways from alkali metal atoms that have been Bose

condensed. The principal differences are its small mass and small s-wave scatter-

ing length as shown in Table 1.1. How do these properties influence the system?

First, the small mass implies that BEC should occurs at a higher temperature.

The transition temperatures is roughly 50 times higher than in other systems.

Further, thermal equilibrium must be balanced by heating and evaporative cool-

ing. For hydrogen the equilibrium condensate fraction is small because the high

condensate density leads to high losses through dipolar decay, which results in

heating of the system. Finally, hydrogen has small collision cross-section, which

should allow condensates of H to be produced by evaporative cooling that con-

tains many orders of magnitude more atoms than those possible in alkali-metal

species.
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Elements H Li Na Rb
Mass (amu) 1 7 23 87
BEC transition temperature (µK) 60 0.3 2 0.67

S-wave scattering length (Å) 0.648 -14.4 27.5 57.1
Peak condensate (cm3) 5 × 1015 2 × 1013 3 × 1015 5 × 1014

Collision cross section 1 × 10−15 5 × 10−13 2 × 10−12 8 × 10−12

Dilutivity, an1/3
p 1 × 10−3 4 × 10−3 4 × 10−2 5 × 10−2

Table 1.1: Comparison of the the parameters of alkali metal atoms [2].

1.2 The Organization of the Thesis

This thesis is organized as follows. Chapter 2 provides a detailed description of

the trapped gas and a review of the concept of path integral theory. Chapter

3 describes the experiment on BEC in hydrogen. I will explain a technique of

probing Bose condensates, optical spectroscopy. Using this tool, one can mea-

sure the density and momentum distributions of the sample, and thus infers the

temperature, size of the condensate, and other properties. Chapter 4 describes

the ground state properties of atomic hydrogen, using many-body Feynman ’s

path integral theory. I also calculate the expression of ground state energy and

its wave function. Chapter 5 provides interpretation of the meaning of the results

from Chapter 4. I minimized the expression of ground state energy by a numeri-

cal method that yields the values of ground state energy, size of the condensate,

peak condensate density and other properties. I found that the results are in good

agreement with the experiment. Finally, conclusion and discussion are drawn in

Chapter 6.



Chapter 2

Theoretical Reviews

In this chapter I will review the basic concepts of BEC, which are used

in this thesis. I also describe the occurrence of BEC and description of the

condensate. Finally, I will briftly discuss the concepts of Feynman’s path integral

theory.

2.1 Degenerate Bose gas

2.1.1 Bose Distribution

The statistical mechanical description of classical gas is not correct when the

temperature approach to zero. A simple way to understand the crossover to

the quantum regime is to recall that particles are characterized by wavepackets

whose sizes are related to their momenta by Heisenberg’s momentum-position

uncertainty relation. The thermal de Broglie wavelength is defined as

λ =

√√√√ 2πh̄2

kBTm
(2.1)

where h̄ and kB are Planck’s constant and Boltzmann’s constant respectively, and

m is the mass of the particle.

As the gas is cooled, the particle momenta decrease, and wavepackets

become larger. The classical description of the system breaks down when the

these wavepackets begin to overlap. The quantum treatment thus deals with the

effect of the particle indistinguishability.



5

Here I review the basic features that are important for this thesis. The

occupation function for gas of N identical bosons in a box of volume V , and in

the limit of N → ∞ and V → ∞ but N/V is finite, is called the Bose-Einstein

occupation function [6]

n(ε) =
1

e(ε−µ)/kBT − 1
, (2.2)

where µ and T are Lagrange multipliers which constrain the system to exhibit

the correct population and total energy through the conditions

N

V
=

∫
dε

ρ(ε)

V
n(ε) (2.3)

and

E

V
=

∫
dε

ρ(ε)

V
εn(ε) (2.4)

respectively, where ρ(ε) is total energy density of state function. The physical

interpretaion of these parameter is that µ is the chemical potential and T is the

temperature. The energy distribution of the population in the trap for a classical

gas is described by the Maxwell-Boltzmann distribution and for a quantum gas is

described by the Bose-Einstein distribution. Bose-Einstein condensation occurs

when the chemical potential goes to zero and the occupation of the lowest energy

state diverges. This occurs at the critical density [6]

nc = g3/2(1)λ3(T ) (2.5)

where gn(z) ≡ ∞∑
l=1

zl

ln
; g3/2(1) = 2.612. A gas that has undergone the Bose-

Einstein phase transition is said to be in the quantum degenerate regime because

a macroscopic fraction of the particles are in an identical quantum state.

Although a hydrogen atom consists of two fermions, it behaves like a

composite boson for the studies in this thesis because the collision interaction
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energies are extremely small compared to the electron-proton binding energy [7].

The two fermions acts as a unit except in high energy collisions when electron

exchange is possible. The typical interaction energy during low temperature

collision is ∼ 1 mK, which corresponds to 10−7 eV, 108 times smaller than the

binding energy.

2.2 Description of the Condensate

2.2.1 Gross-Pitaevskii Equation

When Bose-Einstein condensation occurs, a macroscopic fraction of the particles

occupy the lowest energy quantum state of the system, and thus have the same

wave functions. For a non-interacting Bose gas, that wave function is simply

the lowest harmonic oscillator wave function for the harmonic trap. Interactions

become important when many particles occupy the condensation in space and

the local density increases. In this case the wavefunction spreads out due to the

repulsion among of the atoms.

The Schrödinger equation for the interacting condensate is called the

Gross-Pitaevskii equation [1], and has the form

− h̄2

2m
∇2ψ(r) + V (r)ψ(r) + U0 |ψ(r)|2 ψ(r) = µψ(r) (2.6)

where ψ(r) is the condensate wavefunction. The eigenenergy of the wavefunction

is µ, which is the total energy of each condensate atom. The quantity U0 =

4πh̄2a/m is the mean field energy, which is the energy of interaction among the

atoms per unit density, which is repulsive for s-wave scattering length a > 0.

For a hydrogen atom in its ground state, a = 0.648 Å [8], and U0/kB = 3.92

10−16 µKcm3. The mean field energy augments the trap potential by an amount
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proportional to the local condensate density ncond(r) = |ψ(r)|2. It should note

here that the interaction between the condensate and non-condensate atoms are

neglected here. The eigenenergy µ in Eq. (2.6) and µ in Eq. (2.2) are the

chemical potential of the system in equilibrium. The chemical potential is the

energy required to add a particle to the system. When a condensate is present,

the normal gas is saturated, and any particles added to the system go into the

condensate. The energy required to add the last atom to the condensate is µ,

and so I relate µ with the chemical potential. In some experiments µ is measured

spectroscopically through the peak density at the center of the condensate, which

is in turn measured through the cold-collision frequency shift [5].

2.2.2 Thomas-Fermi Approximation

When Bose-Einstein condensation occurs, many atoms occupy the lowest energy

quantum state, the kinetic energy approaches to zero, then the kinetic energy term

in Eq.(2.6) may be neglected. This leads to the Thomas-Fermi wave function

ψ(r) =

{
N−1/2 [np − V (r) /U0]

1/2 V (r) ≤ npU0

0 elsewhere
(2.7)

where np = µ(N)/U0 is the peak condensate density and V (r) is the potential

energy. Here, ncond(r) = N |ψ(r)|2 is the density distribution in the N-particle

condensate. One can interpret |ψ(ri)|2 as the probability of finding condensate

particle particle i at position ri. Therefore we obtain the condensate density

profile.

ncond(r) = np − V (r)/U0 (2.8)

The Thomas-Fermi approximation is valid over most of the volume of the

condensate, but at near the edges the condensate density approaches zero, and

kinetic energy term should be included.
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The condensate density profile may be obtained without the Gross-Pitaevskii

equation by assuming that the condensate is stationary and its particles are at

rest, and then balancing hydrodynamic forces. A condensate particle in a region

of the potential energy ε has total energy E = ε + ncond (ε) U0 . Since there

must be no net force on the particle, on the particle, E = const ≡ npU0 and

ncond (ε) = np − ε/U0.

2.3 Feynman’s Path Integral Theory

In classical mechanics, the principle of the least action is a way of expressing the

condition that determines the particular path x(t) out of all the possible paths.

That is, there exists a certain quantity S which can be computed for each path.

The classical path x(t) is the path that S is extremum. So the value of S is

unchanged in the first order if the path x(t) is modified slightly from the classical

path. The quantity S is given by the expression [9]

S =
∫ tb

ta
L(ẋ, x, t)dt, (2.9)

where L is the lagrangian for the system. For a particle of mass m moving in

a potential V (x, t), which is a function of position and time the lagrangian is

L = m
2
ẋ2 − V (x, t).

In quantum-mechanical, we can not exactly know in which paths the

particle go from a to b. Consequently, the total amplitude to go from a to b

must be contributed by all path. Feynman found that they contribute equal

amounts to the total amplitude, but contribute at different phases. The phase of

the contribution from a given path equal to S/h̄.
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The probability P (b, a) to go from xa at the time ta to xb at the time tb

can be calculated as follow:

P (b, a) = |K(b, a)|2 (2.10)

where K(b, a) is an amplitude to go from a to b. This amplitude is the sum of

contribution φ [x(t)] from each path

K(b, a) =
∑

over all paths from a to b
φ[x(t)], (2.11)

where

φ[x(t)] = (const) exp
[
i

h̄
S{x(t)}

]
. (2.12)

The action S is that for the corresponding classical system. The constant

will be chosen to normalize K conveniently.

Constructing the sum.

One choose a subset of all paths by first dividing the time intervals into

small interval, ε. This gives a set of successive times t1, t2, t3, . . . between the

values ta and tb, where ti+1 = ti + ε. At each time, ti, one select some special

point xi and construct a path by connecting all of the successive points by straight

line. This processes are shown in Figure 2.1. It is possible to define a sum over

all paths constructed in this manner by taking a multiple integral over all values

of xi for i from 1 to n − 1, where

Nε = tb − ta

ε = ti+1 − ti

t0 = ta , tN = tb

x0 = xa , xN = xb (2.13)
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Figure 2.1: Diagram showing the sum over paths defined as a limit, in which at
first the path is specified by giving only its coordinate x at a large number of
specified times separated by very small intervals ε [1].

The resulting equation is

K(b, a) =
∫ ∫

. . .
∫

(const) exp
[
i

h̄
S{x(t)}

]
dx1dx2 . . . dxn−1 (2.14)

We do not integrate x0 or xn because these are the fixed end point xa and

xb. In order to achieve the correct measure, Eq. (2.14) must be taken in the limit

of ε → 0 and some normalizing factor A−n which depends on ε must be provided

in order that the limit of Eq.(2.14) becomes

K(b, a) ≈ lim
ε→0

1

A

∫ ∫
. . .

∫
(const) exp

[
i

h̄
S{x(t)}

]
dx1

A

dx2

A
. . .

dxn

A
(2.15)

This equation can also be written in a less restrictive notation as

K(b, a) ≈ N
∫ ∫

. . .
∫

(const) exp
[
i

h̄
S{x(t)}

]
D(path) (2.16)

This is called a path integral and the amplitude K(b, a) is known as the Feynman

propagator or the kernel.
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Harmonic oscillator

We consider the one dimensional harmonic oscillator described by the Lagrangian

L =
1

2
mẋ2 − 1

2
mω2x2. (2.17)

Thus the kernel can be written as

K(b, a) =

x2∫
x2

exp

⎡
⎣ i

h̄

T∫
0

(
1

2
mẋ2 − 1

2
mω2x2

)
dt

⎤
⎦Dx(t), (2.18)

the integral over all paths which go from (x1, 0) to (x2, T )

In classical mechanics, the form of the action integral S =
∫

Ldt is inter-

esting, not just the extreme value Scl. This interest derives from the necessity to

know the action along a set of the neighboring paths in order to determine the

path of the least action which the following condition is always satisfied:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0. (2.19)

For a harmonic oscillator, we can write Eq. (2.19) as

ẍ + ω2x = 0. (2.20)

The solution of Eq. (2.20) is

x(t) = A sin ωt + B cos ωt (2.21)

where A and B are constants. By applying the boundary conditions x(0) = x1

and x(T ) = x2 to Eq. (2.21), we can obtain the constant A and B,

A =
x2 − x1 cos ωT

sin ωT
,

B = x1. (2.22)
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Now

Scl =

T∫
0

m

2

(
ẋ(t) − ωx(t)2

)
dt

=
m

2

⎡
⎣ ẋ(t)x(t)

∣∣∣T
0
−

T∫
0

x(t)ẍ(t)dt − ω2

T∫
0

x(t)2dt

⎤
⎦

=
m

2

⎡
⎣ẋ(T )x(T ) − ẋ(0)x(0) −

T∫
0

x
(
ẍ(t) − ω2x(t)

)
dt

⎤
⎦ . (2.23)

We find that the second term of Eq. (2.23) is equal to zero, so we obtain

Scl =
m

2

[
ẋ(T )x(T ) − ẋ(0)x(0)

]
. (2.24)

Differentiating Eq. (2.21) with respect to t, we obtain

x(t) = Aω sin ωt − Bω cos ωt. (2.25)

Substituting Eqs. (2.21), (2.25) and (2.22) into Eq. (2.24), we can write the

classical action of the harmonic oscillator as

Scl =
mω

2 sin ωT

[
cos ωT (x2

1 + x2
2) − 2x1x2

]
. (2.26)

Let x(t) be the classical path between the specified end points. This is the path

which is an extremum for the action S. In the notation we have been using

Scl[x2, x1] = S[x(t)]. (2.27)

We can represent x in terms of x and a new variable y by

x(t) = x(t) + y(t). (2.28)

This is to say, instead of defining a point on the path by its distance x(t) from

an arbitrary coordinate axis, we measure in stead the deviation y(t) from the

classical path, as shown in Fiq. 2.2. Thus, we can write the action as
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Figure 2.2: The difference between the classical path x(t) and some possible
alternative path x(t) is the function y(t) [1].

S [x(t)] =

T∫
0

{
m

2

[
ẋ(t) + ẏ(t)

]2 − mω2

2

[
ẋ(t) + y(t)

]2}
dt

=

T∫
0

⎛
⎝ m

2

[
ẋ

2
(t) + 2

.
x (t)ẏ(t) + ẏ2(t)

]
−mω2

2
[x2(t) + 2x2(t)y2(t) + y2(t)]

⎞
⎠ dt (2.29)

or

S [x(t)] = Scl [x(t)] +

T∫
0

[
m

2

.
y2

(t) − mω2

2
y2(t)

]
dt. (2.30)

Substituting Eq. (2.30) into Eq. (2.18), we obtain

K(b, a) = exp
{

i

h̄
Scl [x(t)]

} 0∫
0

exp

⎧⎨
⎩ i

h̄

T∫
0

[
m

2
ẏ2(t) − mω2

2
y2(t)

]
dt

⎫⎬
⎭D(y(t))

(2.31)

We find that the integral over y(t) does not depend on the classical path and

y(t) = 0 at tx1 and tx2 so we use symbol
0∫
0

for integrate closed contour. We may

write the kernel as

K(b, a) = F (T, 0) exp
{

i

h̄
Scl [x(t)]

}
(2.32)
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where

F (T, 0) =

0∫
0

exp

⎧⎨
⎩ i

h̄

T∫
0

[
m

2

.
y2

(t) − mω2

2
y2(t)

]
dt

⎫⎬
⎭D(y(t)). (2.33)

We can calculate F (T, 0) by expanding y(t) as a Fourier series

y(t) =
∑
n

an sin
nπt

T
(2.34)

and then consider the paths as a function of the coefficient an instead of functions

of y(t). The details for calculating F (T, 0) is given by Feyman and Hibbs. The

result is

F (T ) =
(

mω

2πih̄ sin ωT

)1/2

. (2.35)

Therefore the kernel of harmonic oscillator is

K(b, a) =
(

mω

2πih̄ sin ωT

)1/2

exp
[

imω

2h̄ sin ωT

[
cos ωT (x2

1 + x2
2) − 2x1x2

]]
. (2.36)

This kernel can be expanded in exponential function. That is,

(
mω

2πih̄ sin ωT

)1/2

exp
[

imω

2h̄ sin ωT

[
cos ωT (x2

1 + x2
2) − 2x1x2

]]

=
∞∑

n=o

e−(i/h̄)EnT φn(x2)φ
∗
n(x1), (2.37)

where φn(x) is wave function and En is energy levels for n = 0, 1, 2, .... Using the

relations

(i sin ωT )−1 =
2e−iωT

(1 − e−2iωT )

(cos ωT )−1 =
2e−iωT

(1 + e−2iωT )
(2.38)

We can write the left-hand side of Eq. (2.37) as

(
mω

πh̄

)1/2

e−iωT/2(1 − e−2iωT )−1/2

× exp

{
−mω

πh̄

[
(x2

1 + x2
2)

(
1 + e−2iωT

1 − e−2iωT

)
− 4x1x2e

−iωT

1 − e−2iωT

]}
(2.39)
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We can obtain a series having the form of the right-hand side of Eq. (2.37) in

successive power of e−iωT . Because of the initial factor e−iωT/2, it is clear that all

terms in the exponential will be of the form e−iωT/2e−inωT for n = 0, 1, 2, ... This

means the energy levels are given by En = h̄ω(n + 1/2).

To find the wave functions, we shall have to carry out the expansion com-

pletely. We shall illustrate the method by going only as far as n = 2. Expanding

the left-hand side of Eq. (2.37) to this order we have

(
mω

πh̄

)1/2

e−iωT/2(1 +
1

2
e−2iωT + ...)

× exp
[
−mω

2h̄
(x2

1 + x2
2) −

mω

h̄
(x2

1 + x2
2)(e

−2iωT + ...) +
2mω

h̄
x1x2e

−iωT + ...
]

(2.40)

or

(
mω

πh̄

)1/2

e−
mω
2h̄

(x2
1+x2

2)e−iωT/2(1 +
1

2
e−2iωT + ...)

×
[
1 +

2mω

h̄
x1x2e

−iωT +
2m2ω2

h̄2 x2
1x

2
2e

−2iωT − mω

h̄
(x2

1 + x2
2)e

−2iωT + ...

]
.

(2.41)

From this we pick out the coefficient of the lowest term. It is

(
mω

πh̄

)1/2

e−
mω
2h̄

(x2
1+x2

2)e−iωT/2 = e−(i/h̄)E0T φ0(x2)φ
∗
0(x1). (2.42)

This mean that E0 = 1
2
h̄ω and

φ0(x) =
(

mω

πh̄

)1/4

e−(mωx2/2h̄). (2.43)

The next-order term in the expansion is

e−iωT/2e−iωT/ mω

πh̄
e−

mω
2h̄

(x2
1+x2

2) 2mω

h̄
= e−(i/h̄)E1T φ1(x2)φ

∗
1(x1) (2.44)
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which implies that E1 = 3
2
h̄ω, and

φ1(x) =
2mω

h̄
φ0(x). (2.45)

The next term corresponds to E2 = 5
2
h̄ω. The part of the term depending on x1

and x2 is

(
mω

πh̄

)1/2

e−
mω
2h̄

(x2
1+x2

2)

[
2m2ω2

h̄2 x2
1x

2
2 −

mω

h̄
(x2

1 + x2
2) +

1

2

]
. (2.46)

This must be the same as φ2(x2)φ
∗
2(x1). Since the expression in the brackets can

be re written as

1

2

(
2mω

h̄
x2

1 − 1
)(

2mω

h̄
x2

2 − 1
)

(2.47)

we find

φ2(x) =
1√
2

(
2mω

h̄
x2 − 1

)
φ0(x). (2.48)

All wave functions may be obtained in this manner. However, it is a difficult

algebraic problem to get the general from for φn(x) directly from this expansion.

From these results, we obtain the energy levels of the harmonic oscillator,

En = h̄ω(n +
1

2
) (2.49)

where n is an integer 0,1,2.... and all of the wave functions can be written in the

term of Hermite polynomials [9],

φn = (2nn!)
(

mω

πh̄

)
Hn

(
x

√
mω

h̄

)
e−(mωx2/2h̄). (2.50)

Therefore we can obtain energy levels and wave functions from the kernel of the

harmonic oscillator. This chapter I have described basic concepts of BEC for

ideal Bose gas. I also described BEC for interacting Bose gas, which is described

by Gross-Pitaevskii equation and Thomas-Fermi approximation. These concepts
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allow us to understand the behavior of the trapped gas. Finally I discussed the

concepts of Feynman path integral theory. I will use this concept to find the

ground energy and the wave function of hydrogen condensate. This will be done

in Chapter 4.



Chapter 3

Experiment on
Bose-Einstein Condensation

of Atomic Hydrogen

Bose-Einstein condensation (BEC) in hydrogen was observed for the first

time by MIT (Massachusetts Institute of Technology) research group in 1998 [5].

However, the search for BEC in hydrogen began in 1976 [10]. Originally they

polarized the gas by letting it flow into a strong magnetic field that attracted

atoms with spins oriented antiparallel to the field and repelled the others. How-

ever the group found that with this method they could not reach the extremely

low temperatures needed for a BEC because of collisions with the walls of the

container. They solved this problem by reconfiguring the field to be weaker in

the center, so that atoms with spins parallel to the field collected there, in a mag-

netic trap. Gradually reducing the field strength at the edge of the trap made

it shallower and allowed higher energy atoms to escape. This method was called

evaporative cooling. To reach their goal, the MIT group added a final cooling step

by applying a radio frequency magnetic field that tuned to flip the spins of the

most energetic hydrogen atoms, for this reason they were immediately attracted

to the outer, stronger-field regions. Finally, the gas was cooled into the quan-

tum degenerate regime. The hydrogen condensates were rather different from the

other alkali metal atoms and they used different techniques to probe the sample.

Attainment of BEC in hydrogen required 22 years of research effort which was

a revolution in techniques for cooling and manipulating atoms using laser-based
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methods. In this chapter I will briefly summarize the method of cooling process

and a technique to study BEC in hydrogen atoms.

3.1 The Basic of Trapping and Cooling Hydro-

gen

Spin polarized hydrogen is created by the magnetic state selection of hydrogen

at a cryogenic temperature. In high magnetic fields the electron and proton spin

quantum numbers are me = −1
2

, mp = ±1
2

for H ↓ and me = +1
2
,mp = ±1

2
for

H ↑ which the spins of the 1S state of atomic hydrogen can couple in four ways.

The four hyperfine states are labeled a-d as shown in Figure 3.1. The lowest two

states a and b are pulled toward regions of high magnetic field, and the low field

seeking states (c and d) are expelled from high field regions.

At the beginning of an experiment [5], molecular hydrogen is loaded into

the cryogenic apparatus by blowing a mixture of H2 and 4He into a cold can

(T ≈ 1 K). The H2 molecules are dissociated by pulsing an rf discharge in a region

of 4 T magnetic field. The low field seekers are blown into a confinement cell in

the trap. The trap field are created by currents in superconducting coils which

create a trap with maximum trap depth 0.82 T . The trap depth is the difference

between the field at maximum field and the minimum field in the center of the

trap. There are seventeen independently controlled coils in the apparatus which

are used to adjust the trap shape.

The magnetic trap consists of a long quadrupole field to confine the atoms

radially with axial solenoids at each end to provide axial confinement an elongated
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Figure 3.3: Hyperfine diagram for the ground state of atomic hydrogen [2].



21

variant of the Ioffe-Pritchard configuration (labeled ”IP”), as shown in Figure 3.2.

The field increases linearly away from the z axis of the trap (the potential exhibits

near cylindrical symmetry about the z axis); the potential is small and roughly

uniform for about 20 cm along the z axis.

The trapping fields are produced inside a cell that confines the gas cloud

while atoms are loaded into the trap. For trapped atoms, their total energy must

be less than the trap depth. Two techniques are used to cool the atoms into

the trap. First, superfluid 4He film is covered the walls and reduces the binding

energy of the H atoms. In order to prevent the hot atoms stick tightly to the

cold surfaces. The second stage of cooling involves collisions among the atoms

that are crossing the trap region. Sometimes these collisions result in one atom

having low enough energy to become trapped. The partner atom in the collision

goes to the wall and is thermalized.

The cell walls are quickly cooled to below 150 mK. At this temperatures

the residence times of the atoms on the surface of the cell are much longer than

the recombination time, and so the surface is sticky. The warm atoms go to the

surface recombine before having a chance to leave the surface. Thus no warm

particles can leave the wall and carry energy to the trapped gas.

Both d and c low field seeking states are caught in the trap. However,

inelastic collision processes involving two c state atoms quickly deplete the c state

population, and remaining atoms constitute a doubly polarized sample (both

electron and proton spins are polarized). For peak densities in the normal gas of

n = 1014cm−3 the characteristic decay time is 40 s.
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Figure 3.4: Cutaway diagram of the system [2].
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3.2 Evaporation Techniques

Evaporative cooling occurs when highly energetic atoms are permitted to escape

over a saddle point in the magnetic field at one end of the trap. Evaporation is

forced by lowering this axial confinement field while simultaneously holding the

radial confinement field fixed. Energetic atoms are able to escape out the end

of the trap. With this method, called saddle point evaporation, it was possible

to achieve conditions close to BEC in hydrogen but the cooling power is not

adequate to cross barrier. Evaporation requires collisions for maintaining thermal

equilibrium as the system cools. Because of hydrogen’s small scattering length,

its collision cross section is small and evaporation is much slower than in other

alkali metal atoms.

In saddle point evaporation of harmonic trap, atoms escape only along

the z-axis. For atom to escape, it must have a sufficient energy in the axial

degree of freedom [11], EZ ≥ Vtrap, where Vtrap is the trap depth as set by the

saddle point potential. Because only the z-motion is involved, the evaporation

is one-dimensional. To solve this problem the magnetic trap often called the

“Ioffe-Pritchard” type (abbreviated as “IP”) was used. This magnetic trap causes

mixing energy in axial and radial degree of freedom thus all atoms with total

energy E ≥ Vtrap can promptly escape. The energy mixing will be explained

theoretically in Chapter 4.

As the energy decreases and the IP trap becomes more harmonic, the

mixing time lengthens. When it becomes comparable to the collision time, the

evaporation rate falls [11]. To solve this problem the technique of rf evaporation

below 120 K, which permits evaporation in three dimensions, was used. A radio-

frequency magnetic field drives transitions between the trapped state and some
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other (untrapped) hyperfine sub-level, causing the atom to be ejected from the

trap. In hydrogen the trapped hyperfine state is (F = 1,m = 1). By starting

with an rf field resonant with the highest fields in the trap, then slowly lowering

the frequency, successively lower energy atoms can be expelled. Since all the

atoms on a specific energy surface in the trap are affected, the process is more

efficient than saddle point evaporation. This process allowed us to achieve the

conditions necessary for BEC. Figure 3.3. summarizes the entire cooling process.

3.3 Observation of BEC

We now describe the first observations of Bose-Einstein condensation of hydro-

gen atom. The technique was used in the experiment is laser spectroscopy. By

this probe, we are able to monitor the density and temperature of the gas as

the temperature is reduced by rf evaporation. When the gas is cooled into the

quantum degenerate regime, signatures of the Bose-Einstein condensate appear

in the spectrum; these can be analyzed to reveal the size and population of the

condensate.

3.3.1 Two-Photon Spectroscopy

Since the energy levels in hydrogen atoms are so widely spaced, two-photon spec-

troscopy of 1S-2S transition was used to study the trapped hydrogen atoms [12].

When illuminated with photons of energy exactly half the 1S to 2S level spacing,

the atoms are promoted to the 2S state by absorbing the two photons (see Figure

3.4). This differs from the one photon process used to manipulate and study

the alkali-metals in two important ways [13]. First, the resonance is extremely
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Figure 3.5: Schematic diagram of the cooling process [2].
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Figure 3.6: Two-photon spectroscopy of the 1S-2S transition in hydrogen [3].

narrow allowing it to be used for very high resolution spectroscopy. Second, the

absorption is so weak that the resonance can not be detected by decreasing the

amplitude of the transmitted beam. Instead, an electric field is applied to the

atoms which mixes the long lived 2S state with the short lived 2P state. The

atom then returns to the ground state by emitting of a Lyman-α photon. The

resonance is detected by recording the Lyman-α production as a function of the

frequency of the illuminating beam.

In the experiment a laser beam of 243 nm is reflected back on itself by

a mirror at the bottom of the cell creating a standing wave in the trap. In this

configuration the atom may absorb two photons from the same beam or one

photon from each beam. Atoms that absorb two co-propagating photons produce

a recoil shift and Doppler broadened feature in the spectrum [13] (see Fig. 3.5).

The excitation is said to be “Doppler-sensitive.” The shape of the Doppler line
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Figure 3.7: Feature of the two-photon spectrum in a standing wave [3].

gives the momentum distribution of the gas and thus provides another measure

of the temperature. On the other hand, no momentum is transfered to the atoms

that absorb two counter-propagating photons, and the excitation is said to be

“Doppler-free.” This effect can be used to measure sample density.

The energy equation for two-photon excitation of an isolated atom from

state i to state f , with initial momentum Pi and final momentum Pf = Pi +

h̄(k1 + k2), where k1 and k2 are the wave vectors of the laser beams, is [5]

2hν =
√

P 2
f c2 + (mc2 + 2h̄ν0)2 −

√
P 2

i c2 + (mc2)2 (3.1)

where the rest mass of the atom in the initial state is m, ν is the laser frequency

and 2ν0 = 2.466×1015Hz [14] is the unperturbed transition frequency. Expanding
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Eq.(3.1), we obtain ν

ν = ν0 +
(k1 + k2) · Pi

4πm
(1 − ε)︸ ︷︷ ︸

�νD1

+
h̄(k1 + k2)

2

8πm
(1 − ε)︸ ︷︷ ︸

�ν
R

− ν0P
2
i

2(mc)2︸ ︷︷ ︸
�νD2

+O(ε3) (3.2)

Here �νD1and �νD2 are the first and second order Doppler shifts, respectively,

�νR is recoil shift and ε = 2hν0

mc2
= 1.1 × 10−8 [5] is a relativistic correction

which accounts for the mass change of the atom upon absorbing energy 2h̄ν0.

For hydrogen in the submillikelvin regime, �νR << 1 Hz and can be neglected.

In the Doppler-sensitive configuration, k1 = k2 and �νR = 6.7 MHz

[5]. At temperature of 50 µK, �νD1 ∼ 2.6 MHz, and thus the Doppler-sensitive

peak is well separated from the Doppler-free. In the Doppler-free configuration,

k1 = −k2, and there is no recoil or first order Doppler broadening.

3.3.2 The 1S-2S Spectrum of a Non-Degenerate Gas

The spectrum of the trapped hydrogen gas slightly above the quantum degener-

ate regime is shown in Figure 3.6. There are two components of the spectrum,

corresponding to absorption of co-propagating or counter-propagating photons.

The wide, low feature on the right is the Doppler sensitive which is the

Gaussian line shape expected for a Maxwell-Boltzmann distribution of kinetic

energies in a sample at 42 µK [5]. The Doppler sensitive spectrum maps the

velocity distribution through the Doppler shift. The Doppler free spectrum gives

information about the density distribution. At this low temperature the recoil-

shifted Doppler-sensitive line is clearly separated from the Doppler-free line.

3.3.3 Cold-Collision Frequency Shift

The density and temperature are measured through the cold collision frequency

shift. At low temperatures, in the limit a 
 λ (thermal de Broglie wavelength),
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Figure 3.8: The spectrum of non-degenerate gas [2].
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only S-wave collisions are important. These collisions give rise to a mean field

interaction energy, and they introduce frequency shift into radiative transition.

In the presence of a could of atoms of density n in the 1S state, an atom in state

σ experiences a shift of its energy by an amount

�E =
4πh̄2aσ−1Sn

m
g2(0), (3.3)

where m is the atomic mass and aσ−1S is the s-wave scattering length which

parameterizes collisions between atoms in state σ and in the 1S state. The density

normalized second order correlation function g2(x) is [15]

g2(x) =
1

nN

∑
i�=j

〈Ψ |δ (ri − rj − x)|Ψ〉 . (3.4)

Here Ψ is the wave function for the system and N is the total number of con-

densate atoms. (For a Bose gas far from degeneracy, g2(0) = 2) Because the

scattering lengths for 1S-1S and 1S-2S collision are not identical, the energy to

excite an atom to 2S state from a gas of 1S atoms is shifted by an amount

h̄�ν1S−2S =
4πh̄2n

m
(a1S−2S − a1S−1S) g2(0). (3.5)

The frequency shift �ν1S−2S is known as a cold collision frequency shift. For non-

degenerate gas the two-photon sum frequency is by �ν1S−2S = nχ, where χ =

4πh̄g2(0)(a1S−2S − a1S−1S)/m. Once χ is known, the density can be determined

directly by measuring the frequency shift. In addition, a measurement of χ can

be used to check the theoretical calculations of the scattering lengths. The 1S-1S

scattering length is known accurately from theory: a1S−1S = 0.0648 Å and a1S−2S

has also been computed: a1S−2S = −2.3 nm [8].

To measure the frequency shift parameter χ, a series of line scans were

taken at different densities as shown in Figure 3.7. The first scan is at the
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maximum density and exhibits the largest red shift. Subsequent scans, at lower

densities, are smaller and less shift. The area under each photoexcitation curve

is proportional to the total number of atoms. Five of the forty spectra are shown.

From a plot of frequency V.S. density (see Figure 3.7b), the value of χ can be

determined. From a series of such measurements taken at different densities and

temperatures, the value of χ is [16]

χm = −3.8 ± 0.8 × 10−10 nHzcm3, (3.6)

where χm is the (two photon sum) frequency shift per unit density for excitation

out of condensate (g2(0) = 2). The theory of cold-collision frequency shift inho-

mogeneous system is not yet fully understood [11], with the above value of χm,

one deduces that a1S−2S = −1.4 nm, in fair agreement with the prediction. The

process leads to a frequency shift proportional to sample density, and thus the

spectroscopy is a valuable tool for measuring the sample density which is mea-

sured for densities in the range 2 - 7 × 10−13 cm−3 and for temperatures between

100 and 500 µK [5].

3.3.4 Spectroscopic Study of the Degenerate Gas

Bose-Einstein condensation involves the macroscopic occupation of the lowest

energy quantum state of the system. In a trap this state is concentrated at the

minimum of the trapping potential, and it has very small kinetic energy. When

the sample is cooled into the quantum degenerate regime the signature of the con-

densate in 1S-2S spectrum of the gas can be observed. In the Doppler-sensitive

spectrum, which maps the momentum distribution, one would expect an intense

line at zero detuning from the recoil shift �νR, rising above the background

spectrum [17]. Figure 3.8 shows the Doppler-sensitive spectrum of the normal
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Figure 3.9: Series of spectra of single sample used for a measurement of χ [2].
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Figure 3.10: Doppler-sensitive spectrum of degenerate gas [2].

gas and the condensate together. Zero detuning is taken at the center of the

recoil-shifted spectrum, which is detuned at 6.70 MHz blue of the Doppler-free

resonance. Open circles are for normal gas, filled circles are for the condensate

gas. The dashed line is a fit to the normal fraction data which assumes a Maxwell-

Boltzmann velocity distribution. The dashed line is a calculation which assumes

a Bose-Einstein distribution. The dot-dashed line is the condensate spectrum ex-

pected for a Thomas-Fermi wave function in a harmonic trap, when the dominate

spectral broadening is the cold-collision frequency shift. The temperature of the

Bose calculation was chosen to fit the observed spectrum.
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Figure 3.11: Doppler-free spectrum of degenerate gas [2].

3.3.5 Peak Condensate Density

The Doppler-free spectrum is shown in Figure 3.9. It can be used to evaluate the

density of the condensate. Atoms excited from different regions of the condensate

correspond to different frequency shifts. The signal size at a given detuning �p

is proportional to the number of the condensate atoms on a surface of constant

density (see Eq.(3.5) ) ncond = 2�p/χm. (assuming χm = χc; where χc is the

frequency shift per unit density for condensate gas)

The intense, narrow feature on the right is due to the normal gas, and

is shrunk vertically by a factor 40 to fit in the plot. The wide low, red-shifted

feature is the condensate. The line shape is that expected for a Thomas-Fermi

wave function in a harmonic trap. The peak shift, �p, is 920 ± 70 kHz, which

indicates a peak condensate density np = 2�p/χm = 4.8 ± 0.4 × 1015 cm−3 [5].
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3.4 Properties of BEC in Hydrogen

The peak condensate density indicates the number of atoms in the condensate.

The population of the condensate is easily computed using the Thomas-Fermi

wave-function in the bottom of the Ioffe-Pritchard trap, which is parabolic for

condensate size. We approximate the potential energy density of states ρ (ε) is

the differential volume of real space corresponding to a total particle energy. The

potential energy density of state function is [5]

ρ (ε) =
∫

d3rδ (V (r) − ε) . (3.7)

The trap shapes in the experiment is called the Ioffe-Pritchard, which has

the form [5]

VIP (ρ, z) =
√

(αρ)2 + (βz2 + θ)2 − θ (3.8)

with radial potential energy gradient α, axial potential energy curvature 2β (units

of energy/distance2), and bias potential energy θ. The potential energy density

of states for this trap is then

ρ (ε) =
4π

α2
√

β

√
ε (ε + θ) . (3.9)

We approximate the potential energy density state by ρ (ε) = 4π

α2
√

β

√
εθ

and obtain

Nc =

µ∫
0

ρ (ε) ncond (ε) dε

=
16

15

πθ

α2
√

β
U

3/2
0 n5/2

p , (3.10)

Where ncond (ε) = np − ε/U0 is the condensate density (see Eq.(2.6)). From the

experiment [5], the peak shift of �= 620±20 kHz corresponds to peak density
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3.26 ±0.10 ×1015 cm−3 and the condensate population is Nc = 1.19 ±0.10 ×109

atoms. The chemical potential for this peak density is µ/kB = npU0 = 1.9 K.

The extent of the Thomas-Fermi wave function is determined from this equation

by setting the density to zero at the edge of the condensate

ncondU0 = µ − VIP (ρ, z) = 0. (3.11)

We obtain

ρmax =
1

α

√
µ2 + 2µθ = 7.3 µm (3.12)

and

zmax =

√
µ

β
= 2.8 mm. (3.13)

The huge aspect ratio, ∼400, gives the condensate a thread-like shape.

We can write the chemical potential (µ ) that explicitly depends on Nc. For

Ioffe-Pritchard trap, it can be shown that

np =

(
15α2√γNc

16πU
3/2
0

)2/5

. (3.14)

The chemical potential is µ (nc) = U0np . It satisfies µ (nc) = ∂E0/∂nc

and is given by

E0 =
5

7
ncµ (nc) (3.15)

where E0 is the ground state energy. In the experiment, one can evaluate the

ground state energy from the peak condensate density in Doppler free spectrum,

nc from Eq. (3.10) and U0/kB = 3.92 × 10−16 µK cm3 parameterizes the mean

field energy. The ground energy of each trap and parameters are summarized in

Table 3.1.

The parameters α, γ, and θ describe the Ioffe-Pritchard potential; α, γ

are calculated and θ is measured. The peak cold-collision frequency shift in the
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Parameter Trap A Trap B
α/kB (mK/cm) 15.9 9.5

γ/kB

(
µK/cm2

)
25 25

θ/kB (µK) 35±2 34±2
Tc (µK) ∼65 ∼50
�p (kHz) 920±70 620±20

χc=χc χc=χm/2 χc=χc χc=χm/2
np (×1015cm−3) 4.8±0.4±1 9.7±0.7±2 3.3±0.1±0.7 6.5±0.2±1.3

Nc (×109) 1.2±0.2 6.6±1.3 1.2±0.1 6.7±0.5
µ/kB (µK) 1.9 3.8 1.3 2.6
2ρmax (µm) 15 21 20 28
2zmax (mm) 5.5 7.8 4.5 6.4

Ec = 5
7
Ncµ (J) 2.25×10−20 2.47×10−19 1.54×10−20 1.67×10−19

Table 3.2: Summary of parameter describing the two trap shapes used for achiev-
ing BEC and summary of the properties of the condensates [2].

condensate is �p. The remainder of the table is divided to show the implications

of assuming χc = χm or χc = χm/2 . The peak condensate density is np, chemical

potential is µ and total condensate energy is Ec. The number of condensate

atoms is Nc. Finally, the length and diameter of the condensates are given.

The uncertainties are divided into a component which depends on the present

experiment (first number), and a component reflecting the 20% uncertainty on

χm (second number).

A thorough treatment of the relation between χc and χm has been un-

dertaken by Killian [15]. He concludes that χc = χm/2 because exchange ef-

fects should be present in the normal gas, but absent in a condensate. Here,

the experimental evidence suggests that perhaps χc = χm. Firstly if we take

χc = χm/2 then the number of atoms lost, as described in Fried’s thesis [5], is

as large as the total original population of the trap. Secondly the condensate

fraction measured spectroscopically agrees well with the fraction one computes
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from the population in the condensate by assuming that χc = χm. If χc = χm/2

then the calculated condensate fraction is 25/2 � 6 times larger than indicated

by the spectroscopic technique. Therefore the possibility should be explored that

χ = 2h̄ (a1S−2S − a1S−1S) /m (instead of χ = 4h̄ (a1S−2S − a1S−1S) /m ) for ex-

citation out of the thermal gas. There are significant ambiguities so that this

problem clearly requires further study.



Chapter 4

Theoretical Considerations

Having discussed the experimental aspect of Bose-Einstein condensation

of atomic hydrogen in Chapter 3, we now turn to the theoretical aspect of the

phenomena in this chapter. First, we explain why pervious experiments could not

bring trapped hydrogen into the quantum degenerate regime and how the Ioffe-

Pritchard trap influences the trapped gas. We then apply the techniques from

many-body Feynman path integral theory to obtain the ground state properties of

the Bose-Einstein condensation of atomic hydrogen confined in the Ioffe-Pritchard

trap.

4.1 Ioffe-Pritchard Trap

Previous attempts to obtain BEC in hydrogen failed ([18], [19]) because the cool-

ing process became bottlenecked by the slow rate at which energetic atoms could

escape, thus reducing the effective cooling rate. To understand this bottleneck

we must first consider the details of the trap shape. We then study the motion

of the particles that have enough energy to escape.

The trap shape used to confine samples at T < 200K is often called the

Ioffe-Pritchard trap [20]. Using axial coordinate z and radial coordinate ρ, the

potential has the from

VIP (ρ, z) =
√

(αρ)2 + (γz2 + θ)2 − θ (4.1)
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with radial potential energy gradient α (J/cm), axial potential energy curvature

2γ (J/cm2), and bias potential energy θ (J).

In the limit of ρ << θ/α, the Ioffe-Prithchard potential is harmonic in

the radial coordinate, as may be seen by expanding the potential in power series

VIP (ρ, z) = γz2 +
1

2

α2

γz2 + θ
ρ2 +

1

8

α3

(γz2 + θ)2ρ3 + ... (4.2)

The trap is harmonic in the radial direction when the third term is much smaller

than the second term. The trap appears harmonic in all three directions to short

samples for which the radial oscillation frequency is essentially uniform along the

length of the sample. This occurs for temperatures T << 4θ/kB. In the harmonic

regime, the axial oscillation frequency is

ωz =

√
2γ

m
(4.3)

and the radial oscillation frequency is

ωρ =
α√

m(γz2 + θ)
. (4.4)

Previous attempts to cool hydrogen to BEC utilized saddlepoint evapo-

ration, in which energetic atoms escape over a saddlepoint in the magnetic field

barrier at one end of the trap. To escape, the atom must have energy in axial

degree of freedom (z) greater than trap depth. This atom removal technique

is inherently one dimensional. The collisions which drive evaporation produce

many atoms with high energy in the other degrees of freedom, and in order for

these to escape the energy must be transferred to the axial degree of freedom.

This energy transfer process was analyzed theoretically by Surkov, Walraven, and

Shlyapnikov [21], we now follow their analysis.
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In a harmonic trap the potential is separable, and the particle motion is

completely regular; no energy exchange occurs. In the Ioffe-Pritchard trap, energy

exchange can occur because the potential is not separable; the radial oscillation

frequency depends on the axial coordinate, z, and so radial motion can couple

to axial motion. (see Eq. (4.4)) Therefore, the evaporation efficiency depends on

how strongly the atom’s motional degrees of freedom are coupled in the trap. For

high trapping field (T > 1 mK), the degrees of freedom in Ioffe-Prithchard trap

are well coupled, and atomic trajectories are stochastic.

This energy mixing can be understood by considering how rapidly the

radial oscillation frequency changes as an atom moves along the z axis. If the

frequency changes slowly (adiabatically), then the energy will not mix among the

degrees of freedom. The adiabaticity parameter is the fractional change of the

radial oscillation frequency in one oscillation period as the atom moves axially

through the trap. Strong mixing occurs when [5]

.
ωρ

ω2
ρ

∼ 1. (4.5)

Here
.

ωρ= (dωρ/dz)(dz/dt). For a Ioffe-Prithchard trap with a bias that is large

compared to kBT , ωρ = α/
√

(γz2 + θ)m. We have used the expansion in Eq.

(4.2), which is valid if kBT ∼ αρ << θ. Given that kBT << θ, the adiabaticity

parameter is
.

ωρ

ω2
ρ

= vz
γz

√
m

α
√

γz2 + θ
. (4.6)

We see that several factors contribute to good mixing: large axial velocity vz

(which occurs at high temperatures), small radial gradient α, small bias field θ,

and large axial curvature γ. In practice, however, achieving BEC requires low

temperatures (vz small) and high densities (obtained with large compressions, and
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thus large α). Consequently, the degrees of freedom do not mix and evaporation

becomes essentially one dimensional. Typical values for the experiment [5] are

α/kB = 16 mK/cm, γ/kB = 25 K/cm2, θ/kB = 30 K, T = 100 K, z ∼ 2 cm, and

vz = 140 cm/s, so that
.

ωρ /ω2
ρ ∼ 10−3. For these conditions it takes about 103

oscillations to transfer energy. There is not enough time to transfer the radial

energy to axial energy before the particle has a collision. The energy mixing is

thus very weak and the evaporation is one dimensional. The evaporative cooling

power thus drops dramatically. Experiments have confirmed that phase space

compression ceases near 100 µK.

In order to maintain the evaporation efficiency a technique is required

that quickly removes all particles with energy greater than the trap depth. To

this end they implemented rf evaporation as described in details in Chapter 3.

4.2 Many-Body Feynman Path Integral Theory

In this section we calculate the ground state properties of atomic hydrogen using

Feynman’s path integral theory with the assistance of the variational principle.

First we consider N hydrogen atoms in Ioffe-Pritchard trap. Retaining only

the first two terms in the expansion (4.2) and treating the interaction among

hydrogen atoms as mean-field energy, which are repulsive for s-wave scattering

lengths a > 0. The Lagrangian for the entire system is

L =
m

2

N∑
i=1

(ẋ2
i + ẏ2

i + ż2
i )−

N∑
i=1

[γz2
i +

α2

2(γz2
i + θ)

(x2
i + y2

i )]− (
4πh̄2a

m
)

N∑
ij

δ(ri − rj)

(4.7)

We use the trial action, which can be solved the density matrix exactly

and Lagrangian of the trial action must be similar to Lagrangian of the real
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system. So we choose

S0 =

T∫
0

(
m

2

N∑
i=1

(ẋ2
i + ẏ2

i + ż2
i ) −

N∑
i=1

[ωzz
2
i + ωρ(x

2
i + y2

i )]

)
dt. (4.8)

We now find the density matrix of the system. The formulation of the

density matrix bears a close resemblance to the general expression for the kernel,

which was derived in Chapter 4 of the Feynman and Hibb’s book [22]. If the time

of the kernel is replaced by −iβh̄, the expression for the density matrix is identical

to the expression for the kernel corresponding to an imaginary time interval. We

thus find the kernel first. It has the form

K =

r2∫
r1

e
i
h̄

SDr(t) =

r2∫
r1

e
i
h̄

S0Dr(t) ·
r2∫
r1

e
i
h̄
(S−S0)e

i
h̄

S0Dr(t)

r2∫
r1

e
i
h̄

S0Dr(t)
. (4.9)

The second factor of Eq. (4.9) has the form of an average of e
i
h̄
(S−S0) with e

i
h̄

S0

as the weighting factor for each path r(t). We thus write Eq. (4.9) as

K = K0 ·
〈
e

i
h̄
(S−S0)

〉
S0

(4.10)

where

K0 =

r1∫
r2

e
i
h̄

S0Dr(t). (4.11)

Since i
h̄
S and i

h̄
S0 are real if time is imaginary, then we can use the inequality [9]

〈
e−x

〉
≥ e−〈x〉. (4.12)

The geometrical interpretation of this relation is shown in Fig.(4.1). Note that

Eq. (4.12) does not depend on how the 〈x〉 are distributed. Applying Eq. (4.12)

to Eq. (4.10), we can find

K ≥ K0e
〈 i

h̄
(S−S0)〉

S0 . (4.13)
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Figure 4.12: Geometrical interpretation of
〈
e−f

〉
≥ e〈−f〉 [1].

This relation is true when we replace the time by −iβh̄. The exponent in Eq.

(4.13) has the explicit from

〈S − S0〉 =

T∫
0

dt 〈L − L0〉S0
(4.14)

or

〈S − S0〉 =

T∫
0

dt
N∑

i=1

(
m

2
ω2

z − γ)
〈
z2
〉

S0

+

T∫
0

dt
N∑

i=1

m

2
ω2

ρ(
〈
x2
〉

S0

+
〈
y2
〉

S0

)

−
T∫

0

dt
N∑

i=1

α2

2

〈
(x2 + y2)

γz2 + θ

〉
S0

− 4πh̄2a

m

N∑
ij

T∫
0

dt 〈δ(ri − rj)〉S0

(4.15)

Thus Eq.(4.13) has the explicit form

K ≥ K0 exp

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

i
h̄

T∫
0

dt

⎛
⎜⎜⎝

N∑
i=1

(m
2
ω2

z − γ) 〈z2〉S0
+

N∑
i=1

m
2
ω2

ρ(〈x2〉S0
+ 〈y2〉S0

)

− N∑
i=1

α2

2
ω2

ρ

〈
(x2+y2)
γz2+θ

〉
S0

⎞
⎟⎟⎠

− i
h̄

(
4πh̄2a

m

) N∑
ij

T∫
0

dt 〈δ(ri − rj)〉S0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.16)
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Replace t by −ih̄t, we obtain the inequality for density matrix

ρ ≥ ρ0 exp

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β∫
0

dt

⎛
⎜⎜⎝

N∑
i=1

(m
2
ω2

z − γ) 〈z2〉S0
+

N∑
i=1

m
2
ω2

ρ(〈x2〉S0
+ 〈y2〉S0

)

− N∑
i=1

α2

2

〈
(x2+y2)
γz2+θ

〉
S0

⎞
⎟⎟⎠

(
−4πh̄2a

m

) N∑
ij

β∫
0

dt 〈δ(ri − rj)〉S0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.17)

The parameter t in Eq. (4.17) is not the true time in the usual sense. It is just

a parameter in an expression for density matrix ρ. However, if we wish to make

use of analogy in our thinking, we can consider t as the time for a certain path.

To evaluate the exponent in Eq. (4.17), we proceed as follow. We first

evaluate 〈x2〉S0
〈y2〉S0

and 〈z2〉S0
To do so, consider the quantity

〈
e[ i

h̄

∫
f(t)x(t)dt]

〉
=

b∫
a

exp[
i

h̄

(
S −

∫
f(t)x(t)dt

)
]Dx(t). (4.18)

where f(t) is any arbitrary function of time. If the original action S is Gaussian,

then the action is

S´ = S −
∫

f(t)x(t)dt (4.19)

is also Gaussian. Thus the path integral on the right of Eq. (4.18) can be carried

out by the methods of section 2.3 in Chapter 2. If S´
Cl is the extremum of the

action S´, then the factor exp
(
iS´

Cl/h̄
)

can be extracted as a factor of a path

integral of Eq. (4.18). The remaining factor is a path integral over the closed

paths y(t). The details are shown in section 7.4 Feynman and Hibb’s book [22].

The final result is that the path integral on the right of Eq. (4.18) can be reduced

to an exponential function multiplied by the transition element 〈1〉.
〈
e[ i

h̄

∫
f(t)x(t)dt]

〉
=

{
exp[

i

h̄
(S´

Cl − SCl)]
}
〈1〉 . (4.20)
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The extremum SCl can be obtained from Eq. (4.20) by setting f(t) to zero and

the action of the forced harmonic oscillator is a special case of action S´
Cl.

From the transition element given by Eq.(4.20) we can obtain the transi-

tion element of x(t) by differentiating Eq.(4.20) with respect to f(t),

〈
x(t) exp

[
i

h̄

∫
f(t)x(t)dt

]〉
=

δS´
Cl

δf(t)

{
exp

[
i

h̄
(S´

Cl − SCl)
]}

〈1〉 . (4.21)

Setting f(t) = 0, we obtain

〈x(t)〉 = 〈1〉
[

δS´
Cl

δf(t)

]
f(t)=0

. (4.22)

Similarly, we obtain

〈
x2(t)

〉
= 〈1〉

⎡
⎣− i

h̄

δ2S´
Cl

δf(t)2
+

(
δS´

Cl

δf(t)

)2
⎤
⎦

f(t)=0

. (4.23)

We now use the action S´
Cl for the harmonic oscillator driven by an external force

f(t),

S´
Cl =

mω

2 sin ωT

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos ωT (x2
2 + x2

1) − 2x1x2 + 2x2

mω

T∫
0

f(t) sin ωtdt

+2x1

mω

T∫
0

f(t) sin ω(T − t)dt

− 1
m2ω2

T∫
0

T∫
0

f(t)f(s) sin ω(T − t) sin ωsdsdt

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.24)

Substitute Eq. (4.24) into Eq. (4.23), we obtain

〈
x2(t)

〉
S0

=
ih̄

mω

sin ω(T − t) sin ωt

sin ωT
+ (

x2 sin ωt + x1 sin ω(T − t)

sin ωT
)2. (4.25)

To apply the above result to our case, we replace t by -ih̄t. Using the relation

sin(−iωh̄t) = −i sinh ωh̄t, we obtain

〈
x2(t)

〉
S0

=
h̄

mωρ

sinh ωρh̄(β − t) sinh ωρh̄t

sinh ωρh̄β
+ (

x2 sinh ωρh̄t + x1 sinh ωρh̄(β − t)

sinh ωρh̄β
)2
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〈
y2(t)

〉
S0

=
h̄

mωρ

sinh ωρh̄(β − t) sinh ωρh̄t

sinh ωρh̄β
+ (

y2 sinh ωρh̄t + y1 sinh ωρh̄(β − t)

sinh ωρh̄β
)2

〈
z2(t)

〉
S0

=
h̄

mωz

sinh ωzh̄(β − t) sinh ωzh̄t

sinh ωzh̄β
+ (

z2 sinh ωzh̄t + x1 sinh ωzh̄(β − t)

sinh ωzh̄β
)2

(4.26)

We next calculate
β∫
o
〈x2(t)〉S0

dt,
β∫
o
〈y2(t)〉S0

dt and
β∫
o
〈z2(t)〉S0

dt

β∫
o

〈
x2(t)

〉
S0

dt =

β∫
o

h̄

mωρ

sinh ωρh̄(β − t) sinh ωρh̄t

sinh ωρh̄β
dt

+

β∫
o

(
x2 sinh ωρh̄t + x1 sinh ωρh̄(β − t)

sinh ωρh̄β
)2dt. (4.27)

The first term of Eq. (4.27) can be evaluated easily,

β∫
o

h̄

mωρ

sinh ωρh̄(β − t) sinh ωρh̄t

sinh ωρh̄β
dt =

h̄β

2ωρm
coth ωρh̄β − 1

2ω2
ρm

. (4.28)

Integrating of the second term, we obtain

β∫
o

(
x2 sinh ωρh̄t + x1 sinh ωρh̄(β − t)

sinh ωρh̄β
)2dt

= − x1x2

2ωρh̄
cschωρh̄β − x1x2

ωρh̄
coth ωρh̄β cosh ωρh̄β +

x1x2

2ωρh̄
cosh ωρh̄βcschωρh̄β

+x1x2β coth ωρh̄βcschωρh̄β +
x2

1

2ωρh̄
coth ωρh̄β − x2

1

2ωρh̄
cosh 2ωρh̄ coth ωρh̄β

−1

2
(x2

1 + x2
2)βcschωρh̄β +

x2
2

4ωρh̄
(cschωρh̄β)2 sinh 2ωρh̄β

+
x2

1

2ωρh̄
cosh 2ωρh̄β coth ωρh̄β (4.29)

Using the expansions

cschωρh̄β =
2

eωρh̄β(1 − e−2ωρh̄β)
= 2e−ωρh̄β(1 + e−2ωρh̄β + e−4ωρh̄β + ...)
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sechωρh̄β =
2

eωρh̄β(1 + e−2ωρh̄β)
= 2e−ωρh̄β(1 − e−2ωρh̄β + e−4ωρh̄β + ...)

coth ωρh̄β =
(e−ωρh̄β + e−ωρh̄β)

(e−ωρh̄β − e−ωρh̄β)
= 1 + e−2ωρh̄β + e−4ωρh̄β + ... (4.30)

The coefficient of the lowest order term, we get in Eq. (4.29) and picking

β∫
o

〈
x2(t)

〉
S0

dt =

(
h̄β

2ωρm
− 1

2ω2
ρm

+
h̄β

2ωρm
e−2ωρh̄β + ...

)

+
(x2

1 + x2
2)

2ωρh̄
− x1x2

ωρh̄
e−ωρh̄β

+
(x1 + x2)

2

ωρh̄
e−2ωρh̄β − x1x2

ωρh̄
e−3ωρh̄β + ... (4.31)

Similarly by changing 〈y2(t)〉S0
and 〈z2(t)〉S0

can be obtained the variable x to

y and z, respectively.

Our next step is to evaluate decouple, we find
β∫
o

〈
x(t)2

γz2+θ

〉
S0

dt and
β∫
o

〈
y(t)2

γz2+θ

〉
S0

dt.

Since all coordinate in S0〈
x2(t)

γz2 + θ

〉
S0

=

∫
Dx(t)e−S0(x)/h̄x2(t)∫

Dx(t)e−S0(x)/h̄

∫
Dy(t)e−S0(y)/h̄∫
Dy(t)e−S0(y)/h̄

∫
Dz(t)e−S0(z)/h̄( 1

γz2+θ
)∫

Dz(t)e−S0(z)/h̄

=
〈
x2(t)

〉
So(x)

〈
1

γz2 + θ

〉
So(z)

(4.32)

Using the identity 1
x

=
∞∫
0

e−xqdq, we may write

1

γz2 + θ
=

∞∫
0

e−(γz2+θ)qdq. (4.33)

Using the Jenssen inequality from Eq. (4.12), we find〈
1

γz2 + θ

〉
S0

≥
∞∫
0

e
−(γ〈z2〉

S0
+θ)q

dq =
1

γ 〈z2〉S0
+ θ

. (4.34)

Therefore

〈
x2

γz2 + θ

〉
S0

≥ 〈x2〉S0

γ 〈z2〉S0
+ θ

. (4.35)
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Substituting the results for 〈x2〉S0
and 〈z2〉S0

from Eq. (4.26) into Eq. (4.35) and

using the relation

sinh ωρh̄(β − t) sinh ωρh̄t =
1

2
(cosh ωρh̄β − cosh(2ωρh̄t − ωρh̄β)) (4.36)

We obtain

〈x2〉S0

γ 〈z2〉S0
+ θ

=

h̄
2mωρ

coth ωρh̄β − h̄
2mωρ

cosh(2ωρh̄t−ωρh̄β)
sinh ωρh̄β

+ (x2 sinh ωρh̄t+x1 sinh ωρh̄(β−t)
sinh ωρh̄β

)2

γh̄
2mωz

coth ωzh̄β − γh̄
2mωz

cosh(2ωz h̄t−ωz h̄β)
sinh ωz h̄β

+ γ( z2 sinh ωz h̄t+x1 sinh ωz h̄(β−t)
sinh ωz h̄β

)2 + θ

=
ωzh̄ coth ωρh̄β

ωρ (γh̄ coth ωzh̄β + 2mωzθ)
×(

1 − cosh(2ωρh̄t−ωρh̄β)
cosh ωρh̄β

+ 2mωρ

h̄ coth ωρh̄β
(x2 sinh ωρh̄t+x1 sinh ωρh̄(β−t)

sinh ωρh̄β
)2
)

(
1 −

(
γh̄ cosh(2ωz h̄t−ωz h̄β)

(γh̄ coth ωz h̄β+2mbθ) sinh ωz h̄β
− 2mωzγ

(γh̄ coth ωz h̄β+2mbθ)
( z2 sinh ωz h̄t+x1 sinh ωz h̄(β−t)

sinh ωz h̄β
)2
))

(4.37)

We then Expand Eq.(4.37) by using the relation 1
1−x

= 1 +
∞∑

n=1
xn and letting

f(z1, z2) = (
γh̄ cosh(2ωzh̄t − ωzh̄β)

(γh̄ coth ωzh̄β + 2mωzθ) sinh ωzh̄β
−

2mωzγ

(γh̄ coth ωzh̄β + 2mωzθ)
(
z2 sinh ωzh̄t + x1 sinh ωzh̄(β − t)

sinh ωzh̄β
)2),

We obtain

〈x2〉S0

γ 〈z2〉S0
+ θ

=
ωzh̄ coth ωρh̄β

ωρ (γh̄ coth ωzh̄β + 2mωzθ)
[1 − cosh(2ωρh̄t − ωρh̄β)

cosh ωρh̄β

+
2mωρ

h̄ coth ωρh̄β
(
x2 sinh ωρh̄t + x1 sinh ωρh̄(β − t)

sinh ωρh̄β
)2

+
∞∑

n=1

f(z1, z2)
n − cosh(2ωρh̄t − ωρh̄β)

cosh ωρh̄β

∞∑
n=1

f(z1, z2)
n

+
2mωρ

h̄ coth ωρh̄β
(
x2 sinh ωρh̄t + x1 sinh ωρh̄(β − t)

sinh ωρh̄β
)2

∞∑
n=1

f(z1, z2)
n].

(4.38)
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Considering the integral of the first term
β∫
0

ωz h̄ coth ωρh̄β
ωρ(γh̄ coth ωz h̄β+2mωzθ)

dt, If we

take limit β → ∞ at very low temperatures, then coth ωρh̄β → 1 and so

β∫
0

ωzh̄ coth ωρh̄β

ωρ (γh̄ coth ωzh̄β + 2mωzθ)
dt =

ωzh̄β

ωρ (γh̄ + 2mωzθ)
. (4.39)

On the other hand if we expand cothωρh̄β and coth ωzh̄β by using the relation

in Eq. (4.30), we find that ωz h̄β
ωρ(γh̄+2mωzθ)

is the leading term depending on β.

We thus expand 1
cosh ωρh̄β

, 1
cosh ωz h̄β

, 1
sinh ωρh̄β

and 1
sinh ωz h̄β

using Eq. (4.30) and

let coth ωρh̄β → 1, Then it easy to integrate Eq. (4.38) since all terms are

exponential functions. Retaining only the terms which depend on β and the

terms of the lowest power of e−ωρh̄β or e−ωz h̄β, in order to find energy and wave

functions, we finally obtain

β∫
0

〈x2〉
γ 〈z2〉 + θ

dt =
ωzh̄β

ωρ (γh̄ + 2mωzθ)

+
2mωz

h̄ (γh̄ + 2mωzθ)

(
(x2

1 + x2
2)

2ωρ

− x1x2e
−ωρh̄β + ...

)

− 2γmω2
z

ωρ (γh̄ + 2mωzθ)
2

(
(z2

1 + z2
2)

2ωz

− z1z2e
−ωz h̄β + ...

)

− 4γm2ω2
z

(γh̄ + 2mωzθ)
2

(
(x2

1z
2
1 + x2

2z
2
2)

2(ωρ + ωz)h̄
+ ...

)
. (4.40)

Our next task is to calculate the average of Delta function. To do so, we

first calculate the average of Delta function in real time. In order to manipulate

the delta function within the path integral, we express it by its Fourier transform,

〈δ(ri − rj)〉S0
=

∞∫
−∞

dk
1

(2π)3

〈
eik·(ri−rj)

〉
S0

=

∞∫
−∞

dkx
1

(2π)

〈
eikx·(xi−xj)

〉
S0

∞∫
−∞

dky
1

(2π)

〈
eiKy ·(yi−yj)

〉
S0

×
∞∫

−∞
dkz

1

(2π)

〈
eikz ·(zi−zj)

〉
S0

(4.41)
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Consider Eq.(4.41) in the x component only

〈
eikx·(xi−xj)

〉
S0

=

r2∫
r1

Dx(t)e
i
h̄
(S0(xi)+h̄kx·xi)

r2∫
r1

Dx(t)e
i
h̄

S0(xi)
·

r2∫
r1

Dx(t)e
i
h̄
(S0(xj)−h̄kx·xj)

r2∫
r1

Dx(t)e
i
h̄

S0(xj)
(4.42)

In the dominator, the exponent has the explicit form

S0(xi) + h̄k · xi =

t∫
0

dt(
m

2

.
x2

i −
m

2
ω2x2

i + f(t)xi) (4.43)

where f(t) = h̄kxδ(t − s), so the kernel KS0(xi)+h̄k·xi
is

(
m

2πih̄ sin ωT
)1/2

exp[
mωi

2h̄ sin ωT
(cos ωT (x2

i2
+ x2

i1
) − 2xi2xi1 +

2xi2

mω
h̄k sin ωt

+
2xi1

mω
h̄k sin ω(T − t) − 1

m2ω2
h̄2k2 sin ω(T − t) sin ωt)]

= KS0(xi) exp

[
ixi2k

sin ωt

sin ωT
+ ixi1k

sin ω (T − t)

sin ωT
− ih̄k2

2mω

sin ω (T − t) sin ωt

sin ωT

]

(4.44)

where KS0(xi) is the kernel of harmonic oscillator. Similarly, we obtain

KS0(xi)−h̄kxi
= KS0(xi) exp[−ixi2k

sin ωt

sin ωT
− ixi1k

sin ω (T − t)

sin ωT

− ih̄k2

2mω

sin ω (T − t) sin ωt

sin ωT
]. (4.45)

Substituting Eq. (4.44) and Eq. (4.45) into Eq. (4.42), we get

〈
eikx·(xi−xj)

〉
S0

= exp[k·
(
i(xi2 − xj2)

sin ωt

sin ωT
+ i(xi1 − xj1)

sin ω (T − t)

sin ωT

)

−k2 ih̄

2mω

sin ω (T − t) sin ωt

sin ωT
]. (4.46)

Using the formula
∞∫

−∞
dxe−ax2+bx =

√
π
a
eb2/4a, we get

∞∫
−∞

dk
1

2π

〈
eikx·(xi−xj)

〉
S0

=

(
mπω sin ωT

ih̄ sin ω(T − t) sin ωt

)1/2

×
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exp[

(
imω sin ωT

4h̄ sin ω(T − t) sin ωt

)

×
(

(xi2 − xj2) sin ωt + (xi1 − xj1) sin ω (T − t)

sin ωT

)2

].

(4.47)

The y and z factor of Eq. (4.41) have a similar form. We thus obtain

〈δ(ri−rj)〉S0
=

1

(2π)3

(
mπωρ sin ωρT

ih̄ sin ωρ(T − t) sin ωρt

)(
mπωz sin ωzT

ih̄ sin ωz(T − t) sin ωzt

)1/2

exp[(
imωρ ((xi2 − xj2) sin ωt + (xi1 − xj1) sin ω (T − t))2

4h̄ sin ω(T − t) sin ωt sin ωT

+
imωρ ((yi2 − yj2) sin ωρt + (yi1 − yj1) sin ωρ (T − t))2

4h̄ sin ωρ(T − t) sin ωρt sin ωρT

+
imωz ((zi2 − zj2) sin ωzt + (zi1 − zj1) sin ωz (T − t))2

4h̄ sin ωz(T − t) sin ωzt sin ωzT
)].

(4.48)

Changing real time to imaginary time in Eq. (4.48), we get

〈δ(ri − rj)〉S0
=

(
mωρ sinh ωρh̄β

4πh̄ sinh ωρh̄(β − t) sinh ωρh̄t

)(
mπωz sin ωzh̄β

4h̄ sin ωzh̄(β − t) sin ωzh̄t

)1/2

× exp[(
mωρ ((xi2 − xj2) sinh ωh̄t + (xi1 − xj1) sinh ωh̄ (β − t))2

4h̄ sinh ωh̄(β − t) sinh ωh̄t sinh ωh̄β

+
mωρ ((yi2 − yj2) sinh ωρh̄t + (yi1 − yj1) sinh ωρh̄ (β − t))2

4h̄ sinh ωρh̄(β − t) sinh ωρh̄t sinh ωρh̄β

+
mωz ((zi2 − zj2) sinh ωzh̄t + (zi1 − zj1) sinh ωzh̄ (β − t))2

4h̄ sinh ωzh̄(β − t) sinh ωzh̄t sinh ωzh̄β
)].

(4.49)

Using the relation

ex =
∞∑

n=0

xn

n!
= 1 + x +

1

2
x2 +

1

6
x3 + ... (4.50)

We can write 〈δ(ri − rj)〉S0
as(

mωρ sinh ωρh̄β

4πh̄ sinh ωρh̄(β − t) sinh ωρh̄t

)(
mπωz sinh ωzh̄β

4h̄ sin ωzh̄(β − t) sin ωzh̄t

)1/2
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×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +

⎛
⎜⎜⎜⎜⎜⎝

mωρ((xi2
−xj2

) sinh ωh̄t+(xi1
−xj1

) sinh ωh̄(β−t))
2

4h̄ sinh ωh̄(β−t) sinh ωh̄t sinh ωh̄β

+
mωρ((yi2

−yj2
) sinh ωρh̄t+(yi1

−yj1
) sinh ωρh̄(β−t))

2

4h̄ sinh ωρh̄(β−t) sinh ωρh̄t sinh ωρh̄β

+
mωz((zi2

−zj2
) sinh ωz h̄t+(zi1

−zj1
) sinh ωz h̄(β−t))

2

4h̄ sinh ωz h̄(β−t) sinh ωz h̄t sinh ωz h̄β

⎞
⎟⎟⎟⎟⎟⎠

+1
2

⎛
⎜⎜⎜⎜⎜⎝

mωρ((xi2
−xj2

) sinh ωh̄t+(xi1
−xj1

) sinh ωh̄(β−t))
2

4h̄ sinh ωh̄(β−t) sinh ωh̄t sinh ωh̄β

+
mωρ((yi2

−yj2
) sinh ωρh̄t+(yi1

−yj1
) sinh ωρh̄(β−t))

2

4h̄ sinh ωρh̄(β−t) sinh ωρh̄t sinh ωρh̄β

+
mωz((zi2

−zj2
) sinh ωz h̄t+(zi1

−zj1
) sinh ωz h̄(β−t))

2

4h̄ sinh ωz h̄(β−t) sinh ωz h̄t sinh ωz h̄β

⎞
⎟⎟⎟⎟⎟⎠

2

+ ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.51)

Considering the first term and using the relation from Eq. (4.36), we can write

(
mωρ sinh ωρh̄β

4πh̄ sinh ωρh̄(β − t) sinh ωρh̄t

)(
mπωz sin ωzh̄β

4h̄ sin ωzh̄(β − t) sin ωzh̄t

)1/2

=

⎛
⎝mωρ

2πh̄

sinh ωρh̄β

cosh ωρh̄β

1(
1 − cosh(2ωρh̄t−ωρh̄β)

cosh ωρh̄β

)
⎞
⎠

⎛
⎝mωz

2πh̄

sinh ωzh̄β

cosh ωzh̄β

1(
1 − cosh(2ωz h̄t−ωz h̄β)

cosh ωz h̄β

)
⎞
⎠1/2

. (4.52)

and the relation

1√
(1 − x)

=
∞∑

n=0

(−1
2

n

)
(−x)n = 1 +

1

2
x +

3

8
x2 +

5

16
x3 + ... (4.53)

where
(

k
n

)
= k(k−1)···(k−n+1)

n!
. We can write the right-hand side of Eq. (4.52) as

(
mωρ

2πh̄

sinh ωρh̄β

cosh ωρh̄β

)(
mωz

2πh̄

sinh ωzh̄β

cosh ωzh̄β

)1/2

×
(

1 +
∞∑

n=1

(
cosh(2ωρh̄t − ωρh̄β)

cosh ωρh̄β

)n)

×
(

1 +
∞∑

n=1

(−1
2

n

)(
cosh(2ωzh̄t − ωzh̄β)

cosh ωzh̄β

)n)
. (4.54)

Integrating Eq.(4.54), we get

β∫
0

(
mωρ

2πh̄
tanh ωρh̄β

)(
mωz

2πh̄
tanh ωzh̄β

)1/2
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×

⎛
⎜⎜⎝ 1 +

∞∑
n=1

(
cosh(2ωρh̄t−ωρh̄β)

cosh ωρh̄β

)n
+

∞∑
n=1

(− 1
2

n

) (
cosh(2ωz h̄t−ωz h̄β)

cosh ωz h̄β

)n

+
∞∑

n=1

(
cosh(2ωρh̄t−ωρh̄β)

cosh ωρh̄β

)n ∞∑
n=1

(− 1
2

n

) (
cosh(2ωz h̄t−ωz h̄β)

cosh ωz h̄β

)n

⎞
⎟⎟⎠ dt

(4.55)

Considering the summation terms, the results of integration are exponen-

tial functions and constants. We are interested only in the first term because the

result from integration depends on β. Expanding tanh ωρh̄β and tanh ωzh̄β as a

power series, we can rewrite Eq. (4.55) as

β∫
0

(
mωρ

2πh̄
tanh ωρh̄β

)(
mωz

2πh̄
tanh ωzh̄β

)1/2

×

⎛
⎜⎜⎝ 1 +

∞∑
n=1

(
cosh(2ωρh̄t−ωρh̄β)

cosh ωρh̄β

)n
+

∞∑
n=1

(− 1
2

n

) (
cosh(2ωz h̄t−ωz h̄β)

cosh ωz h̄β

)n

+
∞∑

n=1

(
cosh(2ωρh̄t−ωρh̄β)

cosh ωρh̄β

)n ∞∑
n=1

(− 1
2

n

) (
cosh(2ωz h̄t−ωz h̄β)

cosh ωz h̄β

)n

⎞
⎟⎟⎠ dt

=
(

mωρ

2πh̄

)(
mωz

2πh̄

)1/2

β tanh ωρh̄β (tanh ωzh̄β)1/2 + ...

=
(

mωρ

2πh̄

)(
mωz

2πh̄

)1/2

β
(
1 + 2e−2ωρh̄β + e−2ωz h̄β + e−(4ωρ+2ωz)h̄β + ...

)
+ ...

(4.56)

Next, we consider the next integral of the term of the delta function in Eq. (4.51),

β∫
0

(
mωρ sinh ωρh̄β

4πh̄ sinh ωρh̄(β − t) sinh ωρh̄t

)(
mπωz sinh ωzh̄β

4h̄ sin ωzh̄(β − t) sin ωzh̄t

)

×(
mωρ ((xi2 − xj2) sinh ωρh̄t + (xi1 − xj1) sinh ωρh̄ (β − t))2

4h̄ sinh ωρh̄(β − t) sinh ωρh̄t sinh ωρh̄β

+
mωρ ((yi2 − yj2) sinh ωρh̄t + (yi1 − yj1) sinh ωρh̄ (β − t))2

4h̄ sinh ωρh̄(β − t) sinh ωρh̄t sinh ωρh̄β

+
mωz ((zi2 − zj2) sinh ωzh̄t + (zi1 − zj1) sinh ωzh̄ (β − t))2

4h̄ sinh ωzh̄(β − t) sinh ωzh̄t sinh ωzh̄β
)dt (4.57)

To simplify this equation, we use only the leading term of the first factor shown

in Eq. (4.55) because we need to find the lowest power of the exponentials e−ωρh̄β
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and e−ωz h̄β . Thus we may write the term in (4.57) as

(
mωρ

2πh̄

)(
mωz

2πh̄

)1/2

×(

β∫
0

(
mωρ ((xi2 − xj2) sinh ωρh̄t + (xi1 − xj1) sinh ωρh̄ (β − t))2

4h̄ sinh ωρh̄(β − t) sinh ωρh̄t sinh ωρh̄β

)
dt

+

β∫
0

(
mωρ ((yi2 − yj2) sinh ωρh̄t + (yi1 − yj1) sinh ωρh̄ (β − t))2

4h̄ sinh ωρh̄(β − t) sinh ωρh̄t sinh ωρh̄β

)
dt

+

β∫
0

(
mωz ((zi2 − zj2) sinh ωzh̄t + (zi1 − zj1) sinh ωzh̄ (β − t))2

4h̄ sinh ωzh̄(β − t) sinh ωzh̄t sinh ωzh̄β

)
dt).

(4.58)

Consider the first term of (4.58)

β∫
0

(
mωρ ((xi2 − xj2) sinh ωρh̄t + (xi1 − xj1) sinh ωρh̄ (β − t))2

4h̄ sinh ωρh̄(β − t) sinh ωρh̄t sinh ωρh̄β

)
dt

=

β∫
0

mωρ [(xi2 − xj2) sinh ωρh̄t + (xi1 − xj1) sinh ωρh̄ (β − t)]2

2h̄ sinh ωρh̄β (cosh ωρh̄β − cosh(2ωρh̄t − ωρh̄β))

=

β∫
0

mωρ

2h̄ sinh ωρh̄β cosh ωρh̄β

((xi2 − xj2) sinh ωρh̄t + (xi1 − xj1) sinh ωρh̄ (β − t))2(
1 − cosh(2ωρh̄t−ωρh̄β)

cosh ωρh̄β

)
β∫

0

mωρ

2h̄ sinh ωρh̄β cosh ωρh̄β
((xi2 − xj2) sinh ωρh̄t + (xi1 − xj1) sinh ωρh̄ (β − t))2

×
(

1 +
∞∑

n=1

(
cosh(2ωρh̄t − ωρh̄β)

cosh ωρh̄β

)n)
dt

=
m

4h̄2 (x2
i1

+ x2
j1

+ x2
i2

+ x2
j2

) − m

2h̄2 (xi1 − xj1)(xi2 − xj2)e
−ωρh̄β + ... (4.59)

Substituting (4.59) into (4.57), we obtain

β∫
0

〈δ(ri − rj)〉 dt =
(

mωρ

2πh̄

)(
mωz

2πh̄

)1/2

β
(
1 + 2e−ωρh̄β + e−ωz h̄β + ...

)

+
(

mωρ

2πh̄

)(
mωz

2πh̄

)1/2 ( m

4h̄2 (x2
i1

+ x2
j1

+ x2
i2

+ x2
j2

)
)
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+
(

mωρ

2πh̄

)(
mωz

2πh̄

)1/2 ( m

4h̄2 (y2
i1

+ y2
j1

+ y2
i2

+ y2
j2

)
)

+
(

mωρ

2πh̄

)(
mωz

2πh̄

)1/2 ( m

4h̄2 (z2
i1

+ z2
j1

+ z2
i2

+ z2
j2

)
)

+... (4.60)

Having evaluated all terms in the exponent of Eq. (4.17), we now find

the density matrix of a harmonic oscillator ρ0 of N particles. First, consider

the kernel of a one dimensional harmonic oscillator that has been worked out in

Chapter 2, that is

K(x2, T ;x1, 0) =

(
mωρ

2πih̄ sin ωρT

)1/2

exp

(
imωρ

2h̄ sin ωρT

) [(
x2

1 + x2
2

)
cos ωρT − 2x1x2

]
. (4.61)

If the time of the kernel is replaced by −iβh̄ so that sin (−iωρβh̄) = −i sinh ωρβh̄

and cos (−iωρβh̄) = cosh ωρβh̄, then we obtain the expression for the density

matrix,

ρ(x2, β;x1, 0) =

(
mωρ

2πh̄ sinh ωρβh̄

)1/2

exp

(
− mωρ

2h̄ sinh ωρβh̄

) [(
x2

1 + x2
2

)
cosh ωρβh̄ − 2x1x2

]
.

(4.62)

Using the relations

sinh ωρβh̄ =
1

2eωρβh̄ (1 − e−2ωρβh̄)

cosh ωρβh̄ =
1

2eωρβh̄ (1 + e−2ωρβh̄)
(4.63)

We can write ρ(x2, β;x1, 0) as

(
mωρ

πh̄

)1/2

e−ωρβh̄/2
(
1 − e−2ωρβh̄

)−1/2
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× exp

⎧⎨
⎩
(
−Nmωρ

2h̄

)⎡
⎣(x2

1 + x2
2

) (
1 + e−2ωρβh̄

)
(1 − e−2ωρβh̄)

−
(

4x1x2e
−ωρβh̄

(1 − e−2ωρβh̄)

)⎤⎦
⎫⎬
⎭ .

(4.64)

Expanding the right-hand side of Eq. (4.62), we obtain the density matrix of a

one-dimensional harmonic oscillator in a series form,

(
mωρ

πh̄

)1/2

e−
mωρ
2h̄ (x2

1+x2
2)e−ωρβh̄/2

(
1 +

1

2
e−2ωρβh̄ + ...

)

×
[
1 +

2mωρ

h̄
x1x2e

−ωρβh̄ − mωρ

h̄

(
x2

1 + x2
2

)
e−2ωρβh̄ + ...

]
(4.65)

The above result can be generalized to a three-dimensional case as

ρ(r2, β; r1, 0) =
(

mωρ

πh̄

)(
mωz

πh̄

)1/2

e−
mωρ
2h̄ (x2

1+x2
2+y2

1+y2
2)e−

mωz
2h̄ (z2

1+z2
2)e−(ωρβh̄+ωzβh̄/2)

[
1 +

2mωρ

h̄
x1x2e

−ωρβh̄ − mωρ

h̄

(
x2

1 + x2
2

)
e−2ωρβh̄ + ...

]
[
1 +

2mωρ

h̄
y1y2e

−ωρβh̄ − mωρ

h̄

(
y2

1 + y2
2

)
e−2ωρβh̄ + ...

]
[
1 +

2mωz

h̄
z1z2e

−ωzβh̄ − mωz

h̄

(
z2
1 + z2

2

)
e−2ωzβh̄ + ...

]
+ ...

(4.66)

For a system of N three-dimensional harmonic oscillators, the density

matrix is just the product of N one-particle density matrices of the form (4.67).

In the case of Bose-Einstein condensation in which all particles are con-

fined in a small region, we may make the assumption that all particles are ap-

proximately at the same point in space. We therefore set xi1 = x1, xi2 = x2

for all i = 1, ..., N and the same for y and z coordinates. Using Eq. (4.31) Eq.

(4.40) Eq. (4.56) Eq. (4.60) and Eq. (4.66) together with this assumption in Eq.

(4.17), we obtain our approximated result for the density matrix of the system of
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N particles undergoing Bose-Einstein condensation in the Ioffe-Pritchard trap,

ρ =
(

mωρ

πh̄

)N (
mωz

πh̄

)N/2

exp

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Nmωρ

4h̄
(x2

1 + x2
2 + y2

1 + y2
2)

−Nmωz

4h̄
(z2

1 + z2
2) − Nγ

2ωz h̄
(z2

1 + z2
2)

− Nα2mωz

2h̄ωρ(γh̄+2mωzθ)
(x2

1 + x2
2 + y2

1 + y2
2)

−N(N−1)
2

πa
(

mωρ

2πh̄

) (
mωz

2πh̄

)1/2
(

x2
1 + x2

2 + y2
1 + y2

2

+z2
1 + z2

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

× exp

⎡
⎣−N

⎛
⎝ 1

2
ωρh̄ + 1

4
h̄ωz + h̄

2mωz
γ + α2ωz h̄

ωρ(γh̄+2mωzθ)

+ah̄ (N − 1)
√

m
2πh̄

ωρ
√

ωz

⎞
⎠ β

⎤
⎦

×
[
1 +

2Nmωρ

h̄
x1x2e

−ωρβh̄ − Nmωρ

h̄

(
x2

1 + x2
2

)
e−2ωρβh̄ + ...

]

×
[
1 +

2Nmωρ

h̄
y1y2e

−ωρβh̄ − Nmωρ

h̄

(
y2

1 + y2
2

)
e−2ωρβh̄ + ...

]

×
[
1 +

2Nmωz

h̄
z1z2e

−ωzβh̄ − Nmωz

h̄

(
z2
1 + z2

2

)
e−2ωzβh̄ + ...

]

×[1 − Nmωρ

2h̄
x1x2e

−ωρh̄β +
Nmωρ

2h̄
(x1 + x2)

2e−2ωρh̄β

−Nmωρ

2h̄
y1y2e

−ωρh̄β +
Nmωρ

2h̄
(y1 + y2)

2e−2ωρh̄β − Nmωz

2h̄
z1z2e

−ωz h̄β

+
Nγz1z2

ωzh̄
e−ωz h̄β − Nγ(z1 + z2)

2

ωzh̄
e−2ωz h̄β +

Nα2mωzx1x2

(γh̄ + 2mωzθ)
e−ωρh̄β

+
Nα2mωzy1y2

(γh̄ + 2mωzθ)
e−ωρh̄β +

Nα2γh̄mω2
z(z

2
1 + z2

2)

ωρωz (γh̄ + 2mωzθ)
2 − 2Nα2γh̄mω2

zz1z2

ωρ (γh̄ + 2mωzθ)
2 e−ωz h̄β]

+... (4.67)

From this result, we can pick out the coefficient of the lowest order term

e−E0βφ0(x2)φ
∗
0(x1)

=
(

mωρ

πh̄

)N (
mωz

πh̄

)N/2

exp

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Nmωρ

4h̄
(x2

1 + x2
2 + y2

1 + y2
2)

−Nmωz

4h̄
(z2

1 + z2
2) − Nγ

2ωz h̄
(z2

1 + z2
2)

− Nα2mωz

2h̄ωρ(γh̄+2mωzθ)
(x2

1 + x2
2 + y2

1 + y2
2)

−N(N−1)
2

πa
(

mωρ

2πh̄

) (
mωz

2πh̄

)1/2
(

x2
1 + x2

2 + y2
1 + y2

2

+z2
1 + z2

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

× exp

⎡
⎣−N

⎛
⎝ 1

2
ωρh̄ + 1

4
h̄ωz + h̄

2mωz
γ + α2ωz h̄

ωρ(γh̄+2mωzθ)

+ah̄ (N − 1)
√

m
2πh̄

ωρ
√

ωz

⎞
⎠ β

⎤
⎦

(4.68)
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which means that the ground state energy of the entire system is approximatly

E0 = N

(
1

2
ωρh̄ +

1

4
ωzh̄ +

h̄γ

2ωzm
+

α2h̄ωz

ωρ(h̄γ + 2mωzθ)
+ a (N − 1) h̄

√
m

2πh̄
ωρ

√
ωz

)

(4.69)

and the ground state wave function is roughly of the form

φ0(r) =
(

mωρ

πh̄

)N/2 (mωz

πh̄

)N/4

exp

[
−mN

2h̄
(

(
ωρ

2
+

α2ωz

ωρ (γh̄ + 2mωzθ)
+

(N − 1)

2
a

√
m

2πh̄
ωρ

√
ωz

)(
x2 + y2

)]

exp

[
−mN

2h̄

(
ωz

2
+

γ

mωz

+
(N − 1)

2
a

√
m

2πh̄
ωρ

√
ωz

)
z2)

]
(4.70)

where all particles are assumed to be located at the same point (x, y, z) in space.

And noting that it is still unnormalized, we now normalize it by requiring that

the wave function satisfies

∞∫
−∞

φ0(r)
∗φ0(r)d

3r = N. (4.71)

The result is

φ0(r) =
√

N

(
Nm

πh̄

(
ωρ

2
+

α2ωz

ωρ (γh̄ + 2mωzθ)
+

(N − 1)

2
a

√
m

2πh̄
ωρ

√
ωz

))N/2

×
(

Nm

πh̄

(
ωz

2
+

γ

mωz

+
(N − 1)

2
a

√
m

2πh̄
ωρ

√
ωz

))N/4

× exp

[
−Nm

2h̄

(
ωρ

2
+

α2ωz

ωρ (γh̄ + 2mωzθ)
+

(N − 1)

2
a

√
m

2πh̄
ωρ

√
ωz

)
ρ2

]

× exp

[
−Nm

2h̄

(
ωz

2
+

γ

mωz

+
(N − 1)

2
a

√
m

2πh̄
ωρ

√
ωz

)
z2

]
. (4.72)

This is just a harmonic oscillator wave function with(
ωρ

2
+

α2ωz

ωρ (γh̄ + 2mωzθ)
+

(N − 1)

2
a

√
m

2πh̄
ωρ

√
ωz

)

being a frequency in ρ direction and(
ωz

2
+

γ

mωz

+
(N − 1)

2
a

√
m

2πh̄
ωρ

√
ωz

)
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being a frequency in z direction of the entire system. We thus approximate the

ground state energy and the wave function by Feynman’s path integral theory.

In the next chapter, we will analyse the physical meaning of these results and

study the properties of Bose-Einstein condensation of atomic hydrogen.



Chapter 5

Numerical Analysis
of the Results

In Chapter 4 we have calculated the ground state energy and the wave

function of atomic hydrogen in an Ioffe-Pritchard trap. In this chapter we in-

terpret the physical meaning of the results from Chapter 4 and compare these

results to experiments. We address two topics. First, we calculate the ground

state energy by a numerical method. The second topic is related to the ground

state wave function, which tells us the size of the condensate cloud in the trap,

the peak condensate density and other properties.

5.1 Minimization of Ground State Energy

In this section we minimize the approximated ground state energy function.

E(ωρ, ωz) = N

⎛
⎝ 1

2
ωρh̄ + 1

4
ωzh̄ + h̄γ

2ωzm
+ α2h̄ωz

ωρ(h̄γ+2mωzθ)

+a (N − 1)
√

m
2πh̄

ωρ
√

ωzh̄

⎞
⎠ (5.1)

obtain in the previous chapter with respect to the effective frequencies, ωρ and

ωz, treated as variational parameters. The parameters α, γ and θ for the trap

shape A are γ = 25× k (J/cm2), θ = 35× k (J) and α = 15.9× 103 × k (J/cm).

Condensates containing 1.2 × 109 atoms are observed in this trap. For hydrogen

in ground state, a = 0.648 × 10−10 (m) which is repulsive for s-wave scattering

length and mass of hydrogen is 1. 674 6 × 10−27 kg.
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Figure 5.13: A plot showing energy vs ωρ.

We minimize the ground state energy by solving the partial derivative of

E(ωρ, ωz) with respect to ωρ,

∂

∂ωρ

E(ωρ, ωz) = 0. (5.2)

and obtain

ωρ = ± α
√

2ωzπ
1/4√(

a
√

2ωzm
h̄

N +
√

π
)

(γh̄ + 2ωzmθ)
. (5.3)

If we fix the value of ωz and vary ωρ, then we find two curves that have

maximum and minimum points; in the case of ωρ being negative (positive) the

curve has maximum (minimum) point (see Fig.(5.1)). And we fix the value of ωρ

and vary ωz, then we find one curves that have minimum point (see Fig.(5.1)).

Physically, the frequency can not be negative, thus we are interested only

in the case of positive ωρ. Substituting +ωρ from Eq. (5.3) into Eq. (5.1), the
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Figure 5.14: A plot showing energy vs ωz.

ground state energy can be rewritten as

E(ωz) = Nh̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
√

2ωzπ1/4

2

√(
a
√

2ωzm
h̄

N+
√

π

)
(γh̄+2ωzmθ)

+ 1
4
ωz + γ

2ωzm

+
α

√
2ωz

(
a
√

2
√

(ωzmh̄)N+
√

πh̄

)
(h̄γ+2mωzθ)h̄

2 4√πh̄(h̄γ+2mωzθ)

+
√

ma(N−1)αωz

4√π

√(
a
√

2
√

(ωzmh̄)N+
√

πh̄

)
(h̄γ+2mωzθ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.4)

The energy function is now a function of one variable (ωz). This function is very

complicated and cannot be minimized by an analytical method. Therefore, we

solve the problem numerically. In this thesis I use the Mathematica program

to minimize the energy function, as also shown in Appendix A. We obtain the

values; ωρ = 3787.54 Hz, ωz = 0.02686 Hz and the ground state energy equal to

2.46751× 10−20J. We can also calculate the size of the condensate in an IP trap.

Since the ground state wave function of BEC obtained in the previous chapter

approximately has a form of the wave function of a harmonic oscillator. Thus we
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Figure 5.15: Ground state wave function plotted in 3 dimensions.

assume the ground state wave function as [23]

φ(r) = N 1/2
(

mωρ

πh̄

)1/2 (mωz

πh̄

)1/4

exp
[
−
(

mωρ

2h̄
ρ2 +

mωz

2h̄
z2
)]

(5.5)

with ωρ and ωz having the values that minimize the energy function and treated

as the effective frequencies of the entire system.

We plot φ(r) as a function ρ and z in 3 dimensions as shown in Fig.

5.2. This wave function is very thin in ρ direction and relatively very wide in z

direction, so we can calculate the size of the condensate cloud in the trap from a

Gaussian curve in Fig. 5.3.

The lengths of the condensate in respectively ρ and z direction are(
2h̄

mωρ

)1/2

= 5.8251 × 10−6 m,
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Figure 5.16: The form of the gaussian function G(y) = e−y2/2b2 , which describes
the size of wave function b [4].

(
2h̄

mωz

)1/2

= 2.1872 × 10−3 m. (5.6)

The length of the condensate in z direction is very small compared with the length

in ρ direction. The huge ratio, ∼ 375 that makes the condensate like a thread

shape. We also calculate the peak condensate density, the maximum density at

the center of the trap (ρ = 0, z = 0). the result is

|φ(r)|2 = N
(

mωρ

πh̄

)(
mωz

πh̄

)1/2

= 8.2130 × 1015 cm−3. (5.7)

We can reanalyse the same situation using the Thomus-Fermi approxi-

matiom.

In Chapter 3 we have calculated the ground state energy by using the

measured the chemical potential through the peak density at the center of the

condensate. In the Thomas-Fermi approximation, we obtain

Eo =
5

7
Nµ(N)

= 2.2490 × 10−20J. (5.8)
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According to the Thomas-Fermi approximation, the density to vanishes

at the edge of the condensate.

ncondU0 = µ − VIP (ρ, z) = 0 (5.9)

Hence, we can calculate the size of the condensate cloud and obtain

ρmax =
1

α

√
µ2 + 2µθ = 7.3 µm,

zmax =

√
µ

β
= 2.8 mm. (5.10)

We find that the ground state energy is in good agreement with the exper-

imental results.We can continue the calculation of energy in other trap shapes by

the path integral theory and compare to those obtained from the Thomas-Fermi

approximation. The results are sumarized in table(5.1).

5.2 The Wave Functions

We have calculated the ground wave function in Chapter 4. In this section, we

study properties its physical implication. Recall that the ground wave function

for one particle is

φ0(r) =

(
m

πh̄

(
ωρ

2
+

α2ωz

ωρ (γh̄ + 2mωzθ)
+

(N − 1)

2
a

√
m

2πh̄
ωρ

√
ωz

))1/2

×
(

m

πh̄

(
ωz

2
+

γ

mωz

+
(N − 1)

2
a

√
m

2πh̄
ωρ

√
ωz

))1/4

× exp

⎡
⎣−m

2h̄

⎛
⎝

(
ωρ

2
+ α2ωz

ωρ(γh̄+2mωzθ)
+ (N−1)

2
a
√

m
2πh̄

ωρ
√

ωz

)
ρ2

+
(

ωz

2
+ γ

mωz
+ (N−1)

2
a
√

m
2πh̄

ωρ
√

ωz

)
z2

⎞
⎠
⎤
⎦
(5.11)
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Parameter trap A trap B

α/kB(µK/cm) 15.9 9.5

γ/kB(µK/cm2
) 25 25

θ/kB(µK) 35±2 34±2

χc=χm χc=χm/2 χc=χm χc=χm/2

µ/kB(µK) 1.9 3.8 1.3 2.6

Nc(×109
) 1.2±0.2 6.6±1.3 1.2±0.1 6.7±0.5

Minimized parameter ωρ(×103
Hz) 3.79 1.94 2.08 1.01

Minimized parameter ωz(×10−2
Hz) 2.69 1.35 4.00 2.00

np(×10
15

cm
−3

) (Experiment) 4.8±0.4±1 9.7±0.7±2 3.3±0.1±0.7 6.5±0.2±1.3

np(×10
15

cm
−3

) (Theory) 8.2 16 5.5 11

Length 2ρmax(µm) (Experiment) 15 21 20 28

Length 2ρmax(µm) (Theory) 12 16 16 22

Length 2zmax(mm) (Experiment) 5.5 7.8 4.5 6.4

Length 2zmax(mm) (Theory) 4. 4 6.2 3.6 5.1

Total energy (J) (Experiment) 2.25×10
−20

2.47×10
−19

1.54×10
−20

1.67×10
−19

Total energy (J) (Theory) 2.47×10
−20

2.66×10
−19

1.65×10
−20

1.82×10
−19

Table 5.3: Summary of parameter describing the two trap shapes used for achiev-
ing BEC and comparing the result from the experiments to theory.

This ground state wave function solved by the path integral theory is of the same

form as the wave function in Eq. (5.5) has different values ωρ and ω. Let

ψ0(r) =
φ0(r)⎡

⎢⎢⎣
(

mωρ

2πh̄

(
1 + 2α2ωz

ω2
ρ(γh̄+2mbθ)

+ (N − 1)a
√

m
2πh̄

√
ωz

))1/2

×
(

mωz

πh̄

(
1 + 2γ

mω2
z

+ (N − 1)a
√

m
2πh̄

ωρ√
ωz

))1/4

⎤
⎥⎥⎦

(5.12)

and

P 2 =
mωρ

4h̄
ρ2

Z2 =
mωρ

4h̄
z2, (5.13)

Then

ψ0(r) = exp−
⎛
⎜⎝

(
1 + 2α2ωz

ω2
ρ(γh̄+2mbθ)

+ (N − 1)a
√

m
2πh̄

√
ωz

)
P 2

+
(
1 + 2γ

mω2
z

+ (N − 1)a
√

m
2πh̄

ωρ√
ωz

)
Z2

⎞
⎟⎠ . (5.14)
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Figure 5.17: The behavior of wave function plotted against P . The solid line
represent the ψ0(P ) wave function. The dashed line is the non-interaction wave
function and the light solid line is harmonic oscillator wave function.

Consider the P part of ψ0(r), call it ψ0(P ),

ψ0(P ) = exp

[
−
(

1 +
2α2ωz

ω2
ρ (γh̄ + 2mbθ)

+ (N − 1)a

√
m

2πh̄

√
ωz

)
P 2

]
(5.15)

We now study behavior of ψ0(P ) as a function P . The graphs from Figure 5.5 is a

composite of the data from the trap shape A. The solid line is the function ψ0(P ),

which is of Gaussian shape. The dashed line represents the non-interaction wave

function with the mean field interaction energy, (N − 1)a
√

m
2πh̄

√
ωz excluded and

the light solid line is ψ0(P ) = e−P 2
. We find that the harmonic oscillator wave

function is very broad and ψ0(P ) is shrunk vertically by the magnetic trap and

the mean field interaction energy. Next, consider the Z part of ψ0(r), denoted by

ψ0(Z),

ψ0(Z) = exp

[
−
(

1 +
2γ

mω2
z

+ (N − 1)a

√
m

2πh̄

ωρ√
ωz

)
Z2

]
.

The result for this case is similar to that of ψ0(P ). In Fig. 5.5, the plot of the
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Figure 5.18: The behavior of wave function plotted against Z. The solid line is
the ψ0(Z) wave function. The dashed line is non-interaction wave function and
the light solid line is the harmonic oscillator wave function.

harmonic oscillator particle wave function in Z direction is very wide (as seen

almost a straight line on the top) and ψ0(Z) has a narrow peak.

These behaviors of the ground state wave function can be interpreted

physically. The very wide wave function of a harmonics oscillator implies that

the probability of finding a particle is widely spread. When hydrogen atoms are

confined by magnetic trap, the hydrogen atoms are confined in a very small area

(about 5 mm×10µ m) and the probability of finding a particle becomes localized

and has its maximum at the center of the trap.



Chapter 6

Conclusion

In this thesis, we have calculated the ground state energy and the wave

function of Bose-Einstein condensation of atomic hydrogen by many-body Feyn-

man path integral theory. We predicted and studied the behavior and the prop-

erties of hydrogen condensate such as the size of the condensate cloud, peak

condensate density and the value of the ground state energy.

When Bose-Einstein condensation occurs, the macroscopic fraction of the

hydrogen atoms occupy the lowest energy of about 10−20 J and have the same wave

function. This wave function gives information about the size of the condensate

and the density distribution. We found that many atoms occupy in a very small

volume under the influence of a magnetic trap and interactions among the atoms,

the diameter is ∼ 12 µm and the length is ∼ 5 mm. The peak density is ∼
8 × 1015 cm−3, which is maximum at the center of the trap. However, hydrogen

condensates are huge when compared with others alkali metal atoms. We also

studied the influence of the interaction of the hydrogen condensate, It was found

that the interaction energy of hydrogen atoms is very small and that it makes

the hydrogens atom behave like an ideal Bose gas. Also the results from path

integral theory are in good agreement with the Thomas-Fermi approximation.

The Calculation in Feynman path integral theory however is very com-

plicated and very much differs from the simple Thomas-Fermi approximation.

Nevertheless, Feynman path integral has advantages over the Thomas-Fermi ap-

proximation in that it is more realistic since we do not neglect the kinetic energy
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term, although it is very small. The results are therefore more reliable. It is

interesting to see if this method can be applied to the study of the properties of

the excited states and other states of atomic hydrogen; it is our hope that this

will be accomplished in the future
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Minimization of
the ground state energy

In Chapter 5, we minimize the ground state energy by a Mathematica

program as shown below.

n = 1.2× 109; h̄ = 1. 054 6× 10−34; k = 1.381× 10−29; α = 15.9× 105 × k;

m = 1.6746 × 10−27; a = 0.648 × 10−10; γ = 25 × 104 × k; θ = 35 × k;

H = 1
2
ωρ + 1

4
ωz + γ

2ωzm
+ α2ωz

ωρ(h̄γ+2mωzθ)
+ aN

√
m

2πh̄
ωρ

√
ωz;

ωρ = ωρ/.NSolve[∂ωρH == 0, ωρ][[2]];

FindMinimum[H, {ωz, 10−4}]
%h̄n (The result from minimization)

5
7
1.9nk (This is the calculation of energy from the experiment.)

Out[7]= {194987.,{0.0265919}}
Out[8]= {2.4671×10−20, {1.26547 × 10−25(ωz → 0.0265919)}}
Out[9]= 2.24906×10−20

In the 4th line, we solve partial derivatives with respect to ωρ and select

the second solution of which ωρ is positive. In the 5th line, we find the minimum

point by supposing the initial value of ωz = 10−4 and multiply the result in the

5th line by h̄n as shown in the 6th line. We find that the ground state energy by

the path integral theory is 2.4671×10−20 J and is 2.24906×10−20 for calculation

from the experiment data.
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