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CHAPTER I

Formulation of Flows with Gravity

1.1 Introduction

Efforts to analyze the hydrodynamical characteristic of free-surface flow with

surface disturbance have been divided primarily between theoretical and experi-

mental considerations. There are various types of surface-disturbance occurred in

nature whereas some are often due to man-made structures. Most of the theoret-

ical studies lie mainly in the two-dimensional framework and are based on global

analysis. Results from the laboratory experiments provide, on the other hand,

small scale analysis for both two- and three-dimensional problems.

We devote this research to the investigation of steady two-dimensional po-

tential flow of an inviscid and incompressible fluid due to pressure distribution.

This two-dimensional model allows us to utilize various mathematical tools for

solving the problem. For example, the asymptotic analysis particularly perturba-

tion technique has been successfully employed to solve linear and nonlinear water

wave problems. This simplification will provide not only qualitative behaviors but

also some insights to the real flow situations. Though the assumption of steadi-

ness may seem unreal but we can always choose the appropriate moving frame of

reference in such a way that the flow becomes steady.

Here, we seek the weakly nonlinear solutions of free-surface flow past an applied

pressure distribution on the free-surface. The fluid domain is of finite depth

with no vertical boundaries in the far fields. Such flows can be produced by
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blowing air on the surface of water flowing in the channel with parallel side walls.

Far upstream, the flow is assumed to approach a uniform stream with constant

velocity U and uniform depth H. The flow is characterized by a nondimensional

parameter, the Froude number,

F =
U√
gH

.

In general, this flow configuration can be served as a model of moving vehicles

such as hovercraft in a long canal. It may also be viewed as an inverse method

of solution to the classical ship-wave problem. When the pressure distribution is

applied, the free surface will deform in the neighborhood (probably with down-

stream influence) of the applied pressure distribution. This resembles the problem

of flow past a rigid obstacle.

The problem of free surface pressure distributions has been studied quite ex-

tensively in the case of infinite depth for over 150 years. The classical linearized

version of the two dimensional problem was solved long ago and was discussed in

detail by Lamb (1932). It was shown that for some pressure distributions the mo-

tion is drag-free. That is, the free surface is symmetric with respect to the applied

pressure distribution without a train of sinusoidal waves in the far field. Schwartz

(1981) reformulated the problem into a boundary integral equation technique

based on Cauchy’s integral formula and solved numerically. Fluid was assumed to

be of infinite depth. He showed that nonlinear theory gave drag-free solution at

certain values of the span length of pressure distribution (L =
2

F 2
= 4π, 8π, ...),

i.e. when the ship length was an integer multiple of a free wave length while

linearized theory did not. He also found nonlinear wave train in the form of

narrow crests and broad troughs which were essentially periodic and propagated

downstream.

In the case of finite depth, Von-Kerczek and Salvesen (1977) placed a network
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of mesh points over the entire flow domain and performed finite difference calcu-

lations (successive overrelaxation) to obtain nonlinear solutions. Their numerical

calculations were restricted to certain values of the ratio of pressure-distribution-

length to the depth of the flow domain. The nonlinear wave train propagates

downstream while the flow satisfies radiation condition on the upstream free sur-

face. Drag-free (symmetric) solutions were found at the critical Froude number F ′
∗

(0 < F ′
∗ < 1). It should be noted here that they defined the Froude number based

on the span length of pressure distribution which is different from ours. Solutions

at two critical values of Froude number, 0 < F ′
∗2 < F ′

∗1 < 1, were presented for

various values of magnitude of pressure distribution. When F > F ′
∗1, the wave

resistance increased to their maximum value and then decreased as F → 1. When

F ′
∗2 < F < F ′

∗1, the wave resistance increased to their peak and decreased as F ap-

proach F ′
∗2. In addition, they found a hump on the free surface as F → F ′

∗1 while

two humps were detected as F → F ′
∗2. They also found that, the effect of the non-

linearities can clearly be seen on the phase shift in the solutions. Asavanant, et,

al.(2001) reconsidered the problem by only putting mesh points on the free surface

and using the boundary integral technique to find fully nonlinear solutions. The

condition of incompressibility and irrotationality of the fluid motion implied the

existence of the potential function and stream function. The fluid domain in the

physical plane was transformed onto the complex plane. Bernoulli equation was

applied on the free surface while they assumed no flow across the bottom bound-

ary. They satisfied the bottom condition by using Schwartz reflection principle.

Their results showed that, for both supercritical and subcritical flows, solutions

were characterized by three parameters : (i) Froude number (ii) magnitude of the

applied pressure distribution and (iii) span length of the applied pressure distribu-

tion. For supercritical flows (F > 1), they found up to two solution corresponding
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to the same value of F for positive pressures (one was a perturbation of uniform

stream and the other solution was perturbation of the solitary wave solution).

They also found a unique solution for negative pressures. For subcritical flows

they found a train of nonlinear waves behind the applied pressure distribution.

The wave resistance decreased as F decreased. The wave resistance ultimately

became zero when the critical value F∗1 of F was reached. For F < F∗1, the wave

resistance increased to another local maximum value and then decreased mono-

tonically to zero again at F = F∗2. In addition, the free surface, upon which the

pressure distribution was applied, deformed into two humps. This cycle of behav-

ior repeatedly occurred as F reached another critical value. They conjecture that

there were finitely many critical Froude numbers 0 < ... < F∗2 < F∗1 < 1 such

that drag-free solution exist. Moreover, there were n humps on the free surface

for solution with F∗n < F < F∗n−1.

Inverse problem to flows due to applied pressure distribution is the problem of

flows over a semi-circular obstruction considered by Forbes and Schwartz (1982).

They constructed an integral equation involving flows variables at the free surface

so that the bottom boundary condition is automatically satisfied. The exact

nonlinear equations were solved numerically by a process of Newtonian iterations.

In the subcritical case, they showed that there exist flows with essentially no waves

on the upstream side and the train of nonlinear Stokes waves on the downstream

side. When the circle radius increased or F ↑ 1, the wave amplitude increased.

In the supercritical case, they found symmetric solutions with respect to the axis

of symmetry of the semicircle. For a large value of F , the nonlinear free surface

profile is ultimately limited by the formation of a sharp crest with sides enclosing

an angle 120◦.

Asavanant and Vanden-Broeck (1994) studied the steady two-dimensional flow
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past a parabolic obstacle lying on the free surface in water of finite depth. The

object was described by y =
1

2
ε(x−x0)

2 + y0. Here (x0, y0) represented the vertex

of the object and ε was the object geometry (object was concave if ε > 0, convex

if ε < 0 and flat if ε = 0). The problem was solved numerically by using boundary

integral equation technique based on the Cauchy’s integral formula. An integral

equation was solved together with the dynamic free-surface condition. The bot-

tom boundary condition was satisfied by employing the reflection principle. For

supercritical flow past the concave object (F > 1, ε > 0), they found two different

types of solutions. The first one is the vertex of the obstacle was below the level of

the free surface at infinity. These solution modelled a ship moving at a constant

velocity in the channel. These solutions exist for all value of F (1 ≤ F 2 < ∞).

The second one was the vertex of the obstacle was above the level of the free

surface at infinity. This solution modelled a surfboard riding on the wave. For

supercritical flows past a convex object (F > 1, ε < 0), they found one type of

solution. Their numerical results showed that there were nonuniqueness of solu-

tions corresponding to the same value of F . They concluded that one solution was

a perturbation of uniform stream while the other solution was a perturbation of

solitary wave solution. Their subcritical solutions showed that a train of (linear)

sine waves was generated for large value of F . These waves developed narrow

crests and broad troughs as F decreased. Finally, they conjectured that these

waves would approach their limiting configurations characterized by a 120◦ angle

corner at the crest.

From above, we can realize that problems in free-surface hydrodynamics under

the influence of gravity are too usually difficult to solve exactly. Appropriate

techniques of mathematical approximations are generally sought. Here, we use

asymptotic approximations in the primitive variables to derive the forced KdV
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equation. Existence theorem for different types of solution to this equation will

be given and proved. Finally, numerical solutions are provided as the confirmation

to these findings.

1.2 Formulation

We consider the steady two-dimensional, irrotational flow of an inviscid incom-

pressible fluid in the domain bounded below by a rigid bottom and above by a

free surface as shown in Figure 1.1. We choose Cartesian coordinates with the X-

axis along the free surface at x = −∞ and the Y-axis directed vertically upwards

through the symmetry line of the applied pressure distribution. Gravity is acting

in the negative Y-direction. The velocity components in the X- and Y-direction

are denoted by u and v respectively. As x → −∞, the flow is assumed to approach

a uniform stream with constant velocity U∗ and constant depth H. The governing

equations and boundary conditions are given by the following Euler equations :

u∗
x∗ + v∗

y∗ = 0

u∗u∗
x∗ + v∗u∗

y∗ =
−p∗x∗

ρ

u∗v∗
x∗ + v∗v∗

y∗ =
−p∗y∗

ρ
− g

at the bottom y∗ = −H ; v∗ = 0

at the surface y∗ = η∗ ; u∗η∗
x∗ − v∗ = 0

p∗ = b∗(x∗) with compact support

where u∗ and v∗ are horizontal and vertical velocities, p∗ is pressure, g is the

gravitational acceleration, ρ is the density of the fluid and all the subscripts denote

derivative with respect to corresponding variable. We define the following non-

dimensional variables:
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Pressure distribution

Free surface

X
Y

U*
H

Figure 1.1: Sketch of flow domain under the applied pressure distribution.
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η =
ε−1η∗

H
, p =

p∗

ρgH
, (x, y) =

(ε
1
2 x∗

H
,
y∗

H

)
,

(u, v) =
( u∗
√

gH
,

ε
1
2 v∗

√
gH

)
, b(x) =

b∗(x∗)ε−2

ρgH

ε =
(H

L

)2

� 1 where H and L are horizontal and vertical length scales.

In terms of these non-dimensional quantities, the above equations become

ux + vy = 0

uux + vuy = −px

ε(uvx + vvy) = −py − 1

at y = −1 ; v = 0

at y = εη ; εuηx − v = 0

p = ε2b(x)

where b(x) has a compact support.

In the following, we use a unified asymptotic method to derive the equations

for η(x).

(u, v) = (u0, v0) + ε(u1, v1) + ε2(u2, v2) + O(ε3) (1.1)

p = p0 + εp1 + ε2p2 + O(ε3) (1.2)

and then expand p0, p1, p2, ... about y = 0 with η.

p =
(
p0 + εp0yη + ε2p0yy

η2

2!
+ ...

)
+ ε

(
p1 + εp1yη + ε2p1yy

η2

2!
+ ...

)

+ε2
(
p2 + εp2yη + ε2p2yy

η2

2!
+ ...

)
+ O(ε3) (1.3)

At x = −∞, we consider U = 1 + ελ + O(ε2), where U =
U∗

√
gH

= F .

Substituting (1.1),(1.2) and(1.3) in the above equations to get the zeroth, first

and second approximations as follows.
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zeroth approximation

u0x + v0y = 0

u0u0x + v0u0y = −p0x

−p0y − 1 = 0

at y = −1 ; v0 = 0

at y = 0 ; v0 = 0 and p0 = 0.

These imply that u0(x, y) = 1 , v0(x, y) = 0 and p0(x, y) = −y.

First approximation

u1x + v1y = 0

u0u1x + u1u0x + v0u1y + v1u0y = −p1x

u0v0x + v0v0y = −p1y

at y = −1 ; v1 = 0

at y = η ; p0yη + p1 = 0.

These imply that u1(x, y) = −η + λ , v1(x, y) = ηx(y + 1) and p1(x, y) = η.

Second approximation

u2x + v2y = 0

u2u0x + u1u1x + u0u2x + v0u2y + v1u1y + v2u0y = −p2x

u0v1x + u1v0x + v0v1y + v1v0y = −p2y

at y = −1 ; v2 = 0

at y = 0 ; p0yy
η2

2
+ p1yη + p2 = b(x).

These imply that

u2x(x, y) = ηxxx

(y2

2
+ y

)
− bx(x) − ηηx + ληx

v2(x, y) = −ηxxx

(y3

6
+

y2

2
− 1

3

)
+ (bx(x) + ηηx − ληx)(y + 1)

p2(x, y) = −ηxx

(y2

2
+ y

)
+ b(x).



10

For the kinematic boundary condition at y = εη , εuηx − v = 0. We expand u, v

about y = 0 with η as follows.

ε
[(

u0 + εu0yη + ε2u0yy
η2

2!
+ ...

)
+ ε

(
u1 + εu1yη + ε2u1yy

η2

2!
+ ...

)
+ ...

]
ηx

−
[(

v0 + εv0yη + ε2v0yy
η2

2!
+ ...

)
+ ε

(
v1 + εv1yη + ε2v1yy

η2

2!
+ ...

)

+ε2
(
v2 + εv2yη + ε2v2yy

η2

2!
+ ...

)
+ ...

]
= 0.

Zeroth approximation

at y = 0, v0 = 0.

First approximation

at y = η, u0ηx − v0yη − v1 = 0.

That is ηx − v1 = 0.

Second approximation

at y = 0, (u0yη + u1)ηx −
(
v0yy

η2

2
+ ηv1y + v2

)
= 0.

That is

3ηηx − 2ληx +
1

3
ηxxx + bx(x) = 0 (1.4)

which is called a forced stationary Korteweg-de Vries equation.

We consider now that the distribution of pressure be described by function

with compact support defined by

b(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for |x| ≥ 1

ε exp
( 1

x2 − 1

)
for |x| < 1

where ε is a constant.

In this research, we will state and prove theorems to guarantee the existence of

solutions of (1.4). We consider two separate cases according to the characteristic

of the solution. The first case is when λ > 0 (supercritical flow) and the other

is λ < 0 (subcritical flow). Numerical solutions for both cases are obtained by

the shooting method and the Runge-Kutta method, respectively. In the case of
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supercritical flow, our numerical results show that the flow is always symmetric

(drag free) with respect to the axis of symmetry of the pressure distribution.

There are two different families of solutions when ε > 0. One family is a perturbed

solution of uniform stream whereas the other is a perturbed solution of solitary

wave. When ε < 0, there exists only one family of solutions for all values of λ up

to zero. We expect that these solution can be extended to the subcritical regime

by allowing waves downstream. The case of subcritical flow, a train of nonlinear

waves is generated behind the applied pressure distribution while the flow satisfies

the radiation condition on the upstream. As λ decreases, there are critical values

of λ at which the flows become drag free. Our finding is in contrast with the

problem of flows past a surface-piercing object. Asavanant and Vanden-Broeck

(1994) showed that subcritical flows past a parabolic-shaped object never possess

drag-free solutions. On the contrary, these solutions always approach Stokes’

limiting configuration.



CHAPTER II

Supercritical Flow

2.1 Existence Theorem of Symmetric Solutions

We look for a solution η(x) of (1.4) such that lim
|x|→∞

( d

dx

)j

η(x) = 0, j = 0, 1, 2,

where λ > 0.

Integrating (1.4) from −∞ to x, we find

6λη − ηxx =
9

2
η2 + 3b(x). (2.1)

It can easily be shown that the above equation is equivalent to an integral

equation

η(x) =

∫ ∞

−∞
K(x, ξ)

(9

2
η2(ξ) + 3b(ξ)

)
dξ.

Here K(x, ξ) =
e−

√
6λ|x−ξ|

2
√

6λ
is the Green’s function which is a solution of

6λK(x, ξ) − Kxx(x, ξ) = δ(x − ξ),−∞ < x, ξ < ∞.

We now define

T (η) =

∫ ∞

−∞
K(x, ξ)

(9

2
η2(ξ) + 3b(ξ)

)
dξ.

‖u‖ = ‖u‖∞ = sup
x∈R

|u(x)|

H = {u|u ∈ C(R); ‖e
√

6λ|x|u‖ < ∞}.

Clearly, H is a metric space and is complete. We give another definition

BM = {u|u ∈ H , ‖u‖ ≤ M, 0 < M < ∞}.
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Lemma 2.1 ‖T (η)‖ ≤ M for η ∈ BM if
9

2
M +

3‖b‖
M

≤ 6λ.

Proof ‖T (η)‖ = sup
x∈R

∣∣∣
∫ ∞

−∞
K(x, ξ)

(9

2
η2(ξ) + 3b(ξ)

)
dξ

∣∣∣
≤

∥∥∥9

2
η2 + 3b

∥∥∥ sup
x∈R

∫ ∞

−∞

1

2
√

6λ
e−

√
6λ|x−ξ|dξ

≤ (9
2
M2 + 3‖b‖)

6λ

≤ M

as required.

�

Next we want to prove that T (η) decays rapidly so that we may consider the

behavior of exp(
√

6λ|x|)|T (η)(x)| when |x| is large.

Lemma 2.2 sup
x∈R

exp(
√

6λ|x|)|T (η)(x)| < ∞ for η ∈ BM .

Proof It suffices to prove the case when x > 0.

e
√

6λ|x||T (η)(x)| =
∣∣∣
∫ ∞

−∞
exp(

√
6λx −

√
6λ|x − ξ|)

(9

2
η2(ξ) + 3b(ξ)

)
dξ

∣∣∣/2
√

6λ

=
∣∣∣
∫ x

−∞
exp(

√
6λξ)

(9

2
η2(ξ) + 3b(ξ)

)
dξ

+

∫ ∞

x

exp(
√

6λ(2x − ξ))
(9

2
η2(ξ) + 3b(ξ)

)
dξ

∣∣∣/2
√

6λ

=
∣∣∣
∫ x

−∞

{9

2
exp(

√
6λξ − 2

√
6λ|ξ|)(η(ξ) exp(

√
6λ|ξ|))2

+ exp(
√

6λξ)3b(ξ)
}

dξ

+

∫ ∞

x

{9

2
exp(

√
6λ(2x − ξ) − 2

√
6λ|ξ|)(η(ξ) exp(

√
6λ|ξ|))2

+ 3b(ξ) exp(
√

6λ(2x − ξ))
}

dξ
∣∣∣/2

√
6λ

≤
∣∣∣ sup

x∈R

(η(x) exp(
√

6λ|x|))2
[∫ x

−∞
exp(−

√
6λ|ξ|)dξ

+

∫ ∞

x

exp(
√

6λ(2x − 3ξ))dξ
]∣∣∣ 9

4
√

6λ

+
∣∣∣
∫ x

−∞
exp(

√
6λξ)3b(ξ)dξ

+

∫ ∞

x

3b(ξ) exp(
√

6λ(2x − ξ))dξ
∣∣∣/2

√
6λ
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≤ 3

4λ

∣∣∣(1 − exp(−√
6λx)

3

)∣∣∣ sup
x∈R

(η(x) exp(
√

6λ|x|))2

+

∫
supp(b(x))

N exp(
√

6λξ)dξ
/

2
√

6λ

< ∞,

where N = max
ξ∈R

|3b(ξ)|. Since η ∈ H,

sup
x>0

exp(
√

6λx)|T (η)(x)| < ∞.

Similarly, one can easily show that

sup
x<0

exp(−
√

6λx)|T (η)(x)| < ∞.

This completes the proof.

�

Now we shall states the existence theorem for symmetric solutions of (2.1).

Theorem 2.1 6λη − ηxx =
9

2
η2 + 3b(x), − ∞ < x < ∞ has a solution

which decays exponentially at |x| = ∞ if 6λ is sufficiently large.

Proof. ‖T (η1) − T (η2)‖ ≤ sup
x∈R

∣∣∣9
2

∫ ∞

−∞
K(x, ξ)(η2

1(ξ) − η2
2(ξ))dξ

∣∣∣
≤ sup

x∈R

9

2

∫ ∞

−∞
K(x, ξ)|η1 + η2||η1 − η2|dξ

≤ 9M‖η1 − η2‖
/

6λ.

Hence we can see from lemma 2.1 and 2.2 that T is a contraction mapping if

6λ > max
{9

2
M +

3‖b‖
M

, 9M
}

and the integral equation η = T (η) has the unique

solution in BM . Now

ηxx =

∫ ∞

−∞
Kxx(x, ξ)

(9

2
η2(ξ) + 3b(ξ)

)
dξ

=

∫ ∞

−∞
6λK(x, ξ)

(9

2
η2(ξ) + 3b(ξ)

)
dξ − 9

2
η2(x) − 3b(x)

= 6λη(x) − 9

2
η2(x) − 3b(x)

where 6λK(x, ξ) − Kxx(x, ξ) = δ(x − ξ). Hence η ∈ C2(R) and it follows from
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right hand side of the above equation that η ∈ C3(R).

�

2.2 Numerical Procedure

To obtain weakly nonlinear solutions of (2.1) in the previous section, it is nec-

essary to resort to a numerical method. We solve this boundary value problem by

the method of shooting. Here is the general idea of this method.

Suppose that we have a similar problem, which we are unable to determine

the general solution as in (2.1), for example

x′′(t) = f(t, x(t), x′(t)) ; x(a) = α , x(b) = β (2.2)

the approach is to view (2.2) as an initial value problem. A step-by-step numerical

solution of problem (2.2) then by the method of Runge-Kutta 4th order (RK4)

requires two initial conditions. But in problem (2.2), only one condition is pre-

sented at t = a. One way to proceed in solving equation (2.2) is as follows: guess

x′(a) and carry out the calculations with the hope that the computed solution

agrees with x(b) = β. If it is missed (which is quite likely), we can go back and

change our guess for x′(a). Repeating this procedure until we hit the target β.

This briefly describes the shooting procedure.

In this research, we solve the equation (2.1) by discretizing the free surface

in the physical plane, x ∈ [−1, 1]. The value of η(x) are computed at each mesh

points. As a summary, a function η(x) is computed as follows :

(i) set the initial condition η(−1),

(ii) guess the first initial slope, η′(−1),

(iii) use system of RK4 to get the first value of η(1) and find the error at the
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boundary condition,

(iv) guess the second initial slope at x = −1 (related with the first initial

guess),

(v) use system of RK4 again to obtain the value of η(1), then check the error

at the boundary and go back to step (ii), adjust our guess until the solution

converges.

To compute the numerical solution of this problem, we divide it into two

cases. The first is for the positive pressure (ε > 0), there are two different types

of solution. So, we have to set two different boundary conditions which will be

mentioned later. The second is for the negative pressure (ε < 0). The numerical

results for every cases will be shown and discussed in the next section.

2.3 Numerical Results and Discussions

We use the numerical scheme described in the previous section to compute

symmetric solutions in supercritical flow regime for various values of λ > 0 and ε.

It is found that supercritical solutions are characterized by exponentially decaying

behavior at infinity. This means that solutions in this flow regime can never

possess downstream waveforms.

It can be seen from equation (1.4) that if b(x) = 0 (i.e. pressure on the free

surface equals to atmospheric pressure), then uniform flow is always a solution

for all values of λ > 0. Besides uniform flow solution, one can also find another

solution namely solitary wave solution. The exact expression of solitary wave

solution can be derived from the weakly nonlinear analysis as

η(x) = 2λsech2
(√

3λ

2
x
)
, −∞ < x < ∞, (as shown in Figure 2.1 for λ = 1).

It bifurcates from the uniform flow at the critical Froude number F 2 = 1 (λ = 0).
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It is anticipated that solutions of free-surface flow due to pressure distribution

(ε 
= 0) is the perturbation of a uniform stream solution since uniform flow is no

longer a solution for any values of λ when ε 
= 0. Also we expect to obtain a

perturbed bifurcation of solitary wave solution. To discuss the numerical calcu-

lations of such supercritical flow solutions, we consider 2 cases : ε > 0 (positive

pressure) and ε < 0 (negative pressure). The solutions are characterized by a

dimensionless distance W measured from the undisturbed level of the free surface

to the maximum (or minimum) elevation on the free surface profile upon which

the pressure distribution is applied.

(i) Positive pressure

When ε > 0, there are two types of solution that characterized by W > 0.

One can be viewed as perturbation of uniform stream (Type I, see Figure 2.2).

The other is the perturbation of solitary wave solution (Type II, see Figure 2.3).

To obtain the profiles of Type I, we use the boundary condition with phase shift

x0, that is

η(−1) = 2λsech2
(√

3λ

2
(−1 − x0)

)
, η(1) = 2λsech2

(√
3λ

2
(1 + x0)

)
.

Let η′(−1−) be the slope of η that we determine at the boundary x = −1 and

η′(−1+) be the numerical slope of η that we calculate from the shooting method.

We vary x0 and use the shooting method until the convergence is achieved and

|η′(−1−) − η′(−1+)| < 10−3.

While, we use the boundary condition without a phase shift, i.e.

η(−1) = 2λsech2
(
−

√
3λ

2

)
, η(1) = 2λsech2

(√
3λ

2

)
,

to calculate the free surface profiles of Type II solution. Figure 2.4 shows a

comparison of flow profiles at the same value of λ. The numerical values of λ
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versus W for various values of ε are presented in Figure 2.5. As we can see, there

are two branches of solution for each ε and λ. The lower branch (closer to the λ-

axis) is the Type I solution while the upper branch (farther away from the λ-axis)

is the Type II solution.

Consider Type I solution. Figure 2.6 shows that, for λ fixed, the magnitude of

pressure induces higher amplitude W as ε increases. On the other hand, Figure 2.7

shows that W decreases as ε increases for the Type II solution. The differences

between the shape of free-surface profiles between Type I and II solutions are

depicted in Figure 2.8 and 2.9, respectively. As we can see, for the Type I solution,

W decreases for increasing value of λ when we fix ε. Unlike Type I solution, we

can notice that, W increases for increasing value of λ when we fix ε in the case of

Type II solution. The relationships between λ and W for the Type I and Type II

solutions are presented in Figure 2.10 and 2.11, respectively.

(ii) Negative pressure

When ε < 0, there exists a unique solution corresponding to each value of λ

when 0 ≤ λ < ∞. This solution can be viewed as perturbation of a uniform flow

(i.e. they approach the uniform stream as ε → 0 for a fixed value of λ). Typical

free-surface profiles for ε < 0 are shown in Figure 2.12 and 2.13. Here, the free

surface profiles are calculated by using the boundary condition with a phase shift

x0. We first set an initial slope in the opposite sign of the case of positive pressure,

that is

η(−1) = −2λsech2
(√

3λ

2
(−1 − x0)

)
, η(1) = −2λsech2

(√
3λ

2
(1 + x0)

)
,

then varying x0 until the loop of shooting converges and the slope η′(−1−) and

η′(−1+) satisfy the above criteria. Numerical values of λ versus W for various

value of ε are presented in Figure 2.14. We expect that these branches of solutions

can be extended to the subcritical regime (λ < 0) by allowing waves downstream.
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Solutions with waves will be considered in the next chapter.
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Figure 2.1: Typical free-surface profile for λ = 1 and ε = 0.
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Figure 2.2: Typical free-surface profile of Type I for λ = 2 and ε = 0.1.
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Figure 2.3: Typical free-surface profile of Type II for λ = 1.5 and ε = 0.5.
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Figure 2.4: Typical free-surface profile of Type I and Type II for λ = 0.5 and

ε = 0.1.
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Figure 2.5: Relationship between W and λ for various values of ε > 0.
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Figure 2.6: Typical free-surface profiles of Type I (a) for λ = 1, ε = 0.1, (b) for

λ = 1, ε = 0.5, and (c) for λ = 1, ε = 2.



26

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(a)

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(b)

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(c)

Figure 2.7: Typical free-surface profiles of Type II (a) for λ = 1, ε = 0.1, (b) for

λ = 1, ε = 1, and (c) for λ = 1, ε = 2.
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Figure 2.8: Typical free-surface profiles of Type I (a) for λ = 2, ε = 0.1, (b) for

λ = 3, ε = 0.1, and (c) for λ = 4, ε = 0.1.
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Figure 2.9: Typical free-surface profiles of Type II (a) for λ = 2, ε = 2, (b) for

λ = 3, ε = 2, and (c) for λ = 4, ε = 2.
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Figure 2.12: Typical free-surface profiles (a) for λ = 1.25, ε = −0.1, (b) for

λ = 1.25, ε = −0.3, and (c) for λ = 1.25, ε = −0.5.
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Figure 2.13: Typical free-surface profiles (a) for λ = 1, ε = −0.1, (b) for λ = 1.5,

ε = −0.1, and (c) for λ = 2, ε = −0.1.



32

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

e=-0.5

e=-0.3

e=-0.1

W

λ

Figure 2.14: Relationship between W and λ for various values of ε < 0.



CHAPTER III

Subcritical Flow

3.1 Existence Theorem of Unsymmetric Solutions

Consider

ηxx +
9

2
η2 − 6λη = −3b(x). (3.1)

For subcritical λ < 0, say λ0 = −λ where λ0 > 0,

(3.1) becomes

ηxx +
9

2
η2 + 6λ0η = −3b(x). (3.2)

We look for a wave solution to equation (3.2), for λ < 0, which dies out at the

far upstream and oscillates without changing its amplitude at the far downstream.

That is to say, η must satisfy the followings:

(i)
diη

dxi
= 0, i = 0, 1, 2 for x < x− = inf(supp b).

(ii) η
(
x +

2π√
6λ0

)
= η(x) for x > x+ = sup(supp b).

Without loss of generality we assume that supp(b) ∩ R
− = φ.

It can easily be shown that (3.2) is equivalent to an integral equation

η(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ; x ≤ 0

− 1√
6λ0

∫ x

0

sin
√

6λ0(x − ξ)
[9

2
η2(ξ) + 3b(ξ)

]
dξ ; x > 0.

We now define η = S(η),
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B =
{

u|u ∈ C(R), u(x) = 0 for x ≤ 0 and u
(
x +

2π√
6λ0

)
= u(x)

and

∫ x+ 2π√
6λ

x

u2(ξ){sin, cos}(
√

6λ0ξ)dξ = 0 for x > x+

}

‖u‖ = sup
x∈R

|u(x)|.

Clearly, B is a metric space and is complete. We give another definition

BN = {u|u ∈ B , ‖u‖ ≤ N, 0 < N < ∞}

which is a closed subset of B.

Lemma 3.1 ‖S(η)‖ ≤ N for η ∈ BN if
9

2
N

(
x+ +

2π√
6λ0

)
+

3‖b‖
N

x+ ≤
√

6λ0.

Proof ‖S(η)‖ = sup
x∈R

∣∣∣ − 1√
6λ0

∫ x

0

sin
√

6λ0(x − ξ)
[9

2
η2(ξ) + 3b(ξ)

]
dξ

∣∣∣
=

1√
6λ0

sup
x∈R

∣∣∣
∫ x+

0

sin
√

6λ0(x − ξ)
[9

2
η2(ξ) + 3b(ξ)

]
dξ

+

∫ x++ 2π√
6λ0

x+

sin
√

6λ0(x − ξ)
(9

2
η2(ξ)

)
dξ

+

∫ x

x++ 2π√
6λ

sin
√

6λ0(x − ξ)
(9

2
η2(ξ)

)
dξ

∣∣∣
≤ 1√

6λ0

sup
x∈R

{∣∣∣
∫ x+

0

sin
√

6λ0(x − ξ)
[9

2
η2(ξ) + 3b(ξ)

]
dξ

∣∣∣
+

∣∣∣
∫ x++ 2π√

6λ0

x+

sin
√

6λ0(x − ξ)
(9

2
η2(ξ)

)
dξ

∣∣∣
+

∣∣∣
∫ x++ 2πn√

6λ0

x++ 2π√
6λ0

sin
√

6λ0(x− ξ)
(9

2
η2(ξ)

)
dξ

∣∣∣} for some n ∈ N

≤ 1√
6λ0

{∥∥∥9

2
η2 + 3b

∥∥∥ sup
x∈R

∫ x+

0

| sin
√

6λ0(x − ξ)|dξ

+
∥∥∥9

2
η2

∥∥∥ sup
x∈R

∫ x++ 2π√
6λ0

x+

| sin
√

6λ0(x − ξ)|dξ
}

≤ 1√
6λ0

{[9

2
N2 + 3‖b‖

]
x+ +

9

2
N2 2π√

6λ0

}

≤ N .

�



35

Lemma 3.2 If x > x+, then S(η)
(
x +

2π√
6λ0

)
= S(η)(x).

Proof Let x > x+.

S(η)
(
x +

2π√
6λ0

)
= − 1√

6λ0

∫ x+ 2π√
6λ0

0

sin
√

6λ0

(
x +

2π√
6λ0

− ξ
)[9

2
η2(ξ) + 3b(ξ)

]
dξ

= − 1√
6λ0

∫ x+ 2π√
6λ0

0

sin
√

6λ0(x − ξ)
[9

2
η2(ξ) + 3b(ξ)

]
dξ

= − 1√
6λ0

{∫ x

0

sin
√

6λ0(x − ξ)
[9

2
η2(ξ) + 3b(ξ)

]
dξ

+

∫ x+ 2π√
6λ0

x

sin
√

6λ0(x − ξ)
(9

2
η2(ξ)

)
dξ

}

= S(η)(x) − 1√
6λ0

∫ π√
6λ0

− π√
6λ0

sin
√

6λ0(x − ξ)

(9

2
η2(ξ)

)
d
(
ξ − x − π√

6λ0

)

= S(η)(x).

�

Lemma 3.3 If x > x+, then

∫ x+ 2π√
6λ0

x

S2(η)(ζ) sin(
√

6λ0ζ)dζ = 0 and

∫ x+ 2π√
6λ0

x

S2(η)(ζ) cos(
√

6λ0ζ)dζ = 0.

Proof Let η ∈ B, x > x+ and x1 be any real number. Put
√

6λ0 = Λ. Then∫ x+ 2π
Λ

x

S2(η)(ζ) sin Λ(x1 − ζ)dζ

=
1

Λ2

∫ x+ 2π
Λ

x

sin Λ(x1 − ζ)
[ ∫ ζ

0

sin Λ(ζ − t)
(9

2
η2(t) + 3b(t)

)
dt

]2

dζ

=
1

Λ2

∫ x+ 2π
Λ

x

sin Λ(x1 − ζ)

∫ ζ

0

sin Λ(ζ − t)
(9

2
η2(t) + 3b(t)

)
dt∫ ζ

0

sin Λ(ζ − s)
(9

2
η2(s) + 3b(s)

)
dsdζ

=
1

Λ2

∫ x+ 2π
Λ

x

∫ ζ

0

∫ ζ

0

sin Λ(x1 − ζ) sin Λ(ζ − t) sin Λ(ζ − s)[9

2
η2(t) + 3b(t)

][9

2
η2(s) + 3b(s)

]
dtdsdζ
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=
1

4Λ2

∫ x+ 2π
Λ

x

∫ ζ

0

∫ ζ

0

[sin Λ(x1 − ζ − s − t) + sin Λ(x1 − ζ + s − t)

− sin Λ(x1 − 3ζ + s + t) − sin Λ(x1 + ζ − s − t)][9

2
η2(t) + 3b(t)

][9

2
η2(s) + 3b(s)

]
dtdsdζ

(since 4 sin α sin β sin γ = sin(β + γ − α) + sin(γ + α − β) + sin(α + β − γ)

− sin(α + β + γ)).

By changing order of integration, we obtain that∫ x+ 2π
Λ

x

S2(η)(ζ) sin Λ(x1 − ζ)dζ =
1

4Λ2
(I1 + I2 + I3 + I4 + I5)

where I1 =

∫ x

0

∫ x

0

∫ x+ 2π
Λ

x

P (x1, ζ, s, t)dζdtds,

I2 =

∫ x+ 2π
Λ

x

∫ x

0

∫ x+ 2π
Λ

s

P (x1, ζ, s, t)dζdtds,

I3 =

∫ x+ 2π
Λ

x

∫ x

0

∫ x+ 2π
Λ

t

P (x1, ζ, s, t)dζdsdt,

I4 =

∫ x+ 2π
Λ

x

∫ t

x

∫ x+ 2π
Λ

t

P (x1, ζ, s, t)dζdsdt,

I5 =

∫ x+ 2π
Λ

x

∫ s

x

∫ x+ 2π
Λ

s

P (x1, ζ, s, t)dζdtds, and

P (x1, ζ, s, t) = [sin Λ(x1 − ζ − s − t) + sin Λ(x1 − ζ + s − t)

− sin Λ(x1 − 3ζ + s + t) − sin Λ(x1 + ζ − s − t)][9

2
η2(t) + 3b(t)

][9

2
η2(s) + 3b(s)

]
.

Note that,

(i) by changing of variable, it can easily be shown that I1 = 0, and

(ii) by symmetry of s and t, it can easily be shown that I2 = I3 and I4 = I5.

Thus, by integrating I2 and I4 with respect to ζ, we have∫ x+ 2π
Λ

x

S2(η)(ζ) sin Λ(x1 − ζ)dζ =
1

2Λ3

(
I6 +

81

2
I7

)
where

I6 =

∫ x+ 2π
Λ

x

∫ x

0

(Q(x1, x, s, t) + R(x1, s, t))
(9

2
η2(t) + 3b(t)

)(9

2
η2(s) + 3b(s)

)
dsdt,

I7 =

∫ x+ 2π
Λ

x

∫ s

x

(Q(x1, x, s, t) + R(x1, s, t))η
2(t)η2(s)dtds

(since x > x+, b(x) = 0),
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Q(x, x1, s, t) = cos Λ(x1 − x − s − t) + cos Λ(x1 − x + s − t)

− 1

3
cos Λ(x1 − 3x + s + t) + cos Λ(x1 + x − s − t), and

R(x1, s, t) = −2

3
cos Λ(x1 − 2s + t) − 2 cos Λ(x1 − t).

Since η ∈ B, if we change variable and integrate I6 with respect to t first we

obtain that I6 = 0.

By the symmetry of the region of integration, we have

1

2

∫ x+ 2π
Λ

x

∫ x+ 2π
Λ

x

Q(x1, x, s, t)η2(s)η2(t)dtds

=

∫ x+ 2π
Λ

x

∫ s

x

Q(x1, x, s, t)η2(s)η2(t)dtds.

Then I7 can be written as I7 =
1

2
I8 + I9 where

I8 =

∫ x+ 2π
Λ

x

∫ x+ 2π
Λ

x

Q(x1, x, s, t)η2(s)η2(t)dtds, and

I9 =

∫ x+ 2π
Λ

x

∫ s

x

R(x1, s, t)η
2(s)η2(t)dtds.

Here, since η ∈ B, if we change variable we obtain that I8 vanishes.

By the definition of space B, each η ∈ B is of a Fourier approximation for which

η2 can be represented by

η2(x) =
∞∑

n=1

(En sin 2nΛx + Fn cos 2nΛx) ; x > x+

equality here is in the sense of almost everywhere. Hence∫ s

x

{cos, sin}(Λt)η2(t)dt

=

∫ s

x

{cos, sin}(Λt)
∞∑

n=1

(En sin 2nΛt + Fn cos 2nΛt)dt

= F0(x) +
∞∑

n=1

(Gn sin(2n − 1)Λs + Hn cos(2n − 1)Λs).

Thus I9 is, then, of the form

I9 = −2

3

∫ x+ 2π
Λ

x

η2(s) cos Λ(x1 − 2s)

∫ s

x

η2(t) cos Λtdtds

+
2

3

∫ x+ 2π
Λ

x

η2(s) sin Λ(x1 − 2s)

∫ s

x

η2(t) sin Λtdtds

− 2

∫ x+ 2π
Λ

x

η2(s) cos Λx1

∫ s

x

η2(t) cos Λtdtds

− 2

∫ x+ 2π
Λ

x

η2(s) sin Λx1

∫ s

x

η2(t) sin Λtdtds
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= 0

since the integrands in all the above integrals with respect to s in a period are

either products of even and odd harmonics or product of constants and harmonics.

The lemma is proved by letting x1 = 0 and x1 =
π

2Λ
, respectively.

�

Theorem 3.1 6λ0η + ηxx = −9

2
η2 − 3b(x) has a solution if

√
6λ0 is sufficiently

large.

Proof ‖S(η1) − S(η2)‖ = sup
x∈R

∣∣∣ 9

2
√

6λ0

∫ x

0

sin
√

6λ0(x − ξ)(η2
1(ξ) − η2

2(ξ))dξ
∣∣∣

≤ 9

2
√

6λ0

sup
x∈R

{∣∣∣
∫ x+

0

sin
√

6λ0(x − ξ)(η2
1(ξ) − η2

2(ξ))dξ
∣∣∣

+
∣∣∣
∫ x++ 2π√

6λ0

x+

sin
√

6λ0(x − ξ)(η2
1(ξ) − η2

2(ξ))dξ
∣∣∣

+
∣∣∣
∫ x++ 2πn√

6λ0

x++ 2π√
6λ0

sin
√

6λ0(x − ξ)(η2
1(ξ) − η2

2(ξ))dξ
∣∣∣}

for some n ∈ N

≤ 9N

2
√

6λ0

‖η1 − η2‖
[
sup
x∈R

∫ x+

0

| sin
√

6λ0(x − ξ)|dξ

+ sup
x∈R

∫ x++ 2π√
6λ0

x+

| sin
√

6λ0(x − ξ)|dξ
]

≤ 9N

2
√

6λ0

(
x+ +

2π√
6λ0

)
‖η1 − η2‖.

Hence we can see from Lemma 3.1, 3.2 and 3.3 that S is a contraction mapping

if
√

6λ0 ≥
[9

2
N(x+ +

2π√
6λ0

) +
3‖b‖
N

x+

]
and the integral equation η = S(η) has

the unique solution in BN .

�
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3.2 Numerical Procedure

We use only the system of RK4 to calculate the solution in this case. Consider

6λη − ηxx =
9

2
η2 + 3b(x)

with the initial conditions η(−1) = 0 and η′(−1) = 0.

We solve the above initial value problem by discretizing the physical domain

into a finite number of mesh points. To calculate the function η(x) at each mesh

point, we first let w(x) = ηx. Then wx(x) = ηxx = z(x, η), where z(x, η) =

−9

2
η2 + 6λη − 3b(x). We use the formulas to calculate w(x) as follow:

w(x + h) = w(x) +
1

6
(G1 + 2G2 + 2G3 + G4),

where G1 = hz(x, η),

G2 = hz
(
x +

h

2
, η +

1

2
G1

)
,

G3 = hz
(
x +

h

2
, η +

1

2
G2

)
and

G4 = hz(x + h, η + G3).

Next, since w(x) = ηx, to obtain the numerical solution of η(x) we use the above

formulas again by replacing all w’s by η and z’s by w. Numerical results will be

shown and discussed in the next section.

3.3 Numerical Results and Discussions

In this section, numerical solutions in the subcritical flow regime are presented.

We found that, when λ < 0, the flow is characterized by a train of nonlinear

periodic waves behind the pressure distribution while the upstream free surface

satisfies the radiation condition (see Figure 3.1 and 3.2). Figure 3.3 and 3.4 show

the behavior of the free-surface for various values of λ when ε = 0.5, 1 and 2.

As we shall see later, there are critical values of λ at which the wave amplitude
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diminishes. This is so-call drag-free solution. That is the flow possesses no wave

resistance which may be of interest in practice.

When ε = 0, uniform flow is always the solution in this case. Let us now define

the wave amplitude A as the difference between the levels of the successive crest

and trough. It can be seen that, for the same value of λ, the wave amplitude

increases as ε gets bigger (i.e., larger magnitude of pressure distribution, see Fig-

ure 3.5). We observe from the relationships between wave amplitude A and the

critical values λ∗ of λ (Figure 3.5 ) such that the wave amplitude vanishes. Some

of these critical values for ε = 0.1 are shown in Table 3.1.

i λ∗i

1 - 4.161

2 - 13.161

3 - 26.411

4 - 43.8

Table 3.1

In addition, similar behavior can be found for the steepness S of the waves, defined

as the ratio of the height between a crest and a trough and the wave length. This

is shown in Figure 3.6.

When λ > λ∗1, the wave amplitude A increases with λ whereas the steepness

S increases to its maximum value and then decreases as λ → λ∗2. For each

ε, when λ lies between the two consecutive critical values λ∗i < λ < λ∗i−1 for

i = 2, 3, ..., the amplitude and steepness increase to their peaks and decrease as

λ decreases between the values λ∗i−1 and λ∗i. Similarly, the results for ε < 0 are

presented in Figure 3.7-3.8. We found that the behavior of these numerical values

is qualitatively similar for ε > 0 except the reverse signs of the wave amplitude
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A. Thus, it is sufficient to present results for the case ε > 0.

Typical profiles of the drag-free solution as λ approaches λ∗1, λ∗2, λ∗3, and λ∗4

are shown in Figure 3.9. Besides the decreasing amplitude of the deformed free

surface, we observe that two humps occurs as λ → λ∗2 while only one hump is

detected when λ → λ∗1. Since the lower bound of λ should be −1

ε
, we conjecture

that there are finitely many critical λ∗i such that drag-free solutions exist. This

is of interest to architectural design of the moving vehicle on the free surface. In

addition, the numerical results show that as λ → λ∗n, there are n humps on the

free surface of the drag-free solutions. It is found that this similar behavior of

subcritical solutions exists in the case ε < 0.
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Figure 3.1: Typical free-surface profile for λ = −1.1 and ε = 2.
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Figure 3.2: Typical free-surface profile for λ = −1 and ε = −2.
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Figure 3.3: Typical free-surface profiles (a) for λ = −2, ε = 0.5, (b) for λ = −3,

ε = 0.5, and (c) for λ = −4, ε = 0.5.
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Figure 3.4: Typical free-surface profiles (a) for λ = −5, ε = 0.5, (b) for λ = −5,

ε = 1, and (c) for λ = −5, ε = 2.
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Figure 3.5: Relationship between amplitude A and λ for various values of ε > 0.
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Figure 3.6: Relationship between steepness S and λ for various values of ε > 0.
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Figure 3.7: Relationship between amplitude A and λ for various values of ε < 0.
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Figure 3.8: Relationship between steepness S and λ for various values of ε < 0.
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Figure 3.9: Typical free surface profiles (a) for λ = λ∗1, ε = 0.1, (b) for λ = λ∗2,

ε = 0.1, (d) for λ = λ∗3, ε = 0.1, and (d) for λ = λ∗4, ε = 0.1.



CHAPTER IV

Conclusions

In this work, we assume that all non-dimensional variables and parameter pos-

sess the asymptotic expansion of the form

φ = φ0 + εφ1 + ε2φ2 + ....

Taylor approximation with respect to variable y is used in the kinematic boundary

condition. Keeping terms up to ε2, we obtain the force stationary Korteweg-de

Vries equation.

3ηηx − 2ληx +
1

3
ηxxx + bx(x) = 0,

where b(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for |x| ≥ 1

ε exp
( 1

x2 − 1

)
for |x| < 1

and ε is a constant.

Finally, existence theorems of the solution are proved by using the fixed point

theorem for a contraction mapping. To confirm these results, we calculate the so-

lutions using the aforementioned numerical procedures. To summarize the results,

we split the solution into two cases depending on their behaviors.

(i) Supercritical flow (λ > 0).

There are two different types of symmetric solutions. Solutions of the first type

are characterized by W < 0. In addition, amplitude W increases as ε increases.

Solutions of the second type are characterized by W > 0. Our numerical results

show that there are nonuniqueness of solutions corresponding to same value of λ.



50

We conjecture that one solution is the perturbation of uniform stream while the

other solution is a perturbation of solitary wave solution.

(ii) Subcritical flow (λ < 0).

Solutions in this case possess a train of nonlinear waves behind the pressure

distribution. The amplitude A of the wave decreases as λ decreases. The wave

amplitude ultimately become zero when the critical value λ∗1 of λ is reached. For

λ < λ∗1, the wave amplitude increases to other local maximum value and then

decreases monotonically to zero again at λ = λ∗2. In addition, the free surface,

upon which the pressure distribution was applied, is deformed into two humps.

This cycle of behavior occurres repeatedly as λ reaches another critical value with

n humps on the free surface as λ → λ∗n. Similar behavior can be found for the

steepness S of the waves.

Finally, it should be noted here that our results are obtained by using small

amplitude theory. One can further investigate in the higher order of ε, which,

of course, will involve more calculations. However, our small amplitude results

seems to have qualitatively similar behavior as those of finite amplitude (Von

Kerczek and salvesen (1977), Schwartz (1981), Asavanant and Vanden-Broeck

(1994), and Asavanat, et, al. (2001)). For further study, one can include the

surface tension effect into the problem. This may probably require the fifth order

KdV to incorporate with the extra parameter in the problem.
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