CHAPTER III

RESULTS

Rabies neutralizing antibody

The antibody titers of all groups were shown in Fig. 5 and Table 2. No subjectshad detectable rabies antibody on day 0 . All regimens resulted in 100% seroconversion by day 14 , except one patient in group D who had the antibody level lowerthan the arbitary protectiye value of $0.5 \mathrm{iu} / \mathrm{ml}$.

Group A (1×6 PVRV)
By day 7. 14 deth 24 patients (58\%) developed detectable antibody. flowever, only $4(16.7 \%$) had antibody titer exceeding the arbitrapy protective level of $0.5 \mathrm{iu} / \mathrm{ml}$. The antibody fevel of this group peaked at day 28 with a geometric mean thiter (GMT) of $12 . \overline{6} 7 \mathrm{iu} / \mathrm{ml}$. All of the patients had antibody higher than $1.16 \mathrm{iu} / \mathrm{ml}$ on day 180 with a GMT of 4.629 srange 91.1641699 in/mip?

Eight of the 21 patients (38.1%) had detectable rabies antibody by day 7 , but only 2 (9.5%) exceeded the 0.5 iu/ml level. The peak antibody level of this group was on day 28 with a GMT of $18,38 \mathrm{iu} / \mathrm{ml}$. The GMTs of the $2-1-1$ group were significantly higher than the 1×6 group (group $A) \quad$ on day $14 \quad$ (table 2). On day 180 ,

Figure 5. Neutralizing rabies antibodies in different PVRV regimens (G) PVRV, I.M.; (口) PVRV, 2-1-1; (PVRV+HRIG; (目) PVRV+ERIG.

Table 2. Neutralizing rabies antibodies in different PVRV regimens.

the antibody titers of the $2-1-1$ group ranged from 0.58 to $5.99(\mathrm{GMT}=1.78 \mathrm{iu} / \mathrm{ml})$. This was significantly lower than that of group A which also received a booster dose on day 90.

Group C (2-1-1 PVRV + HRIG)
Ten of the 14 individuals (71.4\%) had detectable antibody on day 7 but only one (7.1\%) had antibody titer higer than $0.5 \mathrm{iu} / \mathrm{ml}$. The peak antibody level was reached on day 28 with a GMT of $19.33 \mathrm{iu} / \mathrm{ml}$. The GMT on day 14 wassignificantly lower than group $B(p<0.05)$ (table 2). All patients had antibody titers higher than $0.98 \mathrm{iu} / \mathrm{ml}$ on day 180 with a GMT of $2.33 \mathrm{iu} / \mathrm{ml}(\mathrm{range}=0.97-8.47 \mathrm{iu} / \mathrm{ml})$.

Group D $(2-1-1$ PYRV + ERIG)
Five of the 17.0 patients (29.4\%) had detectable antibody on day 7 but roone/exceeded the 0.5 iu/ml level. The peak antibody tiber was also reached on day 28 with a GMT of 11.21 iu/ 11 . The GMTs of this group on day 14 and 21 were significantby lower than those of all other groups except gropp A, B on day 28 and group g © Tay 21 (table 2). On day 180, the antibody levels ranged from $0.69-6.53$ with a GMT of 1.81 iu?mi? $? 6109198 \cap ? 9 \% ? \cap$?

Antigen-stimulated lymphocyte proliferative response

Antigen-stimulated lymphocyte transformation test
(LTT) was carried out only in selected patients of group A ($1 \times 6 \mathrm{PVRV}$) and $B(2-1-1$ PVRV). There was no antigen-
stimulated $L T T$ prior to PVRV immunization (day 0). It first became evident on day 14 in both groups (Table 3). The peak LTT was reached between day 14 and 21 (Fig. 6,7). No significant difference was noted between the 2 groups on any days.

Side-effects

No serious complication was observed in any of the patients except some complaints of pain at the infection site and local tymphadenopathy in a few patients (Table 4).

Determination of rabies antibody by indirect enzyme linked immunosorbent assay (ELISA):

Attempts were nade tordevelop an indirect enzymelinked immunosopbent assay (ELISA) for rabies antibody titration. ELISA has possible advantages over RIFFIT in terms of simpligity cost and convenience, especially with large-scale assay? 9 nt this 9 study purgied vero rabies vaccine ($P V R V$) was used as the coating antigen.
 rabies antibody detection by ELISA.
1.1 The optimal time for PVRV adsorption to the solid phase.

Table 3. Comparison of lymphocyte proliferative responses to the full course intramuscular PVRV regimen and the $2-1-1$ PVRV regimen.

(a) stimulated CPM-unstimulated CPM.
(b) stimulated CPM/unstimulated CPM.
(c) mean + SEM.

* \quad significantly higher than the corresponding values on day 0 within the group.

Figure 6. Kinetics of specific lymphocyte transformation in patients receiving intramuscular PVRV (口) and 2-1-1 PVRV (E). Each column represents the mean \triangle CPM with bar as SEM. * $P<0.05$ as compared with day 0 of the same group.

Figure 7. Kinetics specific lymphocyte transformation in patients receiving intramuscular PVRV (D) and 2-1-1 PVRV (鳳). Each column represents the mean S.I. with bar as SEM. * $P<0.05$ as compared with day 0 of the same group.

Table 4. Side-effects from various PVRV vaccination regimens.

In view of the optimal antigen and conjugate concentrations employed in the rabies antibody detection by Bhatia et al. (128), $1: 150$ dilution fo PVRV and $1: 4,000$ dilution of rabbit anti-human immunoglobulin-peroxidase conjugate were used in this study. To find the proper time of antigen adsorption to tho solid phase, two (neutralizing antibody) positive sera and one negative serum at a dilution of $1: 100$ were incubated with PVRV which had been pre-coated at $37^{\circ} \mathrm{C}$ for 3 hours compared with overnight coating. The overnightcoated PVRV gave/higher $O D$ with positive sera than the 3 hour coating as shown in Table 5 .

To determine the oltinat dilutions of PVRV and rabbit antihuman immumoglobulin-peroxidase conjugate in overnight PVRV coating the antigen and conjugate dilutions of PVRV were deterpined to be $1: 100$ and $1: 200$ where those of the conjugafe were varied as iligstratedfinfig 8. The optinal of PVRV were deterinined, to be 1:100 and 1:200where those of thecconjugate werre $1: 2000$ and $1: 4000$. Thus,PVRV at $1: 150$ dilution and conjugate at $1: 4000$ were selected as the working dilutions in the test system.
2. Antirabies antibody titration by ELISA.

Standard curves were constructed by using various concentrations of commercial human rabies immune globulin (Imogam) at $150 \mathrm{iu} / \mathrm{ml}$ as determined by RIFEIT.

Table 5 The adsorption time of rabies antigen to the solid phase.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 8. The checkerboad titration of PVRV and conjugate by fixed dilution ($1: 100$) of antirabies positive and negative sera. Conjugate dilutions : $1: 2,000$ (${ }^{(6), 1: 4,000}$ (0) and 1:5,000 () The OD represents the difference in $O D$ between positive and negative sera.

As shown in Figure 9, from 3 standard curves constructed in 3 assays, a test serum had 3 different antibody values; $0.34,20$ and 17 iu/inl whereas this serum was found to have an antibody titer of $30.0 \mathrm{iu} / \mathrm{ml}$ by RIFFIT. Table 5 illustrates the same finding of lack of reproducibility when other serum samples were repeatedly assayed by ELISA.

Table 6. Estimation of antirabies antibody titer by ELISA: lack of reproducibility

