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An electron moving in two dimensions under the influence of a transverse 
magnetic field and an anisotropic saddle point potential 
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the density of states.  It is shown that the energy of the Landau level of Fertig and 
Halperin can be obtained from the path integral and the delocalization of electrons is 
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CHAPTER I  
 

INTRODUCTION 
 

For a system of non-interacting electrons confined in two-dimensions under the 
influence of a transverse magnetic field, an electron occupies the discrete level known 
as the Landau level [1]. In real systems, in which impurities are present, each Landau 
level is broadened into a band, which is called “ Landau band” [2]. The state of electron 
in Landau band consists of extended (delocalized) state and localized state [3]. This 
gives rise to the quantum Hall effect [4]. 
  

If the magnetic field is very strong, the localization in quantum Hall effect can be 
discussed in terms of semiclassical approximation and percolation [5]. In semiclassical 
limit, the motion of electron is decomposed into a rapid cyclotron orbiting and a slow 
drift of orbit guiding centers move along equipotential line of impurity potential. 
Therefore, in the region where the potential forms hills or valleys the equipotential line is 
closed corresponding to localization. At the saddle point in potential, the equipotential 
line percolates and the corresponding state is extended.  
  

From a semiclassical picture, Fertig and Halperin [6] were the pioneers in 
studying the motion of electron in a saddle point potential under the influence of a 
transverse magnetic field. They proposed that in vicinity of the saddle point potential, 
tunneling of electron can occur. In order to study tunneling of electron in this region they 
were assumed an electron mass m moving in xy-plane and the saddle point potential is 
in the form )y,x(Vsp = )yx)(2/m(V 22

y
22

x0 Ω−Ω+  where xΩ  and yΩ  are parameters 
representing the saddle point potential and 0V  is the height of the saddle point 
potential. They calculated the exact transmission coefficient of an electron in this 
potential and an arbitrary uniform perpendicular magnetic field.          

 
Recently, the model of Fertig and Halperin has been widely used to study the 

levitation of extended state in quantum Hall effect [7-10]. Therefore, the propagator and 



 2

density of states of electron are necessary elements of this model. In this thesis, we use 
the Feynman path integral to evaluate the propagator and density of states of electrons 
in this model.  

 
This thesis is organized as follows. In Chapter 2, we review the quantum Hall 

effect, semiclassical approximation and the work of Fertig and Halperin. In Chapter 3, 
we review the Feynman path integral approach to calculate the propagator of electron 
and density of state.  In Chapter 4, we present an exact evaluation of a propagator for 
electron moving in the a two-dimensional saddle point potential )y,x(Vsp  under the 
influence of a transverse magnetic field and apply our result to calculate density of 
states. Discussion and conclusion are present in Chapter 5. 

   
       
  



CHAPTER II 

 
QUANTUM HALL EFFECT 

 
As mentioned in the previous chapter, we are interested in the problem of 

electron in a saddle point potential with a transverse magnetic field, which plays an 
important role in delocalization in a quantum Hall system. In this chapter, we will review 
the topic that led to this problem. The contents in this chapter are as follows: Section 
2.1, we present an exact evaluation of Landau quantization by solving the Schrodinger 
equation for an electron moving in two-dimensions under the influence of a transverse 
magnetic field. Section 2.2, we review the quantum Hall effect that has been a direct 
consequence of Landau quantization and impurity effect. Section 2.3, we discuss the 
behavior of electron in quantum Hall effect using semiclassical approximation. Section 
2.4, we present the work of Fertig and Halperin.     
   
2.1 The Landau Level  

 
The knowledge of the quantum mechanics of a free electron moving in a two-

dimensional plane, subject to a magnetic field directed perpendicular to the plane, is 
central to the understanding of quantum Hall effect [11]. In this section we will describe 
the quantum mechanics of a two-dimensional electron in a magnetic field using theory 
developed by Landau [12].   

 
Let us assume that a two-dimensional free electron gas, with effective mass m*, 

is moving in a time-independent and uniform magnetic field B
r  applied along the z 

direction. The magnetic field affects both the orbital motion and the spin dynamics of the 
electrons. For simplicity we will neglect the interaction between electron spin and the 
magnetic field. The Hamiltonian, H0, for an electron moving under the uniform magnetic 
field is given by 

2

*0 A
c
ep

m2
1H ⎟

⎠

⎞
⎜
⎝

⎛ +=
rr ,                                         (2.1)  
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where e is the magnitude of the electronic charge, c is the speed of light,  p
r

∇=
rh

i
 is the 

electron momentum operator, h  is the Planck’s constant and A
r  is the vector potential 

associated with the magnetic field. 
  

Landau simplified (2.1) by introducing the gauge (known as Landau gauge) in 
which 
 

)0,Bx,0(A =
r .                                                     (2.2) 

 
One can show that this gauge satisfies the requirement that AxB

rrr
∇= . Using Eq. (2.2) the 

Schrodinger equation corresponding to the Hamiltonian H becomes 
 

0)y,x(Em2x
c

ieB
yx 2

*2

2

2
=ψ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
∂

∂

hh
,                      (2.3) 

 
which can be solved by writing the wave function )y,x(ψ in the form 
 

)yikexp()x(U)y,x( y=ψ .                                          (2.4) 
 

Substituting Eq. (2.4) into Eq. (2.3), the wave equation for U(x) can be expressed as [1] 
 

)x(UE)x(U
m

k
x

cm
eB

2
m

x
)x(U

m2

2

*
y

*

*

2

2

*

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

∂

∂− hh .              (2.5) 

 
Eq. (2.5) is equivalent to the Schrodinger equation for a one-dimensional simple 
harmonic oscillator with cyclotron frequency ω  and equilibrium position 
 

ω
=

*
y

0
m

k
x

h .                                                   (2.6) 
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The eigen value E of Eq. (2.5) is given by the well-known expression for simple harmonic 
oscillators  
 

ω+= h)
2
1n(E ,   n=0,1,2,… .                                     (2.7)     

 
These quantized energy levels are known as Landau levels. If we put the system in the 
plane of size yxLL  where xL and yL are the dimensions of the system in the x and y 
direction, respectively. From Eq. (2.6), the x dimension of the system is confined to 0< x 
<Lx we see that 0 < ky < h/Lm x

*ω . Let us impose the periodic boundary conditions 
)Ly,x()y,x( y+ψ=ψ . Then yy L/p2k π=  with p an integer. Together with the condition 

on the range ky this implies that the total number of states or degeneracy N in a Landau 
level is yx2

LL
2

1
lπ

, or the number of states per unit area of full Landau level is   
 

c2
eB

2
1N

2B
hl π

=
π

= ,                                         (2.8) 
 

where eB/chl =  is called magnetic length. From Eqs. (2.7) and (2.8) the 
corresponding density of states is in the form of delta functions at energies nE  as shown 
in the Fig. 1. In a real sample, the impurity potential lifts the Landau levels degeneracy, 
and leads to the localization and delocalization of an electron that we will discuss it’s 
mechanism in Section 2.3.  
 

The filling factor is defined as the ratio between the density of the electrons, N 
and NB 

 

BN
N

=υ .                                                      (2.9) 

 
It is an integer, υ=n+1, if the states of the lowest n+1 Landau level are completely filled 
with electrons and the other levels are empty.   
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Fig. 1. The corresponding density of states for the free electron confined to move in a  
           plane perpendicular to the magnetic field. 
 
2.2 Quantum Hall Effect 
 
 The quantum Hall effect was discovered by Klaus von Klitzing in 1980 [13]. He 
investigated the electrical transport properties of silicon MOSFET (metal oxide 
semiconductor field effect transistor) subject to a magnetic field of about 18 T at a 
temperature of about 1.5 K. The geometry of the sample used by von Klitzing et.al. is 
shown in Fig. 2. The cross section of the sample is shown schematically in Fig. 3. The 
two-dimensional electron gas, which is central to the experiment, is confined in an 
inversion layer at interface between the silicon dioxide (SiO2) and the p-type Si 
substrate. The band bending at this interface, when the substrate is biased to produce 
an inversion layer, is shown in Fig. 4. The substrate, SiO2, layer and top metal electrode 
(known as the gate) form a parallel plate capacitor. The total amount of charge on these 
electrodes is proportional to the gate voltage Vg. As a result, the electron density N can 
be varied continuously by changing Vg. In the experiment a constant magnetic field was 
applied perpendicular to the sample along the z direction. A constant current was 
maintained in the sample in the x direction via an applied potential while the voltage 
drops across the sample in the x and y directions (denote by U and UH, respectively) 
were measured.    
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Fig. 2. Top view of the MOSFET Hall “bar” used in experiment of von Klitzing et.al.  
  

 
Fig. 3. Cross-sectional view of the sample in MOSFET along the surface channel         
           showing the two-dimensional electron gas (2DEG) under the gate. 

  

 
Fig. 4. The spatial variation in electron energy across the MOSFET when the gate            
           voltage is biased such that an inversion layer is formed at the Si substrate and  
           the oxide interface. 
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From the experimental result, they found that the transverse resistance or Hall 
resistance HR  exhibits plateaus that were given by integer fractions of 2e/h when gate 
voltages are varied (Fig. 5)         
   

....)3,2,1j(
e
h

j
1R 2H ==                                     (2.10) 

 
At the same gate voltages they observed the longitudinal resistance was extremely 
small. Since the Hall conductance, the inverse of the Hall resistance, was quantized in  
 

 
Fig. 5. The integer quantum Hall effect as discovered in 1980 by K. von Klitzing using   
           silicon MOSFET. The Hall voltage UH and the voltage V at two contacts parallel   
           to the source-drain current  (I=1 µA), U are shown as a function of the voltage       
           Vg at the gate of the MOSFET at the temperature of T= 1.5 K and magnetic flux  
           of B =18 T.  
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integer units of h/e 2 , this was called later on the integer quantum Hall effect. The 
quantization of Hall resistance can be as precise as a few parts in 108. Explicitly 
 

RH=(25,812.807)Ω / j.                                    (2.11) 
 

 This precise quantization leads to a very accurate determination of the fine 
structure constant α , 1−α =137.035, in accordance with  
 

  
h
e

2
c 2

0µ=α  ,                                              (2.12) 
 

where 7
0 104 −×π=µ H/m is the permeability of vacuum and c is the speed of light 

299,792,458 m/s. Since the speed of light c is known very precisely, the determination of 
Hall plateaus provides a very accurate method of determining α . At the same time the 
quantized Hall resistance can be used as an absolute resistance standard. 
  
 The experiments show that between two adjacent Landau levels, the Hall 
resistance has fixed values and the longitudinal resistance vanishes, which means that 
the electrons are localized in this region. Localization is a key point to interpret the 
integer quantum Hall effect.  
  

Due to impurities, the density of states will evolve from sharp Landau levels to a 
broader spectrum of levels (Fig. 6). There are two kinds of levels, localized and 
extended, in the new spectrum, and it is expected that the extended (delocalized) states 
occupy a core near the original Landau level energy while the localized states are more 
spread out in energy. Only the extended states can carry current. Therefore, if the 
occupation of the extended states does not change, the current will not change. An 
argument due to Laughlin [14] and Halperin [15] showed that extended states indeed 
exist at the cores of the Landau levels and if these states are full, (i.e., the Fermi level is 
not in the core of extended states) then they carry exactly the right current to give (2.10). 
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Fig. 6. In the presence of impurities, the Landau levels broaden to a band. Regions of     
           extended state are shaded. 
 
 The existence of the localized states can explain the appearance of plateaus. As 
the density of electrons is increased the localized states gradually fill up without any 
change in occupation of the extended states, thus without any change in the Hall 
resistance. For these densities the Hall resistance is on a step in Fig. 5 and the 
longitudinal resistance vanishes. It is only as the Fermi level passes through the core of 
extended states that the longitudinal resistance becomes appreciable and the Hall 
resistance makes its transition from one plateau step to the next. 
 
 
2.3 Semiclassical and Percolation Picture 
 
 In Section 2.2, we have shown that existence of localized state is centrally 
important to understand integer quantum Hall effects. In this section, we will show that 
for the disorder potential, smooth on the scale of the magnetic length, the localization in 
integer quantum Hall effect can be discussed in terms of semiclassical approximation. 
  

From Hamiltonian H0 in Eq. (2.1), the semiclassical approximation is most 
conveniently derived by replacing the coordinate (x,y) by guiding center coordinates 
(X,Y) and relative coordinate (ξ,η) given by  
 

ξ+= Xx ,                                                 (2.13a) 
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η+= Yy ,                                                 (2.13b) 

where 
                                            ),A

c
ep(

eB
c

yy −−=ξ                                       (2.14a) 
 

      ).A
c
ep(

eB
c

xx −=η                                         (2.14b) 
 

From the Heisenberg equation of motion, we get 
  

  ωη=ξ=ξ ],H[i
o

h
& ,                                   (2.15a) 

 
ωξ−=η=η ],H[i

o
h

& .                                       (2.16b) 
 

 We see that (ξ,η) indeed rotate with angular frequency ω  around guiding center 
(cyclotron motion). Due to the commutation relation of p

r  and r
r , both guiding center 

coordinate and relative coordinate obey canonical commutation relations, 
 

2i],[ l=ηξ ,                                                (2.17a) 
 

2i]Y,X[ l−= ,                                             (2.17b) 
  
   Using Eq. (2.14), the Hamiltonian Ho can be written in terms of ξ and η, 

 
( )22

2o
2

H η+ξ
ω

=
l

h ,                                      (2.18) 

 
which expresses the degeneracy of Landau levels as Ho does not depend on X and Y. 
  

In the presence of a disorder potential V(x,y), the degeneracy is lifted. The 
equations of motion for the center coordinates are 
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 ,
y
V]X),y,x(VH[iX

2

0 ∂
∂−

=+=
h

l

h
&                             (2.19a) 

 

  .
x
V]Y),y,x(VH[iY

2

0 ∂
∂

=+=
h

l

h
&                                (2.19b) 

 
 Due to impurity ions which are randomly located in sample, creating fluctuations 
in V(x,y). If the sample is penetrated by a strong magnetic field, the cyclotron radius is 
much smaller than the potential fluctuations in the sense that lh

r
/)y,x(V ω<<∇ . 

Consequently, the potential V(x,y) is smooth on the scale of magnetic length l  , we can 
replace V(x,y) by V(X,Y) and obtain a drift of the guiding center along equipotential, 
 

    ,
Y
VX

2

∂
∂

−=
h

l&                                              (2.20a) 
 

X
VY

2

∂
∂

=
h

l& .                                           (2.20b) 
 

In this limit, the eigen energies are 
     

 .)Y,X(V)
2
1n(E +ω+= h                           (2.21)   

 
 This discussion shows that in the semiclassical limit the motion of electrons can 
be decomposed into guiding center motion along equipotential line of disorder potential 
and cyclotron motion with frequency ω  around guiding center. It then seems very 
reasonable that in the presence of smooth disorder potential the eigenfunction will live 
on contour lines of constant energy on the random energy surface. Thus low energy 
states will be found lying along contours in valleys in the potential energy landscape 
while high-energy state will be found encircling hills in the landscape. In both cases the 
corresponding states are localized. 
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For the delocalization in the smooth disorder potential landscape, Trugman [16] 
pointed out that in this limit the delocalization of electronic states is associated with the 
percolation of equipotential lines which percolate at the saddle points in potential 
landscape. The energy of extended state is thus clearly determined by saddle point 
potential in this limit. For a disorder potential symmetrically distributed about zero, then 
all saddle point in potential landscape are identified with zero energy.     
  

In order to understand the electron transport from the above picture, it is useful 
to imaging gradually filling a random landscape with water, in this analogy sea level 
represents the Fermi energy for electron. When only a small amount of water has been 
added, the water will fill in the valleys to form small lakes. As the sea level is increased, 
at a “height” of a saddle point in potential energy landscape (zero energy) their 
shorelines will be percolate from one side of the system to the other (Fig. 7). As the sea 
level is raised still further, the ocean will cover the majority of the landscape and only the 
hill will stick out above the water. The shoreline will no longer percolate but only 
surround the hill.  

 
2.4 Fertig and Halperin Model 
  

In the previous section we presented that behavior of an electron moving in two-
dimensional disordered system with strong magnetic field can be understood using a 
semiclassical picture. However, semiclassical picture dose not include the effect of 
quantum tunneling which can occur in the vicinity of saddle point when two orbits on 
equipotential line at the same energy approach each other on the distance less than the 
cyclotron radius (Fig. 8). In this section, we present the work of Fertig and Halperin who 
studied tunneling in this region by assuming the saddle point potential in the form 

=)y,x(Vsp  (m/2) 22
x x(Ω - )y22

yΩ +V0. The parameters xΩ  and yΩ  are representing 
the harmonic and inverted harmonic of saddle point potential in the x and y directions, 
respectively, and 0V  is the top of the saddle point potential. The Hamiltonian for this 
system is 
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Fig.  7. Left: Schematic plot of smooth random potential V(x,y) with  
            equipotential lines at E equal to the “height” of the saddle points 
            in the potential energy landscape. Right: Equipotential lines of the  
            same potential for E equal to valley, zero energy (“height” of saddle 
            point), and hill corresponding to long dashed, solid and short dashed  
            lines respectively. Note the solid line percolating the system  
            from top to bottom as indicated by the arrows.    

 

 
Fig. 8.  Sketch of the saddle point potential corresponding to the model of Fertig and   
Fig. 8.  Halperin. The electron drifts along equipotential lines (a and b) and can tunnel          
Fig. 8.  between different contours where they get close in distance less than cyclotron     
Fig. 8.  radius (c< l ). 
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2

A
c
ep

m2
1H ⎟

⎠

⎞
⎜
⎝

⎛ +=
rr +(

2
m ) 22

x x(Ω - )y 22
yΩ +V0,                       (2.22) 

  
By using symmetric gauge 

2
BA =

r (-y,x,0) there is coupling between x and y in 
the Hamiltonian. In order to decouple this Hamiltonian, they express Eq. (2.22) in the 
form 

          
)aaaa(

i2
)1aaaa(~H 12212211

)))))))) ++++ −
ω

+++ω= 0
2

11
2

22 V])aa()aa[( ++−+γ+ ++ )))) ,  (2.23) 
 

where 2
2 ~

4
~ Ω+

ω
=ω , 

2
~ 2

y
2
x2 Ω−Ω

=Ω , 
ω
Ω

=γ ~
2 , 

2

2
y

2
x2 Ω+Ω

=Ω , and operators 1a
) and 2a

)  
are given by 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

ω
+ω=

x~m

1x~m
2

1a1
) ,                                  (2.24a) 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

ω
+ω=

y~m

1y~m
2

1a 2
) ,                                 (2.24b) 

 
so that [ 1a

) , +
1a
) ]=[ 2a

) , +
2a
) ]=1 and [ 1a

) , 2a
) ]=[ 1a

) , +
2a
) ]=0 (omitted h  in momentum operator). 

 
Hamiltonian Eq. (2.23) can decouple into a sum of two commuting Hamiltonian 

by introduce a Bogoliubov transformation 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
φ−φ−

φφ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2

1

2

1

b

b
cosisin

sincosi
a
a

)

)

)

)

,                                 (2.25) 

 
with 

γ
ω−

=φ
4

)2tan( , Eq. (2.23) becomes H1+H2 , where  
 

                   ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ω
+γ−

ω
γ

γ
ω

+γ−
ω

=
+

+

1

1

22

22

111
b

b

)
4

(
2

~

)
4

(
2

~

bbH )

)
)) ,            (2.26a) 
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( ) 0
2

2

22

22

222 V
b

b

)
4

(
2

~

)
4

(
2

~

bbH +⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ω
+γ+

ω
γ−

γ−
ω

+γ+
ω

=
+

+
)

)
)) .  (2.26b) 

 
Operators 1b

)  and 2b
) satisfies commutation relation [ 1b

) , 2b
) ]=[ 1b

) , +
2b
) ]=0 and 

[ 1b
) , +

1b
) ]=[ 2b

) , +
2b
) ]=1. From Eq. (2.26) H2 can be diagonalized with a second Bogoliubov 

transformation of the form 
 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θθ

θθ
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++
2

2

22

22

2

2

c

c

coshsinh
sinhcosh

b

b
)

)

)

)

,                             (2.27) 

 
with 
                                                     

22
2

)
4

(
2

~)2tan(
ω

+γ+
ω

γ
=θ . 

 
For this transformation, [ 2c

) , +
2c
) ]=1, Eq. (2.26b) becomes 

 
02222 V)

2
1cc(E

2
1H ++= + )) ,                                   (2.28) 

where  
 

2/14224
2 )4~4((

2
1E Ω+Ωω+ω= 2/122 )~2Ω+ω+ .                (2.29) 

 
Equation Eq. (2.28) shows that H2 has the form of harmonic oscillator 
Hamiltonian. Unlike H2, H1 cannot be written in the harmonic oscillator 
form. However, H1 can be written in a convenient form, which preserve 
the commutation relation [ 1c

) , +
1c
) ]=1,    

 
)cc(EH

2
1

2
111

++=
)) ,                                         (2.30) 

 
when  
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θθ

θθ
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++
1

1

11

11

1

1

c

c

coshsinh
sinhcosh

b

b
)

)

)

)

,                            (2.31) 

 

γ−

ω
+γ−

ω

=θ

22

1

)
4

(
2

~

)2tan( ,                               (2.32) 
and 

2/14224
1 )4~4((

22
1E Ω+Ωω+ω= 2/122 )~2Ω−ω− .             (2.33) 

 
Using Eqs. (2.28) and (2.30), full Hamiltonian may be written as 

 
0222

2
1

2
11 V)

2
1cc(E

2
1ccEH +++⎟

⎠
⎞

⎜
⎝
⎛ += ++ )))) ,                         (2.34) 

 
with [ 1c

) , 2c
) ]=[ 1c

) , +
2c
) ]=0, and [ 1c

) , +
1c
) ]=[ 2c

) , +
2c
) ]=1. 

 
In order to solve the Schrodinger equation from Eq. (2.34), it is convenient to define the 
following operator: 
 

)cc(
i2

1
11
))

−=Χ + ,                                         (2.35a) 

 
)cc(

2
1

11
))

+=Ρ + ,                                         (2.35b) 
 

)cc(
2

1s 22
))

+= + ,                                          (2.35c) 
 

)cc(
i2

1p 22
+−=
)) .                                       (2.35d) 

 
Using Eq. (2.35), the Hamiltonian H1 and H2 may be written as  
 

( )22
11 PEH Χ−= ,                                         (2.36a) 
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( ) 0
22

22 VspE
2
1H ++= ,                                   (2.36b) 

 
with [Χ ,Ρ ]=i, [s,p]=i,  and [s,Χ ]=[s, Ρ ]=[p,Χ ]=[p, Ρ ]=0. 
 

The full Hamiltonian is a sum of two commuting Hamiltonians, the first (H1) being 
equivalent to that of a one-dimensional inverted harmonic oscillator, and the other (H2) 
representing the one-dimensional particle in a confining harmonic potential. Physically, 
the coordinate s is associated with the cyclotron motion of electron, and the coordinate 
Χ  with the guiding center motion.      

 
Thus, the wave function of this system can be written in the form )s,(ΧΨ  where 

Χ  and s are real numbers. Since  02 VH −  is Hamiltonian of one-dimensional harmonic 
oscillator, )s,(ΧΨ  can be chosen to be )s()( nϕΧφ  where 

2H )s(nϕ = )s(VE)
2
1n( n02 ϕ

⎭
⎬
⎫

⎩
⎨
⎧ ++ , and )s(nϕ  to be normalized to unity ( 1)s(ds 2

n =ϕ∫
∞

∞−

). 

This implies that energy spectrum is unlike discrete Landau levels, the saddle-point 
potential allows for a continuous energy E for each discrete state n. For 2

y
2
x ,ΩΩ → 0 the 

energy E becomes discrete Landau level [8]. Consequently, Schrodinger’s equation for 
wave function of this form may be written as 
 

( ) )()VE)
2
1n(E()(PE)(H 02

22
11 Χφ−+−=ΧφΧ−=Χφ ,                    (2.37)  

 
where 2E)

2
1n(E +−  is the guiding center energy of electron. Eq. (2.25) implies that the 

probability that the electron in this system will go through the saddle point is equivalent 
to the probability that the one-dimensional electron will be transmitted through the 
inverted harmonic oscillator potential.  

 
From the work of Fertig and Halperin, in Chapter 4, we will use  the Feynman 

path integral to derive the exact propagator and evaluate the density of states of 
electron in this model. 



CHAPTER III 
 

THE PROPAGATOR AND FEYNMAN PATH INTEGRAL 
  

Motivated by the work of Fertig and Halperin, who treat the problem of two- 
dimensional electron in a saddle point potential with a transverse magnetic field by 
solving Schrodinger equation, we will study the electron energy spectrum in this system 
by using Feynman path integral approach. Before we present our calculation in next 
chapter, in this chapter we will review the Feynman path integral and some applications 
that can be applied to our work. 
  
3.1 The Propagator and Feynman Path Integrals 
 

In quantum mechanics, the dynamical information of a quantum mechanical 
system is contained in the wave function. It is a function, sometimes called the 
probability amplitude that determines the wave associated with a particle. In practice, 
we can obtain their wave function by solving the Schrodinger’s equation. 
 In Schrodinger’s picture [17], there exists the state vector )t(Ψ that evolves as 
 

)t()t,t(U)t( ′Ψ′=Ψ                                 (3.1) 
 

where U(t,t’) is the time evolution operator satisfying the following  properties, 
i ) )t,t(UH)t,t(U

t
i ′=′
∂
∂

h  
ii ) 1)t,t(U =′′                    {initial condition}  
iii ) )t,t(U)t,t(U)t,t(U ′′′=′′′  {composition law} 
iv ) )t,t(U)t,t(1U)t,t(U ′′′=′′′−=′′′+  

 
and H is the Hamiltonian. If the Hamiltonian is not an explicit function of time then the 
evolution operator is of the form 
 

⎭
⎬
⎫

⎩
⎨
⎧ ′′′−=′′′ )t,t(Hiexp)t,t(U

h
 .                                    (3.2) 
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In the configuration representation Eq. (3.1) becomes 
 

 )t(xx)t,t(Uxx3d)t(x ′Ψ′′′′′′′′∫
∞

∞−
=′′Ψ′′

rrrr ,                        (3.3) 

 
where the complete set 

    1xxx3d =′′′∫
∞

∞−

rr .                       (3.4) 

 
We can rewrite Eq. (3.3) as 
 

)t(x)t,x;t,x(Kx3d)t(x ′Ψ′′′′′′′′∫
∞

∞−
=′′Ψ′′

rrrr ,                   (3.5) 

 
where 

  x)t,t(Ux)t,x;t,x(K ′′′′′′=′′′′′′
rrrr .                                    (3.6) 

 
)t,x;t,x(K ′′′′′′

rr  is called the “propagator” as the probability amplitude of a particle to go 
from x′

r  at time t ′ to x ′′
r  at time t ′′ . 

 
 According to Feynman’s idea [18], there are infinitely many paths for a particle to 
go from the initial point to the final point under the restrictive condition that x)t(x ′=′

rr , 
x)t(x ′′=′′
rr . Each trajectory contributes to the total amplitude, to go from x ′

r  to x ′′
r . They 

contribute equal amounts to the total amplitude, but at different phases. The phase of 
the contribution from a given path is the action S for that path in unit of action h . That is, 
to summarize, the probability )x,x(P ′′′

rr to go from the point x ′
r  at t ′  to the point x ′′

r at t ′′  is 
the absolute square of an amplitude )t,x;t,x(K ′′′′′′

rr , )x,x(P ′′′
rr = 2

)t,x;t,x(K ′′′′′′
rr  to go from 

x ′
r  to x ′′

r . This amplitude is the sum of all amplitude contributions [ ])t(x
r

Φ  from each 
path, that is 
 

  [ ]∑
′′′

Φ=′′′′′′

xtoxfrom
pathallover

)t(x)t,x;t,x(K
rr

rrr  .                                         (3.7) 
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The contribution of a path has a phase proportional to the action S,    
 

                 [ ] =Φ )t(x
r [constant] [ ]

⎭
⎬
⎫

⎩
⎨
⎧ )t(xSiexp

r

h
,                                     (3.8) 

 

and                                     ( )∫
′′

′

=
t

t

x,xLdtS &rr ,                                                       (3.9) 

 
with the Lagrangian                    ( ) ( )xVxm

2
1x,xL 2 r&r&rr

−= .                                          (3.10) 
 

 Actually, we can not evaluate )t,x;t,x(K ′′′′′′
rr  from Eq. (3.7) directly because of 

the infinitely many paths contributing. Feynman [18] proposed another way to perform a 
new formalism of )t,x;t,x(K ′′′′′′

rr . By dividing the time variable into steps of width ε→0, 
this gives us a set of value it  spaced at a distance ε apart between the values t ′  and t ′′  
.At each time it  we select some special ix

r  and construct a path by connecting all 
points. It is possible to define a sum over all paths in this manner by taking a multiple 
integral over all values of ix

r  for i between 1 and N-1, where 
                                                          
                                                         Nε = t ′′ - t ′    

             ε  = ti – ti-1 
                                                           to = t ′  

         tN = t ′′  
    xx o ′=

rr ; xxN ′′=
rr  

The resulting equation is      
 

⎭
⎬
⎫

⎩
⎨
⎧

=′′′′′′ −

∞→ ∫ ∫ ∫ )]t(x[Siexp
A
xd

...
A
xd

A
xd

...
A
1lim)t,x;t,x(K 1N

3
2

3
1

3

N

r

h

rr ,           (3.11) 
 

where ( )∫
′′

′

=
t

t

x,xLdtS &rr and the normalizing factor A= 2/3)
m
i2( επ h .  
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Fig. 9. The sum over paths is defined as a limit, in which at first is specified by giving  
           only its coordinate x at a large number of specified time separated by  
           very small interval ε. The path sum is then an integral over all these 
           specified coordinates. Then to achieve the correct measure, the   
           limit is taken as ε approaches zero.            
            
For small time slices, 
 

    )x,x(Ldt)t,t(S
i

1i

t

t
1ii

&rr
∫
−

=− ( ) ( )i2
1ii xVxx

2
m rrr

ε−−
ε

= − ,                (3.12) 

 
so that Eq. (3.11) can be written as 
 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ε−−
ε

⎟
⎠

⎞
⎜
⎝

⎛
επ

=′′′′′′ ∑∫ ∫ ∫
=

−−
∞→

N

1i
i

2
1ii1N

3
2

3
1

32
N3

N
xVxx

2
miexpxd...xdxd...

i2
mlim)t,x;t,x(K

rrr

hh

rr . 

(3.13) 
 

Feynman wrote this sum over all paths in a less restrictive notation as 
 

   ∫ ⎭
⎬
⎫

⎩
⎨
⎧ ′′′=′′′′′′ ]x,x[Siexp)]t(x[D)t,x;t,x(K

rr

h

rrr ,                       (3.14)  
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which is called the Feynman path integral. Here the symbol ∫ )]t(x[D
r  is defined by Eq. 

(3.13) and represents an integration over all possible paths connecting the point ( x ′
r , t ′ ) 

and ( )t,x ′′′′
r . 

 
3.2 Path Integral of a Free Particle 
 
 From Eq. (3.13) we can compute the propagator of a free particle. The 
Lagrangian for a free particle is         

2x
2
m)x,x(L &r&rr

= .                                              (3.15) 
 

The three dimensional propagator is simply the product of three one-dimensional 
propagators, so that these is no point in cluttering our equation with vector. We wish to 
evaluate 
 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
ε

⎟
⎠

⎞
⎜
⎝

⎛
επ

=′′′′′′ ∑∫ ∫ ∫
=
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∞→

N

1i

2
1ii1N21

2
N

N
xx

2
miexpdx...dxdx...

i2
mlim)t,x;t,x(K

rr

hh

rr .   (3.16) 

 

This is an integral of the form ∫
∞

∞−

+− ]bxaxexp[dx 2 , which is called a gaussian integral. 

Since the integral of a gaussian is again gaussian, we may carry out the integration on 
one variable after the other with the help of the formula. 
 
 

[ ]

.)xx(
)2(i2

mexp
)2(i2

m

)xx()xx(
i2

mexp
i2

mdx

2
02

2/1

2
01

2
12

2/2

1

⎭
⎬
⎫

⎩
⎨
⎧

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
επ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
επ

=

⎭
⎬
⎫

⎩
⎨
⎧

−−−⎟
⎠

⎞
⎜
⎝

⎛
επ

⎟
⎠

⎞
⎜
⎝

⎛
επ∫

∞

∞−

−

hh
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(3.17) 
After the integration is completed, the limit may be taken. The result is  
 

⎭
⎬
⎫

⎩
⎨
⎧

′−′′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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hh
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3.3 The Quadratic Lagrangian 
 
 In principle, if the path integral is still in a gaussian form, it is possible to carry 
out the integral over all paths in the way described in the previous section. But in real 
practice it is too complicated to perform, for example, the harmonic oscillator problem. 
We now introduce some additional mathematical techniques, which help us to sum over 
paths in some certain situations. The simplest example to be studied is a quadratic 
Lagrangian, this corresponds to a case in which the action S contains the path x(t) up to 
the second power. 
 To illustrate how the method works in such case, consider a particle whose 
Lagrangian has the form 
 

)t(fx)t(ex)t(dx)t(cxx)t(bx)t(a)t,x,x(L 22 +++++= &&&& .        (3.19) 
 
The action is the integral of this function with respect to time between two fixed end 
points. We wish to determine 
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t

t

)t,x,x(Ldtiexp)]t(x[D)t,x;t,x(K &
h

,                        (3.20) 

 
the integral over all paths which go from ( x ′ , t ′ ) to ( x ′′ , t ′′ ). Of course, it is possible to 
carry out this integral over all paths in the way which was first described by dividing the 
region into short time elements, and so on. But we shall not go through this tedious 
calculation, since we can determine the most important characteristics of the propagator 
in the following way. 
 Let )t(x  be the classical path between the specified end points. This is the path, 
which has an extremum for the action S. For this notation we will use 
  

)]t(x[S]x,x[Scl =′′′ .                                             (3.21) 
 
We can represent x in term of x and y  
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yxx += .                                                       (3.22) 

    
That is to say, instead of defining a point on the path by its distance )t(x  from an 
arbitrary coordinate axis, we measure instead the deviation y(t) from the classical path, 
as shown in Fig. 10. 

  
Fig. 10. The difference between the classical path x (t) and some possible alternative    
             path. The end point y( t ′′ )= y( t ′ )=0. 
 

At each t the variable x and y differ by the constant x . Therefore, clearly, dxi = 
dyi for each specific point it  in the subdivision of time. In general, we may say D[x(t)] = 

)]t(y[D . The integral for the action can be written as  
     

..])yyx2x)(t(a[dt)]t(yx[S)]t(x[S 22
t

t

+++=+= ∫
′′

′

&&& .                   (3.23) 

  
If all the terms, which does not involve y are collected, the resulting integral is 

just clS)]t(x[S = . If all the terms, which contains y as a linear factor, are collected, the 
resulting integral vanishes. This could be proved by actually carrying out the integration, 
however, such a calculation is unnecessary, since we already know the result is true. 
The function )t(x  is determined by this very requirement Eq. (3.21). That is, x  is so 
chosen that there is no change in S, to first order, for variation of path around x . All that 
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remains are the second order term in y. These can be easily picked out, so that we can 
write 
 

]y)t(cyy)t(by)t(a[dt]x,x[S)]t(x[S 22
t

t
cl +++′′′= ∫

′′

′

&& .                (3.24) 

 
 The integral over paths dose not depend upon the classical path, so the 
propagator can be written        

.]y)t(cyy)t(by)t(a[dtiexp)]t(y[D
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     (3.25) 

 
 Since all path y(t) start from and return to the point y=0, the integral over paths 
can be a function only of times at the end points. This means that the kernel can be 
written as  
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⎫

⎩
⎨
⎧ ′′′′′′=′′′′′′ ]x,x[Siexp)t,t(F)t,x;t,x(K cl
h

.                      (3.26) 
 

 So the propagator is determined except for a multiplying factor )t,t(F ′′′ , which 
may be determined by some other known properties of the solution. However, for a 
quadratic Lagrangian, van-Vleck [19] and Pauli [20] had verified that the pre-factor 

)t,t(F ′′′  can be evaluated exactly by using the formula 
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2

h
,                           (3.27) 

 
so that Eq. (3.26) becomes 
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 It is interesting to note that the expression K ~ exp[ clSi
h

] is exact for the case 
that S is a quadratic form. 
 
3.4 Path Integral of a Harmonic Oscillator 

 
From Eq. (3.28) we can compute the propagator of a harmonic oscillator. For a 

harmonic oscillator the Lagrangian is  
 

222 xm
2
1xm

2
1)x,x(L ω−= && .                                   (3.29) 

 
This Lagrangian leads to equation of motion [21] 
     

0xx 22 =ω+&& ,                                                 (3.30) 
 
Subject to the boundary condition  
 

x(T) = xT , x(0) = xo ,                                                                        (3.31) 
 

and has the solution 
 

tsinBtcosA)t(x ω+ω= .                                       (3.32) 
 
After applying the boundary conditions, Eq. (3.32) becomes  
 

{ })tT(sinxtsinx
Tsin

1)t(x oT −ω+ω
ω

= .                    (3.33) 
 
Using this result, the action for the classical trajectory Eq. (3.33) is given by  
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The pre-factor associated with the propagator can be evaluated exactly. It is found that  
 

Tsini2
m)T(F

ωπ
ω

=
h

.                                             (3.35) 
 
From Eqs. (3.26), (3.34) and (3.35) we obtain the propagator 
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3.5 Density of States and Energy Spectrum   
   

The fundamental quantity that calculated from a path integral is the time 
evolution amplitude or propagator of a system )t,x;t,x(K ′′′′′′

rr . In this section we give a 
general method of evaluation the density of states and energy spectrum from the 
propagator [22]. 

 
For a system with a time-independent Hamiltonian, the propagator can be 

written as matrix element of the time evolution operator 
⎭
⎬
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which implies  
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We now want to use the explicit form of the propagator in order to calculate the energy 
spectrum of a particle in the potential. To this end we consider the trace of the time-
evolution operator:  
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i.e., where nx)x( 00n

rr
=ϕ  is the eigenfunction with eigenvalue n and ttT ′−′′= , we 

have found  
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With the Fourier transform 
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we immediately obtain 
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 As an example of the foregoing formalism, we consider the harmonic oscillator. It 
is easy to deduce the energy levels En by forming the trace 
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         (3.41) 
The Fourier transform is  
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which gives the energy level 
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2
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⎛ += h                               (3.43) 
 
From Eq. (3.38), G(T) can be rewritten as an integral 
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with 
 

∑ −δ=ρ
n
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being the density of states available to the system in an energy interval (E+dE). The 
density of states may also be written formally as 
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3.6 Path Integral of an Electron Confined in Two Dimensions with Perpendicular 
Magnetic Field   
 
 We now return to the system of an electron confined in two dimensions under the 
influence of a transverse magnetic field B, in z direction. Using the symmetric gauge 

)0,2/x,2/y(BA −=
r , the Lagrangian of the corresponding classical system is  

 
( ){ }xyyxyx

2
mL 22 &&&& −ω++= ,                                    (3.47) 

 
where mc/eB=ω  is the cyclotron frequency. Eq. (3.47) leads to the equation of motion 
[21] 

 
0yx =ω− &&& ,                                                   (3.48) 

 
0xy =ω+ &&& .                                                   (3.49) 

 
Subject to the boundary condition 
 

  T0T0 y)T(y,y)0(y,x)T(x,x)0(x ==== .                       (3.50) 
 

In order to solve the classical motion, we substitute Eq. (3.49) into Eq. (3.48), then we 
have 
 

0
dt
dx

dt
xd 2
3

3
=ω+ , 

which has the solution 
 

CtcosBtsinA)t(x +ω+ω= .                                    (3.51) 
 

Using Eqs. (3.51) and (3.48), we obtain 
 

DtsinBtcosA)t(y +ω−ω=                                      (3.52) 
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where A,B,C and D are arbitrary constants. After applying boundary condition, Eqs. 
(3.51) and (3.52) becomes 
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Using Eq. (3.28) we obtain the propagator 
 

{ ( ) }.)yxyx()yy()xx((
2
Tcot

22
imexp

)2/Tsin(
2/T

Ti2
m)0,r;T,r(K

0TT0
2

0T
2

0T

0T

−ω+−+−
ωω

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω

ω
π

=

h

h

rr

 

(3.55) 
Because )0,r;T,r(K 0T

rr  obtained in Eq. (3.55) is translation invariant, having the property 
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rrrr
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so that for finding the density of states, the end point Tr
r and initial point 0r

r  must be the 
same. It therefore follows that [23] 
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where A is area of the system. 
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 Now applying Eq. (3.57) to Eq. (3.55), one finds the density of states of an 
electron, 
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π
ω
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2
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h

                            (3.58) 

 
Eq. (3.58) consists of discrete energy level at each Landau levels ω+ h)

2
1n(  separated 

by cyclotron energy ωh , and degeneracy per Landau level per unit area is 
hπ
ω

2
m  which is 

equivalent to Eqs. (2.7) and (2.8). 
 
3.7 Path Integral of an Electron Confined in Two-Dimensional Harmonic Potential with 
Perpendicular Magnetic Field 

 
From Eq. (3.47), in the presence of an isotropic quadratic potential, 

)y,x(Vλ = )yx(
2

m 22
2

+
λ , where λ  is a parameter representing this potential. The 

Lagrangian in Eq. (3.47) becomes 
 

( ){ }.)yx(xyyxyx
2
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the equations of motion are in the form 

 
0xyx 2 =λ+ω− &&& ,                                        (3.60) 

 
0yxy 2 =λ+ω+ &&& .                                        (3.61) 

 
In order to solve these equations, Papadopoulos [24] introduced a 2x2 matrix 
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Using this matrix, Eqs. (3.60) and (3.61) can be written as 
 

0rrJr 2 =λ+ω+ &&& ,                                          (3.63)  
  
where the matrix 

y
x

r = . Writing the solution of Eq. (3.63) in the form )texp(~r γ
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auxiliary equation associated with Eq. (3.63) is 
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( )B}tJexp{A}tJexp{}

2
tJexp{)t(r ω′−+ω′

ω−
= ,                    (3.67) 

 
where A and B  are arbitrary constants. Using the property β±β=β± sinJcosI}Jexp{ , 
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Using this result, the classical action is given by  
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Substituting Eq. (3.69) into Eq. (3.28), we obtain the exact propagator  
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(3.70) 
After taking the trace Eq. (3.70), we obtain 
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In comparison with Eq. (3.41), it is found that this is a product of two harmonic oscillators 
with renormalized frequency 

2
ω

+ω′  and 
2
ω

−ω′ . Substituting Eq. (3.71) into Eq. (3.46), 
then the density of state is given by 
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Eq. (3.72) indicates the discrete level at each index p and q.  
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The matrix method of Papadopoulos has been used by Kagalovsky [25] to 
evaluate the exact propagator of a two-dimensional electron system in the model of 
Fertig and Halperin. Since )y,x(Vsp  of Fertig and Halperin is anisotropic which matrix 
method is not applicable, Kagalovsky assumed the saddle point potential in the 

isotropic form )y,x(Vλ
)yx(

2
m 22

2
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λ
= . By using symmetric gauge )0,2/x,2/y(BA −=

r

 
for magnetic field in the z direction, the Lagrangian of the corresponding classical 
system is presented as 
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01  is a Pauli matrix. The action is calculated along the trajectory 
evolving via the equation of motion 
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The solution of Eq. (3.74) may be written in the form )tRexp(~r , where the matrix R  
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After this substitution, Eq. (3.74) becomes 
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where 21ωω=ω′  and 43ωω=ω′′ . 
 Therefore the general solution of Eq. (3.74) is )t(r = a)tRexp( 1 + b)tRexp( 2 . 
Matrices a  and b  are determined from the boundary conditions Tr)T(r = , 0r)0(r = . 
Since the Lagrangian in this case is quadratic the classical action can be evaluated 
from 
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After applying boundary condition to )t(r  then substituting into Eq. (3.79), the classical 
action is given by the following formula: 
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where  TsinhTsinTcoshTcos22 4132 ω′′ω′
ω′′ω′

ωω−ωω
+ω′′ω′−=∆ .  Using Van Vleck-Pauli 

formula to evaluate the pre-factor, the exact propagator is given by  
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This is the exact propagator of Kagalovsky, which can be used to consider the 
behavior of a tunneling electron. Kagalovsky pointed out that the propagator might be 
transformed to new coordinates is product of two independent propagators, 1Κ  for the 
inverted harmonic and 2Κ  for the harmonic oscillator. The relation between the 
propagator in “old” coordinate Eq. (3.81) and in coordinates from the work of Fertig and 
Halperin is given by the following integral: 

 
  )0,s;T,s()0,;T,(sddsdd)0,r;T,r( 210T ′′′ΚΧ′Χ ′′Κ′′Χ ′′′Χ′=Κ ∫∫∫∫  

              
},y)s(

2
miexp{}y)s(

2
miexp{

))s(
m
2x())s(

m
2x(

043T43

21o21T

′α+Χ′β
ω′′α+Χ ′′β

ω

′β−Χ′α
ω

−δ′′β−Χ ′′α
ω

−δ

hh

 

             (3.82) 
 

where iα and iβ  are coefficient dependent on m, ω , and λ . In this thesis, we will show 
that the exact propagator in the case of anisotropic saddle point potential Vsp(x,y) can 
be obtained. Since the matrix method cannot use in the case of anisotropy, we will 
develop a new method to solve the classical motion. The detailed calculation is 
presented in the next chapter. 



CHAPTER IV 
 

EXACT PROPAGATOR FOR TWO-DIMENSIONAL ELECTRON  
IN AN ANISOTROPIC QUADRATIC SADDLE POINT  

POTENTIAL IN A TRANSVERSE  
MAGNETIC FIELD 

  
In this chapter, we derive the exact propagator for a two-dimensional system in 

the presence of transverse magnetic field and anisotropic quadratic saddle point 
potential. As presented in Chapter 3, when the potential is in the form of an isotropic 
quadratic potential the propagator can be evaluated exactly by using two-dimensional 
matrix of Papadopoulos. However, the matrix method is not applicable in our case due 
to the anisotropy of saddle point potential. In stead we introduce the complex variable 
path to decouple the two classical equations of motion. The classical solutions are 
obtained and used to calculate the classical action. Since the action is quadratic one 
can obtain the pre-factor by employing the Van Vleck-Pauli method which leads to the 
exact propagator. The propagator can be used to obtain the density of states and 
energy spectrum. 
 
 
4.1 Classical Action and Exact Propagator 
 
 We now consider the problem of an electron confined in a two-dimensional 
quadratic saddle point potential )y,x(Vsp = V0 + (m/2) )yx( 22

y
22

x Ω−Ω  with a magnetic 
field B has the direction along the z-axis. The Lagrangian of the corresponding classical 
system is presented as 

 
o

22
y

22
x

22 V)yx(
2
m)xyyx(

2
m)yx(

2
mL −Ω−Ω−−

ω
++= &&&& ,             (4.1) 

 
where ω=eB/mc is the cyclotron frequency, xΩ  and yΩ  are 
parameters representing the harmonic and inverted harmonic of saddle point potential 
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in the x and y directions, respectively, and 0V  is the top of the saddle point potential. 
The required propagator can be written in the path integral form, 
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⎨
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rrr ,                         (4.2) 

 
where r

r =(x,y) , )t,r,r(Ldt]r,r[S
T

0
0T

&rrrr
∫=  is the action and )]t(r[D

r  denote 

measure of the path integral to be carried out with the boundary 
conditions 0r)0(r

rr
= and Tr)T(r

rr
= . The propagator in Eq. (4.1) can be 

rewritten as  
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(4.3) 
Since the Lagrangian given by Eq. (4.1) is quadratic the path 
integral can be evaluated exactly as  
 

,Siexp)T(F)0,r;T,r(K cl0T
⎭
⎬
⎫

⎩
⎨
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rr                                  (4.4) 

 
where F(T) is a pre-exponential factor which can be calculated 
by using Eq. (3.27). 
  

We now wish to calculate the classical action Scl 
corresponding to the Lagrangian in Eq. (4.1). The constituent 
equations of motion for this Lagrangian are   
 

   0xyx 2
x =Ω+ω− &&& ,                                        (4.5) 

 
0yxy 2

y =Ω−ω+ &&& ,                                        (4.6) 
 

which are subject to the boundary condition 
 

x(T) = xT , x(0) = xo , y(T) = yT , y(0) = yo .                                    (4.7) 
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We can express the equation of motion Eqs. (4.5) and (4.6) in the 
form 
 

zz~~z~iz~ 22 Ω−=Ω+ω+ &&& ,                                       (4.8) 
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x

2 Ω−Ω=Ω  and the variables z  and z~  
are given by  
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iyxz~ += .                                            (4.11) 
 
Eq. (4.9) can be rewritten as  
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 Substituting Eq. (4.12) into Eq. (4.8), we obtain 
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The auxiliary equation associated with Eq. (4.13) is  
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Solving Eq. (4.14), we obtain four roots   
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2ω
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1
ω= 2/1422 )4~4 Ω+Ωω+ 2/122 )~2Ω+ω+ .              (4.17) 

 
The solution of Eqs. (4.8) and (4.9) are 
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, C3 , C4 are arbitrary constants.  
 
To obtain the complete solutions, we assume 1Ω  = exp{i θ} 

and  2Ω = exp{ γ }, Eq. (4.19) becomes  
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where ))~/(arctan( 22

11 Ω+ωωω−=θ . After applying the boundary 
condition, Eqs. (4.21) and (4.22) becomes 
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We now focus our attention on the classical action 
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Integrating by parts the first term of Eq. (4.26) and applying the 
equation of motion Eqs. (4.5) and (4.6), we obtain  
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The complete solution for the action is 
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The pre-factor associated with the propagator can be evaluated 
exactly. It is found that (see appendix)   
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From Eqs. (4.4),  (4.28) and (4.29) we obtain the propagator 
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(4.30) 
 
4.2 Two Limiting Cases 
  

Eq. (4.30) is the exact propagator of an electron moving in 
two dimensions under the influence of transverse magnetic field 
and a saddle point potential. To check the validity of our result, 
we consider the two limiting cases: 
  

a) When the saddle point potential approaches zero, the 
system of interest corresponds to the V0→ 0, 02

x →Ω  and 02
y →Ω  

case. We first consider the pre-factor of Eq. (4.30). In this case 
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(4.31) 
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One can verify that when 01 →ω  and ω→ω2  the exponential term 
of Eq. (4.30) reduces to  
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(4.32) 
 
 
 
Thus, from Eqs. (4.31) and (4.32) we get, when V0→ 0, 02

x →Ω  and 
02

y →Ω  
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This is the propagator of an electron confined in two dimensions 
in the presence of a transverse magnetic field. 
  

b) When the magnetic field goes to zero, this limiting case 
corresponds to the case when →ω 0. Then the pre-factor is 
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(4.33) 
and the exponential term of Eq. (4.30) when →ω 0 becomes 
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From Eqs. (4.33) and (4.34), it follows that  
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This is the propagator of an electron in the saddle point 
potential, which is represented by a product of two independent 
one-dimensional propagators, one for the harmonic oscillator 
(along x-axis) and the other for the inverse parabola potential 
(along y-axis). One can also show that for the case of an 
isotropic saddle point potential, parameters 1ω  and 2ω  reduce to 
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1ω = 2/144 )4((
2

1
Ω+ω - 2/12 )ω  and 2ω = 4((

2
1

ω + 2/14 )4Ω 2/12 )ω+ which was 

given in the work of Kagalovsky [25]. 
 
4.3 Density of States and Energy Spectrum of the Fertig and 
Halperin Model  
  

Starting from the exact propagator given in Eq. (4.30), it is 
possible to obtain the density of states by using Eq. (3.46). In 
order to obtain the trace of Eq. (4.30), we set xxx 0T ==  and 

yyy 0T ==  that lead to varnishing of coupling 
terms, T00T yxyx − and TT00 yxyx − , in the propagator. Then Eq. (4.30) 
reduce to 
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This is an exponential of the form ]axiexp[ 2 . Thus the trace of Eq. (4.30) can 
be evaluated exactly by using Gaussian integral, which can be 
performed immediately, 
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(4.36) 
 

This is the product of two independent terms which consist 
of the first factor (2

2
T

sinh 1ω )-1 representing the one-dimensional 
propagator in an inverted harmonic potential and the second 

⎭
⎬
⎫

⎩
⎨
⎧−

h

TiV
exp 0  12 )

2
T

sini2( −ω  for the harmonic potential with 

renormalized frequency 1ω  and 2ω , respectively. For the case 
which magnetic field goes to zero, Eq. (4.36) reduces to the 
trace of propagator of a two-dimensional electron in the 
anisotropic saddle point potential.  

 
In order to evaluate the density of states we use the following 
identity 
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and in the large T approximation we use 
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Thus the density of states becomes  
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Eq. (4.37) is in the form of a summation of Lorentzian functions 
that have peaks at 20 )

2
1n(VE ω++= h  and broadening of each peak is 

proportional to the parameter 2/1ωh  (Fig. 11). Therefore, the first 
term in the denominator gives the renormalized energy spectrum  
 

20n )
2
1n(VE ω++= h , n =0,1,2,.. .                            (4.38) 

 
From Eqs. (4.26) and (4.27) one can show that the energy spectrum is 
unlike discrete Landau levels, the saddle-point potential allows for a continuous energy 
E for each discrete state n. Furthermore, for 2

y
2
x ,ΩΩ , 0V0 →  then ω→ω2 , 01 →ω , 

energy ω+→ h)
2
1n(En  corresponds to the usual discrete Landau levels.  

 

 
Fig. 11. Schematic diagram of the density of states which is 
given by Eq. (4.37). 



CHAPTER V 

 
CONCLUSIONS AND DISCUSSION  

 
 In this thesis, we have studied the system of non-interacting electron confined in 
two-dimensions under the influence of a transverse magnetic field and an anisotropic 
quadratic saddle point potential )yx(

2
mV)y,x(V 22

y
22

x0sp Ω−Ω+= . This system was 
introduced by Fertig and Halperin to study tunneling and delocalization of electrons in 
the quantum Hall problem. 
  

In the work of Fertig and Halperin, the symmetric gauge has been used for 
magnetic field in the z direction. The Hamiltonian of this system is given by Eq. (2.22), 
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(
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1H hh )yx(

2
mV 22

y
22

x0 Ω−Ω++ .        (5.1) 
 

 By using Bogoliubov transformations, they were able to decouple the 
Hamiltonian into a sum of two commuting Hamiltonians in Eq. (2.36), 

 
( ){ }22

1 PEH Χ−= ( )
⎭
⎬
⎫

⎩
⎨
⎧ +++ 0

22
2 VspE

2
1 .                               (5.2) 

where parameters are given by Eqs. (2.29) and (2.33), 
2/14224

1 )4~4((
22

1E Ω+Ωω+ω= 2/122 )~2Ω−ω− ,               
2/14224

2 )4~4((
2

1E Ω+Ωω+ω= 2/122 )~2Ω+ω+ . 
 

The first ( )22
1 PE Χ−  is equivalent to that of a one-dimensional particle in an 

inverted harmonic potential and the other ( ) 0
22

2 VspE
2
1

++  represents a one-
dimensional particle confined by a harmonic potential. This implies that energy 
spectrum is unlike discrete Landau levels, the saddle-point potential allows for a 
continuous energy E.  
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Kagalovsky used the Feynman path integral to calculate the exact propagator of 
electrons in this system. Since the system is quadratic, the path integral can be carried 
out exactly by using Eq. (3.26), 

 

⎭
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⎩
⎨
⎧= cl0T Siexp)T(F)0,r;T,r(K
h

rr ,                                      (5.3) 
 
where Scl is the classical action ,and pre-factor F(T) is given by Eq. (3.27), 
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The classical action is evaluated along the trajectory via the equations of motion Eqs. 
(4.5) and (4.6), 

 
0xyx 2

x =Ω+ω− &&& ,                                                   (5.5) 
0yxy 2

y =Ω−ω+ &&& .                                                   (5.6) 
 

In order to evaluate classical action from Eqs. (5.5) and (5.6), Kagalovsky used matrix 
methods which are not applicable to a potential of anisotropic form. Therefore, he 
assumed 22

y
2
x λ=Ω=Ω  or )y,x(Vsp  in the isotropic form )yx(

2
m 222 −λ . After solving the 

classical action and using formula Eq. (3.26), Kagalovsky obtained the exact propagator 
Eq. (3.81), 
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where classical action Scl in Eq. (3.81),  
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, TsinhTsinTcoshTcos22 4132 ω′′ω′
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ωω−ωω

+ω′′ω′−=∆  and parameters iω  are given by 
3,1ω

22 2( λ−ω±= ωλ+ω± 2/)4 44 , 4,2ω
222 2(2 λ+ωωλ±= )4 44 λ+ω± , 21ωω=ω′ , 

43ωω=ω′′ . To relate the path integral approach to the work of Fertig and Halperin, 
Kagalovsky pointed out that the propagator may be transformed to a product of two 
independent propagators,  

 
)s()()0,r;T,r(K 210T ΚΧΚ→

rr ,                                      (5.9) 
 

)(1 ΧΚ  for the inverted harmonic and the other )s(2Κ  for the harmonic oscillator in new 
coordinate.  

 
In Chapter 4, we presented the exact evaluation of the propagator for an 

electron in the model of Fertig and Halperin. By introducing the complex variable path 
iyxz −=  and iyxz~ +=  instead of the matrix method, the classical action for the case of 

anisotropy 2
y

2
x Ω≠Ω  can be obtained. By solving equation of motion from complex path 

and using Eq. (3.26) we obtain the exact propagator Eq. (4.30), 
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One can easily check that if the saddle point potential 
approaches zero, 02

x →Ω  and 02
y →Ω  then 01 →ω  and ω→ω2 . Then 

the propagator reduces to the well-known propagator for an 
electron in perpendicular magnetic field.  In other case which 
the magnetic field goes to zero, this case corresponds to 0→ω , 

y1 Ω→ω  and x2 Ω→ω then we obtain the propagator of electron in 
the anisotropic saddle point potential, which can be written as 
product of two independent one-dimensional contributions, one 
representing for the harmonic oscillator  (along x-axis) and the 
other representing the inverse parabola potential (along y-axis). 
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  From our propagator (5.10), one can show that for the isotropic case 
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2
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ω−λ+ω=ω  and 

244
2 4
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ω+λ+ω=ω  equal to ω′′  and ω′ , which given by Kagalovsky, 
respectively. 
  

By taking the trace of the propagator, we can show that our result is consistent 
with the two commuting Hamiltonian of Fertig and Halperin, and the two independent 

propagators of Kagalovsky. The trace, [ ] ),0,y,x;T,y,x(Kdydx)0,r;T,r(KTr 0T ∫∫
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be evaluated exactly is Eq. (4.36)  
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This is in the form of a product of two independent terms. The first factor represents the 
one-dimensional particle in an inverted harmonic potential characterized by parameter 

1ω  and the second for harmonic potential characterized by parameter 2ω . This trace 
corresponds to the Hamiltonian 1H , 2H  of Fertig and Halperin and propagator 1Κ , 2Κ  of 
Kagalovsky respectively.  
  
For applications, we evaluated the density of states by using Eq. (3.46), 
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In order to obtain the density of states, we expand 
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1niexp  and for large T approximation we 

approximate 1/2 )2/Tsinh( 1ω  by  exp[- 1ω T/2]. Thus the density of 
states can be expressed in Eq.(4.37), 
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This result is shown to be a series of a set of Lorentzian delta functions that have peaks 
at energy En in Eq.(4.38), 

 
2n )

2
1n(E ω+= h , n=0,1,2,.. . 

  
The Lorentzian shape gives information about the renormalized Landau level and a 
continuous energy E for each discrete state n. The number of continuous states between 
En is proportional to the parameter 1ω . From Eq. (4.16), we find that parameter 1ω  goes 
to zero when inverse parabola term of )y,x(Vsp approach to zero 02

y →Ω . Therefore, 
the continuous state represents the unbound state of an electron in y direction reflecting 
delocalization which is a direct consequence of the inverse parabola term )y( 22

yΩ−  in 
the saddle point potential. 
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APPENDIX 
 

SIMPLIFICATION OF THE PRE-FACTOR F(T)   
 

In order to simplify the prefactor to the form given by Eq. (4.28), we use the Van Vleck-
Pauli formula for a two-dimensional system, 
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After substituting the classical action from Eq. (4.27) we obtain 
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 where parameter ∆  is given by Eq. (4.25) ,and 
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From Eq. (A.3) we find that )(θΘ can be written as 
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Substituting 2ω  from Eq. (4.17) we find that )(θΘ =0, thus the Eq. 
(A.2) becomes       
 

.]}}TsinTsinh)cos2(cos2

)TcosTcosh22(sin)1([x

)]cos2(cos2sin)1)({{[(
sini2

m)T(F

2/1
21

2
22

21
2
2

2
2221

2
2

2
2

2
1

ωωθΩ+Ω−θ−

ωω−θ−Ω−

θΩ+Ω−θωω−θ−Ωω−ω
θ∆π

=
h

 

 
When term 

)1( 2
2 −Ω− )TcosTcosh22(sin 21 ωω−θ θ− (cos2 22Ω− 2

2Ω+ )cos θ TsinTsinh 21 ωω = 
θ∆ sin , thus 

 
{ } .)cos2(cos2sin)1)((

sini2
m)T(F 2

1
2
2221

2
2

2
2

2
1 θΩ+Ω−θωω−θ−Ωω−ω

θ∆π
=

h
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