

Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2002
ISBN 974-17-1577-3.

Thesis Title
By
Field of study
Thesis Advisor

Geometry of Julia sets of Complex polynomails $z^{n}+c$ Miss Katthaleeya Daowsud Mathematics

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master 's Degree

Dean of Faculty of Science
(Associate Professor Wanchai Phothiphichitr, Ph.D.)

Thesis Committee

(Associate Professor Kritsana Neammanee, Ph.D.)

${ }_{6}^{(\text {(Phichet Chaoha, Ph.D.) }} \mathrm{b} / \mathrm{C}$

จุฬาลงกรณ์มหาวิทยาลัย

แคทลียา ดาวสุด: เรขาคณิตของเซตจูเลียของพหุนามเชิงซ้อน $z^{n}+c$. (GEOMETRY OF JULIA SETS OF COMPLEX POLYNOMIALS $z^{n}+c$) อ. ที่ปรึกษา : อ.ณัฐพันธ์ กิติสิน, 24 หน้า ISBN 974-17-1577-3

วิทยานิพนธ์เล่มนี้มีจุดมุ่งหมายเพื่อที่จะประมาณค่าขอบเขตบนของ $|c|$ ที่ทำให้เซตจูเลียของ พหุนามเชิงซ้อนที่อยู่ในรูป $z^{n}+c$ เป็นโค้งปิดเชิงเดียว เมื่อ $n=2,3,4, \ldots$ นอกจากนี้เราจะศึกษา สมบัติทางเรขาคณิตของเซตจูเลีย เราทราบแล้วว่า เซตจูเลียของพหุนามเชิงซ้อนที่อยู่ในรูป $z^{2}+c$ เป็น โค้งปิดเชิงเดียว เมื่อ $|c|<\frac{1}{4}$ เราคาดว่า ผลลัพธ์ที่ได้จะคล้ายเดิม นั่นคือเซตจูเลียของพหุนามเชิงซ้อนที่ อยู่ในรูป $z^{n}+c$ เป็นโค้งปิดเชิงเดียว ถ้า $|c|$ มีค่าเล็กพอ อย่างไรก็ตามทุกจุดบนโค้งปิดเชิงเดียวดังกล่าว เราไม่สามารถหาอนุพันธ์ได้

ภาควิชา คณิตศาสตร์
สาขาวิชา คณิตศาสตร์
ปีการศึกษา 2545

ลายมือชื่อนิสิต
ลายมือชื่ออาจารย์ที่ปรึกษา. \qquad

KATTHALEEYA DAOWSUD : GEOMETRY OF JULIA SETS OF COMPLEX POLYNOMALS $z^{n}+c$. THESIS ADVISOR : NATAPHAN KITISIN, Ph.D., 24 pp. ISBN 974-17-1577-3.

This thesis is intended to estimate the upper bounded of $|c|$ such that Julia sets of complex polynomials of the form $z^{n}+c$ are simple closed curves when $n=2,3,4, \ldots$ Moreover, we study the geometric properties of these Julia sets. We know that Julia sets of complex polynomials of the form $z^{2}+c$ are simple closed curves provided $|c|<\frac{1}{4}$. We expect the same phenomenon, i.e. Julia sets of complex polynomials of the form $z^{n}+c$ are simple closed curves if $|c|$ is small enough. However, they are far from being smooth; indeed, they contain no smooth arcs at all.

จุฬาลงกรณ์มหาวิทยาลัย

Department Mathematics

Field of study Mathematics
Academic year 2002

Student's signature \qquad
Advisor's signature \qquad ..

ACKNOWLEDGMENTS

I never complete this thesis without the assistance of Dr.Nataphan Kitisin, my thesis advisor. I gratefully acknowledge his invaluable advice and inspiration. I must not forget to thank his patience in reading and revising the manuscript. I feel that it is not possible to adequately express my gratitude to all of his teachings throughout my studies at Chulalongkorn University. Thanks are also due to Assoc. Prof. Dr.Kritsana Neammanee and Dr.Phichet Chaoha for serving in committee and making useful comments. Besides, I feel thankful to all of my teachers who have taught me for my knowledge and skills. I would particularly like to thank my friends and my family for their sincere encouragement.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGMENTS vi
CONTENTS vii
CHAPTER
I Introduction 1
II Properties of Julia set 4
III Geometry of Julia sets of complex polynomials $z^{3}+c$ 6
IV Geometry of Julia sets of complex polynomials $z^{n}+c$ 14
APPENDIX 20
REFERENCES 23
VITA 24
สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

Introduction

Let f be a function from \mathbb{C} to \mathbb{C} and $w \in \mathbb{C}$. We denote the iterations of a function f by $f^{1}=f$ and $f^{k}=f^{k=1} \circ f$. We call w a fixed point of f provided $f(w)=w$. If $f^{p}(w)=w$ for some integer $p \geqslant 1$, then w is a periodic point of f. The least p such that $f^{p}(w)=w$ is called the period of w. Suppose f is holomorphic in a neighborhood of w and w is a periodic point of period p, with $\left(f^{p}\right)^{\prime}(w)=\lambda$, where the prime denotes complex differentiation. The point w is called attractive if $|\lambda|<1$, repelling if $|\lambda|>1$, and indifferent if $|\lambda|=1$. If w is an attractive fixed point of f, we write $A(w)=\left\{z \in \mathbb{C}: f^{k}(z) \rightarrow w\right.$ as $\left.k \rightarrow \infty\right\}$ for the basin of attraction of w. We define the basin of attraction of infinity, $A(\infty)$, in the same way. The Julia set $J(f)$ of a complex polynomial f is the closure of the set of repelling periodic points of f. The complement of the Julia set of a complex polynomial is called the Fatou set or stable set $F(f)$.

Let U be an open set in \mathbb{C}, and let $\left\{g_{k}: U \rightarrow \mathbb{C}\right\}$ be a family of complex holomorphic functions. The family $\left\{g_{k}\right\}$ is said to be normal on U if every sequence of functions selected from $\left\{g_{k}\right\}$ has a subsequence which converges uniformly on every compact subset of U, either to a bounded holomorphic function or to ∞. The family $\left\{g_{k}\right\}$ is normal at the point w of U if there is some open subset V of U containing w such that $\left\{g_{k}\right\}$ is a normal family on V. Define

$$
\begin{equation*}
J_{0}(f)=\left\{z \in \mathbb{C}: \text { the family }\left\{f^{k}\right\}_{k \geqslant 1} \text { is not normal at } z\right\} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{aligned}
F_{0}(f) \equiv & \mathbb{C} \backslash J_{0}(f) \\
= & \{z \in \mathbb{C} \text { such that there is an open set } V \text { with } \\
& \left.z \in V \text { and }\left\{f^{k}\right\} \text { normal on } V\right\} .
\end{aligned}
$$

In this work, we estimate the upper bounded of $|c|$ such that Julia sets of complex polynomials of the form $z^{n}+c$, when $n=2,3,4, \ldots$ are simple nowhere differentiable closed curves. We know that for $n=2$, this upper bounded is $\frac{1}{4}$ (See [2]).

For $n=3$, we use the cubic formula in the estimate step. Note that $\partial A(w)=$ $J(f)$ (See Ch. II, Lem. 2.6). The cubic formula is used to find fixed points of complex polynomials of the form $z^{3}+c$. Furthermore, we obtain that one fixed point is attractive and others are repelling. If the polynomials of the form $z^{3}+c$ have exactly one attractive fixed point, we will show that their Julia sets are simple closed curves. Moreover, if c is a complex number which is not real, then their Julia sets contain no smooth arcs.

In general cases, we can not use the same method because there is no general formula for solving an algebraic equation of degree $n \geqslant 5$. Note that for $c=0$, the complex polynomials of the form z^{n} have one attractive fixed at $z=0$ and $n-1$ repelling fixed points on the unit circle. If $|c|$ is small enough, we expect the result would resemble the case $\bar{c} c=0$, namely, these polynomials also have one attractive fixed point near the point $z=0$ and $n-1$ repelling fixed points. To prove our main theorem, we will apply Rouché's theorem (See Appendix). We use it to compare the zeros of complex polynomials of the form $z^{n}-z+c$ with the zeros of complex polynomials of the form $z^{n}-z$. Consequently, we can estimate the upper bound of $|c|$ such that the complex polynomials of the form $z^{n}+c$ have exactly one attractive fixed points. Finally, we will show that if the complex
polynomials of the form $z^{n}+c$ have only one attractive fixed point, then their Julia sets are simple closed curves. Moreover, if c is a complex number which is not real, then their Julia sets are nowhere differentiable.

In Chapter II we present some basic properties of the Julia sets. Although our definition of $J(f)$ is intuitively more appealing, $J_{0}(f)$ is rather easier to work with, since complex variable techniques are more readily applicable. We derive some basic properties of $J_{0}(f)$ and prove that $J(f)=J_{0}(f)$.

In Chapter III we study the particular case when $n=3$. We show that the upper bounded of $|c|$ such that Julia sets of complex polynomials of the form $z^{3}+c$ are simple closed curves. Moreover, if c is a complex number which is not real, then their Julia sets are nowhere differentiable. First, we introduce the cubic formula. We then use it to estimate the upper bounded of $|c|$ so that complex polynomials of the form $z^{3}+c$ have exactly one fixed point. Finally, we show that their Julia sets are simple closed curves.

In Chapter IV we prove our main theorem by showing that if $|c|<\frac{n-1}{n \sqrt[n-1]{n}}$, then the Julia sets of complex polynomials of the form $z^{n}+c$ are simple closed curves when $n=2,3,4, \ldots$ Moreover, if c is a complex number which is not real, then their Julia sets arenowhere differentiable.

สถาบนวทยบรการ

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

Properties of Julia set.

In this chapter we shall discuss the essential properties of Julia set. In fact (1.1) is often taken as the definition of the repelling periodic points, $J(f)$. Although our definition of $J(f)$ is intuitively more appealing, $J_{0}(f)$ is rather easier to work with, since complex variable techniques are more readily applicable. We derive some basic properties of $J_{0}(f)$, with the eventual aim of showing that $J(f)=J_{0}(f)$. We note that f is a complex polynomial of degree $n \geqslant 2$. For further reference, see [3].

Proposition 2.1. If f is a polynomial, then $J_{0}(f)$ is compact.

Proposition 2.2. $J_{0}(f)$ is non-empty.

Proposition 2.3. $=J_{0}(f)$ is forward and backward invariant, i.e. $J_{0}=f\left(J_{0}\right)=$ $f^{-1}\left(J_{0}\right)$.

Lemma 2.5. Let f be a polynomial, letw $\in J_{0}(f)$ and let U be any neighborhood of w. Then $W \equiv \bigcup_{k=1}^{\infty} f^{k}(U)$ is the whole of \mathbb{C}, except possibly for a single point. Any such exceptional point is not in $J_{0}(f)$, and is independent of w and U.

Corollary 2.6.

(a) The following holds for all $z \in \mathbb{C}$ with, at most, one exception: if U is an open set intersecting $J_{0}(f)$ then $f^{-k}(z)$ intersects U for infinitely many values of k.
(b) If $z \in J_{0}(f)$ then $J_{0}(f)$ is the closure of $\bigcup_{k=1}^{\infty} f^{-k}(z)$.

Corollary 2.7. If f is a polynomial, $J_{0}(f)$ has empty interior.

Proposition 2.8. $J_{0}(f)$ is a perfect set (i.e. closed and with no isolated points) and is therefore uncountable.

Theorem 2.9. If f is a polynomial, $J(f)=J_{0}(f)$.

Lemma 2.10. Let w be an attractive fixed point of f. Then $\partial A(w)=J(f)$.
The same is true if $w=\infty$.

สถาบันวิทยบริการ

CHAPTER III

Geometry of Julia sets of complex polynomials $z^{3}+c$

In this chapter we study the particular case when $n=3$. Before that, we recall the cubic formula, which can be funded in [4]. We will use it to estimate the upper bounded of $|c|$ such that Julia sets of complex polynomials of the form $z^{3}+c$ are simple closed curves. Moreover, If c is a complex number which is not real, their Julia sets contain no smooth arcs.

Let $f(z)=z^{3}+q z+r$ and let u be a root of $f(z)$ and choose numbers y and x with $u=y+x$.

Then

$$
u^{3}=(x+y)^{3}=x^{3}+y^{3}+3\left(x^{2} y+x y^{2}\right)=x^{3}+y^{3}+3 u x y .
$$

Therefore,

So far we have imposed only one constraint on x and y, namely, $u=x+y$. We note that if u, v are numbers, then there exist (possibly complex) numbers x and y such that $x+y=u$ and $x y=v$. Thus, we may impose a second constraint:
 so that, in the equation (3.1), the linear term in u vanishes. We now have

$$
x^{3}+y^{3}=-r
$$

and

$$
x^{3} y^{3}=-\frac{q^{3}}{27} .
$$

These two equations can be solved for x^{3} and y^{3}. In detail,

$$
x^{3}-\frac{q^{3}}{27 x^{3}}=-r,
$$

and hence

$$
x^{6}+r x^{3}-\frac{q^{3}}{27}=0 .
$$

The quadratic formula gives

$$
\begin{equation*}
x^{3}=\frac{1}{2}\left(-r+\sqrt{r^{2}+\frac{4 q^{3}}{27}}\right) \tag{3.3}
\end{equation*}
$$

and the equation (3.2) give $y=-\frac{q}{3 x}$. Having found one root $u=x+y$ of $f(x)$, one can find the other two as the roots of the quadratic $f(z) /(z-u)$.

Here is an explicit formula for the other two roots, in contrast to the method just described for finding them. If $\omega=e^{2 \pi / 3}$ is a cube root of unity, then there are three values for x; one is given by the equation (3.3); the other two are ωx and $\omega^{2} x$. The corresponding mates are

$$
-\frac{q}{3 \omega x}=\left(\frac{1}{\omega}\right) y=\omega^{2} y
$$

and

$$
-\frac{q}{3 \omega^{2} x}=\left(\frac{1}{\omega^{2}}\right) y=\omega y
$$

We conclude that the roots of the cubic polynomial are given by the cubic formula: (3.4) $9 / 9 \cap จ q^{z_{1}}=x+y ; \sigma_{2}^{z_{2}}=\omega x+\omega^{2} y ; z_{3}=\omega^{2} x+\omega y ;$
here $x^{3}=\frac{1}{2}(-r+\sqrt{R})$ and $R=r^{2}+\frac{4 q^{3}}{27}$.
Specially, if $q=-1$ and $r=c$, applying the equation (3.4) we have

$$
z_{1}=x+\frac{1}{3 x}, z_{2}=\omega x+\frac{\omega^{2}}{3 x} \text { and } z_{3}=\omega^{2} x+\frac{\omega}{3 x} \text { where } x=\left(\frac{1}{2}\left(-c+\sqrt{c^{2}-\frac{4}{27}}\right)\right)^{\frac{1}{3}}
$$

are roots of a complex polynomial of the form $z^{3}-z+c$. It follows that z_{1}, z_{2} and z_{3} are fixed points of a complex polynomial of the form $z^{3}+c$.

Lemma 3.1. Suppose c is a complex number such that $|c|<\frac{1}{100}$ and let $f_{c}(z)=$ $z^{3}+c$. Then z_{1}, z_{2} are repelling and z_{3} is attractive.

Proof. Assume that $|c|<\frac{1}{100}$. From the above results, we get z_{1}, z_{2} and z_{3} are fixed points of f_{c}. Let $x=r e^{i \theta}$. By interchanging the parameter of x, we have

$$
\begin{align*}
& \left|z_{1}\right|^{2}=r^{2}+\frac{2}{3} \cos (2 \theta)+\frac{1}{9 r^{2}} \tag{3.4}\\
& \left|z_{2}\right|^{2}=r^{2}+\frac{2}{3} \cos \left(2 \theta-\frac{2 \pi}{3}\right)+\frac{1}{9 r^{2}} \tag{3.5}\\
& \left|z_{3}\right|^{2}=r^{2}+\frac{2}{3} \cos \left(2 \theta+\frac{2 \pi}{3}\right)+\frac{1}{9 r^{2}} . \tag{3.6}
\end{align*}
$$

Consider $x=\left(\frac{1}{2}\left(-c+\sqrt{c^{2}-\frac{4}{27}}\right)\right)^{\frac{1}{3}}$.
Then

$$
\left|c^{2}-\frac{4}{27}\right|=\left|\frac{4}{27}-c^{2}\right| \geqslant\left|\frac{4}{27}\right|-|c|^{2}\left|>\left|\frac{4}{27}-\frac{1}{10000}\right|=0.1480\right.
$$

and

$$
\left|c^{2}-\frac{4}{27}\right| \leqslant|c|^{2}+\left|\frac{4}{27}\right|<\frac{1}{10000}+\frac{4}{27}=0.1482
$$

Thus,

$$
0.3847<\left|c^{2}-\frac{4}{27}\right|^{\frac{1}{2}}<0.3850 \text { and } 0<\arg \left(c^{2}-\frac{4}{27}\right)<\pi .
$$

Compute
and

$$
\begin{aligned}
r^{3} & =\left\lvert\, \frac{1}{2}\left(\left.-c+\sqrt{c^{2}+\frac{4}{27}} \right\rvert\,\right.\right. \\
& \leqslant \frac{1}{2}\left(\left|c^{2}-\frac{4}{27}\right|^{\frac{1}{2}}+|c|\right) \\
& <0.1975 .
\end{aligned}
$$

Hence, $0.5723<r<0.5824$ and $0<\arg (x)<\frac{\pi}{3}$. By using equation (3.4), (3.5) and (3.6) we get
and

$$
\begin{aligned}
& \left|z_{1}\right|^{2}>(0.5723)^{2}+\frac{2}{3} \cos \left(\frac{2 \pi}{3}\right)+\frac{1}{9(0.5824)^{2}}>0.3 \\
& \left|z_{2}\right|^{2}>(0.5723)^{2}+\frac{2}{3} \cos \left(-\frac{2 \pi}{3}\right)+\frac{1}{9(0.5824)^{2}}>0.3
\end{aligned}
$$

$$
\left|z_{3}\right|^{2}<(0.5824)^{2}+\frac{2}{3} \cos \left(\frac{2 \pi}{3}\right)+\frac{1}{9(0.5723)^{2}}<0.3
$$

Hence, $\quad\left|f_{c}^{\prime}\left(z_{1}\right)\right|=\left|3 z_{1}^{2}\right|>1,\left|f_{c}^{\prime}\left(z_{2}\right)\right|=\left|3 z_{2}^{2}\right|>1$ and $\left|f_{c}^{\prime}\left(z_{3}\right)\right|=\left|3 z_{3}^{2}\right|<1$.
This implies that z_{1}, z_{2} are repelling and z_{3} is attractive.

Let $[\alpha, \beta]$ be a compact interval in \mathbb{R}. A curve γ with parameter interval $[\alpha, \beta]$ is a continuous function $\gamma:[\alpha, \beta] \leftrightarrows \mathbb{C}$. It has initial point $\gamma(\alpha)$ and final point $\gamma(\beta)$, and is closed if $\gamma(\alpha)=\gamma(\beta)$. It is simple if $\alpha \leqslant s<t \leqslant \beta$ implies $\gamma(s) \neq \gamma(t)$ for $t-s<\beta-\alpha$. A curve γ is said to be smooth if the function γ has a continuous derivative on its parameter interval $[\alpha, \beta]$. For brevity, we term a smooth, closed, simple curve in the complex plane a loop. We refer to the parts of \mathbb{C} inside and outside such a curve as the interior and exterior of the loop.

Lemma 3.2. Let C be a loop in the complex plane. Suppose c is a complex number and let $f_{c}=z^{3}+c$. If c is inside C, then $f_{c}^{-1}(C)$ is a loop, with the inverse image of interior of C as the interior of $f_{c}^{-1}(C)$.

Proof. Suppose that c is inside C. Note that $f_{c}^{-1}(C)=(z-c)^{1 / 3}$ and $\left(f_{c}^{-1}\right)^{\prime}(z)=$ $\frac{1}{3}(z \in c)^{-2 / 3}$, which is finite and non-zero if $z \neq c$. Hence, if we select one of the three branch of f_{c}^{-1}, the set $f_{c}^{-1}(C)$ is locally a smooth curve, provided $c \notin C$.

Take an initial point w on C and choose one of the three values for $f_{c}^{-1}(w)$. Allowing $f_{c}^{-1}(z)$ to vary continuously as z moves around C, the point $f_{c}^{-1}(z)$ traces out a smooth curve. When z returns to w, however, $f_{c}^{-1}(w)$ takes its second value. As z traverses C again, $f_{c}^{-1}(z)$ continues on its smooth path, which closes as z returns to w the second time. Next, when z returns to w the third time, $f_{c}^{-1}(w)$
takes its third value. As z traverses C again, $f_{c}^{-1}(z)$ continues on its smooth path, which closes as z returns to w the third time. Since $c \notin C$, we have $0 \notin f_{c}^{-1}(C)$, so $f_{c}^{\prime}(z) \neq 0$ on $f_{c}^{-1}(C)$. This f_{c} is locally a smooth bijective transformation near points on $f_{c}^{-1}(C)$. In particular $z \in f_{c}^{-1}(C)$ cannot be a point of self-intersection of $f_{c}^{-1}(C)$, otherwise $f_{c}(z)$ would be at a self-intersection of C.

Since f_{c} is a continuous function that maps the loop $f_{c}^{-1}(C)$ and no other points onto the loop C, the polynomial f_{c} must map the interior and exterior of $f_{c}^{-1}(C)$ into the interior and exterior of C, respectively. Hence f_{c}^{-1} maps the interior of C to the interior of $f_{c}^{-1}(C)$.

Lemma 3.3. Suppose c is a complex number such that $|c|<\frac{1}{100}$ and let $f_{c}=$ $z^{3}+c$. If C_{0} is the circle $|z|=\frac{1}{\sqrt{3}}$, then $C_{k}=f_{c}^{-k}\left(C_{0}\right)$ is a loop surrounding $(=$ enclosing, possibly, touching) $C_{k-1}=f_{c}^{-k+1}\left(C_{0}\right)$ where $k=1,2,3, \ldots$

Proof. Write $C_{k}=f_{c}^{-k}\left(C_{0}\right)$ where $k=1,2,3, \ldots$ Let C_{0} be the circle $|z|=\frac{1}{\sqrt{3}}$.
Since
and by Lemma 3.2., C_{1} is a loop surrounding C_{0}.

$$
=|z| \quad \stackrel{\sigma}{2} \text {, for all } z \in C_{0}, \quad \mathbb{C}
$$

Next, we will show that C_{2} is a loop surrounding C_{1}. Assume that for each $z, w \in C_{0}$ such that $\arg \left(f_{c}^{-2}(z)\right)=\theta=\arg \left(f_{c}^{-1}(w)\right)$ and $\left|f_{c}^{-2}(z)\right|<\left|f_{c}^{-1}(w)\right|$. Hence, $\left|\left(f_{c}^{-2}(z)\right)^{3}\right|<\left|\left(f_{c}^{-1}(w)\right)^{3}\right|$ and $\arg \left(\left(f_{c}^{-2}(z)\right)^{3}\right)=3 \theta=\arg \left(\left(f_{c}^{-1}(w)\right)^{3}\right)$. Therefore, for a fixed c, we have $\left(f_{c}^{-2}(z)\right)^{3}+c \in C_{1}, \quad\left(f_{c}^{-1}(w)\right)^{3}+c \in C_{0}$, and $\left|\left(f_{c}^{-2}(z)\right)^{3}+c\right|<\left|\left(f_{c}^{-1}(w)\right)^{3}+c\right|$, which contradicts the above result. Thus
$\left|f_{c}^{-2}(z)\right| \geqslant\left|f_{c}^{-1}(w)\right|$ for all $z, w \in C_{0}$. This implies C_{2} is surrounding C_{1}. By Lemma 3.2., C_{2} is a loop surrounding C_{1}. By the same argument, we have that C_{k} is a loop surrounding C_{k-1} where $\mathrm{k}=1,2,3, \ldots$

Lemma 3.4. Let c be a complex number such that $|c|<\frac{1}{100}, f_{c}=z^{3}+c$, and C_{0} be the circle $|z|=\frac{1}{\sqrt{3}}$. Then, for each $k>1,\left|f_{c}^{-k}(z)-f_{c}^{-k+1}(z)\right|<\alpha \gamma^{k}$ for some constants α and $\gamma>1$.

Proof. Since $\left(f_{c}\right)^{\prime}(z)=3 z^{2}$ and C_{0} is the circle $|z|=\frac{1}{\sqrt{3}}$, there is a positive number $r>1$ such that $\left|\left(f_{c}\right)^{\prime}(z)\right|>r$ for all z outside C_{0}. Thus, $\left|\left(f_{c}^{-1}(z)\right)^{\prime}\right| \leqslant$ $\frac{1}{\left|\left(f_{c}\right)^{\prime}(z)\right|}<\frac{1}{r}$ for all z outside $\overline{C_{0}}$. For each two points z_{1}, z_{2} outside C, let $\beta:[0,1] \rightarrow \mathbb{C} \backslash C$ be the straight line joining z_{1} to z_{2}.

Then

$$
\begin{aligned}
\left|f_{c}^{-1}\left(z_{2}\right)-f_{c}^{-1}\left(z_{1}\right)\right| & =\left|\int_{\beta}\left(f_{c}^{-1}(z)\right)^{\prime} d z\right| \\
& \leqslant \frac{\int_{z_{1}}^{z_{2}}\left|\left(f_{c}^{-1}(\beta(t))\right)^{\prime}\right||d \beta(t)|}{} \\
& <\frac{1}{r} \int_{z_{1}}^{z_{2}}|d \beta(t)| \\
& =\frac{1}{r}\left|z_{1}-z_{2}\right| .
\end{aligned}
$$

By direct calculation, for each $z \in C_{0}$ and $k \in \mathbb{N}, f_{c}^{-k}(z)$ is outside C_{0}. Applying the above inequality, we get that $9 \cap \mathrm{GlO}$

$$
\begin{aligned}
\left|f_{c}^{-k}(z)-f_{c}^{-k+1}(z)\right| & <\left(\frac{1}{r}\right)\left|f_{c}^{-k+1}(z)-f_{c}^{-k+2}(z)\right| \\
& \left.<\left(\frac{1}{r}\right)^{2}\left|f_{c}^{-k+2}(z)-f_{c}^{-k+3}(z)\right|\right\} \\
& \vdots \\
& <\left(\frac{1}{r}\right)^{k-2}\left|f_{c}^{-2}(z)-f_{c}^{-1}(z)\right|
\end{aligned}
$$

Hence, for each $k>1$ and $z \in C_{0},\left|f_{c}^{-k}(z)-f_{c}^{-k+1}(z)\right|<\alpha \gamma^{k}$ where $\gamma=\left(\frac{1}{r}\right)$ and $\alpha=r^{2}\left|f_{c}^{-2}(z)-f_{c}^{-1}(z)\right|$, as required.

Lemma 3.5. Let $\left\{\psi_{k}(\theta)\right\}_{k=0}^{\infty}$ be a sequence of continuous functions on an open domain U such that there is a positive number $\gamma<1$ such that for each $n \in \mathbb{N}$,

$$
\left|\psi_{k}(\theta)-\psi_{k-1}(\theta)\right|<(\gamma)^{k}
$$

Then $\psi_{k}(\theta)$ converges uniformly to a continuous function $\psi(\theta)$ as $k \rightarrow \infty$.
Proof. Let $f_{k}(\theta)=\psi_{k}(\theta)-\psi_{k-1}(\theta)$. Then for each $k \in \mathbb{N},\left|f_{k}(\theta)\right|<(\gamma)^{k}$. By Weierstrass M-test, $\psi_{k}(\theta)-\psi_{0}(\theta)$ converges uniformly to a continuous function $\phi(\theta)$ as $\mathrm{k} \rightarrow \infty$. Let $\psi(\theta)=\phi(\theta)+\psi_{0}(\theta)$. Then $\psi(\theta)$ is also a continuous function. Hence $\psi_{k}(\theta)$ converges uniformly to a continuous function $\psi(\theta)$ as $k \rightarrow \infty$.

Theorem 3.6. Let c be a complex number such that $|c|<\frac{1}{100}$ and $f_{c}(z)=z^{3}+c$. Then $J\left(f_{c}\right)$ is a simple closed curve.

Proof. Let C_{0} be the circle $|z|=\frac{1}{\sqrt{3}}$. By Lemma 3.1., c and the attractive fixed point of f_{c} are inside C_{0}. By Lemma 3.2. and 3.3., the inverse image $C_{1}=f_{c}^{-1}\left(C_{0}\right)$ is a loop surrounding C_{0}. Let A_{1} be the annular region between C_{0} and C_{1}. We fill A_{1} by a continuum of curves, called trajectories, which leave C_{0} and reach C_{1} perpendicularly. For each θ, let $\psi_{1}(\theta)$ be the point on C_{1} at the end of the trajectory leaving \bar{C}_{0} at $\psi_{0}(\theta)=\frac{1}{\sqrt{3}} e^{i \theta}$. Let A_{2} be the inverse image $f_{c}^{-1}\left(A_{1}\right)$ which is the annular region, with outer boundary the loop $C_{2}=f_{c}^{-1}\left(C_{1}\right)$ and inner boundary C_{1} with f_{c} mapping A_{2} to A_{1} in a three-to- 1 manner. Then the inverse image of the trajectories joining C_{0} to C_{1} provides a family of trajectories joining C_{1} to C_{2}. Let $\psi_{2}(\theta)$ be the point on C_{2} at the end of the trajectory leaving C_{1} at $\psi_{1}(\theta)$. Continuing this process, we get a sequence of loops C_{k}, each surrounding its predecessor, and families of trajectories joining the points $\psi_{k}(\theta)$ on C_{k} to $\psi_{k+1}(\theta)$ on C_{k+1} for each k.

As $\mathrm{k} \rightarrow \infty$, the curve C_{k} approach the boundary of the basin of attraction fixed point of f_{c}, that is, they approach the Julia set $J\left(f_{c}\right)$. By Lemma 3.4., we get the
length of the trajectory joining $\psi_{k}(\theta)$ to $\psi_{k+1}(\theta)$ converges to 0 at a geometric rate as $\mathrm{k} \rightarrow \infty$. By Lemma 3.5., $\psi_{k}(\theta)$ converges uniformly to a continuous function $\psi(\theta)$ as $\mathrm{k} \rightarrow \infty$. Hence $J\left(f_{c}\right)$ is the closed curve given by $\psi(\theta)(0 \leqslant \theta \leqslant 2 \pi)$.

Now, it remains to show that $\psi(\theta)$ represents a simple curve. Assume that $\psi\left(\theta_{1}\right)=\psi\left(\theta_{2}\right)$. Let D be the region bounded by C_{0} and the two trajectories joining $\psi_{0}\left(\theta_{1}\right)$ and $\psi_{0}\left(\theta_{2}\right)$ to this common point. The boundary of D remains bounded under iterates of f_{c}, so by the maximum modulus Theorem (See Appendix), D remains bounded under iterates of f_{c}. By Lemma 2.5., we have the interior of D cannot contain any points of $J\left(f_{c}\right)$. Hence $\psi\left(\theta_{1}\right)=\psi(\theta)=\psi\left(\theta_{2}\right)$ for all θ between θ_{1} and θ_{2}. It follows that $\psi(\theta)$ has no point self-intersection. Therefore $J\left(f_{c}\right)$ is a simple closed curve.

Proposition 3.7. Let $f_{c}(z)=z^{3}+c$. Suppose c is a complex number which is not real and $|c|<\frac{1}{100}$. Then $J\left(f_{c}\right)$ is a simple nowhere differentiable closed curve.

Proof. By Theorem 3.6., $J\left(f_{c}\right)$ is a simple closed curve. Let z_{1} be a repelling fixed point of f_{c}. It is easy to check that $f_{c}^{\prime}\left(z_{1}\right)$ is a complex number which is not real. We will show that z_{1} does not lie in a smooth arc in $\psi(\theta)$. Suppose not. Since $J\left(f_{c}\right)$ is invariant under f_{c}, the image of $\psi(\theta)$ would also be a smooth arc in $J\left(f_{c}\right)$ passing through z_{1}. Since $\arg \left(f_{c}^{\prime}\left(z_{1}\right)\right) \neq 0$ and $\neq \pi$, the tangents to these two curves would not be parallel. Hence, $\psi(\theta)$ would not be simple at z_{1}, which ia a contradiction. This implies z_{1} does not lie in a smooth arc in $\psi(\theta)$. By Proposition 2.6.(b), the preimages of z_{1} are dense in $J\left(f_{c}\right)$. It follows that $J\left(f_{c}\right)$ contains no smooth arcs.

CHAPTER IV

Geometry of Julia sets of complex polynomials $z^{n}+c$

The inspiration behind this chapter is the desire for an answer to the following question: How can we estimate the upper bounded of $|c|$ so that Julia sets of complex polynomials of the form $z^{n}+c$ when $n=2,3,4, \ldots$ are simple closed curves? From the previous chapter, using the cubic formula, we found that this upper bounded of $|c|$ is $\frac{1}{100}$, when $n=3$. In this chapter we cannot use the same method because there is no general formula for solving an algebraic equation of degree $n \geqslant 5$. Consequently, we have to use the theorem from Complex Analysis, namely The Rouché's Theorem (See appendix), to estimate the upper bounded of $|c|$ for arbitrary $n \in \mathbb{N}, n \geqslant 2$.

Let $f_{n, c}(z)=z^{n}+c$ and $\tilde{f}_{n, c}(z)=z^{n}-z+c$ when $n=2,3,4, \ldots$
Lemma 4.1. If $|\overline{c \mid}|<\frac{n-1}{n \sqrt[n-1]{n}}$, then $f_{n, c}(z)$ has exactly one attractive fixed point in $D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$.
Proof. Let $g(z)=z^{n}-z$. Consider $\xi \in \partial D\left(0 ; \frac{\partial}{\sqrt[n]{n-1} n}\right)$.
Then $9 / \tilde{f}_{n, c}(\xi)-g(\xi)|\approx|\left(\xi^{n}-\xi-c\right)-\left(\xi^{n}-\xi\right)|\underline{C}| \vec{G}$
and

$$
\begin{aligned}
& =\left|\frac{1}{\sqrt[n-1]{n}}-\frac{1}{\sqrt[n-1]{n}}\right| \\
& =\frac{n-1}{n \sqrt[n-1]{n}} .
\end{aligned}
$$

Thus $\left|\widetilde{f}_{n, c}(\xi)-g(\xi)\right|<|g(\xi)| \quad \forall \xi \in \partial D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$. By Rouché's Theorem, $\widetilde{f}_{n, c}$ and g have the same number of zeros in $D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$. Since g has only one zero in $D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$, so does $\widetilde{f}_{n, c \cdot}$ Let z_{0} be a zero of $\widetilde{f}_{n, c}$ in $D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$. Since $\left|f_{n, c}^{\prime}\left(z_{0}\right)\right|=\left|n\left(z_{0}\right)^{n-1}\right|<n\left(\frac{1}{\sqrt[n-1]{n}}\right)^{n-1}=1, z_{0}$ is attractive. This implies $f_{n, c}$ has exactly one attractive fixed point in $D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$.

Lemma 4.2. Let C be a loop in the complex plane. If c is inside C, then $f_{n, c}^{-1}(C)$ is a loop, with the inverse image of interior of C as the interior of $f_{n, c}^{-1}(C)$.

Proof. Suppose that c is inside C. Note that $f_{n, c}^{-1}(C)=(z-c)^{1 / n}$ and $\left(f_{n, c}^{-1}\right)^{\prime}(z)=$ $\frac{1}{n}(z-c)^{-(n-1) / n}$, which is finite and non-zero if $z \neq c$. Hence, if we select one of the n branches of $f_{n, c}^{-1}$, the set $f_{n, c}^{-1}(C)$ is locally a smooth curve, provided $c \notin C$.

Take an initial point w on C and choose one of the n values for $f_{n, c}^{-1}(w)$. Allowing $f_{n, c}^{-1}(z)$ to vary continuously as z moves around C, the point $f_{n, c}^{-1}(z)$ traces out a smooth curve. When z returns to w, however, $f_{n, c}^{-1}(w)$ takes its second value. As z traverses C again, $f_{n, c}^{-1}(z)$ continues on its smooth path, which closes as z Yeturns to w the second time? We continue in this way until z returns to w the $n^{\text {th }}$ time. Since $c \notin C$, we have $0 \notin f_{n, c}^{-1}(C)$, so $f_{n, c}^{\prime}(z) \neq 0$ on $f_{n, c}^{-1}(C)$. This $f_{n, c}$ is locally a smooth bijective transformation near points on $f_{n, c}^{-1}(C)$. In particular $z \in f_{n, c}^{-1}(C)$ cannot be a point of self-intersection of $f_{n, c}^{-1}(C)$, otherwise $f_{n, c}(z)$ would be at a self-intersection of C.

Since $f_{n, c}$ is a continuous function that maps the loop $f_{n, c}^{-1}(C)$ and no other points onto the loop C, the polynomial $f_{n, c}$ must map the interior and exterior
of $f_{n, c}^{-1}(C)$ into the interior and exterior of C, respectively. Hence $f_{n, c}^{-1}$ maps the interior of C to the interior of $f_{n, c}^{-1}(C)$.

Lemma 4.3. Assume that $|c|<\frac{n-1}{n \sqrt[n-1]{n}}$ when $n=2,3,4, \ldots$ If C_{0} is the circle $|z|=\frac{1}{\sqrt[n-1]{n}}$, then $C_{k}=f_{n, c}^{-k}\left(C_{0}\right)$ is a loop surrounding (=enclosing, possibly, touching) $C_{k-1}=f_{n, c}^{-k+1}\left(C_{0}\right)$ where $k=1,2,3, \ldots$

Proof. Write $C_{k}=f_{n, c}^{-k}\left(C_{0}\right)$ where $k=1,2,3, \ldots$ Let C_{0} be the curve $|z|=\frac{1}{\sqrt[n-1]{n}}$. Since
and by Lemma 4.2., C_{1} is a loop surrounding C_{0}.
Next, we will show that C_{2} is a loop surrounding C_{1}. Assume that for each $z, w \in C_{0}$ such that $\arg \left(f_{n, c}^{-2}(z)\right)=\theta=\arg \left(f_{n, c}^{-1}(w)\right),\left|f_{n, c}^{-2}(z)\right|<\left|f_{n, c}^{-1}(w)\right|$. Hence $\left|\left(f_{n, c}^{-2}(z)\right)^{n}\right|<\left|\left(f_{n, c}^{-1}(w)\right)^{n}\right|$ and $\arg \left(\left(f_{n, c}^{-2}(z)\right)^{n}\right)=n \theta=\arg \left(\left(f_{n, c}^{-1}(w)\right)^{n}\right)$. Therefore, for a fixed c, we have $\left(f_{n, c}^{-2}(z)\right)^{n}+c \in C_{1},\left(f_{n, c}^{-1}(w)\right)^{n}+\bar{c} \in C_{0}$, and $\left|\left(f_{n, c}^{-2}(z)\right)^{n}+c\right|<$ $\left|\left(f_{n, c}^{-1}(w)\right)^{n}+c\right|$, which contradicts the above result. Thus $\left|f_{n, c}^{-2}(z)\right| \geqslant\left|f_{n, c}^{-1}(w)\right|$ for all $z, w \in C_{0}$. This implies C_{2} is surrounding G_{1}. By Lemma 4.2., C_{2} is a loop surrounding C_{1}. Using the same argument, we have that C_{k} is aloop surrounding

Lemma 4.4. Let c be a complex number such that $|c|<\frac{n-1}{\sqrt[n-1]{n}}$ and C_{0} be the circle $|z|=\frac{1}{\sqrt[n-1]{n}}$. Then, for each $k>1,\left|f_{n, c}^{-k}(z)-f_{n, c}^{-k+1}(z)\right|<\alpha \gamma^{n}$ for some constants α and $\gamma>1$.

Proof. Since $f_{n, c}^{\prime}\left(z_{0}\right)=n\left(z_{0}\right)^{n-1}$ and C_{0} is the circle $|z|=\frac{1}{\sqrt[n-1]{n}}$, there is a positive number $r>1$ such that $\left|f_{n, c}^{\prime}(z)\right|>r$ for all z outside C_{0}. Thus, $\left|\left(f_{n, c}^{-1}(z)\right)^{\prime}\right| \leqslant$
$\frac{1}{\left|\left(f_{n, c}\right)^{\prime}(z)\right|}<\frac{1}{r} \quad$ for all z outside C. For each two points z_{1}, z_{2} outside C, let $\beta:[0,1] \rightarrow \mathbb{C} \backslash C$ be the straight line joining z_{1} to z_{2}.

Then $\quad\left|f_{n, c}^{-1}\left(z_{2}\right)-f_{n, c}^{-1}\left(z_{1}\right)\right|=\left|\int_{\beta}\left(f_{n, c}^{-1}(z)\right)^{\prime} d z\right|$

$$
\begin{aligned}
& \leqslant \int_{z_{1}}^{z_{2}}\left|\left(f_{n, c}^{-1}(\beta(t))\right)^{\prime}\right||d \beta(t)| \\
& <\frac{1}{r} \int_{z_{1}}^{z_{2}}|d \beta(t)| \\
& =\frac{1}{r}\left|z_{1}-z_{2}\right|
\end{aligned}
$$

By direct calculation, for each $z \in C_{0}$ and $k \in \mathbb{N}, f_{n, c}^{-k}(z)$ is outside C_{0}. Applying the above inequality, we get that

$$
\begin{aligned}
\left|f_{n, c}^{-k}(z)-f_{n, c}^{-k+1}(z)\right| & <\left(\frac{1}{r}\right)\left|f_{n, c}^{-k+1}(z)-f_{n, c}^{-k+2}(z)\right| \\
& <\left(\frac{1}{r}\right)^{2}\left|f_{n, c}^{-k+2}(z)-f_{n, c}^{-k+3}(z)\right| \\
& \vdots \\
& <\left(\frac{1}{r}\right)^{k-2}\left|f_{n, c}^{-2}(z)-f_{n, c}^{-1}(z)\right|
\end{aligned}
$$

Hence, for each $k>1$ and $z \in C_{0},\left|f_{n, c}^{-k}(z)-f_{c}^{-k+1}(z)\right|<\alpha \gamma^{k}$ where $\gamma=\left(\frac{1}{r}\right)$ and $\alpha=r^{2}\left|f_{n, c}^{-2}(z)-f_{n, c}^{-1}(z)\right|$, as required.
Lemma 4.5. Let $\left\{\psi_{k}(\theta)\right\}_{k=0}^{\infty}$ be a sequence of continuous functions on an open domain U such that there is a positive number $\gamma<1$ such that for each $n \in \mathbb{N}$,

Then $\psi_{k}(\theta)$ converges uniformly to a continuous function $\psi(\theta)$ as $k \rightarrow \infty$.

Proof. Let $g_{k}(\theta)=\psi_{k}(\theta)-\psi_{k-1}(\theta)$. Then for each $k \in \mathbb{N}$, $\left|g_{k}(\theta)\right|<(\gamma)^{k}$. By Weierstrass M-test, $\psi_{k}(\theta)-\psi_{0}(\theta)$ converges uniformly to a continuous function $\phi(\theta)$ as $\mathrm{k} \rightarrow \infty$. Let $\psi(\theta)=\phi(\theta)+\psi_{0}(\theta)$. Then $\psi(\theta)$ is also a continuous function. Hence $\psi_{k}(\theta)$ converges uniformly to a continuous function $\psi(\theta)$ as $\mathrm{k} \rightarrow \infty$.

Theorem 4.6. Let c be a complex number such that $|c|<\frac{n-1}{n \sqrt[n-1]{n}}$ where $n=$ $2,3,4, \ldots$ Then $J\left(f_{n, c}\right)$ is a simple closed curve.

Proof. Let C_{0} be the circle $|z|=\frac{1}{\sqrt[n-1]{n}}$. By Lemma 4.1., c and the attractive fixed point of $f_{n, c}$ are inside C_{0}. By Lemma 4.2. and 4.3., the inverse image $C_{1}=f_{n, c}^{-1}\left(C_{0}\right)$ is a loop surrounding C_{0}. Let A_{1} be the annular region between C_{0} and C_{1}. We fill A_{1} by a continuum of curves, called trajectories, which leave C_{0} and reach C_{1} perpendicularly. For each θ, let $\psi_{1}(\theta)$ be the point on C_{1} at the end of the trajectory leaving C_{0} at $\psi_{0}(\theta)=\frac{1}{\sqrt[n-1]{n}} e^{i \theta}$. Let A_{2} be the inverse image $f_{n, c}^{-1}\left(A_{1}\right)$ which is the annular region with outer boundary the loop $C_{2}=f_{n, c}^{-1}\left(C_{1}\right)$ and inner boundary C_{1}, with $f_{n, c}$ mapping A_{2} to A_{1} in a n-to- 1 manner. Then the inverse image of the trajectories joining C_{0} to C_{1} provides a family of trajectories joining C_{1} to C_{2}. Let $\psi_{2}(\theta)$ be the point on C_{2} at the end of the trajectory leaving C_{1} at $\psi_{1}(\theta)$. Continuing this process, we get a sequence of loops C_{k}, each surrounding its predecessor, and families of trajectories joining the points $\psi_{k}(\theta)$ on C_{k} to $\psi_{k+1}(\theta)$ on C_{k+1} for each k.

As $\mathrm{k} \rightarrow \infty$, the curve C_{k} approach the boundary of the basin of attraction fixed point of $f_{n, c}$, that is, they approach the Julia set $J\left(f_{n, c}\right)$. By Lemma 4.4., we get the length of the trajectory joining $\psi_{k}(\theta)$ to $\psi_{k+1}(\theta)$ converges to 0 at a geometric rate as $\mathrm{k} \rightarrow \infty$. By Lemma 4.5., $\psi_{k}(\theta)$ converges uniformly to a contimuous function $\psi(\theta)$ as $\mathrm{k} \leftrightarrows \infty$. Hence $J\left(f_{n_{j},}\right)$ is the closed curve given by $\psi(\theta)(0 \leqslant \theta \leqslant 2 \pi)$.

Now, it remains to show that $\psi(\theta)$ represents a simple curve. Assume that $\psi\left(\theta_{1}\right)=\psi\left(\theta_{2}\right)$. Let D be the region bounded by C_{0} and the two trajectories joining $\psi_{0}\left(\theta_{1}\right)$ and $\psi_{0}\left(\theta_{2}\right)$ to this common point. The boundary of D remains bounded under iterates of $f_{n, c}$, so by the maximum modulus Theorem (See Appendix), D remains bounded under iterates of $f_{n, c}$. By Lemma 2.5., we have the interior of
D cannot contain any points of $J\left(f_{n, c}\right)$. Hence $\psi\left(\theta_{1}\right)=\psi(\theta)=\psi\left(\theta_{2}\right)$ for all θ between θ_{1} and θ_{2}. It follows that $\psi(\theta)$ has no point self-intersection. Therefore $J\left(f_{n, c}\right)$ is a simple closed curve.

Proposition 4.7. Suppose c is a complex number which is not real and $|c|<$ $\frac{n-1}{n \sqrt[n-1]{n}}$. Then $J\left(f_{n, c}\right)$ is a simple nowhere differentiable closed curve.

Proof. By Theorem 4.6., $J\left(f_{n, c}\right)$ is a simple closed curve. Let z_{1} be a repelling fixed point of $f_{n, c}$. It is easy to check that $f_{n, c}^{\prime}\left(z_{1}\right)$ is a complex number which is not real. We will show that z_{1} does not lie in a smooth arc in $\psi(\theta)$. Suppose not. Since $J\left(f_{n, c}\right)$ is invariant under $f_{n, c}$, the image of $\psi(\theta)$ would also be a smooth arc in $J\left(f_{n, c}\right)$ passing through z_{1}. Since $\arg \left(f_{n, c}^{\prime}\left(z_{1}\right)\right) \neq 0$ and $\neq \pi$, the tangents to these two curves would not be parallel. Hence, $\psi(\theta)$ would not be simple at z_{1}, which ia a contradiction. This implies z_{1} does not lie in a smooth arc in $\psi(\theta)$. By Proposition 2.6.(b), the preimages of z_{1} are dense in $J\left(f_{n, c}\right)$. It follows that $J\left(f_{n, c}\right)$ contains no smooth ares.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Suppose f is holomorphic in $D(a ; r)$ for some r. The point a is said to be a zero of f if $f(a)=0$. The zero a is isolated if there exists ε such that $D(a ; \varepsilon) \backslash\{a\}$ contains no zeros of f. A function f has an isolated singularity at a point $z=a$ if there is a number $R>0$ such that f is holomorphic on $D(a ; R) \backslash\{a\}$ and is not holomorphic at point a. The point a is called a removable singularity if there is holomorphic function $g: D(a ; R) \rightarrow \mathbb{C}$ such that $g(z)=f(z)$ for $0<|z-a|<R$. If $\lim _{z \rightarrow a}|f(z)|=\infty$, then a is a pole of f. If f has a pole at $z=a$ and m is the smallest positive integer such that $f(z)(z-a)^{m}$ has removable singularity at $z=a$ then f has a pole of order m at $z=a$. If G is open and f is a function defined and holomorphic in G except for poles, then f is a meromorphic function on G.

Theorem (Rouché's Theorem) Suppose f and g are meromorphic in the region G, an open connected subset of the complex plane, and $\bar{D}(a ; R) \subset G$. If f and g have no zeros or poles on the circle $\alpha=\{z:|z-a|=R\}$ and $|f(z)-g(z)|<|g(z)|$ for z on γ then $Z_{f}-P_{f}=Z_{g}-P_{g}$ where $Z_{f}, Z_{g}\left(P_{f}, P_{g}\right)$ are the number of zeros (poles) of f and g inside $|z|=R$ counted according to multiplicity.

Theorem (Motel's Theorem) Let $\left\{g_{k}\right\}$ be a family of complex analytic functions on an open domain U. If $\left\{g_{k}\right\}$ is not a normal family, then for all $w \in \mathbb{C}$ with at most one exception we have $g_{k}(z)=w$ for some $z \in U$ and some k.

Theorem (Maximum Modulus Theorem) Let G be a bounded open set in \mathbb{C} and suppose f is a continuous function on \bar{G} which is holomorphic in G. Then $\max \{|f(z)|: z \in \bar{G}\}=\max \{|f(z)|: z \in \partial G\}$.

Theorem (Weierstrass M-Test) Let $u_{n}: X \rightarrow \mathbb{C}$ be a such that $\left|u_{n}(x)\right| \leqslant M_{n}$ for every x in X and suppose the constants satisfy $\sum_{n=1}^{\infty} M_{n}<\infty$.

Then $\sum_{n=1}^{\infty} u_{n}$ is uniformly convergent.

Theorem Let (X, d) and (Ω, ρ) be metric spaces. Suppose $f_{n}:(X, d) \rightarrow(\Omega, \rho)$ is continuous for each n and that a sequence $\left\{f_{n}\right\}$ converges uniformly to f. Then f is continuous.

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวิทยาลัย }
\end{gathered}
$$

REFERENCES

[1] Conway R. B., Functions of One Complex Variable, Narosa Publishing House, New Delhi, 1982.
[2] Devancy R. L., An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley Publishing Company, Inc., 1989.
[3] Falconer K.J., Geometry of Fractal Sets, Cambridge University Press, 1986.
[4] Rotman J., Galois Theory, 2nd ed., Springer, New York, 1998.

สถาบันวิทยบริการ

 จุฬาลงกรณ์มหาวิทยาลัย
VITA

Miss Katthaleeya Daowsud was born on June 6, 1978 in Petchaboon, Thailand. She graduated with a Bachelor Degree of Science in Mathematics from Kasetsart University in 2000. She received a financial support from the Ministry Staff Development Project in 2000 to further her study in Mathematics. For her master degree program, she has studied Mathematics at the Faculty of Science, Chulalongkorn University. According to scholarship requirement, she will be a lecturer at the Faculty of Science, Kasetsart University.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

