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CHAPTER 1

INTRODUCTION

There are various remarkable phenomena in condensed matter systems
such as superconductivity that can be explained theoretically by the so-called
phenomenological approach in which the relevant free energy is expanded as a
series of the appropriate order parameter. The phenomenological approach is
therefore a way to understand the system from the macroscopic point of view.
The other phenomenon is the quantum Hall effect (QHE) which was discovered
by Von Klitzing et al. [1] in 1980. They performed their experiment using a two-
dimensional system in a high magnetic field (~ 1-10 Tesla). What they found
their experiment is that the Hall resistance varies stepwise with changes in the
magnetic field (Fig 3.6), this is not an expected result from the classical Hall
effect (fig 3.2). Each step is called a plateau. Von Klitzing and his colleagues
concluded that at each plateau the Hall conductance equals an integral value
multiplied by the electric charge and Planck’s constant. This integer is called
the filling factor, v, which can be defined as the number of electrons in a sample
divided by the number of magnetic flux quanta penetrating it. This phenomenon,
however, can be described by solving a one-particle Schrodinger equation in an
external magnetic field which has discrete energy eigenvalues called the Landau
levels. Two years later, Tsui et al.  [2] discovered that filling factors can also
be fractional numbers. These phenomena with the fractional and integral filling
factors, therefore, are respectively called the Fractional Quantum Hall Effect
(FQHE) and the Integer Quantum Hall Effect (IQHE). Their experiment was
performed using the cleaner sample, in a higher magnetic field (~ 30 Tesla) and

at lower temperature (&~ 150 mK) than what Von Klitzing and his colleagues have



done. The clean system implies that electrons can move through the sample more
freely than those in the dirty system before they are scattered by impurities in
the sample. To explain this result one should consider the interactions between
electrons. The Hamiltonian of the FQH system can be written as

H= Z

() A 2
u Z V(zi — x;). (1.1)

=~ 1 =il
If we neglect the second term on the right hand side of Eq. (1.1), the Hamiltonian

will describe the system of the IQHE. In 1983, Laughlin [7] proposed the wave
function for explaining the ground state of the FQHE as

UGl 2 (s o) 2o (12)

i#]

where z; is the complex coordinate for the i*! electron, m is an odd number
(3,5, 7,...) and [?, the magnetic length, equals 1/eB with B being the magnetic
field. This wave function describes a uniform distribution of (fluid-like) electrons
and describes only at v equal to 1/m. The meaning of the filling factor according
to Laughlin is that if 7 equal to one, there is one flux quanta per electron while if
v is equal to 1/3, there are three flux quanta per electron. Later on in 1989, Jain
[8] proposed another picture for the explanation of FQH system. In his picture,
the FQHE is just the IQHE of composite fermions; each composite fermion being
formed by attaching an even number of flux quanta to an electron. Thus the case
v = 1/3 corresponds to the situation that one flux is attached to a composite
fermion. This approach, however, does not give the explanation for all the filling
factors. The common thing of the two approaches above is that they try to find
the wave function. Presently, there are many works in the field of theoretical
explanation of the FQH system. Among these is the Ginzburg-Landau-Chern-
Simons approach (GLCS) [13, 14] which successfully interprets a variety of the

properties of the FQH system from a phenomenological point of view.



The organization of this thesis is as follows. In Chapter 2, we give a short
review of coherent states. The detailed discussion of the Quantum Hall effect is
then given in Chapter 3. In Chapter 4, the coherent state representation is applied
to the fractional quantum Hall effect. Finally, the conclusion and discussion is

made in Chapter 5.



CHAPTER 11

COHERENT STATES

In 1926, Schrédinger proposed the concept of what is now called the co-
herent states [12] in connection with the classical states of the quantum harmonic
oscillator. Thus the coherent states were invented immediately after the birth of
quantum mechanics. However, between 1926 and 1963, activities of this field re-
mained dormant. But thirty-five years after Schrodinger’s pioneering paper, the
first modern and specific application was made by Glauber and Sudarshan [9, 12]
and launched this fruitful and important field of study. Glauber constructed
the eigenstates of the annihilation operator of the harmonic oscillator in order
to study the electromagnatic correlation functions. At the same time roughly
as Glauber and Sudarshan, Klauder [10} developed a set of continuous states in
which the basic ideas of coherent states for arbitrary Lie groups were contained.
This chapter will follow the Glauber’s definitions of coherent states in the study
of the single particle state. The many-particle states will be constructed in the
same way but will be more carefully considered in case of the indistinguishable
many particles whose treatment depends on whether the partcles are bosons or

fermions.

2.1  The Glauber’s Definitions of Coherent States

The single-mode coherent states can be constructed starting from any one of three
mathematical definitions.

Definition 1 The coherent states | a > are eigenvalues of the harmonic oscillator
annihilation operator a

ala>=ala> (2.1)



where « is a complex number.
Definition 2 The coherent states | & > can be obtained by applying a displace-

ment operator 5(04) on the vacuum state of the harmonic oscillator,
| >=D(a) | 0> (2.2)

where | 0 > is the vacuum state of the oscillator. The displacement operator
D(«) is defined as

4

D(a) = ERENDS (2.3)

Definition 3 The coherent state | & > is the quantum state with a minimum

uncertainty relation,

1 2
(Ap)*(Aq)* = (5) (2.4)
where the coordinate and momentum operators (g, p) are defined as
PSS By 2]
q:—2(a+a) (2.5)
. 1
p=—>(a—=1a') (2.6)
12
and
Af)yP=<al(f-<f>)]|a> (2.7)

with < f >=< a | f | @ >. @ and a' satisfy the commutation relation (see
Appendix A)
[@;at] =1, (2.8)

Consider the coherent states in the Hilbert space

la> = D(a)]0>

= s



By using the Baker-Campbell-Hausdorff formula (proved in Appendix A), it can

be expressed as

a> = eaiﬂe—a*&e—[a&ﬂ—a*d}/? | 0>

*
—aa

= ¢ 7 e 0> (2.9)

where we have used

* S\

ea*@|0> - Z%|O>
n=0 }
| 0

> (because a |0 >=0).
The coherent state has the following properties (see Appendix A for proofs):

1
f I F /d2a la><a|=1; (2.10)
m

—1812 —lo|?

2. <Bla>=e e . (2.11)

All of the above is based on the single-particle state. We next consider
the many-particle case following [11]. It is, however, not different from the single-
particle case much. We first introduce the creation and annihilation operators

for the many-particle case.

Boson
&Li|na1,...,nai,...> = \fNay +1| Moy o ynap+1,.00) (2.12)
VA0 - el /1Q Dieve d'a O Il 2 (2.13)
Fermion
. )0 it ng =1
aai|na17"'anai7"‘>_{ |na17 , Mg _|_1,> lf naizo (214)
and
. NayyerrsNa, — 1,y if ng, =1
aai|na1,...,nai,...>:{l) 1 : - e (2.15)



The boson operators satisfy the commutation relation, whereas the fermion op-

erators satisfy an anti-commutation relation namely,
[(Al/\, d;ry]f’y - (5)\77 (216)

where v = +1 and —1 for the bosonic and fermionic case respectively. Let ¢
denote the collection of numbers (¢a,, @ay,--.). We define the many-particle
@) = P

and fermion coherent states separately.

coherent state | @) by Ga; a). We now consider the cases of boson

2.1.1 Boson Coherent States

It is convenient to expand a boson coherent state in an occupation number rep-

resentation,
| ¢ >: Z ¢na1na2...nap... na17 na27 s 7nap7 L > (217)
Tay Mg - Nap s
where
At Yoy (5T \Ra At o
a 1 {a 2 a P
|na1,na2,---,nap >: ( a1) ( az) ( Oép) |0> (2]_8)
Ny ! T P
and G, ng, ... = (Nay--- | ¢). From aq | a >= ¢, | a >,
o, | 0> = > | Ty Ny e =Ty = oo > < Ny Ny - Ny -+ - | Gy | P>
Nag Nay ---Nap -
= Z ¢a¢nalna2... nalnaQ .- >
Moy Nay ---Nayp ---
so that
Da; Pria noyoooys. = < NayTay - Ny -+ | Gy | >

Using (Mo, Nay -+ - Nay -+ | Gay = Moy Ny -+ - Ny + 1o | /Mg, + 1, we get

¢ai¢nalna2...nai... = /Ny + 1<na1na2 s Ny +1... | (]5>
= \/ nai + 1¢na1na2...nai+1...- (2.19)



which implies,

nal na2

Nayp

¢ _ al Q2 ap
Nag Nag-NayNap- | | cee ' Ca
UZTRRYALZY nap.

6> = 3 Gt (Ga)

(¢p&];p )"er

| !
g1 Mo Ty, o nal' naz'

= X, fuik |0 >

and consequently

< ¢|=<0]eXa? e,

Ne,!

P

0>

(2.20)

(2.21)

(2.22)

Note that this result agrees with Eq. (2.10) up to a multiplicative constant.

With this compact form of | ¢ >, the creation operator a! can be represented by

a differential operator 9/0¢, when acting on | a >, that is,

il | 6> = aleXaeil (>
a E ¢AT
= o Pola 0>
B
)
= >
e | ¢

Consider the overlap of two coherent states,

<p|g >=

WA ot
Ny Nay Moy T 1T 1 Tl 7 nal! nap. na’l-

1 %

Since < g, ... Nq, | Ny

<¢l¢ > =

LTy > 5na1na' .. -5napnaf , then
1

Ny Nag ---Nap

S ST

(2.23)

(2.24)

mn
1



The closure relation can be written similarly to that of the single-particle case,

1 20 o L Pita _
W /I;Id Pa € | o >< ¢ |= 1. (2.25)

The derivation of this result is similar to the one given in Appendix A for the

single-particle coherent states.

2.1.2 Fermion Coherent States

In the case of many-fermion system, we need to take into account the Pauli’s ex-
clusion principle, that is, no two fermions can be in the same state. An important
consequence of this is that the parameters used to parameterize the fermion coher-
ent state have to be anticommuting numbers known as the Grassmann numbers.

Let &, and £ be Grassmann numbers, then

{a: 88} =0 (2.26)
and consequently
(A=) (2.27)

Due to the nilpotency of the Grassmann number &, any function of £ can be

expressed as
F&) = fo+ f1& (2.28)

where f, and f; are independent of . Similarly
A(E,€") = ap +'a:1 "+ a8 + ang¢. (2.29)

The differentiation and integration involving Grassmann numbers are defined as
follows:

Differentiation

oce o

= ¢ (2.30)
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Integration

[as = jag= o

[ag = Jage =1
We are now ready to define the fermion coherent state. Let £ denote a
collection of Grassmann numbers &, (o« =1,2,3,...). The fermion coherent state

| €) parametrized by £ is defined by a, | £) = &, | £) where a, and af satisfy

the algebra
{&avdﬂ} - {dlwdg} =0
{a’:rw dﬁ} = lap

and anti-commute with any Grassmann number, that is, {a,,£} = {al, £} =0
but commute with commuting numbers.

Similar to the bosonic case, the explicit form of | £) is found to be
| E>=c Zafedh 0> (2.31)

and consequently,

< El=< 0| eXatala, (2.32)

Also, the creation operator al, when acting on | &) can be represented by a

0
differential operator, a} =—— . 'The closure relation takes the form
« aé'

/Hd%ae*EO@% <€ |=1. (2.33)

The expansion of the states and operators in terms of coherent states will be

considered in the next two sections.
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2.2 Expansion of Arbitrary States in Terms of
Coherent States

We now derive the expansion of an arbitrary state in terms of coherent states.
We begin by recalling that, since the set of one-dimensional harmonic oscillator
eigenstates | n) forms a complete set in Hilbert space, we can expand an arbitrary

state | f) in terms of them, namely,

S = | b NN

2 RS |f>(&T)n|0> (2.34)
— /18 . .
" Vn!
Imposing the normalization condition,
P — (2.35)
we find
1 =% |95
= > < f|n>cplSE
= Y |<nEEE (2.36)

n

An arbitrary state | f), therefore, can be expressed in the form

| f>=f(@') | 0> (2.37)

where f(al) =3,{n | f) (%. To express | f) in terms of coherent states, we use

the completeness relation (2.10),

1
| f> = ;/d2a|a><a|f>
1
- ;/d2a|a><a|f(€ﬁ)|0>
1
= ;/d2a|a><a|0>f(a*)

_ %/Cﬁa la> e % fan) (2.38)
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where we have used (« | f(a') = f(a*){(a | in going from the second line to the
third line and (o | 0) = e~1*"/? (see Appendix A for its derivation). Consider the
inner product between the coherent state (5 | with | f), using Eq. (2.38), we find

laf?

<Blf> = %/d2a</)’|a>6_7f(a*)

1 [ g2 2 w2
= ;/aneﬂ ae_%e_%f(a*)e_%
67@
— /d2ae’3*a6_|a‘2f(a*). (2.39)

But if we use the form of | f) in Eq. (2.37), we find

(BIf = «B]fah)]o0)

= f(B){610)
= f(B)e P2, (2.40)
Thus
f(5*) = %/d2aeﬁ*°‘e°‘|2f(a*). (2.41)
Now consider another state | ¢),
<g|= %/d%z <a e’gg*(a*). (2.42)

The inner produet of the two states < ¢g | and | f > may then be expressed as

1 —ﬁ —E * * %
<glf> = p/d25d2a<ﬁla>e ze” 2 g"(87) ()
1 b 2 a2 2 a?
N p/d25d2aeﬂ “e’%e’%e’%e’%g*(ﬁ*)ﬂa*)
1 .
= p/dQBdZQeﬁ e8P el gx (8%) f (o) (2.43)

where we have used 3 | a) = e 16*/2¢-101’/2¢8° derived in Appendix A. Using

Eq. (2.41), we finally obtain

<l fo== [@e Pe (557, (244
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2.3 Expansion of Operators in Terms of Coher-
ent States

Consider a general quantum mechanical operators A which may be expressed as

A= > |n>A,,<m|

a0 >< 0] (a)™

(
= Anm
T%;L vnlm!

in the harmonic oscillator basis. Here, A,,, = (n | A | m). To rewrite it in the

(2.45)

coherent state basis, we use the completeness relation (2.10),

1
A = —2/|a><a|A|6><6|d2ad2B
m

= 5[ 1a# 4, B < 0052016 < 5| dap
. 4 nim!
oA S s
k- nim!

This is the expansion of the operator A in terms of coherent states.



CHAPTER 111
QUANTUM HALL EFFECTS

In this chapter, we will discuss the guantum Hall effects in details. In
Section 3.1, the classical Hall effect which can be seen at room temperature
is discussed. The two-dimensional systems exhibiting the quantum Hall effects
are next discussed in Section 3.2. Finally, Sections 3.3 and 3.4 are respectively

devoted to the explaination of the integer and fractional quantum Hall effects.

3.1 Classical Hall Effect

The classical Hall effect was discovered in 1879 by E. Hall [4]. Consider a con-
ducting material with a rectangular cross section of size d x b in a uniform field

B = B3 as shown in Fig. 3.1.

Figure 3.1: The Hall geometry.

The experiment was performed at room temperature and the magnetic field used

was increased up to about one Tesla. What Hall found is that the voltage Vj,




) 15

known as the Hall voltage, varied linearly with the magnetic field as shown in

Fig. 3.2.

SISTANCE (K OHMS)

RIESIS

l
\ H
-MAGNETIC FIELD (TESLA)

Figure 3.2: The linear Hall voltage at moderate fields and room temperature.

This phenomenon can be explained as follows. In the presence of both electric
and magunetic fields, a charge carrier of charge ¢ in the sample is acted on by the

force

— —

Fr=gq(E +@x B). (3.1)

Suppose a uniform direct current flowing in the y-direction,

J = Jof

= Ngi, (3.2)

where N is the number of charge carriers per unit volume and @ is the velocity
of the charge carriers each having charge ¢, is applied to the system. Note that
if the material is a conductor, the charge carriers are electrons and ¢ is negative.
At the beginning, the Lorentz force tends to push the charge carriers along the

z-direction, causing the electrons to accumulate on one side and the positive ion
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excess to establish on the opposite side of the sample. These surface charges then
produce a transverse electric field that tends to cancel the Lorentz force. When
the steady state is reached, the number of surface charges is large enough that the
transverse electric field EH, known as the Hall field, precisely cancels the Lorentz

force,

Ey+ixB=0 (3.3)

so that

—

(.

This is known as the Hall effect. In our case, J = —Jo9 (with Jy = quoN) and

B = Bz, so that

Ey = —(Jofi) x (Bo2)

= JyBgs. (3.5)

A transverse potential V}, thus appears and has the value

d
= — / Fu-dF
0
d
— / JoBo da
0

Thus Vg o By in agreement with Hall’s result.

3.2 . Two-Dimensional Electron Systems

Since the experiments which demonstrate the quantum Hall effects have to be
performed in two dimensions, the creation of the systems requires a surface of an
object or an interface between two substances and a force to keep things there.

Therefore the electrons are confined in an interface between a semiconductor
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Figure 3.3: A top view of the inversion layer. This picture shows the trajectory
of charge carriers in the surface of the system. The Hall voltage is measured
between A and C while the transverse voltage is measured between A and B.

and an insulator or the interface between two semiconductors (these systems is
sometimes called the inversion layer). The Integer Quantum Hall Effect (IQHE)
[1], to be discussed in Section 3.3, was first seen in the experiment using the silicon
MOSFET (metal-oxide-semiconductor-field effect) and the experimental setup is
shown in Fig. 3.3. As for the Fractional Quantum Hall Effeet (FQHE) which will
be discussed in Section 3.4, the experiment was done using the sample created
from two different semiconductors ( Al,Ga,_,As — GaAs) or heterojunction [2]
as shown in Fig. 3.5. These two types of system are created from different
substances. The electron mobilities of these two systems [4] are also different as

shown in a Table 3.1.

3.3 Integer Quantum Hall Effect (IQHE)

When the quantum Hall effect was discovered in 1980, the properties of electrons

in this extraordinary state differ fundamentally from those in all other known
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Figure 3.4: A side view of a si-MOSFET. The electric field is used to confine the
electrons on the surface between an insulator and a semiconductor.
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Figure 3.5: A side view of a heterojunction.
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Table 3.1: Various types of the two-dimensional systems. Here, p is the electron
mobility in the absence magnetic field and 7 is the relaxation time.

Interface constituents 2D gas m(m.) | p (10°cm? /Vs) | 75(10712 s)
Si-Si0; e or (h) 0.19 10 1.1
GaAs-Aly 99Gag 71As e or (h) | 0.068(0.38) 100 3.9
Ings3GagarAs-InP e 0.080 30 1.4
InAs-GaSh e or (h) | 0.023(0.36) 170 2.2
IHP—AZO_48[TLO_52AS € ~ 0.08 10 0.5
GCL&Q5[TLO_75ASO.50P0.50—IIIP e 0.058 13 0.4
Ings3GagarAs-Ing 4 AlysaAs e 0.05 90 2.6
H gy73Cdy 95 Te-HgCd Te oxides e 0.006 90 0.3

states of matter. The latest explorations in this field, however, have uncovered
a striking relation between the quantum Hall effect and the more familiar phe-
nomenon of superconductivity.

In 1980, Klaus von Klitzing, then at the high magnetic field laboratory of the Max
Planck institute in Grenoble, Michael Pepper and Gerhardt Dordda discovered
that, under special circumstances, the Hall effect does not obey the usual rules.
When they chilled the trapped electrons to within a degree or two degree Kelvin,
they found that the Hall voltage did not rise smoothly as the strength of the
magnetic field is increased. The experimental result is shown in Fig. 3.6 [17]
where it is seen that the Hall voltage rose in steps, with the values that did
not vary at all ever.in a small range of magnetic field strengths. In addition, the
longitudinal voltage, that is, the voltage necessary to maintain the flow of current,
nearly vanished when these plateaus in the Hall voltage were reached: In other
words, the electrons became perfectly conducting. Perhaps more astonishing is
a quantity called the Hall conductance which is the ratio of the current and the
Hall voltage. Von Klitzing and his colleagues found that at each plateau the Hall
conductance equaled an integer multiple of the quantum of conductance which is
defined as e?/h, this integer is called the filling factor.

To understand how the Hall conductance adopt these values, we first
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introduce two important quantities. The first one is the magnetic flux quantum
which serves as a fundamental unit for measuring the magnetic field strengths.
The second important quantity is the filling factor defined as the number of the
number of electrons in a sample divided by the number of magnetic flux quanta
penetrating it. When the filling factor is one, this is one magnetic flux quantum
per electron. When the filling factor is 1/3, there are three flux quanta for each
electron.

The IQHE can be considered as a one-body problem. Consider an electron
moving in a magnetic field before it is scattered from other electrons or impurities.
Let 7 be the time before an electron scattered and P be the electron’s momentum,
then its classical equation of motion takes the form

d= e 4 B
SRy TR 3.7
dt P (3:7)
with ﬁm being an external force. If m is the electron mass and ﬁemt is due to the

applied electric and magnetic fields, then Eq. (3.7) becomes

T ; Y
If B = B3, then

d 1

m &—F; Ve = 1€ Bt Buyk (3.9)
d 1

m %—i—; vy = —e(Ey— Buy), (3.10)
d 1
¥ goWhoN L1 11

m(dt+r>v e (3.11)

In the steady state, the time derivatives are zero so that

eT eT
. = -5, -y, 3.12
v m m Uy ( )
eT eT
'Uy = —EEy—FEB'Um, (313)

v, = —LE,. (3.14)
m
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Let n be the electron density, then the current j = —ne@. Using Eqs. (3.12)-
(3.14), the components of the currents take the tensorial form of the Ampere’s

law,

Je = Owalie + Uway (315)
I =N WO (3.16)
o= o, F, (3.17)

where the components of the conductivity tensor g;; are

90
OoWeT
Y o N BT (3.19)
Tz = 00 (3.20)
with 09 = e€?*rn/m and w, = ¢B/m. In the two-dimensional system of our

interest, j, = E, = 0 and so we can neglect g,, in what follows. When w.7 > 1

corresponding to the situation in which the electrons can move freely,

Oge = 0)
en
o N —. 3.21
o Y B ( )

The above analysis is based on the classical picture. We now treat this problem
quantum mechanically. It will be seen that the energy of an electron in a magnetic
field is quantized and these quantized energy levels are called the Landau levels.

Consider the Schrodinger equation for an electron in a uniform magnetic
field

% (~in¥ - eA)" v = EV. (3.22)

When B = Bz, we can choose the Landau gauge where

A, = —yB, (3.23)
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A, =A, =0. (3.24)

Our system is a two-dimensional system in the xy-plane of size L, x L,, so the

Schrodinger equation takes the form

2may?  2m

19> 1 ( 0 ’
( + — (—Z% - eBy) ) U(z,y) = EV(z,y) (3.25)
in the unit i = 1. Let ¥(z,y) = e*? f(y), then Eq. (3.25) becomes

(%m (EB) (y “ %) - ﬁ%) fy) = Ef(y). (3.26)

This is nothing but the one-dimensional harmonic oscillator equation along the
y-axis with the frequency w = eB/m and the equilibrium position yy = k/eB.

The energy E thus takes the quantized form

eB 1
e — 3.27
< m (n it 2) ( )
where n = 0,1,2,.... Each energy level is called a Landau level. Imposing

the periodic boundary condition along the z-axis, then we find that k& takes the

quantized values

2mm
kpm = 3.28
- (328)
where m = 0, £1, £2, ... . But since yo = k/eB must be bounded between 0 and

L,, then the maximum possible value of m is eBA/2m with A = L, L, being the

area of the system. Thus the number of degeneracy of each Landau level is

A

o2

(3.29)

where [? = 1/eB is called the magnetic length, or equivalently the number of

states per unit area of a full Landau level is

1 eB
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The filling factor is given by

= —. 3.31
= (3:31)

If the Landau level is full, then v is an integer and the Fermi level must lie in
the gap between occupied levels. It is plausible that there is no scattering of
electrons. Substituting Eq. (3.31) into Eq. (3.21), we get

ne

B

vnpge

B

V€2

= (3.32)

2

Oy =

Restoring 7 to our result, we find o,, = ve?/h. In this case, plateaus occur
whenever the filling factor, v, is equal to an integer or whenever an integer number
of Landau levels are fully occupied. This can be explained as follows. As the
magnetic field is increased, the filling factor is varied according to Egs. (3.30)
and (3.31). If v is not an integer, there are unoccupied states available in the
Landau level and the electrons can move into these states causing the conductivity
(resistivity) to increase (decrease). But if v is an integer, then all Landau levels
are either full or empty so that the electrons have to pass the energy gap between
two successive Landau levels before they can conduct the current. However, there
also exist the localized states in the gap (such as impurity in‘the sample), in which
the electrons are localized and do not contribute to the conductivity. This causes
the plateaus.

We end this section by presenting an alternative way for obtaining the

Landau level based on the algebraic approach. We start with the Hamiltonian.

1 1
H= Z(%(px +eAy)t + 5 (p, +eA,)?).

2m
By introducing the covariant momentum, 1, with components,

M, = —i0, + €Ay, (3.33)
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Figure 3.7: Quantization of free electrons in the absence of the magnetic field.

Figure 3.8: Quantization of free electrons in a magnetic field.
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Figure 3.9: The magnetic field causes gqnantization in the x-
Landau levels. The dashed curve is for zero field.

y plane, leading to
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My, = —id, + €Ay, (3.34)

and the guiding-center coordinates,

-
X = = 3.35
|_|

Y=+ — 3.36
YT (3.36)

then they satisfy the commutation relations,

?

[Hra |_|y] - 1_27 (337)
Ny, 2} = =i (3.38)
[r‘ya y] T _ia (339)
I XTY TR S0, (3.40)

where [? = 1/eB is the magnetic length. Next introduce the annihilation opera-

tors

(A — oMy), (3.41)

8-

1
—(X —1Y), 3.42
X =) (3.42)
together with the corresponding creation operators,

al = (M +4M,), (3.43)

1

V2
1 .

b = m(X+ZY). (3.44)

They satisfy the commutation relations,
[a,al] =1,
[b,b7] = 1.

Note that ¢ and b do not commute each others. The Hamiltonian is now rewritten

in terms of the creation and annihilation operators,

1
H=w, (dfa + 5) (3.45)
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where w,. = # is called the cyclotron frequency. It is easily seen that the

eigenvalues of this Hamiltonian are precisely the Landau Levels.

3.4  Fractional Quantum Hall Effect (FQHE)

Two years after discovery of the integer quantum Hall effect, Tsui, Stormer and
Gossard [2] discovered what is now called the Fractional Quantum Hall Effect
(FQHE). The sample they used was created from the heterojunction mentioned in
Section 3.2 and the experiment was done in a high magnetic field (up to 30 Tesla)
and at low temperatures. The experimental result shown in Fig. 3.10 is similar to
that of the IQHE except that, at the plateaus, the filling factors are not integers
but instead are fractional numbers. What is needed for a similar understanding of
the fractional quantum Hall effect is some mechanism that selects rational filling
factors, v, of the Landau level electron density. It is obvious that such mechanism
requires interactions among the electrons. Consider the Hamiltonian of a system

of interacting electrons given by

'S Z

where the second term on the right hand side denotes the inter-electron Coulomb

w LY (e ) (3.46)

i7j

repulsion. This Hamiltonian cannot be solved exactly, being a highly non-trivial
many-body problem. Laughlin [6] solved the above equation but only for a system
of three electrons, and this idea led to the general many-body wave function in
his following paper [7] in which he proposed the trial wave function to describe
the ground state of the FQHE,

Y({z}) = N [[ (i — 2) e 7 2l (3.47)

i<j

where z; is the complex coordinate for the i electron, N,, is the normalization

constant, m is an odd number (3,5,7,9,...) and [? = 1/eB is the magnetic length.
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Figure 3.10: The Hall resistance varies stepwise with changes in the magnetic
fields at low temperatures.

Clearly, this wave function is totally antisymmetric and describes a uniform dis-
tribution ‘of (Hluid-like) electrons.

In 1989, Jain [8] proposed the idea of composite fermions which serves as
an alternative way of explaining the FQHE. In his theory, the FQHE of strongly
interacting fermions (electrons) is just the IQHE of composite fermions. Before
explaining his idea, it is appropriate to pictorially illustrate the idea of IQHE
and Laughlin’s idea of FQHE respectively in Figs. 3.11 and 3.12 [17]. The
v = 1 IQHE case (Fig. 3.11) corressponds to the situation that one magnetic

flux quantum is attached to each electron, while in the v = 1/3 FQHE case




Figure 3.11: IQHE at v = 1. Electrons are depicted as balls and flux quanta are
depicted as tubes. There is one flux quanta per electron [17].

(Fig. 3.12), each electron is attached to three flux quanta. In the pictures, the
eléctron’s hand represents the interaction with other electrons. Jain proposed the
composite fermion as the fermion with even number of flux quanta attached (Fig.
3.13) [17]. Observe that composite electrous are no longer interacting. Hence, the
FQHE is analogous to the IQHE of composite fermions. However, this picture
could not accommodate all the Laughlin fractions v = 1/(odd numbers) but well
explains the other cases such as v= 2/5,3/7,.... For example, the case v = 2/5
is just the IQHE of composite fermions at v = 2. In the case that each electron
is attached to three-ﬁcfitious flux quanta, the electrons see no net field attached
to them, and they can form Bose condensate (Fig. 3.14) [17].

What we have been discussed so far are the examples of the explaination of
the FQHE based on finding the wave function. At the fraction values of the filling
factor, the tranverse resistence nearly vanishes. This implies that the electrons
can move with;)ut energy loses. So, the explaination of the FQHE is analogous
to the explaination of superconductivity (Landau-Ginzburg theory {19]). Zhang
et al. [13] and Zhang [14] took this approach by analogous to composite bosons.

The microscopic Hamiltonian (3.46) describing a system of fermions is written in



Figure 3.12: FQHE at v = 1/3. Electron’s holding hands imply strong interac-
tions. On the average, there are three flux quanta per electron [17].

Figure 3.13: FQHE at v = 1/3. Each electron has two flux quanta attached
resulting in one flux quanta per composite electron on the average [17].




Figure 3.14: FQHE at v=1/3. Each electron with three flux quanta attached
forms a composite boson [17]. :

the second quantization form as,
) A2 .
H = [dsdi(a) P +ed) J;T‘; L 3(x) |
1 . - a
+5 [ adydl @) )o(] = — v d)d(). (3.48)
By introducing the auxiliary gauge field, called the statistical gauge field, into
the system, the statistics of the system can be changed. To avoid the confusion,

the electromagnetic gauge field is denoted by A and the statistical gauge field is

denoted by a. The statistical gauge field has the explicit form,

a{z:) = - -~ ) Vo (3.49)

where ¢g = h/e is the unit of flux quantum, # is a parameter corresponding to
the statistical transmutation and «;; is the angle between 5** and j®* particles.

With this statistical gauge, the Hamiltonian now take the form,



—eA —ea)? ,

— = )

H = /deéf(x)(p

n % / Prd?yé'(2)6" (y)o(| © — y )(x)d(y).

Introducing the unitary operator

; 0 e
w = e it w5

and defining

where 6 = (2k + 1)m, k =0,1,2,3, ... ¢ and ¢ then satisfy
Ho = Eo.
and
H'¢ = E'd.
The partition function takes the form
7 — /D[(/,*]D[Qg]p[a]efd3x(¢*(x)Do¢(:v)—H(¢*,¢)+Lcs),

where

1
S, = 27 /d?’xe“”pau&,ap,
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(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

is called the Chern-Simons action [20, 21] and D, = 0, — A, —a, with =0, 1, 2.

The minimum energy solution corresponds to the constant field configuration,

CLOZO
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where p = ¢*¢ is the particle density that can be treated as the order parameter
of the system analogous to the expansion of order parameter in the free energy of
Landau-Ginzburg theory in the phenomenological approach of the superconduc-
tivity. If L.s is extremized, substitute above solutions into equation of motion,

we get
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CHAPTER IV

COHERENT STATE REPRESENTATION APPLIED
TO FRACTIONAL QUANTUM HALL EFFECT

In the first few chapters, we have discussed about the fundamental con-
cepts of quantum Hall effects. We are now going to derive the microscopic frac-
tional quantum Hall effect by using the coherent state representation. Of course,
as being mentioned before, the Chern-Simons term will play a crucial role in the
statistical transmutation.

We will first derive the essential physics of the Laughlin’s mean field. We
then derive the fluctuation terms by using the standard technique called the Sad-
dle Point Approzimation (SPA). Our starting point is the Hamiltonian describing

a system of many electrons in the presence of electromagnetic interaction,

H= Z (LA()) +er) +272 (4.1)

i#j |z — ;>

This Hamiltonian can be written in a second quantized form

/d2 Ot z) (P+€A( z))® +er> (@)
+ % [ Badyd i (@)d )l — n)b@1b ). (4.2)
by using the field operators
2 n(a)a (4.3)
and

PHe) = D up(x)al, (4.4)

where the field operators in Egs. (4.3) and (4.4) satisfy the commutation relation,

[ (), 91 (y)] = 8z —y).
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In the field theoretical approach, a composite-particle is introduced to
describe the FQHE. This picture is essential for understanding various aspect of
QH effect. A composite-particle is obtained by attaching m quanta of the Chern-
Simons flux to an electron : It is a composite boson when a m = 2p+1 = odd, and
a composite fermion when m=2p=even. It acquires a physical reality by trading
the Chern-Simons flux for the magnetic flux in the quantum Hall state.

Let 1(x) be the electron field. A composite-particle field ¢(z) is defined by an

operator phase transformation,
o(x) = e ™M) (x). (4.5)
The phase field ©(x) is defined by
O(a) = [ Eybla—y)o(y). (4.6)

where m is an integer and 6(z — y) is the angle between the the z-axis. The

commutation relations among the above quantities can be derived as follows,

P(@)ply) = e MO (z)eMmOWy(y)

- e—im@(x)e—imﬁ(y—x)e—im(%(y)d)(l,) ) (47)
Consider
e BeT4 = A +[A, B] + %[A, [A, B]] + .« (4.8)
So,
SOV () O = () + (im)[On), (x)] + T 0(y), [O(w), v(a)] + -

(4.9)
Commutation relation between ©(y) and ¢ (x) is then,
(), v(@)] = [ #2005~ 2)p(2), ()
= [ 00y - Dlp(e), (). (410)
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Using the identity [ab, ¢] = a{b,c} — {a, c}b, the right hand side of (4.10) is now

[p(2), ¥(@)] = —{¥'(2), ¥ ()} (2),
= —0(z — 2)yY(x). (4.11)

By substituting Eq.(4.11) into Eq.(4.10) we obtain

(), p@)] = — [d0l=2)3(z - 2)(2),

= Oy — 2)(x). (4.12)
Eq.(5) and Eq.(4.9), we obtain
GOy ()e o0 L () (i) [O)@)] + L [0(). [0(). w(z)] +
£ et (imtly = apa)+ EOU O i
= (1+ (—im(y — z)).+ (_imggy! — o)) ()
= e MmOy, (4.13)
Eq.(4.7) can be rewritten as
pw)ply) = e MO emmIumDmmOWY ()¢ (y). (4.14)
Thus,
o(y)o(x) = e ™MOWly)e MO p(a),
a efimG)(y)efimG(:L‘) eim@(z)w(y)efim@(w)w(x),
= ¢ OO Tl (1)) (). (4.15)

Consider commutation relation of [©(x), O(y)],

0),0()] = [[ d=0(y - 2)p(2), [ bz — b)p(b)],

= [ @0y — 20— Dp(). ()] (4.16)
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A commutation relation on the RHS of Eq.(4.16) is then,

(=), p0)] = H()[B(2), p(b)] + [ (2), o)) (=),
= W) ({0(2), 1010 (0) — v B) {81 (), b (0) ) (2),
= 5(z = bt DB —5(= — DT (D) (2). (4.17)

We substitute Eq.(4.17) into Eq.(4.16), then
6(y),0(:)] = 0. (418)
By Eqs. (4.18),(4.15) and (4.14), then

$(@)p(y)” = e WD mOmy (y)y (),
r _efim@(y)67im0(:1:7y)7im7r67im®(:1:)w(y)w(l.),
= ¢ "™ (y)o(x),
— d)ole) = (1" (z)e(y) = 0. (4.19)

When m is an odd number above equation is the commutation relation, while it

is the anticommutation relation if m is even,

[6(y), ¢(x)] = 0, (4.20)
{o(y), 0(x)} = 0. (4.21)

Similatly, we can compute the commutation relation between ¢i(x) and ¢f(y):

; 2
eim@(y)z/)T(l,)e—imG(y) (Z;r:)

00l (y) v W) = [0y —2)o(=), ' ()],
= [dy — 291 ()3 — 2),
oy — )9 (), (4.22)

= ¢i(@) + (im)[0(y), ¥' ()] + = [O(y), [O(y), ¥ (@)]] + ...,

(4.23)
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So,

O Y = (@) + (imy () + (ime (@) + ...
= (14 (imb(y — z)) + (imb(y — 2))* + .. )" (x),

= M2yt (g), (4.24)
Thus,

o'(2)¢'(y) = W (@)Yt (y)e O,
- 77Z)]‘(l,)eima(z—y)d)’[ (y)eimG(:v)eimG(y) ) (425)

¢ (y)¢' (x) = Wi(y)emOWPT (2)e O,
rF 'L/)T( )eimﬂ(y—m)z/}T(l,)eimO(y)eim@(x)

b

F _1/)’[( ) imb(z— y+zm7r1/)1‘( ) Lm@(m)eime(y)

Y

= (=)o (@)e'(y). (4.26)

We thus arrive at a similar result as Eq.(4.20 and Eq.(4.21)), namely,

[6'(y), ¢ (x)] = 0, (4.27)
{6'(y), 0'(x)} = o0 (4.28)

The commutation relation between ¢(2) and ¢f(y) can be calculated as follows:

o) (y) = e ()il (y)e O,
= mimelE) (5 ) imew)
- IO ) 2)e O,
= Bz —y) - O () HII W)
= Oz —y)+ (=1)"ol(y)o(2).
— o(2)0'(y) — (=1)" "' (y)d(z) = 6(z — y). (4.29)



If m is an odd number,

[6(z), 0" (y)] = 6(z — ).

If m is an even number,

{6(2), 6" (y)} = o(z —y).
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(4.30)

(4.31)

Following these commutation relations, we conclude that the composite particle

field ¢ is bosonic when m is an odd number and is fermionic when m is an even

number. Next we will find an eigenstate for the composite particle. Let ¢.,(z)

denotes composite particle wave function,

Pep(m) = <0 (z1)...0(z,) | ¢ > .

The eigenstate | ¢(x) > can be constructed by using Eq.(4.32) then,

6> = /D[x]qsc,,(a;)qﬁ(:cn)...qsf(xl) 10>,

~ [ Dl (@' (z2)e™ . .t (@) 0>

But

emOW ()= mOW ez IE=V) )t (),

eim@(xl)wT(l,Q)eimG(mg) ¢T(xZ)eﬂ(xl—m)eim@(m)eimG(mz)

b

then

[¢> = /D[ff]cﬁcp(x)eimziq O(@i=z;)
wT(xn)U)T(%) |0 >.

Consider now the path integral for the coherent states,

alz>=zz>,

(4.32)

(4.33)

(4.34)

(4.35)
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where z is a complex number and @ is an annihilation operator. The propagator

can be written as,
K(zp, T52;,0) =< f | e~ iTH |7 >. (4.36)

Time, T, is divided into NNV intervals, each of length e = T//N. Then the propagator

is rewritten as,

< f e T i =0 < f | (e )N i,

= Jimesonaso0 < f | (1 —ieTH)N |i>,  (4.37)

where | 7 > and | f > are initial and final states respectively. Inserting the closure

relation, [ %e*a‘z | @ >< a|= 1, at each time interval to the propagator, we

get

N dayd

<fl—ief)Y |i> = /Me*\wl?..
2me

daid ~

L,me*|a1|2<f|(l—ieH|aN>...

2me

<oy | (L—ieH)|i>.
Since
< (L= ieH | ai>=<aa |y > —te<a | H | a; >,
then

A dorda; . )
<f|(1—7;eH)N|¢>:/H%e—\azl < (1 —ieH) | ay >*
i T

H(< Qi1 | o > —1e < Qg1 | ﬁ | Q; >)

)

<ay | (1—ieH) |i>,
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~ daoido; . N
<fu1—uﬂww¢>:/[yé}ﬁfﬁﬁ2<fu1—%HnaN>*
i T

H(< Qg | o; > —’iGH(OlZ+1,O[i) < OG41 | o >)

2

<ay | (1—ieH) |i>,
dajdog C e A
= [T S e o< f) (= iel) | oy >°
S 2m

e Vi1 [Tt —ieH (ol 00) < @y | (1 —ieH) |i>. (4.38)

)

The initial and final states can be expanded in terms of the coherent states as,

doide 2
< f |:/ o Lederl® < fla><a, (4.39)
e
dovsday;
|i>=/ O;f Helai® 1o s<a i (4.40)
e

Using Eqs.(4.38),(4.39) and (4.40), the propagator can be expressed in the form,

dofdo;

e lail?

<f | T’ | 1 >= lime—)O,N—)OO/lZ[ o

eZi a;‘_l_lOéi H(]_ — ieH(CY:+1, al))

1
/%eaﬂ?%eaﬁ
21 271

qﬁ’}(af) <aslay > ¢ilaj) <oy |a; >
(I —ieH (o}, an))(1 —ieH (o], ay)),
<f] AT i>= /D[a*]D[a]eifoT di( 2 (ada* —a*By0)— H(a" )

2 2l .

el gt (o) (g, (4.41)

where

1
L= ?(aata* —a*0) — H(a", ). (4.42)
i
If the system is described by field configurations, it can be replaced with the

coherent state representation,
<f] o—iTH i >= /D[a*]D[a]eifoT di( 2k (adra” —a*Bpa)—H(a" a))

ef(‘af|2+‘ai|2)/dx(a;(a(x,tf))ai(a(x,ti))). (4.43)
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If | f > and | i > are the coherent states, the propagator will be written as
R . rT * * *
< ay | eszH | o >= /D[O[*]D[O[]elIO dt(%i(af)ta —a*Ora)—H(w ,a))‘ (444)

From Eqs. (4.2) and (4.5), the Hamiltonian is written in terms of ¢(x) and ¢'(x)

as

H - /dQ:BdA)T(x) ((27—1- eA(x) — ed)? +eA0> ()

2M
g [ Aadyd ()5 el = )W), (1.45)
where @ takes the explicit form
iy = %8k@(x),
P % / &2, 000(x — 2)p(2). (4.46)
idjdh = e / P20,00(x — 2)p(2),
- %ejkajak@(x). (4.47)

Let w(z2) = w,(2) + wi(z) = w | €X, we can calculate €;,0;ay by,

0 = o 1(34_23)
oz . 20z Oy’
ow(z) 1,0 .0 ix
9 5(%+Zay)|vd|6a
= llblige s e
Lif i 210
0 Ay ’
)1 <ox i 0] W
- 2(Z8x+|w| 5
i dlw]| Ox ix
+|w| ox 8y)|w|6’
1, 0ln|w|  Ox dln |w| 0Ox ix
= (i " + o)+ (— ay))|w|e-
dln(w) _ 9Ix
oxr 0Oy’
Jln(w) ox
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Two equations above can be combined as,
Oiln(w) = €;0;x. (4.48)
If w=rand y =90,
€;0;,0;0 = 0;0;1n(r),

= v in(r),
= 2md(x). (4.49)

The last step above equation came from the Green’s function in 2-dimensional

space. From Eqs. (4.31) and (4.33),
m 2
ej,g@jak = _6 Ej/g/d zajakﬁ(:v - Z)p(Z),

= 2ﬂ%/d225(x — 2)p(2),

2mrm
In the unit h=1or h =27
hm
ejn0jte = —=p(z), (4.51)

or in terms of the Dirac flux quantum, ®p = h/e,
€jx0;ar = Ppmp(x). (4.52)
Consider the partition function using the coherent states as its basis,
7 = Tre PUH-uN)
= /daa<a|e’5(H’“N) e > (4.53)

Comparing the propragator Eq.(4.44) with the partition function Eq.(4.53) and

integrating by parts the Lagrangian Eq.(4.42), we can identify

8 = it
1
L = ?(OéatOé* — Oé*ata) — H,

i
= a0y — H.



45

Changing variable ¢t = —i7, the action in the imaginary time is

—if3 B
i / dtL = / Ldr.
0 0

By means of a Lagrange multiplier field, ay, the Lagrangian is formulated from

the Hamiltonian of the partition function,

| Dig@leap(~ | drid’alg(@)0, ()

s+ A+ AP0 hedod (2)0(2)]

5 [y @d)el 2~y D6 ()6 0)

— " @) 4 0o EIIY o (1)), (1.5)

Therefore,
e"’a,0,a, = € a0 Qi ¢ aiagaj + eijoaiajao.
The action Eq.(4.54) can be written as

/d3 )(0r + eAy — eap — p)o(x)
4 m«ﬁ (2)(F + eA — ed)*¢(x)
L % / Prdy (6" (2)d()v(| = — y 6" (1) b(y)

/ d*ve"?a,0,a,, (4.55)

2mm

When the background charge, p, is added to the system; the action is now rewrit-

ten as

/d3 4+ eAy — eag — p)o(x)
+ mqﬁ (2)(7+ eA — ed) ¢(x)
L1 /dzxd:a (¢*(@)p(x) — p)v(| = —y (6" (W)o(y) — )

/d?’xe“””aua a,- (4.56)

2m7r



46

The last term of the Lagrangian is called Chern-Simons action [11]. The action

is extremized with respect to ag, we obtain the equation of motion,

o 0L _ 0L
“0(0at0) — Bag’
ij 4 i
—r—cday = =0 (@)pa) + T —eIDiaj,
. e 77
(Do) = 5Dy
Let Aeff:A—a,
GZJaZAjff = EZJaZA]_fl]azaja
BT = B —b,
2mm
b = :
- P@)

By introducing the auxiliary field for the interaction term, we can write (see

Appendix B)

o J Prd? 5(6" (2)¢(x)~p)v(¢” (Vo) h) / D[\eJ @@ @)6(w) ) o3 [ PadyNz)v™ M)
(4.57)

The action can be rewritten as

e2

pp
e"?a,0,a,}

S = /dedT{(Z)*(x)(aT + €Ay — eap — p— A())p(x) + 5
+ fabrar(o @) Tk A7 24

A %/dedzydT{/\(x)v_IA(y)}-

mm

d(x)} + /d2£b'd7')\(£b‘)ﬁ

Now fields can be integrated out by using the Gaussian integral (Appendix B).

The action is remain in the gauges and the Hubbard fields.
(F+ eA — ed)?

2M )

Sl = —Trin(0, +eAp — eag — pu — Mx) +

2
e
+ / dedT%e””pau&,ap

+ [ drdrA(@)p - % [ Eadydr (Ao Aw)).
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Consider the first order derivative with respect to A(z) and a,(z) = A, — A%/,

0Seff 0

oXz)
eff

S _ 0
Oay(x)

The equations of motion follow from above extremization. Let a and \(x) are the
values that correspond to the equations of motion
7 b —ﬁ+/d3yv_1)\(y) __— (4.58)

2

. € v e _
< ju(w) > > (< B,A,>— <A >) = 0. (4.59)

The condition for the uniform liquid state is obtained A(z) = 0 namely,
<Ly =29,
The Chern-Simons statistical magnetic field is given by,

b = v xad,

— B- B/ (4.60)

Setting p# = 0 in the equation of motion, we find the uniform average statistical

magnetic field,

mm _

Recall that the filling factor, v, is a ratio of total number of applied (external)

flux quantum to total number of electrons,

1
2p+ 1’
@ ppo

B
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where p is an interger.

B = B-<b>,

B
- B—-(2p+1)——
(2p )ij

This implies that the composite boson (m is an odd number), in this case, sees
no magnetic field but if m is an even number, it is called a composite fermion, a

new particle will sees the magnetic field,

Bl = B —(2p)

Due to the nonvanished magnetic field in the case of composite fermions, the new

filling factor will be determined by,

~ Pppo
Veff - Beff I
®ppo

= 2+ 1
B(p+),

= (2p+ 1.

The FQH state of electrons at v = 1/(2p 4 1) is the IQH state of composite
fermions at vesp = 1.

Consider the fluctuation of the system around mean field by using the Sad-
dle Point Approximation (SPA). We keep terms up to the second order, A\(z) —

AMz) 4+ 6\ and AT — AST 4 54T

oseff
ax T aAfo a,\
o28eff
+ WL—LX + ...,

geff — geff

(4.62)
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where the first order derivative of the action is zero because of the SPA. Now
we will consider the determinant of the first term above. We substitute \(z) —
Mz)+ 06X and A¢S — A°/f 4+ §A/T into the action above. Consider the potential

term,

aZSeff 1 W\ ! o2 B
NNy é/df”d ym{A(I)v Ay)},
= v 1~ ). (463

The potential term when substitute the fluctuation can be written as,
1 3, 13 LY
i/d xd yoN(x)v OA(y).

The partition function is now written in the fluctuation term,

Z(A) = Zla, R)er S ELrvAT T, 045 +5 [ dovcra,da,

o3 [N @@)+} fd?’wd?’yﬁ(m)v‘l(”\y, (4.64)

where [],,(z,y) = W%. 0A is integrated out by using the Gaussian

integral,

/D[é)\]eéfd3d35)\(x)v’15/\(y)+% fd3z5)\(m)b(:1:) — 67§ fd3$d3yb($)'u(\wfy\)b(y)

Z(4)] = / Disajesd @A @ 1as@N I, =)0 ). )

6% fd‘%l:e‘“’”tz#B,,a,p6%“2 fd3:1:d3yb(:r)v(\wfy\)b(y). (465)

Introducing a gauge fixing term (9,a")?/(25) in order to avoid singularity in the

inverse matrix of the quadratic term in a,,
Z(A) = / Dlsaje? J Lrav @) -an@) T, (w)o(A ()=an ()
o5 [ dPeera,0,0, =5 [ d¥ediyb@)o(z—y|)b(y)

3. (Ouat)?
efd T
?

(4.66)
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matrix elements before integrating over statistical gauge can be written as,

2
Moo — %0 Mo1 — Oy — 8%81
mt = | Mg+ ady — 30B31 My — % + 00505
Mg — 0[81 - 62660 Moy + &80 - % - &21)8281
where
o29elf
Ny = :
4 aaiaaj
Fourier transform of above matrix, e #(9%) 4t
ftoo + %2 ftor + 2aq2 e
mt = | ftio —iogy — wa [t + —a? UCI2

ftao + icqy — ﬁ ftor + iaw + QZﬂql —l— a?vgaq,

Moo + a81 — %
Mg — 0[80 - % - &21)8281
|_|22 - % + &21)8181

WI2

ftog — g —
ft12 —aw + QIqZ + Oé 'UQqu
ftoo —i— L _ o? vq1

Consider the polarization tensors in the matrix above under the Fourier transfor-

mation (Appendix C). The matrix mt will be written as,

2
mt(0,0) = q2 |_|0 +%7

mt(0,1) = wq Mo +ige(My + a) — %,
mt(0,2) = wgz My —igq: M —iog — w§2’
mt(1,0) = wq Mo —ige M —iag — wgl7
mt(1,1). = %1 +w? Mo +5 (Mo, —a*v),
mi(1,2) = 52 = aian (s —ate) = (M + ),
mt(2)0)] = was Ty ity M Hiag — q;w,
mt(2,1) = % — 1q2(My — &*v) +iw(M + ),
mi(2,2) = %2 +w? Mo +4; (M2 — ?v).
The determinent of the matrix mt is then,
det(mt) = ME(W, q), (4.67)

B



where

S(w,q) = Mow? — (M + @)+ Mo(My — a?v)g>.

Inverse of the matrix mt can be shown below,

kogq? kowaq + ikyqe  kowqe — iq1 k1 (w, q)

mt " = | wqiko — igeki w?ko + (¢* — a})k>

—iwki — q1q2k2

wqoko + iq1 k1 —iwk; — qaqiky  w?ko + (¢* — ¢3) ko
where
O!2|_|0
k w, q — 4 )
ol WS
Oé+|_|1 3 9 |_|0
ki(w,q) = a+a? + o’ v=—-,
1. 9) Y(w, q) Y(w, q)

—a? My +(W? M2 — 1

k2(w7Q) F Z(w,q)

T 4+q? My Ma)v
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CHAPTER V
CONCLUSION AND DISSCUSSION

In quantum hall regime, namely at low temperatures and high magnetic
fields, very different behaviour is found in ordinary two-dimensional electron gas,
pry Dasses through a series of plateaux, p,, = ve?/h where v is rational number
at which p,, vanishes. Some insight into this phenomenon can be gained by
considering the quantum mechanic of a single electron in a magnetic field. These
simple consideration negleted two factors which are crucial to the observation of
the QHE, namely the effects of impurities and inter-electron interaction. There
are two approaches to explain the FQHE. One is the variational approaches. For
example, a laughlin’s wave function and Jain wave function. Another approach is
the field theory. For example, the Chern-Simons-Landau-Ginzburg theory. The
composite particles can be constructed by introducing the Chern-Simons term
into the Lagrangian. And the statistical transmutation is connected through the
statistical phase factor. In the fermion case, the composite particle is seen the
effective magnetic field and can be described in the same way as IQHE. In the
bosonic case, the composite can not seen the magnetic field.

In this dissertation, we derive the microscopic theory of the FQHE by
using coherent state representation to derive the essential physics in the Laughlin
mean field. "Besides this, we also derive from quantum fluctuation via saddle
point approximation. The quantum fluctuation will be of importance to address

the stability of FQHE. This aspect will be investigated in near future.
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In this appendix, we prove some mathematical result in the chapter 2.

We first consider the commutation relation [a,a'] = 1. From (2.5) and (2.6)

0= () +iD (A1)
af = (%)(a _ip), (A.2)

We obtain the commutation relation,
[a,a'] = aal —ala
= (g wq —~iap +pq) = (5)(4a — ipq — igp + pq)
= 5(2pq =24p)
= 1. (A.3)

We next prove the Baker-Campbell-Hausdorff formula (in the case of [A,[A,B]] =

0). then,
fla) = AP
V) gy o
— ("B 4 A)etAetP
= (e Be ™ + A)f(a). (A.4)
then,
g(b) = " Be
dii—(bb) = ¢"[A, Ble ™ (A.5)
dilgbg“ = ™[4, [4, Blle ™ (A.6)
dnggb) = "[A,[A,[A, B]]e (A.7)
We therefore can express g(b) as a Taylor’s series
b?g®(0)

gb) = g(0)+bg(0) + St

= B+b[A,B]+ij... (A.8)
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In the case that [A,[A, B]] = 0, the series terminated, that is g(b) = B + [A, B].

Thus,
PO (e + )0
— (B4alA, B+ A)f(a)
o that,
‘j{((s)) [ (B +alA Bl A)da
In| f(@) | = (A4 B)a+ “Q[é’B] +e

where c is an arbtrary constant. Imposing the condition f(0)=1, we get ¢ = 0 so
2

that f(a) = eA+H)+* 5

Setting a=1, we finally obtain,

eAel = (A+BIHE (A.9)

Next, we prove the completeness relation for the coherent, states:
1 2
1 = —/da|a><a|
T
Writting,

at
a> = e"2 e |0>

n=0
a2 (0] n
=T Y " n> (A.10)
n=0 TL'

d’a = rdrdf



1 1 & ><
—/d2a la><al = = ) Im><n] /rdrdﬁr”+m+1
™ T ommeo  Vm!in!

671"2 2pt deei(mfn)g

0
OO|TL><TL| 00 ol 2
= 2277“ /0 drr®"tle "

n
2\ i | n><n | /oo er(rZ)ne—r2
5 n! 0

Gamma functon, [;°e~"¢"dt = n!, we finally obtain,

1 o0
—/d2a|a><a| = > |n><n
T n=0

1)

We finally prove the normalization of | @ > from E.q.(A.10)

oo & =" g 2

By

then,
<Bla> = €_¥ -
o0 *\ 1M n
S oo e
=0 m!n!
la]? |2

= e 2 e 2
= n!
If « or (3 is equal to zero, then
_la?
<0|la> = e 2
_lei?
<PBl0> = e 2
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(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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In this appendix, we derive the so-called Hubbard-Stratonovich transfor-

mation following the work by Hubbard [22]. We first recall the formulae for the

Gaussian integrals in one dimension,

oo 9 Vs
/ e dr = /-,
—00 a
00 AN T b2
/ e T g —e 4a,
_— a
Consider the function
2
f(a) =€

Using the identity
¥ Focs v\
/ e @) =l

—00
which is a consequence of Eq. (B.1), f(a) can be expressed as

fla) = / €a2€f7r(xfﬁ)2dx

— =

00
2z g2 A
2 / =T Zﬁaxdx‘
—00

(B.5)

We now generalize the above results to the d-dimensional case [23]. Let v be

a d-dimensional vector and B be a real d x d symmetric and positive-definite

matrix. It is well-known that

_Ll,T et
/ddU€ svi By (27T)d/26 2Tr1nB,

1 %ia € 1 1 Tp-1
/ddveju Butplv " ()2 3TrnBo3pB s,
More generally, if 2 is a d-dimensional complex vector, then
Lt _1
/dzfdzl . dzdzge B = (2m)Y2e 3 TTInB,

For the Grassmann variables ©(x), we have the analogous formulae,

/d@(x)n .. .d@(x)le*%@)(m)TA@(w) — 3Trina

1

/d@(x)n...d@(x)1e_%9(’")TA®(‘”)+”T9 = erTrinAg—gpTATlp

(B.6)

(B.7)

(B.8)
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Consider the function

fw) = ezv" v (B.11)
with w being a d-dimensional vector. Using Eq. (B.7) with p = w, we get
f(’UJ) — N/ddve—%vTBv-l-wTv (B12)

where N = (27)~%2exp(3TrIn B). The above result can be generalized to an
infinite dimensional case with the result,
o3 J Pad’ydr(¢*(2)¢(x)—pllo" @)py) P _ N / D[)\]e*% [ Pxd?ydr\(z)v= ! \(y)

ef P @[ @@ -7 (B 13)

This is the desired Hubbard-Stratonovich transformation.
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This appendix follows the papers by Fradkin [28] and Zhang [29] and uses
some techniques from a many-body physics textbook [26] in order to obtain the
polarization tensors.

Consider

iGla,y) = < TI9(x),61)] >
= O(zo—10) < b )éf( ) > =<6 (y)d(x) > O(zo — yo) (C.1)
— Oar =) X | S =W 6 () (01s(0)

00 < 20) 3 [[GEe I i) Grls)  (C2)

where ¢ (z,y) = (zm\mf'f)l/Q ik o > (VB 75)? H,,(yv/B — —) is the eigenfunc-
tion of a charged particle moving in the magnetic field in the Landau gauge
(/f = eB(—y,0)). We use the Landau gauge because our system is rectangular.

If our system is circular, then it is more convenient to use the symmetric gauge

instead. The Fourier transformation of the polarization tensor M, (z,y) is
rlul/(qap) = /d3xd3ye—i($q—$0%)e—i(yp—yopo) M (z,y)

= / dPad>y e~ @I=000) o=t P=40P0) [, (1 4)) [,G(y, z)  (C.3)

where I; is the covariant derivative (identity) when p is non-zero (zero); the same

holds for I, and v. Then

Tl )= %5%_ D3aG ) PG YD )

(DY G, )DL Gly, )] +

o
MG(%Q)(D]' Dy']

(DY DYIG(x, y) (C.4)

4M2
_|_

4]\42
where D, = 0, +ie(A, — a,) is the covariant derivative. If the step function is

written in the integral form,

; 0o p—tw(t—to)
= / ¢, (C.5)

O(t —ty) =
( 0) 2m Joo w+1in
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then 1M, (z,y) can be rewritten as
M (q,p) = Z/d3xd3ydw—e*“"("’:f’*y‘))e*l(mq*ﬂfoqo)e*l(y%yopo)

[Il(¢mk(x)¢ kW) Lo (P (7)1 (1)

w— (wm — wh,) +1in

w‘f‘(wm_w;n)_in ‘ .

We now derive the Lehmann representation. Consider My (¢, p) for which I; =1

and I, = DY = 0¥ — iBys. Then

i

21 2M
l(¢mk( 2) Gk (Y)) DY (S (Y) G (2))

W = (wm — wh,) +in

(G (2) @i () DY (S (y )¢mk(x))l
W+ (W —w!l) —in

Mot (g, ) Z/dsxd3ydwe iw(20=yo) , ~i(@q—2040) , ~i(yP—yoP0)

ai L™ (¢*)[g% = (m — m')] + igo Fyn (2]
Zl [90 = (Wm — w},,) +in)
L™ () + (m = m!)] +igo Fr o ()]

T o= ] (©1)

where F o (62) = @*[Ly ™ (@) + 2L (@) (1 = G 0) — (m —m!) L™ (%)

and the polarization tensors are now

Mool@) = 4" o (@) (C.8)
Moi(q) = qog5 Mo (q)+ i€’*qe. 11 (q) (C.9)
Tjo(a) = 0a; Mo (@) — i€ q T () (C.10)
Mir(g) = a0k Mo (q) — igo€® My (q)(¢°6% — q5q) M2 ()
+ 1 3 (q) (C.11)
where
R X e e A I LA
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(Lm (7))
— m —m' m'! —2(m—m' m—m'
27rM2 " Zqo W — W/ )Wq% L)

< (¢ (L ™ (2) +2Lm @) (1~ Guro))

- (m —m) Ly (@) (C.12)
o m —m' m'! o(m—m' 1)
27T2]V12 %: @ — = wl ) m! !

x (L™ (@) + QLZI_’T @)L~ 0w o))

X (¢ (L " (@) + 2L (@) (L — S 0)

—2(m.~ m')meml (@) (C.13)
B —’2 —2 (m—m'—1

27 M2 ' %: &= )
AL (PR ) — pt (C.14)

2m M
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