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 The determination of velocity field of the fluid with laminar flow through randomly 
distributed spheres using an effective medium treatment (EMT) is presented. In the EMT, the 
system of fluid and spheres is replaced by a composite sphere -- a representative sphere of 
radius a  enclosed by a fluid shell of radius b  -- embedded in an effective medium of different 
viscosity. This type of fluid flow is described by Navier-Stokes equation which is equivalent to 
Poisson’s equation, so that the velocity field in the fluid shell and in the effective medium as a 
function of sphere volume packing fraction )( 333 ba=γ  or density of spheres in the fluid can 
be determined by using Green’s theorem and proper boundary conditions. The approximate 
fluid velocity in analytic closed form is obtained for low packing fraction (γ 3<0.1) and for the 
other range of γ 3>0.1. The comparison of flow fields in the fluid shell obtained in this research 
with Happel flow fields is shown for varying γ . The results of fluid velocity are applied to study 
the capture of magnetic particles by an assemblage of magnetic spheres by using 
Mathematica program. The capture radius as a function of γ  is obtained and compared with 
the results from previous study based on Happel’s theory. 
              The investigation shows that the flow fields within the fluid shell are very similar to 
Happel flow fields especially for the dilute range of packing fractions. The general features of 
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CHAPTER I 
 

INTRODUCTION 

The problem of fluid flow through various shapes of obstacles is 
interesting in many applications. Especially, the determination of fluid velocity field has 
been investigated by many approaches, for example the flow around multiple aligned 
cylinders [1, 2] and the flow past arrays of spheres [3]. When the fluid flows around solid 
objects, the characteristic of fluid flows is indicated by Reynolds number. There are two 
types of fluid flow, laminar and turbulent [4]. Laminar flow occurs when the fluid stream 
around the object is smooth, while turbulent flow occurs when the fluid stream breaks up 
and causes little whirlwind currents next to the object which occurs at high Reynolds 
number. In between, fluid flow is in the transition range. In this research, the velocity 
profiles for laminar flow through randomly distributed spheres are considered. This type 
of fluid flow occurs for values of Reynolds number 1Re 0 <= ηρ av , where ρ , 0v , η , 
and a  are the fluid density, entrance velocity, viscosity, and the sphere radius, 
respectively. For 1Re > , the fluid flow which is incompressible and irrotational is called 
potential flow which is an ideal fluid. The potential flow is described by Laplace’s 
equation, 02 =∇ ϕ , where ϕ  is the velocity potential. At steady state, the laminar flow 
velocity field is described by the Navier-Stokes equation which is Poisson’s 
nonhomogeneous equation. This equation can be explored by using Green’s function 
techniques to obtain the velocity field describing laminar flow around random spheres. 

Several models have been developed to describe the system of fluid 
flow pass individual type of obstacles [3, 5, 6, 7, 8]. The simplest and most successful 
model to determine velocity profiles of laminar flow through randomly distributed 
spheres is the free-surface model due to Happel [9]. The model consists of two 
concentric spheres; the inner sphere represents one of the spheres in the assemblage 
and the outer sphere is a fluid envelope. The surface of the outer sphere is assumed to 
be frictionless; its size is fixed by sphere volume packing fraction or density of the 
spheres in the system. In this research, we used an effective medium treatment (EMT). 
In the EMT, the system of fluid and spheres is replaced by a composite sphere -- a 



 
 
 

2

representative sphere of radius a  enclosed by a fluid shell of radius b  -- embedded in 
an effective medium of different viscosity. The velocity fields in the fluid shell and in the 
effective medium as a function of sphere volume packing fraction )( 333 ba=γ  or 
density of the spheres in liquid are determined by using Green’s theorem and proper 
boundary conditions. 

This thesis begins with a review of Green’s function for Poisson’s 
equation as given in the second chapter. The determination of the formal solution to 
Poisson’s equation with Dirichlet boundary conditions and Green’s function in a 
spherical shell are reported. 

In Chapter 3, we discuss the Happel model and demonstrate the 
derivation of the laminar velocity field of fluid flow around random particles moving in the 
fluid at rest. Then the transformation of this velocity field to the reference coordinate 
system fixed on a representative particle is performed. 

In Chapter 4, the derivation of fluid flow fields by using effective medium 
treatment (EMT) with Green’s function technique reviewed in Chapter 2, and proper 
boundary conditions is discussed in detail. Two regions are considered: outside the 
shell (in the effective medium) and in the shell regions. We consider for the cases of low 
packing fraction (γ 3<0.1) and γ 3>0.1 separately. Then our results are compared with 
Happel flow fields for varying various packing fractions. 

In Chapter 5, the flow fields obtained in this research as presented in the 
previous chapter are applied to describe the trajectories of magnetic particles carried 
by the fluid of laminar flow type. Finally, the capture radii are investigated for varying γ  
and presented in comparison with the results based on Happel flow fields. 

The last chapter is devoted to the conclusion and discussion of the 
velocity flow fields obtained in this research and its applications. There, the comparison 
of velocity profiles and capture radius )( cr  with the results based on Happel’s theory 
are discussed. 



CHAPTER II 
 

GREEN’S FUNCTION FOR POISSON’S EQUATION 

Our research concerns the solution to Poisson’s equation in any region of 
a spherical shell with Dirichlet boundary conditions. Poisson’s equation is a special case 
of Helmholtz equation which is amenable to the method of Green’s function technique. 
In this chapter, the development of the formal solution to Poisson’s equation with 
Dirichlet boundary conditions is reviewed with the construction of Green’s function in a 
spherical shell of radii a  and b . 

2.1 Formal Solution to Poisson’s Equation 

In this section the used of Green’s theorem to construct the formal 
solution for Dirichlet boundary value problems is presented. First we discuss the general 
solution of Helmholtz equation and next the Poisson’s equation in electrostatics. 

2.1.1 Green’s Identities and Methods 

We now consider the general solution of the three-dimensional scalar 
Helmholtz partial differential equation [10] 

)()()( 22 rfrr
vvv

=+∇ ϕβϕ                                                                  (2.1) 

subject to the generalized homogeneous boundary conditions 

  0
)(

)( 21 =
∂

∂
+

n
r

r s
s

v
v ϕ

αϕα .                                                                 (2.2) 

Here sr
v  is on surface S  with n̂  an outward directed unit vector, and 1α  and 2α  are 

constants. The Green’s function ),( rrG ′
vv  of Equation (2.1) must satisfy the partial 

differential equation 

)(),(),( 22 rrrrGrrG ′−=′+′∇
vvvvvv

δβ                                              (2.3) 

subject to the generalized homogeneous boundary condition [10]  
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0
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),( 21 =
∂

′∂
+′

n
rrG

rrG s
s

vv
vv

αα .                                                     (2.4) 

  To accomplish this we need two identities from vector calculus that are 
usually referred to as Green’s first and second identities. 

  Consider a volume V  enclosing the surfaces 1S , 2S , 3S , …, nS  as 
shown in Figure 2.1. By introducing appropriate cuts, the volume V  is bounded by a 
regular surface S  that consists of surfaces 1S - nS , the surfaces along the cuts, and 
the spherical surface aS  of infinite radius which encloses all the smaller surfaces. A unit 
vector n̂  normal to S  is directed outwards the volume V , as shown in Figure 2.1. 

 

 

 
 

 

Figure 2.1 Surfaces and appropriate cuts used in Green’s theorem [10]. 
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  Let us introduce within V  two scalar functions φ  and ψ  which their first 
and second derivatives are continuous within V  and on the surface S . To the vector 

ψφ∇
v  we apply the divergence theorem 

  ∫ ∫∇= dvAsdA
vvvv

.. , 

thus   ∫ ∫ ∫ ∇∇=∇=∇ dvdansd ).(ˆ).().( ψφψφψφ
vvvvv .                                  (2.5) 

When expanded, the integrand of the volume integral can be written as 

  ψφψφψφψφψφ ∇∇+∇=∇∇+∇∇=∇∇
vvvvvvvv

..).().( 2 .                        (2.6) 

Thus Equation (2.5) can be expressed as 

  ∫ ∫ ∫ ∇∇+∇=∇ dvdvsd ).()().( 2 ψφψφψφ
vvvv                                     (2.7) 

which is referred to as Green’s first identity. Since 

  
n

n
∂
∂

=∇
ψψ ˆ).(

v ,                                                                                    (2.8) 

where the derivative n∂∂ψ  is taken in the direction of positive normal, equation (2.7) 
can also be written as 

  ∫ ∫ ∫ ∇∇+∇=
∂
∂ dvdvds

n
).()()( 2 ψφψφψφ

vv  

           ∫ ∇∇+∇= dv).( 2 ψφψφ
vv ,                                              (2.9) 

which is an alternative form of Green’s first identity. 

  If we repeat the procedure but apply the divergence theorem of Equation 
(2.5) to the vector φψ∇

v , then we can write, respectively, Green’s first identity of 
Equation (2.7) and its alternative form of Equation (2.9) as 

  ∫ ∫ ∫ ∇∇+∇=∇ dvdvds ).()().( 2 φψφψφψ
vvv                                    (2.10) 

and  
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  ∫ ∫ ∫ ∇∇+∇=
∂
∂ dvdvds
n

).()()( 2 φψφψφψ
vv .                                  (2.11) 

Subtracting Equation (2.10) from Equation (2.7) we can write  

  ∫ ∫ ∇−∇=∇−∇ dvds )().( 22 φψψφφψψφ
vv                                     (2.12) 

which is referred to as Green’s second identity. Its alternative form 

∫ ∫ ∇−∇=
∂
∂

−
∂
∂ dvds

nn
)()( 22 φψψφφψψφ                                    (2.13) 

is obtained by subtracting Equation (2.11) from Equation (2.9). 

  With Green’s first and second identities, we now develop the formulation 
of the generalized Green’s function method for the partial differential equation (2.1) 
whose Green’s function ),( rrG ′

vv  satisfies Equation (2.3). 

  Let us multiply Equation (2.1) by ),( rrG ′
vv  and Equation (2.3) by )(r

v
ϕ . 

Doing this leads to  

fGGG =+∇ ϕβϕ 22                                                                       (2.14a) 

and  )(22 rrGG ′−=+∇
vv

ϕδϕβϕ .                                                       (2.14b) 

Subtracting Equation (2.14a) from Equation (2.14b) and integrating over the volume V , 
we can write  

  ∫ ∫ ∫ ∇−∇=−′− dvGGfGdvdvrr )()( 22 ϕϕϕδ
vv                        (2.15a) 

or  

)()( rrr ′=′=
vvv

ϕϕ  

     [ ]∫ ∫ ∇′−′∇+′= dvrrrGrrGrdvrrGrf )(),(),()(),()( 22 vvvvvvvvv
ϕϕ .      (2.15b) 

Applying Green’s second identity (2.12) reduces Equation (2.15b) to 
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 ∫ ∫ ∇′−′∇+′=′ sdrrrGrrGrdvrrGrfr
vvvvvvvvvvvvv

)].(),(),()([),()()( ϕϕϕ .    (2.16) 

  Since r ′
v  is an arbitrary point within V  and r

v  is a dummy variable. By 
the mathematical symmetry property ),( rrG ′vv = ),( rrG vv′ , we can also write Equation 
(2.16) as 

∫ ∫ ′′∇′′−′∇′′+′′′= sdrrrGrrGrvdrrGrfr
vvvvvvvvvvvvv

)].(),(),()([),()()( ϕϕϕ ,         (2.17) 

where ∇′v  indicates differentiation with respect to the prime coordinates. 

  Equation (2.17) is a generalized formula for the solution of a three-
dimensional scalar Helmholtz equation. It can be simplified depending on the boundary 
conditions of ϕ  and G , and their derivatives on S . 

  If the nonhomogeneous partial differential equation (2.1) satisfies the 
nonhomogeneous Dirichlet boundary condition 

  )()( ss rgr
vv

=ϕ ,                                                                                (2.18a) 

where sr
v  is on S , then we can still construct a Green’s function that satisfies the 

boundary condition 

  0),( =′rrG s
vv ,                                                                                 (2.18b) 

where sr
v  is on S . 

  For these boundary conditions on ϕ  and G  the second term in the 
surface integral of Equation (2.17) vanishes, so that Equation (2.17) reduces to  

  ∫ ∫ ′′∇′′+′′′= sdrrGrvdrrGrfr s
vvvvvvvvv

).,()(),()()( ϕϕ ,                  (2.19) 

ϕ  is scalar function which along with its first and second derivatives are continuous 
within V  and on the surface S . In the next section we will considered this formal 
solution in a specific case for electrostatics. 
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2.1.2 Green’s Theorem for Electrostatics 

  This section we review the construction of formal solution to Dirichlet 
boundary value problems for Poisson’s equation in electrostatics. 

  For the special case of Helmholtz equation (2.1), Poisson’s equation for 
the electrostatics potential Φ  takes the form  

0

2 )(
ε
ρ r
v

−=Φ∇ ,                                                                                 (2.20) 

where )(r
v

ρ  is the charge density found within volume V . The contributions of charges 
that might be found outside the volume of interest are represented by the boundary 
conditions, either the potential or its normal derivatives on the bounding surface. It is 
useful to define the Green’s function ),( rrG ′

vv  to be the potential at r
v  produced by a 

unit point charge at r ′v  satisfying the partial differential equation (2.3) as the solution to  

  )(4),(2 rrrrG ′−−=′∇
vvvv

πδ                                                             (2.21) 

subject to appropriate boundary conditions to be specified later. Next we apply Green’s 
second identity (2.13) by choosing φ  to be the electrostatic potential Φ  and ψ  to be 
the Green’s function ),( rrG ′

vv , so that  

( )

∫

∫
′⎟

⎠
⎞

⎜
⎝
⎛

′∂
′Φ∂′−

′∂
′∂′Φ=

′′Φ∇′′−′∇′′Φ

sd
n
rrrG

n
rrGr

vdrrrGrrGr

)(),(),()(

)(),(),()( 22

v
vv

vv
v

vvvvvv

.                               (2.22) 

Using Poisson’s equation (2.20) and the definition of the Green’s function in Equation 
(2.21), this becomes 

∫

∫

′⎟
⎠
⎞

⎜
⎝
⎛

′∂
′Φ∂′−

′∂
′∂′Φ=

′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
′−′−′Φ−

sd
n
rrrG

n
rrGr

vdrrrGrrr

)(),(),()(

4
)(),()()(4

0
v

vv
vv

v

v
vvvvv

πε
ρδπ

.                             (2.23) 

Thus, a formal solution to Poisson’s equation is [11] 
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∫ ′′′=Φ vdrrGrr ),()(
4

1)(
0

vvvv
ρ

πε
 

   sd
n

rrGr
n
rrrG ′⎟

⎠
⎞

⎜
⎝
⎛

′∂
′∂′Φ−

′∂
′Φ∂′+ ∫

),()()(),(
4
1

vv
v

v
vv

π
.             (2.24) 

If there were no boundary surfaces, the first term would represent the familiar 
electrostatic potential produced by a specified charge distribution. The second term 
then represents the contribution made by external charges that determine the conditions 
on the boundary surfaces. 

  For Dirichlet boundary conditions specifying Φ  on S , it is required that 
Green’s function vanishes on S  so that [11] 

∫∫ ′
′∂
′∂′Φ−′′′=Φ sd

n
rrGrvdrrGrr ),()(

4
1),()(

4
1)(

0

vv
vvvvv

π
ρ

πε
.                (2.25) 

This equation is a formal solution to Poisson’s equation with Dirichlet boundary 
conditions. The Green’s function ),( rrG ′

vv  in this equation will be determined in the next 
section. 

2.2 Green’s Function in a Spherical Shell 

  We seek to construct a Green’s function for Poisson’s equation that 
vanishes on the concentric spherical surfaces of radii a  and b . A Green’s function for 
a Dirichlet potential problem satisfies the equation 

  )(4),(2 rrrrG ′−−=′∇
vvvv

πδ .                                                           (2.26) 

  The Laplacian in spherical coordinates, ),,( φθr , has the form  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=∇ 2

2

2
2

2
2

sin
1)(sin

sin
11

φθθ
θ

θθrr
r

rr
              (2.27a) 

and 
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  )()()(
sin
1)(

2
φφδθθδδ

θ
δ ′−′−′−=′− rr

r
rr
vv .                     

(2.27b)Using Equations (2.27a) and (2.27b) into equation (2.26) which takes the form 

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

2

2

2
2

2 sin
1sin

sin
11

φθθ
θ

θθ
GG

rr
Gr

rr
 

)()()(
sin
4

2 φφδθθδδ
θ

π ′−′−′−−= rr
r

.                         (2.28) 

We define the operator 

  ⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

−≡ 2

2

2
2

sin
1sin

sin
1

φθθ
θ

θθ
L .                                   (2.29) 

The eigenfunctions of 2L  subject to the boundary conditions that these eigenfunctions 
are finite at 0=θ  and πθ =  are the spherical harmonics ),( φθlmY . The 
corresponding eigenvalues are )1( +ll  where l =0, 1, 2, … etc. and m is an integer 
whose values are from l−  to l  [12], 

),()1(),(2 φθφθ lmlm YllYL += .                                                       (2.30) 

From the above condition, Equation (2.28) can be written as 

 )()()(
sin
41

22

2
2

2
φφδθθδδ

θ
π ′−′−′−−=−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ rr

r
G

r
L

r
Gr

rr
.         (2.31) 

We expand ),( rrG ′
vv  in terms of these eigenfunctions; 

  ∑ ∑
∞

=′

′

′−=′
′′′′ ′=′

0

),(),(),(
l

l

lm
mlml YrrgrrG φθ

vvvv .                                        (2.32) 

By substituting Equation (2.32) into Equation (2.31) and using Equation (2.30) one 
obtains 

 

 



 
 
 

11

∑ ∑
∞

=′

′

′−=′
′′′′

′′
⎥
⎦

⎤
⎢
⎣

⎡ +
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

0
2

2
2 ),()1(1

l

l

lm
mlml

ml Yg
r
ll

dr
dg

r
dr
d

r
φθ  

)()()(
sin
4

2
φφδθθδδ

θ
π ′−′−′−−= rr

r
.                                      (2.33) 

Multiplying both sides of Equation (2.33) by θφθ sin),(2 ∗
lmYr  and integrating over θ  

from 0 to π  and over φ  from 0 to π2 , one obtains 

 ),()(4)1(2 φθπδ ′′′−−=+−⎟
⎠

⎞
⎜
⎝

⎛ ∗
lmlm

lm Yrrgll
dr

dgr
dr
d .                          (2.34) 

In obtaining Equation (2.34), we have used the orthogonality property of the spherical 
harmonics, 

 mmlllmml ddYY ′′
= =

∗
′′ =′′∫ ∫ δδφθθφθφθ

π

θ

π

φ0

2

0

sin),(),( .                                         (2.35) 

Let  

  ),(),(),( φθ ′′′=′ ∗
lmllm YrrGrrg .                                                    (2.36) 

Equation (2.34) becomes 

  )(4)1(2 rrGll
dr

dG
r

dr
d

l
l ′−−=+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ πδ .                                  (2.37) 

Multiply both sides of Equation (2.37) by 21 r   

 )(4),()1(),(1
22

2
2

rr
r

rrG
r
llrrG

dr
dr

dr
d

r ll ′−−=′+
−⎟

⎠
⎞

⎜
⎝
⎛ ′ δπ  

which is the same as [11] 

 ( ) )(4),()1(),(1
222

2

rr
r

rrG
r
llrrrG

dr
d

r ll ′−−=′+
−′ δπ .                       (2.38) 

The radial Green’s function, ),( rrGl ′ , satisfying the homogeneous radial equation for 
rr ′≠ . Thus its general solution can be written as  
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    ⎛ )1( +−+ ll BrAr   for  rr ′< , 

=′),( rrGl     ⎨ 

  ⎝ )1( +−′+′ ll rBrA   for rr ′> . 

The coefficients A , B , A′ , B ′  are functions of r ′  to be determined by the boundary 
conditions, the requirement implied by )( rr ′−δ  in Equation (2.38), and the symmetry 
of ),( rrGl ′  in r  and r ′ . Suppose that the boundary surfaces are concentric spherical 
surfaces at ar =  and br = . The vanishing of ),( rrG ′

vv  for rv  on the surfaces implies 
the vanishing of ),( rrGl ′  for ar =  and br = . Consequently ),( rrGl ′  becomes 

    ⎛ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

+

1

12

l

l
l

r
arA   for rr ′<  

  =′),( rrGl     ⎨               (2.39) 

    ⎝ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−′

++ 121

1
l

l

l b
r

r
B   for rr ′> . 

The symmetry in r  and r ′  requires that the coefficients )(rA ′  and )(rB ′  be such that 
),( rrGl ′  can be written 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=′

+
>

+
>

+
<

+

< 1211

12 1),( l

l

ll

l
l

l b
r

rr
arCrrG ,                                    (2.40) 

where <r ( >r ) is the smaller (larger) of r  and r ′ . To determine the constant C  we must 
consider the effect of the delta function in Equation (2.38). If we multiply both sides of 
Equation (2.38) by r  and integrate over the interval from ε−′= rr  to ε+′= rr , 
where ε  is very small, we obtain  

  ( ) ( )
r

rrrG
dr
drrrG

dr
d

r
l

r
l ′

−=
⎭
⎬
⎫

⎩
⎨
⎧ ′−

⎭
⎬
⎫

⎩
⎨
⎧ ′

−′+′

π

εε

4),(),( .                   (2.41) 

Thus there is a discontinuity in slope at rr ′= , as indicated in Figure 2.2. 
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Figure 2.2 Discontinuity in slope of the radial Green’s function [11]. 

 

For ε+′= rr  and rr => , rr ′=< . Hence 

   [ ]
rr

l

l

ll

l
l

r
l b

r
rdr

d
r
arCrrrG

dr
d

′=
−

−

−

−

+′ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′

−′=
⎭
⎬
⎫

⎩
⎨
⎧ ′

12

1

1

12 1),(
ε

 

    
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ′

++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

′
−

′
−=

+− 1212

)1(.1
ll

b
rll

r
a

r
C . 

Similarly for ε−′= rr , 

 [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ′

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

′
++

′
=

⎭
⎬
⎫

⎩
⎨
⎧ ′

−+

−′

1212

1.1),(
ll

r
l b

r
r
all

r
CrrrG

dr
d

ε

. 

Substituting these derivatives into Equation (2.41), we find 

  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+

=
+12

1)12(

4
l

b
al

C π .                                                               (2.42) 
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Combination of Equations (2.42), (2.40), (2.36), and (2.32) yields the expansion of 
Green’s function for a spherical shell bounded by ar =  and br =  [11]: 

∑ ∑
∞

= −=
+

>
+

>
+

<

+

<+

∗

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+

′′
=′

0
1211

12

12

1

1)12(

),(),(
4),(

l

l

lm
l

l

ll

l
l

l
lmlm

b
r

rr
ar

b
al

YY
rrG

φθφθ
π

vv ,          (2.43) 

where <r ( >r ) is the smaller (larger) of r  and r ′ , )( bra ≤≤ . 

For the “exterior” problem with a spherical boundary at br = , we 
merely let ∞→b  and ba → , then the Green’s function (2.43) becomes 

∑ ∑
∞

= −=

∗

+

+
>

< ′′
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

−
+

=′
0

12

1 ),(),(1
)12(

14),(
l

l

lm
lmlm

l

l

l

YY
rr

b
br

r
l

rrG φθφθπ
vv ,               (2.44) 

where <r ( >r ) is the smaller (larger) of r  and r ′ , r ≥b . 

 

 

 

 

 

 

 

 

 



CHAPTER III 
 

LAMINAR FLOW VELOCITY FIELD 

As mentioned in the first chapter, the simplest and successful model to 
determine velocity profiles for laminar flow through randomly distributed spheres is the 
free surface model due to Happel [9]. This cell model consists of a concentric spheres, 
which corresponds to EMT model as mentioned in Chapter 1. It is, therefore, useful to 
attest EMT results with Happel velocity field. In this chapter, the derivation of Happel 
flow field of particles moving in the rest fluid is reviewed. 

3.1 Happel Flow Field 

The motion of particles relative to a fluid is often of interest in the two 
cases where either the particles move and there is no average motion of the fluid or 
alternatively the particles remain more or less stationary and fluid passes around them. 
In this section, we consider particles that are spheres of average radius a  moving 
through stationary fluid. In Happel model, the system of fluid and spheres is replaced by 
a composite sphere. Each composite sphere consists of a representative sphere of 
radius a  enclosed by a fluid shell of radius b . The fluid shell radius b  was chosen 
such that 333 ba=γ  is the volume packing fraction or the volume density of spheres 
in the fluid. 

At steady state, the fluid is described by the Navier-Stokes equation 

pv ∇=∇
vv2η                                                                                          (3.1) 

and the continuity equation for an incompressible fluid is 

  0. =∇v
vv ,                                                                                               (3.2) 

where η , vv , and p  are the viscosity of fluid, the fluid velocity inside the spherical shell, 
and the pressure, respectively. 
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The internal sphere moves in a positive direction along the z-axis with a constant 
velocity 0v

v  inside the fluid shell with the outer free surface and thus 

0=xv , 0=yv , 0vv z =  at  ar =                                 (3.3) 

0=rv     ⎫ 

     ⎬ at  br = ,                               (3.4) 

01
0 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

+
∂
∂

=
r

v
r

vv
r

p r
r

θθ
θ θ

η  ⎭ 

0η  is the viscosity of a suspension and θrp  is the stress component in θ  direction. The 
condition of no tangential stress component on the surface of the outer sphere 
corresponds to the vanishing of the stress tensor component θrp . The condition 0=rv  
at br =  corresponds to no flow across the boundary of the fluid envelope. Because of 

the symmetry 0=φv  in the entire spherical shell bra ≤≤ . At br = , 0=
∂
∂
θ

rv  and 
so the vanishing of θrp  corresponds to 

0=−
∂
∂

r
v

r
v θθ .                                                                                    (3.5) 

A general solution of the laminar flow equations is given by Lamb [13]. It is as follows  

∑
∞

−∞= +−
−∇

++
+

+Φ∇+×∇=
n

n
nnn nn

np
rpr

nn
nrv

)32)(1()32)(1(2
3)( 2 vvvvvv

χ ,       (3.6) 

  ∑
∞

−∞=

=
n

npp η                                                                                         (3.7) 

where nχ , nΦ , and np are Legendre polynomials of order n. 

  An appropriate form of vv  satisfying the present boundary value problem 
is obtained by setting 0=nχ  and retaining Legendre polynomials, np  and nΦ  of 
orders –2 and 1, 
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 22
2

11
2

21 2
2
1

10
1

5
1

−−− +∇+−∇+Φ∇+Φ∇= prprprprv
vvvvvvv .                    (3.8) 

Using the explicit form of Legendre polynomials, we write 

  Az=Φ1                 (3.9a) 

  Bzp =1                 (3.9b) 

  32 r
Cz

=Φ−                 (3.9c) 

  
32 r

Dzp =− .                (3.9d) 

Substituting Equations (3.9a), (3.9b), (3.9c) and (3.9d) into Equation (3.8), we obtain 

33

22

3
2

2105 r
Dzr

r
DzrBzrBzr

r
CzAzv

vv
v

vvvv
+⎟

⎠
⎞

⎜
⎝
⎛∇+−∇+⎟

⎠
⎞

⎜
⎝
⎛∇+∇=  

   r
r
Dzk

r
Dr

r
DzrBzkBrk

r
Cr

r
zCkA

vvvv
33

2

35

2ˆ
22

3
10

ˆ
5

ˆ3ˆ ++−−++⎟
⎠
⎞

⎜
⎝
⎛−+= .         (3.10) 

Let rrr ˆ=
v , Equation (3.10) can be put in the form  

 r
r
Dz

r
DzBzr

r
Czk

r
DBr

r
CAv ˆ2

2
3

10
3ˆ

25 224

2

3 ⎟
⎠
⎞

⎜
⎝
⎛ +−−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++=

v .            (3.11) 

Because ( )kzjyix
r

r ˆˆˆ1ˆ ++= , we get 

)ˆˆˆ(
210

3ˆ
25 35

2

3 kzjyix
r

DzBz
r
Czk

r
DBr

r
CAv ++⎟

⎠
⎞

⎜
⎝
⎛ +−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++=

v .               (3.12) 

Using the boundary condition (3.3), we obtain 

  0
210

3 2

3
=−+

a
DBa

a
C                                                                         (3.13) 

and   0

2

3 25
v

a
DBa

a
CA =+++ .                                                              (3.14) 
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In spherical coordinates, Equation (3.11) can be written as 

( )+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++= θθθ ˆsinˆcos

25

2

3 r
r

DBr
r
CAv

v  

       r
r

Dr
r

DrBr
r

Cr ˆcos2
2

cos3
10
coscos3

22

2

4 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−−

θθθθ  

   −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−+++= r

r
DBr

r
C

r
DBr

r
CA ˆcos

210
3

25

2

3

2

3 θ  

       θθ ˆsin
25

2

3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

r
DBr

r
CA  

θθθ ˆsin
25

ˆcos
10

2 2

3

2

3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−=

r
DBr

r
CAr

r
DBr

r
CAv

v .        (3.15) 

From Equations (3.4) and (3.5), we have 

  0
10

2 2

3
=++−

b
DBb

b
CA                                                                  (3.16) 

and  0
5

4 2

3
=+−+

b
DBb

b
CA .                                                                (3.17) 

From Equations (3.13), (3.14), (3.16), and (3.17), we obtain 

  
)2332(

)23(
65

0
5

γγγ
γγ
−+−

+
−=

v
A ,                                                        (3.18a) 

  
)2332(

10
652

0
5

γγγ
γ

−+−
=

a
v

B ,                                                      (3.18b) 

  
)2332(2 65

0
3

γγγ −+−
=

va
C ,                                                         (3.18c) 

  
)2332(

)23(
65

0
5

γγγ
γ

−+−
+

=
va

D ,                                                          (3.18d) 

where ba=γ . 
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Substituting Equations (3.18a)-(3.18d) into Equation (3.15), we get the factors of rv  and 
θv  as 

⎥
⎦

⎤
⎢
⎣
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++−
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⎞
⎜⎜
⎝
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M
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M
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a

)23()23(
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2 5
0

2
0

5

3
00
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3

γγγγ  

     ⎟⎟
⎠

⎞
⎜⎜
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−−= 2
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3
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2
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2
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a
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r
rrM

v γγγγ , 

and  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+
−−−−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++ 6

5
25

3
0

2

3 2
3

4
)23(

4
12

25
γγγγ

a
a

a r
r

rM
v

r
DBr

r
CA , 

where arra = , and 65 2332 γγγ −+−=M . Therefore the fluid velocity is obtained 

  [ ]θθγθγ ˆsin),(ˆcos),(0 aas rqrrpvav −=
v ,                                   (3.19) 

where ),( γarp  and ),( γarq  are functions of ar  and γ  given as  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

+
−= 2

5
6
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3 22
3

2
)23(

2
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rr
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 ⎟⎟
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5
25

3 2
3

4
)23(

4
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a
a

a
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r
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rq                               (3.20b) 

and           
65 2332

2
γγγ −+−

−=sa . 

The fluid velocity field which has been solved is for the case of the particles moving in 
the fluid at rest. 

  In the case that fluid flows through the randomly distributed spherical 
particles at rest, the above velocity flow field has to be transformed into a frame of 
reference or coordinate system which is fixed on the representative sphere. Let the fluid 
entrance velocity at far away from the spheres be kv ˆ

0 . Therefore the fluid velocity 
around the sphere is  
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  0vvv f
vvv

+−= ,                                                                                    (3.21) 

where fv
v  is the fluid velocity in the reference frame in which the particle is at rest, and 

v
v  is the fluid velocity obtained from Equation (3.19). Substituting Equation (3.19) into 

Equation (3.21), we obtain  

 ( ) ( )[ ]θθγθγ ˆsin1),(ˆcos1),(0 +−−+−= asasf rqarrpavv
v .                 (3.22) 

Substituting Equation (3.20) into Equation (3.22), we obtain the components rv  and θv  
as  

( ) θγ cos1),(0 +−= asr rpavv  

     θγγγ
γγγ
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22
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2

)23(
2
1

2332
2 2

55

3650
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

+
−

−+−
= a

aa

r
rr

v  

and 

( ) θγθ sin1),(0 +−= as rqavv  

     θγγγ
γγγ

sin
22

31
4

)23(
4
1

2332
2 2

5
5

5

3650
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

+
−−

−+−
= a

aa

r
rr

v . 

So the fluid velocity is obtained as 

  ]ˆsin),(ˆcos),([0 θθγθγ aasf rQrrPvAv −=
v ,                               (3.23) 

where 

  2
5

5
5

3 22
31

2
)23(

2
1),( a

aa
a r

rr
rP γγγγ −++

+
−=                            (3.24) 

  2
5

5
5

3 22
31

4
)23(

4
1),( a

aa
a r

rr
rQ γγγγ −++

+
−−=                        (3.25) 

and  
65 2332

2
γγγ −+−

=sA .      

  



CHAPTER IV 
 

LAMINAR FLOW VELOCITY FIELD FROM A GREEN’S FUNCTION 

This chapter begins with an introduction of the effective medium 
treatment (EMT), the method used in this research. Then the determination of the 
velocity field for laminar flow through randomly distributed spheres is considered in next 
sections. As explained in Chapter 1, this type of fluid flow occurs for a Reynolds number 

η
ρ av 0Re =  < 1, where ρ , 0v , η  and a  are the fluid density, entrance velocity, 

viscosity and the sphere radius, respectively. The fluid velocity (in laminar flow) is 
described by the Navier-Stokes equation which is in the form of Poisson’s equation. We, 
therefore, use Green’s theorem to solve Navier-Stokes equation in this chapter and the 
comparison of EMT velocity profiles with Happel flow velocity fields is performed in the 
final section. 

4.1 Effective Medium Treatment 

In determining the velocity field, the effective medium treatment (EMT) is 
employed. In the EMT, the system of fluid and spheres is replaced by a composite 
sphere -- a representative sphere of radius a  enclosed by a fluid shell of radius b  -- 
embedded in an effective medium of different viscosity. The composite sphere consists 
of the collector sphere enclosed by a fluid shell with viscosity η  (medium 1) embedded 
in an effective medium of viscosity ∗η  (medium 2) to be assigned. The ratio of the small 
sphere and the large sphere volume )( 33 ba  is set to be equal to the sphere volume 
packing fraction )( 3γ  or the density of spheres in the liquid. The velocity fields in the 
fluid shell and in the effective medium are determined by using Green’s theorem and 
proper boundary conditions. We assume that the fluid enters the system of random 
spheres with a uniform velocity 0v

v  along the polar (symmetry) axis of a spherical 
coordinate system. As shown in Figure 3.1, the representative sphere enclosed by a 
fluid shell is in the effective medium and the entering fluid has uniform entrance velocity 

0v
v . 
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Figure 4.1 A representative sphere in the effective medium. 
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4.2 Laminar Flow Velocity Field from a Green’s Function 

At steady state, the laminar flow is described by the Navier-Stokes 
equation 

η
pv ∇

=∇
v

v2                                                                                           (4.1) 

and by the continuity equation tv ∂∂−=∇ ρ
vv

. . For an incompressible fluid with steady 
flow 

  0. =∇v
vv ,                                                                                               (4.2) 

where p  is the pressure, ρ is fluid density and η  the fluid viscosity. If the divergence of 
Equation (4.1) is taken, we get 

  0).(2 =∇∇ v
vv

η p2∇= ,                                                                        (4.3) 

showing that the pressure satisfies Laplace’s equation and the general solution in polar 
coordinates ),( θr  is 

  ∑
∞

=

+−+=
0

)1( )(cos][)(
l

l
l

l
l

l PrBrArp θ
v ,                                            (4.4) 

where )(cos θlP  is the Legendre Polynomial of order l . With the help of Equation (4.4), 
the right hand side of Equation (4.1) can be determined in terms of unknown constants 

lA  and lB . The form of Equation (4.1) is that of Poisson’s equation. For the Dirichlet 
boundary condition,  

  0),( =′rrG
vv           for  r ′v  on S , 

where S  is the boundary surface of the volume V . Referring to the solution of Poisson’s 
equation, Equation (2.25), thus the velocity field vv  in Equation (4.1) can be written as 

∫∫ ′
′∂
′∂′−′′

′∇′
−=

SV

ad
n

rrGrvrdrrGrprv ),()(
4
1),()(

4
1)( 3

vv
vvvv

vv
vv

πηπ
,                         (4.5) 



 
 
 

24

where ),( rrG ′
vv  is the Green’s function for a spherical shell bounded by ar =  and 

br =  as shown in Equation (2.43): 

∑ ∑
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vv ,            (4.6) 

where <r )( >r  is the smaller (larger) of r  and r ′ , )( bra ≤≤ . 

  In determining vv , we impose the following boundary conditions [14]: 

1) Far away from the composite sphere, the velocity field )( 2vv
vv

=  is 
uniform and equal to 0v

v (the entrance velocity). Thus, 

02 vv
vv

=           at   ∞=r .                                                                    (4.7) 

2) In the far region, the pressure is constant and equal to ∞p , i.e., 

∞= pp           at   ∞=r .                                                                     (4.8) 

3) In the fluid shell region, 1vv
vv

=  and at the surface of the 
representative sphere, the fluid velocity is zero, i.e., 

01 =v
v             at   ar = .                                                                    (4.9) 

4) At the fluid interface, the tangential and normal components of the 
stress tensor and all velocity components are continuous. These are the no-slip 
boundary conditions. Specifically, they are 
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and  ),(21 θbvvv
vvv

==          at   br = .                                                   (4.12) 
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  Finally, it is necessary to write θ,(bv
v ), the boundary condition equation 

(4.12), in a specific form in order that the surface term of vv  in Equation (4.5) can be 
integrated. Generally, the angular dependence of ),( θbv

v  can be expressed as series 
in Legendre Polynomials. However, in order to minimize the mathematical complexity of 
our problem, a simple assumption for ),( θbv

v  will be made. 

  5) The angular dependence of the normal and the tangential 
components of ),( θbv

v  were θcos  and θsin , respectively. This form incorporates 
both the isolated sphere result, for the limiting case ∞→= γ1ba , and the Happel 
flow field results at the outer shell boundary. Thus it is assumed that [14] 

  )ˆsinˆcos(),( 210 θθθθ aravbv +=
v ,                                               (4.13) 

where 1a  and 2a  are dimensionless constants to be determined. 

4.2.1 Velocity Field outside the Shell 

We first determine the velocity field in the effective medium )(2 rv
vv . For 

exterior problem outside the sphere of radius b , in Equation (4.6) we set ∞→b  and 
ba → , then Green’s function in the effective medium is 

∑ ′′
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

−
+

=′ ∗

+

+
>

<

lm
lmlm

l

l

l

YY
rr

b
br

r
l

rrG ),(),(1
)12(

14),(
12

12 φθφθπ
vv .        (4.14) 

From Equation (4.4) with the boundary condition (4.8), the pressure in the effective 
medium is [14] 

  2
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c
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θv ,                                                       (4.15) 

where 2≥l  terms are neglected and 0c  and 1c  are constants. The gradient of 
pressure is found to be  
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26

In Equation (4.14) at the boundary br =′ , set rr ′=<  and rr =>  and then we have 
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The velocity field in the effective medium is determined by substituting Equations (4.16), 
(4.17) and (4.18) into the right hand side of Equation (4.5). 
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where ),(2 rrG ′
vv  is the Green’s function in Equation (4.14) and ),( θ ′bv

v  from Equation 
(4.13). Finally, we have 

  zvyvxvrv zyx ˆˆˆ)( 2222 ++=
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We now use the continuity equation (4.2) to find the constants 0c  and 1c  in the 
pressure )(2 rp

v , Equation (4.15). Taking divergence of Equation (4.20), we have 
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Substituting 0c  and 1c  into Equation (4.15) and replacing 21 aa +  by C , 21 2aa −  by 
D , the pressure can be written as 
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  Recall Equation (4.20) and change to spherical coordinates. The velocity 
field in the effective medium is found to be  
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vv ,                          (4.22) 

where  arra = ,    ba=γ  
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We will determine the constants C , D  and find 2v
v  in closed form after we known 1v

v . 

4.2.2 Velocity Field in the Shell Region 

For the fluid shell region enclosed by concentric spheres of radii a  and 
b , the Green’s function is in Equation (4.6). Using Equation (4.4) and the boundary 
condition (4.11), the pressure within the fluid shell, Equation (4.4), is [14] 
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where A  and B  are constants. The gradient of equation (4.25) is  
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At the boundary ar =′ , set  rr ′=< , rr => , we have  
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and at br =′ , set  rr =< , rr ′=>  then 
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Substitute Equations (4.6), (4.26), (4.27) and (4.28) into Equation (4.5) and integrate. We 
find that 

θθγθγ ˆsin),(ˆcos),([)( 01 aa rQrrPvrv +=
vv ],                               (4.29) 

where 
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The constants A  and B  are related to C  and D  by the equations 
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which arise from the continuity equation 0)(. 1 =∇ rv
vvv . The relations determining the 

constants A  and B  are obtained from the no-slip boundary conditions (4.10) and 
(4.11). We find that  
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where ηηδ ∗=  is the relative effective viscosity. 

  Happel theory successfully explained the pressure drop through a 
suspension of spheres. The pressure drop per unit length of the distributed spheres is 
the drag force per unit cell volume. The drag force on a sphere in a fluid is [14] 
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where 2−p  is the term 20
cos

r
aBv θη  of the fluid pressure within the fluid shell given 

by Equation (4.25). Thus 

  zaBvf D ˆ4 0πη−=
v .                                                                            (4.33) 

In the dilute limit, the drag obeys Stokes’s law, 

  zavf DO ˆ6 0πη=
v .                                                                               (4.34) 

The ratio between pressure drop through a single isolated sphere and through each 
sphere in an assemblage of spheres is 
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Using the values of the reported pressure drop ratio given by Happel, B  is determined 
from the above equation. Then the other parameters, A , C , D  and δ  are determined 
from Equations (4.30) and (4.31) as functions of γ  (γ 3= volume packing fraction). 
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  By using Mathematica program [15] (see Appendix A) to solve Equations 
(4.30) and (4.31), we get the constants as follows; 
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where 

 218765432 )369258143618( γγγγγγγγ ++++−−++=N       (4.37a) 

 )33(4)3221(12243021 6410987
1 NNN ++−++++= γγγγγγ  

         )330(3)312(9)36(9 3 NNN ++++++ γγ  

         )3421()333(3 52 NN +−+++ γγ                                            (4.37b) 

)316(9)38(912243633 8765
2 NNN +++++++= γγγγγ  

         )3481()3430()3418( 243 NNN ++++++ γγγ .             (4.37c) 

The numerical values of the above constants for various packing fractions (γ 3) are 
shown in Table 4.1 in agreement with the previous reported results [14]. These confirm 
the closed form solutions in Equations (4.22) and (4.29) obtained in this research. Figure 
4.2 shows the variation of the relative effective viscosity as a function of γ . Inserting 
these results into Equations (4.22) and (4.29) yields the velocity profile in the effective 
medium and the shell region respectively. As can be seen that the velocity field 
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equations are so complicated, thus we determine the approximate closed form solutions 
for two ranges of γ ; low packing fraction γ 3< 0.1 or <γ 0.45 and the other range 
>γ 0.45. 

 

 

     3γ          A           B          C           D          δ  

  0.001 

  0.01 

  0.05 

  0.10 

  0.20 

  0.30 

  0.40 

  0.50 

  0.60 

   -0.0051 

   -0.0649 

   -0.4912 

   -1.386 

   -4.934 

   -12.87 

   -30.73 

   -73.45 

   -188.2 

   -1.765 

   -2.215 

   -3.311 

   -4.666 

   -8.460 

   -15.20 

   -28.37 

   -56.86 

   -127.7 

   -0.0361 

   -0.0877 

   -0.1677 

   -0.2204 

   -0.2837 

   -0.3222 

   -0.3472 

   -0.3633 

   -0.3730 

   2.922 

   2.809 

   2.619 

   2.478 

   2.278 

   2.126 

   1.999 

   1.889 

   1.792 

   4.556 

   4.986 

   6.396 

   8.296 

   13.71 

   23.28 

   41.76 

   81.24 

   178.3 

 

Table 4.1 The numerical values of relative viscosity )( ηηδ ∗=  and constants in 
Equations (4.30) and (4.31) for various packing fraction (γ 3). 
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Figure 4.2 The effective viscosity as a function of γ  (γ 3= packing fraction). 

 

4.3 Closed Form of Velocity Fields 

In the previous section, the closed form of the velocity fields in the 
effective medium and in the shell region are shown in Equations (4.22) and (4.29), 
respectively. Now we consider these velocity fields for γ 3<0.1 (dilute packing fraction) 
and γ 3>0.1 separately in order to reduce the complication. 

4.3.1 For Low Packing Fraction 

In the range of dilute packing fraction condition (γ 3<0.1), we neglect 
insignificant γ n terms for n > 2. Thus, the approximate velocity field in the shell region, 
Equation (4.29), becomes  

]ˆsin),(ˆcos),([)( 1101 θθγθγ aal rQrrPvrv +=
vv ,                           (4.38) 

where 
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and the velocity field in the effective medium is still Equation (4.22), that is  

θθγθγ ˆsin),(ˆcos),([)( 1102 aal rQrrPvrv ∗∗ +=
vv ],                                     (4.40) 

where 
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  The constants in the above equations obtained from the continuity 
equation and no-slip boundary conditions, Equations (4.30) and (4.31) can be reduced 
to  
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Equations (4.42) and (4.43) are solved for the constants A , B ,C ,D  and δ  in terms of 
γ . The results are  
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  Substitute the above constants into Equations (4.38) and (4.40) to obtain 
the velocity fields for low packing fraction in the shell region and in the effective medium 
as  
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
+

−
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
−

−
−

−
=

θθγ
γ

θγ
γ

γ
ˆsin

2
3

40
)638(3

8
)26(31

ˆcos
2
3

20
)638(3

4
)26(31

)32(
2

)(

32

32
0

2

aa

aa
l

rr

r
rrv

rv
vv .       (4.46) 

The above two equations are approximate velocity fields in closed form for low packing 
fraction. 
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4.3.2 For Higher Packing Fraction 

For γ 3>0.1, the constants A , B , C  and D  are determined by fitting 
curve to the value of the constants shown in Table 4.2 which are obtained from Equation 
(4.36). By minimizing the square error to obtain the best-fitting curve [16], the Equation 
of each constant in the form of polynomial function of degree m is obtained (see 
Appendix B). The higher order of polynomial terms used, the better fitting obtained, 
however it is complicated in the velocity flow field results. Thus we will choose the 
appropriate value. 

 

        γ          A           B           C           D  

   0.46 

   0.48 

   0.50 

   0.52 

   0.54 

   0.56 

   0.58 

   0.60 

   0.62 

   -1.3263 

   -1.6356 

   -2.0156 

   -2.4837 

   -3.0631 

   -3.7836 

   -4.6850 

   -5.8204 

   -7.2619 

   -4.5881 

   -4.9854 

   -5.4444 

   -5.9785 

   -6.6042 

   -7.3433 

   -8.2235 

   -9.2818 

   -10.567 

   -0.2181 

   -0.2290 

   -0.2398 

   -0.2505 

   -0.2610 

   -0.2713 

   -0.2813 

   -0.2911 

   -0.3005 

   2.4843 

   2.4530 

   2.4211 

   2.3885 

   2.3553 

   2.3214 

   2.2869 

   2.2518 

   2.2162 

 

Table 4.2 The numerical values of the constants from Equations (4.36a)-(4.36d) for 
varying γ . 
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       γ          A           B           C           D  

   0.64 

   0.66 

   0.68 

   0.70 

   0.72 

   0.74 

   0.76 

   0.78 

   0.80 

   0.82 

   0.84 

   -9.1089 

   -11.500 

   -14.634 

   -18.796 

   -24.414 

   -32.138 

   -42.986 

   -58.614 

   -81.813 

   -117.53 

   -175.05 

   -12.146 

   -14.108 

   -16.583 

   -19.751 

   -23.878 

   -29.362 

   -36.817 

   -47.225 

   -62.217 

   -84.637 

   -119.74 

   -0.3096 

   -0.3182 

   -0.3265 

   -0.3342 

   -0.3415 

   -0.3482 

   -0.3543 

   -0.3598 

   -0.3647 

   -0.3689 

   -0.3725 

   2.1800 

   2.1434 

   2.1062 

   2.0687 

   2.0308 

   1.9926 

   1.9542 

   1.9155 

   1.8767 

   1.8379 

   1.7991 

 

Table 4.2 (continue) The numerical values of the constants from Equations (4.36a)-
(4.36d) for various γ . 

 

  The curves that fit with numerical values of the constants A , B , C  and 
D  in Table 4.2 are shown in Figures 4.3, 4.4, 4.5 and 4.6. 

 



 
 
 

38

0.5 0.6 0.7 0.8 0.9
g

-175

-150

-125

-100

-75

-50

-25

A

 

 

Figure 4.3 The fitted curve of parameter A  (solid line) superimposed on the numerical 
values of A  (points). 
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Figure 4.4 The fitted curve of parameter B  (solid line) superimposed on the numerical 
values of B  (points). 
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Figure 4.5 The fitted curve of parameter C  (solid line) superimposed on the numerical 
values of C  (points). 
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Figure 4.6 The fitted curve of parameter D  (solid line) superimposed on the numerical 
values of D  (points). 



 
 
 

40

By curve fitting, the constant parameters are  

32 )2.80()0.48()3.14(68.1[ γγγ −+−=A  

       454 10])0.22()6.66( ×−+ γγ                                                 (4.47a) 

32 )6.45()3.27()10.8(955.0[ γγγ −+−=B  

       454 10])6.12()0.38( ×−+ γγ                                                 (4.47b) 

32 )755.0()955.0()149.0(0208.0 γγγ +−−−=C                    (4.47c) 

32 )826.0()17.2()0614.0(89.2 γγγ +−−=D .                        (4.47d) 

Thus, for higher volume packing fractions (γ 3>0.1), the velocity fields in 
the shell region and in the effective medium are Equations (4.29) and (4.22) 
respectively. That is 

]ˆsin),(ˆcos),([)( 2201 θθγθγ aah rQrrPvrv +=
vv ,                          (4.48) 
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and  

  ]ˆsin),(ˆcos),([)( 2202 θθγθγ aah rQrrPvrv ∗∗ +=
vv ,                         (4.50) 

where  
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with the constants given by Equations (4.47a)-(4.47d). 

4.4 Comparing Velocity Profiles 

Using the velocity fields in previous sections, the velocity profiles or the 
streamlines of fluid flow can be determined. The streamlines or the trajectories of free 
particles carried by the fluid can be obtained by integration of the fluid velocity field 

)( dtrdv
vv

= . The comparison of Happel and EMT velocity profiles in the fluid shell is 
presented in this section. Happel flow fields are obtained from Equation (3.23) and the 
EMT velocity fields in approximate closed form solutions for low packing fraction 
(γ 3<0.1) and higher packing fraction (γ 3>0.1) are lv 1

v  and hv 1
v  given by Equations 

(4.45) and (4.48), respectively. The velocity profiles for some packing fraction in the 
shell region are shown in Figures 4.7- 4.12. While, Figures 4.13- 4.18 shown the 
comparison of the velocity profiles given by Equation (4.29), which is the EMT closed 
form velocity fields. The results indicate insignificant difference of the two models. 
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Figure 4.7 Comparison of EMT velocity profiles (dash lines) with Happel flow profile 
(solid lines) for low packing fraction at γ 3= 0.001, and v0a= 6.65 s-1. 
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Figure 4.8 Comparison of EMT velocity profiles (dash lines) with Happel flow profile 
(solid lines) for low packing fraction at γ 3= 0.008, and v0a= 6.65 s-1. 
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Figure 4.9 Comparison of EMT velocity profiles (dash lines) with Happel flow profile 
(solid lines) for low packing fraction at γ 3= 0.027, and v0a= 6.65 s-1. 
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Figure 4.10 Comparison of EMT velocity profiles (dash lines) with Happel flow profile 
(solid lines) for low packing fraction at γ 3= 0.064, and v0a= 6.65 s-1. 
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Figure 4.11 Comparison of EMT velocity profiles (dash lines) with Happel flow profile 
(solid lines) for higher packing fraction at γ 3= 0.216, and v0a= 6.65 s-1. 
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Figure 4.12 Comparison of EMT velocity profiles (dash lines) with Happel flow profile 
(solid lines) for higher packing fraction at γ 3= 0.343, and v0a = 6.65 s-1. 
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Figure 4.13 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with 
Happel flow profile (solid lines) at γ 3= 0.001, and v0a= 6.65 s-1. 
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Figure 4.14 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with 
Happel flow profile (solid lines) at γ 3= 0.008, and v0a= 6.65 s-1. 
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Figure 4.15 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with 
Happel flow profile (solid lines) at γ 3= 0.027, and v0a= 6.65 s-1. 
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Figure 4.16 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with 
Happel flow profile (solid lines) at γ 3= 0.064, and v0a= 6.65 s-1. 
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Figure 4.17 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with 
Happel flow profile (solid lines) at γ 3= 0.216, and v0a= 6.65 s-1. 
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Figure 4.18 Comparison of EMT velocity profiles Equation (4.29) (dash lines) with 
Happel flow profile (solid lines) at γ 3= 0.343, and v0a= 6.65 s-1. 
 



CHAPTER V 
 

CAPTURE OF MAGNETIC PARTICLES IN LAMINAR FLOW 

The fluid velocity fields in closed form are obtained in Chapter 4 both in 
the effective medium and the fluid shell regions. Now we apply these results to 
determine the trajectories of magnetic microscopic particles suspended in the fluid flow 
through randomly distributed magnetic spheres (collectors) in the presence of a uniform 
external magnetic field ( 0H

v ). The magnetization of particles and collectors occurs and 
thus the magnetic particles are attracted to the collectors by magnetic force )( mf

v  which 
is the dominant force. This process is called the capture of magnetic particles. The 
critical capture distance is defined as capture radius )( cr . There are two type of 
magnetic field ( 0H

v ) and fluid flow )( 0v
v  direction alignment considered here; 

longitudinal mode for 0H
v  and 0v

v  parallel and transverse mode for 0H
v  and 0v

v  
perpendicular. The longitudinal mode is symmetric around the polar axis but the 
transverse mode is not. For the transverse mode, the trajectories of particles on 

),( 00 vH
vv  plane is considered. Remember that for low packing fraction (γ 3<0.1), the 

fluid velocity fields lv 1
v  and lv 2

v  in Equations (4.45) and (4.46) are used, but it is hv 1
v  and 

hv 2
v  in Equations (4.48) and (4.50) for higher packing fraction (γ 3>0.1). Finally, the 

capture radius as a function of γ  is obtained. 

5.1 Equation of Motion 

We consider the capture of paramagnetic and diamagnetic particles by 
the randomly distributed spheres in a uniform external magnetic field. Particles of 
microscopic size )1( mµ>  in a fluid described by laminar flow undergo capture 
process by interception. For particles less than 200 µm in diameter, the inertia and 
gravitational forces are insignificant. The dominant forces acting upon the individual 
particle are the viscous drag force )( Df

v  and the magnetic force )( mf
v , depending on 

the situation of the spheres, whose elements have high magnetic permeability, in a 
uniform field 0H

v . The viscous drag force is assumed to obey Stokes’s law, 

 



 
 
 

55

)(6 fpD vvrf
vvv

−−= πη ,                                                                       (5.1) 

where v
v  is the particle velocity, fv

v  the fluid velocity, η  the viscosity, and pr  the 
particle radius. For a small particle with specific susceptibility pχ  immersed in a fluid of 
susceptibility fχ  and subjected to a magnetic field Hv , the magnetic force is  

2
0

3 )(
3

2 Hrf fppm ∇−⎟
⎠
⎞

⎜
⎝
⎛=

vv
χχµπ .                                                      (5.2) 

The particle is said to be paramagnetic if fp χχ >  and diamagnetic if fp χχ < . 

  Using the velocity field fv
v  and the magnetic field H

v  given by Moyer 
and coworkers [17], the drag force and the magnetic force can be determined. The 
equation of motion for microscopic particles is 

  0=+ mD ff
vv                                                                                         (5.3) 

and this can be solved for the particle velocity )( dtrdv
vv

=  which is subsequently 
integrated to obtain the particle trajectories as a function of the sphere volume packing 
fraction. 

  The equations of motion for microscopic particles in spherical 
coordinates with the polar axis along the applied magnetic field 0H

v  are obtained from 
equation (5.3) as 

  υθγ cos),(0 aa
a rPv

dt
dr ∗= ,                                                              (5.4a) 

  υθγθ sin),(1
0 aaa rQrv

dt
d ∗−= ,                                                           (5.4b) 

for γ1>ar , since in this model H  is uniform for br > , and  
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KrvrQrv
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for  γ11 << ar . Above avv a 00 = , ∗P , ∗Q ,P  and Q  are respectively given by 
Equations (4.23), (4.24), (4.29a), (4.29b), θθυ =  or 2πθ −  for interception in 
longitudinal )//( 00 vH

vv  or transverse )( 00 vH
vv

⊥  design, respectively, 2Α=∗
mama vv  

with 

  
2

22
00

3
2

a
rHK

v ps
ma η

χµ
=  = magnetic velocity, 

where we defined fp χχχ −= , )]1(2[)2( 33 γυγυ −+++=Α , 
fp µµυ = (relative permeability of collector and fluid) and )2()1( +−= υυsK . 

5.2 Mathematica Program for Particle Trajectories 

Equations (5.4a), (5.4b), (5.5a) and (5.5b) can be solved by using 
Mathematica program [15] (see Appendix C) to obtain particle trajectories as a function 
of γ . Inspection of the particle trajectories yields the critical capture trajectory or 
capture distance called capture radius cr  as shown in Figure 5.1. 

We determine the capture radius as a function of γ  in both longitudinal 
fields )//( 00 vH

vv  and transverse fields )( 00 vH
vv

⊥  for both paramagnetic and 
diamagnetic particles with characteristic constants magnetic velocity = 571.5 s-1, fluid 
entrance velocity = 6.65 s-1 and sK = 0.58 which are taken from the work of 
Friedlaender et al. for the single collector model [18]. 

By integration of Equations (5.4a), (5.4b), (5.5a) and (5.5b), we obtain 
the trajectories of particles. The figures below illustrate some particle trajectories and a 
capture radius )( cr . 
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Figure 5.1 Capture radius cr  and particle trajectories of paramagnetic particles for a 
longitudinal mode )//( 00 vH

vv  with γ 3= 0.001, v0a= 6.65 s-1, v*
ma= 572.16 s-1 and Ks= 

0.58. 
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Figure 5.2 Capture radius cr  and particle trajectories of paramagnetic particles for a 
transverse mode )( 00 vH

vv
⊥  with γ 3= 0.001, v0a= 6.65 s-1, v*

ma= 572.16 s-1 and Ks= 0.58. 
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Figure 5.3 Capture radius cr  and particle trajectories of diamagnetic particles for a 
longitudinal mode )//( 00 vH

vv  with γ 3= 0.001, v0a= 6.65 s-1, v*
ma= -572.16 s-1 and Ks= 

0.58. 
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Figure 5.4 Capture radius cr  and particle trajectories of diamagnetic particles for a 
transverse mode )( 00 vH

vv
⊥  with γ 3= 0.001, v0a= 6.65 s-1, v*

ma= -572.16 s-1 and Ks= 
0.58. 
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Figure 5.5 Capture radius cr  and particle trajectories of paramagnetic particles for a 
longitudinal mode )//( 00 vH

vv  with γ 3= 0.125, v0a= 6.65 s-1, v*
ma= 664.34 s-1 and Ks= 

0.58. 



 
 
 

62

 

 

 

     

-2 2 4 6 8 10

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5
rc

H
ฎ

0

v
ฎ

0

 
 

 

 

Figure 5.6 Capture radius cr  and particle trajectories of paramagnetic particles for a 
transverse mode )( 00 vH

vv
⊥  with γ 3= 0.125, v0a= 6.65 s-1, v*

ma= 664.34 s-1 and Ks= 0.58. 

 

 

  The pattern of particle’s trajectory of diamagnetic particle in transverse 
mode is similar to that of paramagnetic particle in longitudinal mode; the particle moves 
toward the front of collector sphere. Note that the pattern of diamagnetic particle 
trajectory in longitudinal mode similar to that of the paramagnetic particle in transverse 
mode; the collection of magnetic particles occurs beside the collector sphere. 
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5.3 Capture Radius  

The randomly distributed spheres in a nonmagnetic canister is one type 
of magnetic filter. The magnetic filter has been used to remove weakly magnetic 
particles from fluid systems. Capture radius describes the capture boundary which 
indicates the filtration efficiency. High capture radius means the extensive capture 
distance. 

By solving Equations (5.4a), (5.4b), (5.5a) and (5.5b) with the use of the 
EMT velocity fields in the approximate closed form from this research, the critical 
capture distances or capture radii are obtained. The capture radii are show in Table 5.1 
for various γ . 
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                                  Capture Radius )( cr  

            paramagnetic              diamagnetic       γ 

  )//( 00 vH
vv     )( 00 vH

vv
⊥    )//( 00 vH

vv     )( 00 vH
vv

⊥  

    0.10 

    0.20 

    0.30 

    0.40 

    0.50 

    0.60 

    0.70 

    0.80 

       3.39 

       3.19 

       2.58 

       1.74 

       1.48 

       1.16 

       0.93 

       0.75 

       4.78 

       4.67 

       3.00 

       1.96 

       1.65 

       1.29 

       1.01 

       0.80 

       3.41 

       3.88 

       3.00 

       1.96 

       1.65 

       1.29 

       1.01 

       0.80 

       2.74 

       2.64 

       2.26 

       1.41 

       1.18 

       0.88 

       0.65 

       0.47 

  

Table 5.1 Capture radii of magnetic particles for varying γ  taken from the EMT velocity 
field in closed form. Characteristic constants are 5.571=mav  s-1, 65.60 =av  s-1 and 

58.0=sK . 00 // vH
vv  and 00 vH

vv
⊥  denote longitudinal and transverse mode design, 

respectively. 

 

  The comparisons of the capture radius from our results with the results 
taken from the previous publication based on the Happel flow fields are shown in 
Figures (5.5) and (5.6). 

 



 
 
 

65

In the figures, 
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Figure 5.7 Capture radius for paramagnetic particles as a function of γ  based on 
Happel and EMT flow fields in closed form. Characteristic constants are 5.571=mav  s-

1, 65.60 =av  s-1 and 58.0=sK . 

long/Happel and trans/Happel denote longitudinal ( 00 // vH
vv ) and transverse ( 00 vH

vv
⊥ ) 

mode design, respectively, with Happel flow fields, while long/EMT and trans/EMT 
denote longitudinal ( 00 // vH

vv ) and transverse ( 00 vH
vv

⊥ ) mode design, respectively, with 
EMT flow fields in closed form. 
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Figure 5.8 Capture radius for diamagnetic particles as a function of γ  based on Happel 
and EMT flow fields in closed form. Characteristic constants are 5.571−=mav  s-1, 

65.60 =av  s-1 and 58.0=sK . 
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  The general features of the variation of cr  with γ  in this research and 
Happel flow fields are very similar. We find the maximum value of cr  at γ ≈ 0.2 in 
transverse design for paramagnetic particles and in longitudinal design for diamagnetic 
particles. For γ >0.3, the effect of neighboring spheres is always to diminish cr , since 

cr  is confined to the fluid shell which, itself, shrinks with increasing γ . For all cases we 
studied, the EMT results for cr  at γ >0.4 are lower than the corresponding Happel 
model results reported previously. 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER VI 
 

CONCLUSION AND DISCUSSION 

Laminar flow occurs when the fluid stream around the solid object is 
smooth. This type of fluid flow occurs at low Reynolds number, 1Re 0 <= ηρ av , 
where ρ , 0v , η , and a  are the fluid density, entrance velocity, viscosity, and sphere 
radius, respectively. The determination of the velocity flow fields in closed form for the 
laminar flow passing randomly-distributed spheres is an objective of this research. 
These velocity fields are then used to predict the capture radii of microscopic magnetic 
particles carried by laminar flow in high gradient magnetic field (HGMF). The HGMF 
occurs when random paramagnetic or ferromagnetic spheres of diameter ∼100 µm are 
placed in an external uniform magnetic field. 

In this research, the method used to model the system of fluid passing 
an assemblage of random spheres is called an effective medium treatment (EMT). In the 
EMT, the system of fluid and distributed spheres are replaced by a concentric sphere; a 
representative solid sphere enclosed by a fluid shell, embedded in an effective medium 
as described in detail in Section 4.1. The velocity flow fields in the effective medium 

)( 2v
v  and the fluid shell )( 1v

v  were determined by using Green’s theorem as shown in 
Chapter 4. The results are Equations (4.22) and (4.29), respectively, with the constants 
in the expression of fluid velocity given by Equations (4.36a)-(4.36d). These equations 
are so complicated and impractical to apply in further research. Therefore, the 
approximate solutions for dilute sphere packing γ 3<0.1 are evaluated to reduce its 
complication by omitting some insignificant terms. The velocity fields in closed form, lv 2

v  
and lv 1

v , are obtained as shown in Equations (4.46) and (4.45). For the other range of 
packing fraction, the curve fitting was used to represent the constants A , B , C  and 
D  whose numerical values are shown in Table 4.2. The velocity fields for this case are 

hv 2
v  and hv 1

v  as shown in Equations (4.50) and (4.48) with the curve fitting results of 
these constants given by Equations (4.47a)-(4.47d). 
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The most successful model to determine laminar velocity profiles in an 
assemblage of random spheres is the free surface model due to Happel. In Happel 
theory, the cell model was used similar to a concentric composite sphere in the EMT 
model. However, the outside surface of each cell in the free surface model was 
assumed to be frictionless and prohibit fluid interchange between the cells. To ensure 
the accuracy of our results, the comparison of the streamlines obtained in this research 
with those of Happel flow fields, Equation (3.23), which successfully predicted the 
pressure drop experimental data, was shown in Figures 4.7-4.18. 

The streamlines that begin at some point on the outer surface of the fluid 
shell will end on the outer surface at the same point too. At low packing fraction 
(γ 3<0.1), the streamlines of EMT flow fields are quite similar to the Happel flow fields. 
The streamlines of EMT for this case, tend to leave the inner sphere compared with 
Happel’s results, especially for the region near the solid sphere. For higher packing 
fraction (γ 3>0.1), the streamlines of EMT flow fields are closer to the inner sphere than 
those of Happel for all positions in the fluid shell. 

Furthermore, the EMT velocity fields obtained in this research was 
applied to study the capture of magnetic particles carried by the laminar flow in high 
gradient magnetic fields. The trajectories of magnetic particles are determined by using 
Mathematica program and shown in Figures 5.1-5.6. The capture radii ( cr ) as a function 
of γ  were compared with the previous results based on Happel’s theory [9] as shown in 
Figures 5.7 and 5.8 for paramagnetic particles and diamagnetic particles, respectively. 
The general features of the variation of cr  with γ  for the EMT and Happel flow fields are 
very similar. We find the maximum value of cr  at γ ≈0.2 for both in the transverse 
design for paramagnetic particles and in the longitudinal design for diamagnetic 
particles. For other cases, cr  is maximum at γ  approaching to zero and decreases for 
increasing γ . For all cases we studied, the EMT results for cr  at γ >0.4 are lower than 
the corresponding Happel model results. This is because the calculation of cr  by 
Happel model assumed the flow field outside the fluid shell to be uniform )( 0v

v , which 
allows magnetic particles to arrive at the outer shell surface with a greater velocity in the 
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radial inward captured direction. This resulted in a larger value of cr  than those 
obtained from this study. Comparison of the EMT radial velocity at the outer fluid shell 
calculated from Equation (4.22) with the previously used [9] θcos0v  shows that the 
EMT radial velocity is smaller, especially for higher packing fractions, and the difference 
in cr  increases with increasing γ  as seen in Figures 5.7 and 5.8. 

In conclusion, Happel flow fields is less complicated and most accepted, 
with over hundreds of citation in current research papers [19]. For the EMT velocity 
fields in this research, with the less physical assumption the more complicated results 
are obtained. Thus, if the mathematical complication of the equation is not a problem, it 
is an alternative for application in some research problems, such as in the theory of 
magnetic filtration based on the EMT magnetic field, which the knowledge of the velocity 
fields outside the fluid shell is required and not given in Happel’s theory. It is of interest 
that the EMT streamlines agree with Happel’s theory, which gives good results for 
predicting pressure drop of experimental data. Therefore, EMT velocity fields may also 
be useful in the development of the application employed in fluid mechanics problems. 
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