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CHAPTER I

INTRODUCTION

The mathematical models of many real world problems can be described by im-

pulsive differential equations. They have been studied quite extensively [5, 8, 10,

16, 17, 18] because they have advantage over the traditional initial value problems.

They can be used to model other phenomena that can not be modeled by the tra-

ditional initial value, such as the dynamics of the systemic arterial pressure [2], the

dynamics of populations subjected to abrupt changes (harvesting, diseases, etc.).

Some phenomena in physics or in the other fields, some time they can not be

described or characterized by the differential equations of integer order but they

can efficiently be described by the fractional order.

Among the previous research, little is concerned with integro-differential equa-

tions with fractional order and impulse. In 2006, Chonwerayuth [3] proved the

existence and uniqueness of a classical solution of an integro-differential equation;x
′(t) + Ax(t) = f(t, x(t), xt) +

∫ t
−r h(t− s)g(s,Kx(s))ds+Bu(t), t ∈ [0, T ]

x(t) = ϕ(t), t ∈ [−r, 0],

(1.1)

where xt(θ) = x(t + θ), −r − t ≤ θ ≤ 0, and Wei.W [16] has done a portion of

work on the nonlinear impulsive integro-differential equation;
x′(t) + Ax(t) = F (t, x(t), Gx(t), Sx(t)), t 6= ti, t ∈ [0, T ]

∆x(ti) = Ji(x(ti)), t = ti, i = 1, 2, ..., n

x(0) = x0,

(1.2)
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where G and S are nonlinear integral operators given by

Gx(t) =

∫ t

0

k(t, τ)g(τ, x(τ))dτ, Sx(t) =

∫ T

0

h(t, τ)s(τ, x(τ))dτ. (1.3)

In 2008, Gastaö S.F.Frederico [4] has studied on the fractional optimal control

in the sense of Caputo and the fractional Neether’s theorem. In 2009, Gisele

M.Mophou [5] proved existence and uniqueness of mild solution to impulsive frac-

tional differential equations;
Dα
t x(t) = Ax(t) + f(t, x(t)), t 6= ti, t ∈ [0, T ]

∆x(ti) = Ji(x(ti)), t = ti, i = 1, 2, ..., n;

x(0) = x0,

(1.4)

where 0 < α < 1 and Dα
t denote the Caputo fractional derivative. These researches

motivate our work. In this thesis, we consider the main objective, a class of

nonlinear impulsive fractional integro-differential equation;
Dα
t x(t) = Ax(t) + f(t, x(t), Kx(t)) +Gx(t) +B(t)u(t), t 6= tk, t ∈ [0, T ]

∆x(tk) = Jk(x(tk)), t = tk, k = 1, 2, ..., n;

x(t) = ϕ(t), t ∈ [−r, 0],

(1.5)

where ϕ ∈ C([−r, 0], X) is fixed, the integral operator G : X → X is defined by

Gx(t) =

∫ t

−r
h(t, s)g(s,Hx(s))ds (1.6)

and for 0 < α < 1, Dα
t denote the Riemann-Liouville fractional derivative. A

is a densely closed operator on a Banach space X, f : [0, T ] × X × X → X is

given continuous function, Jk : X → X, k = 1, 2, .., n is a given bounded map,

∆x(tk) = x(t+k )− x(t−k ) = x(t+k )− x(tk) presents the jump in the state x at t = tk

with Jk, (k = 1, 2, ...) determining the size of the jump at t = tk. Traditional

initial value problems are replaced by the impulsive conditions. Then, we study a

optimal control problem of system (1.5) via the Bolza problem (P ). Find u0 ∈ Uad
such that

J(u0) ≤ J(u), for all u ∈ Uad, (1.7)
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where J(u) =
∫ T

0
l(t, xu(t), xut , u(t))dt+ Φ(xu(T )), Uad denote the set of all admis-

sible controls, xu denote the PC−mild solution of system (1.5) corresponding to

the control u ∈ Uad. We can see that our system different is from the previous

works.

1.1 Scope

In this section, we talk about the scope of this research. Certainly, the main

objective of this study is proving the existence of the system (1.5) (the nonlinear

impulsive fractional integro-differential equation). However, this system is very

complex, it is difficult to seek the form of the solution. So, we first consider

the system that is less complex than the system (1.5) : the nonlinear fractional

integro-differential equations without impulse;D
α
t x(t) = Ax(t) + f(t, x(t), Kx(t)) +Gx(t) +B(t)u(t), t ∈ [0, T ]

x(t) = ϕ(t), t ∈ [−r, 0],
(1.8)

under the same assumptions without impulse. The objective of this part is getting

a solution called a mild solution with respect to the control u ∈ Uad. Then we

apply this result to construct a solution for the main system (1.5);
Dα
t x(t) = Ax(t) + f(t, x(t), Kx(t)) +Gx(t) +B(t)u(t), t 6= tk, t ∈ [0, T ]

∆x(tk) = Jk(x(tk)), t = tk, k = 1, 2, ..., n;

x(t) = ϕ(t), t ∈ [−r, 0].

This solution is called a piecewise continuous mild solution or (for short) a PC−mild

solution with respect to the control u ∈ Uad. Moreover, we show the other scheme

to prove the existence of a PC−mild solution. This scheme use the compactness

property of semigroup and the Leray-Shauder fixed point theorem to imply that

the system (1.5) has at least one PC−mild solution. Then the control problem of

system (1.5) via the Bolza problem will be considered. We exemplify some con-

struction examples which satisfy our results and try to link our results to the real
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world problems. Furthermore, we consider a fractional integro-differential equa-

tions of mixed type with the solution operator;D
α
t x(t) = Ax(t) + f(t, x(t), Gx(t), Sx(t)), t ∈ [0, T ]

x(t) = ϕ(t) t ∈ [−r, 0].
(1.9)

We prove the existence of the Lagrange problem for (1.9). The last, we conclude

all results in this thesis and open idea to new interesting problems that close to

our problems.

1.2 Research Objectives

The following statements are our objectives in the thesis,

1) To obtain existence and uniqueness of mild solution to the fractional integro-

differential equations without impulses by using C0−semigroup on a Banach

space.

2) To obtain existence and uniqueness of piecewise continuous mild solution to

the impulsive fractional integro-differential equations with C0−semigroup on

a Banach space.

3) To obtain the existence and uniqueness of mild solution to the fractional

integro-differential equations of mixed type with solution operator on a Ba-

nach space.

4) To obtain an existence result of optimal controls for the Bolza problem and

the Lagrange problem.



CHAPTER II

MATHEMATIC BACKGROUND

Functional analysis plays a central role in modern control theory. For conve-

nience, we summarize, in this chapter, some of definitions and theorems which

are required in subsequent chapters, with appropriate references given wherever

necessary. Moreover, we will introduce the idea of control via the basic problem

in the last section of this chapter.

2.1 Elements of Functional Analysis

Let X be a Banach space with norm || · ||.

Definition 2.1.1. A sequence xn in X is said to be strongly convergent to an

element x in X if ||xn − x|| → 0 as n→∞. We denote by xn
s→ x.

Let Y be another Banach space with norm || · ||Y . A linear transformation from

X into Y is bounded on a domain of T , D(T ), if there exists a constant c such that

||Tx||Y ≤ c||x|| for all x ∈ D(T ). The linear space of all bounded linear operators

from X into Y , is denoted by L(X, Y ) and denote L(X,X) by L(X).

Theorem 2.1.2. (Uniform Boundedness Principle). Let {Tα | α ∈ Λ} be a family

of operators from L(X, Y ). If for each x ∈ X there is a constant cx such that

sup
α∈Λ
||Tα|| ≤ cx, then the operator {Tα} are uniformly bounded.

Let X be a Banach space and X∗ be its dual space. Element of X∗ can be

used to generate a new topology for X called the weak topology. Note that the

norm topology on X was called the strong topology. So the new topology is weaker

than the strong (norm) topology. Particularly, the linear functionals on X that are

continuous in the weak topology are precisely the functionals in X∗. The concept
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of open (closed) sets, compactness, convergence, etc., are topological, hence they

must be qualified by referring to the topology involved. In the case of normed linear

spaces, when one speaks of open (closed) sets, compactness, convergence, etc., one

refer to strong (norm) topology, while, with reference to its weak topology, they

are called weakly open (weakly closed) sets, weak compactness, weak convergence,

etc. Thus a sequence {xn} in X is said to converge weakly to an element x in X if,

for every x∗ ∈ X∗, x∗(xn)→ x∗(x), written by xn
w→ x. Every weakly convergent

sequence is bounded. Every strongly convergent sequence is weakly convergent,

but the converse is not true.

2.2 Bochner Integral

A Banach space setting of evolution equations requires taking the derivative in the

Banach space. Hence, integration of Banach space valued function is an important

tool of this setting. We define the Bochner integral of such functions and derive its

basic properties. In the following, a subset of <n is said to be measurable if and

only if it is Lebesgue measurable. The functions will be defined on the nonempty

measurable set S ⊆ <n, with range in a Banach space X.

The map x : S → X is called weakly measurable if s 7→ `(x(s)) is a Lebesgue

measurable function for each ` ∈ X∗.

The map x : S → X is called almost separably-valued if there exists {y1, y2, ...},
⊆ X such that infi ||x(s)− yi|| = 0 for almost all s ∈ S.

The map x : S → X is called strongly measurable if it is weakly measurable

and almost separably valued.

The map x : S → X is said to be Bochner integrable if x is strongly measur-

able and the functions s 7→ ||x(s)|| is Lebesgue integrable.

The set of all such functions x is a vector space and will be denoted by L1(S,X), is

a Banach space. Similarly, the equivalence class of strongly measurable X−valued
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functions on S such that∫
S

||x(s)||pds <∞, for 1 ≤ p <∞

and

esssup{||x(s)|| | s ∈ S} <∞ for p =∞

form a Banach space with respect to the norms

||x||p ≡ [

∫
S

||x(s)||pds]1/p for 1 ≤ p <∞

and

||x||p ≡ esssup{||x(s)|| | s ∈ S} <∞ for p =∞.

They are denoted by Lp(S,X), 1 ≤ p ≤ ∞.

The following Theorem 2.2.1 enables us to define the Bochner integral
∫
S
x of

x ∈ L1(S,X) to be y ∈ X which satisfies (2.1).

Theorem 2.2.1. If x ∈ L(S,X), then there exists a unique y ∈ X such that

`(y) =

∫
S

`(x(s))ds, for all ` ∈ X∗. (2.1)

Moreover, ||y|| ≤
∫
S
||x(s)||ds.

2.3 Fixed point Theorems

Fixed point theorem on Banach spaces or contraction mapping is an advantage

tool that is for proving the existence and the uniqueness of solution. Consider a

function ϕ : < → < and suppose that we require to solve the equation ϕ(x) = 0.

This is equivalent to solving the equation

ψ(x) = x (2.2)

where ψ(x) = ϕ(x) + x for all x ∈ <. Thus x is a zero of ϕ if and only if x is

a fixed point of ψ, i.e., a point which is left unaltered after the application of ψ.

More generally, many problems are equivalent to solving

Af = f (2.3)
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where A : D(A) → R(A) is an operator (not necessarily linear), acting in some

normed vector spaces, D(A) and R(A) are domain and range of A inX respectively,

i.e., we seek a fixed point f ∈ D(A) of the operator A (for simplicity, we write Af

rather than A(f)). There are many fixed point theorems which guarantee existence

and/or uniqueness of fixed points. We state here what is used in this thesis.

Definition 2.3.1. Let X be a normed vector space and let A : D(A) → R(A) be

an operator (not necessarily linear). Then

(1) A is a contraction if there exists a constant c with 0 ≤ c ≤ 1 such that

||Af1 − Af2|| ≤ c||f1 − f2|| for all f1, f2 ∈ D(A) (2.4)

(2) A is strictly contraction if there exists a constant c with 0 ≤ c < 1 such that

(2.4) holds.

Theorem 2.3.2. (The contraction mapping theorem; Banach fixed point theorem)

Let X be a Banach space and let A : X → X be a strictly contraction. Then the

equation Af = f has a unique solution in X, .i.e., A has a unique fixed point f .

The result of this theorem can be easily generalized as follows:

Corollary 2.3.3. Let X0 be a closed subset of the Banach space X and assume

that the operator A maps X0 into itself and is a strictly contraction on X0. Then

the equation Af = f has a unique solution f ∈ X0.

Corollary 2.3.4. (Leray-Schauder theorem) Let T be a continuous compact map-

ping of a Banach space X into itself such that the set

{x ∈ X | x = λTx for some 0 ≤ λ ≤ 1} (2.5)

is bounded. Then T has a fixed point.

2.4 Semigroup of Bounded Linear Operators

Consider a dynamical system, the state of which is evolving with time according

to some law. For example, we may be interested in the temperature distribution
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along a rod which is being heated at one end. Suppose the initial state of the

system is x0; in this case x0(z) would measure the initial temperature at the point

z of the rod. At a subsequent time t > 0, the state of the system will be given by

x(z, t); this state would measure the temperature at the point x at time t. Since,

for each t > 0, the state x(z, t) is an element of a Banach space X. We shall use

the symbol x(t) to indicate such a state, i.e., x(t)(z) = x(z, t).

The state x(t) will be related to the original state x0 by some transition operator

T (t) so that

x(t) = T (t)x0, t ≥ 0. (2.6)

We shall thus obtain a family {T (t)}t≥0 of such operators. It is natural to ask

what properties this family should have.

Firstly, each operator T (t) acts in a set of state x0, where the states can typically

represented by functions. Hence the domain of T (t) will be a subspace of function.

Next, it is clear that T (0) must be I, the identity operator on X since at

t = 0 there is no transition. Further, for any s, t ≥ 0 we should require that

T (s+ t)x0 = T (s)T (t)x0. Indeed, the left hand side describes the evolution over a

time interval of length s + t. The right hand side effectively say that the system

evolves from x0 to T (t)x0 in t units of time and then continues to evolve from

T (t)x0 to T (s)[T (t)x0] in a subsequent time interval of length s, from t to s + t.

The net effect should be the same as going nonstop from 0 to s+ t, without taking

a snapshot at time t. Thus we are led to the two conditions

T (0) = I, T (s)T (t) = T (s+ t) for s, t ≥ 0. (2.7)

Finally it is natural to expect that if s is closed to t, then T (s)x0 should be close to

T (t)x0 in some sense. This is concept to define a family of transition operator say

semigroup of operators. We are now ready to make the following formal definition.

Throughout this section X will be a Banach space.

Definition 2.4.1. A one-parameter family {T (t)}t≥0 of bounded linear operators

from X into X is a semigroup of bounded linear operators on X if

1. T (0) = I, (I is the identity operator on X),
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2. T (t+ s) = T (t)T (s) for every t, s ≥ 0 (the semigroup property).

A semigroup of bounded linear operators {T (t)}t0 is uniformly continuous if

lim
t→0+
||T (t)− I||L(X) = 0. (2.8)

The linear operator A defined by

Ax = lim
t→0+

T (t)x− x
t

=
d+T (t)x

dt
|t=0 for all x ∈ D(A) (2.9)

with

D(A) = {x ∈ X| lim
t→0+

T (t)x− x
t

exists in X} (2.10)

is called the infinitesimal generator of the semigroup {T (t)}t≥0, D(A) is the domain

of A.

From Definition 2.4.1, we have a semigroup {T (t)}t≥0 with a unique infinites-

imal generator. If T (t) is uniformly continuous, its infinitesimal generator is a

bounded operator. On the other hand, every bounded linear operator A is the

infinitesimal generator of a uniformly continuous semigroup {T (t)}t≥0 and this

semigroup is unique.

Definition 2.4.2. A semigroup {T (t)}t≥0 of a bounded linear operator on X is a

strongly continuous semigroup of a bounded linear operators if

lim
t→0+

T (t)x = x, for every x ∈ X. (2.11)

A strongly continuous semigroup of bounded linear operators on X will be called a

semigroup of a C0− semigroup.

Example 2.4.3. Let X = Lp(<) with 1 ≤ p <∞. Define T (0) = I and for t > 0

define T (t) on X by

(T (t)f)(x) =
1√
4πt

∫ ∞
−∞

e
−(x−y)2

4t f(y)dy (2.12)
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for all f ∈ X and x ∈ <. Then {T (t)}t≥0 is C0−semigroup called the Gauss-

Weierstrass semigroup. The right hand side of (2.12) represents the Fourier con-

volution of the function f ∈ X with the function k defined by

k(x, t) =
1√
4πt

e
−x2

4t , for all x ∈ <, t > 0. (2.13)

This function k is the fundamental solution of the heat equation

∂u

∂t
=
∂2u

∂x2
, for all x ∈ <. (2.14)

Example 2.4.4. Another important partial differential equation is the wave equa-

tion. For one dimension space, this equation takes the form

∂2u

∂t2
= ν2∂

2u

∂x2
, for all x ∈ <, t > 0. (2.15)

we now take for simplicity ν = 1. The analogue of the Gauss-Weierstrass semi-

group is the Poisson semigroup. Let X = Lp(<) with 1 ≤ p <∞. For t > 0 define

T (t) on X by

(T (t)f)(x) =
1

π

∫ ∞
−∞

t

t2 + (x− y)2
f(y)dy (2.16)

for all f ∈ X and x ∈ < and define T (0) = I. Then {T (t)}t0 is the C0− semigroup

on X. We can see that (2.16) represents the Fourier convolution of the function

f ∈ X with the function k defined by

k(x, t) =
1

π

t

t2 + x2
, for all x ∈ <, t > 0. (2.17)

Conditions (1) and (2) in Definition 2.4.1 are reminiscent of the basic properties

of the exponential function. More precisely, we have the following result.

Theorem 2.4.5. (A functional equation of Cauchy)Let φ : [0,∞) → < be such

that

1. φ(0) = I,

2. φ(s+ t) = φ(s)φ(t) for all s, t ≥ 0,

3. φ is continuous on [0,∞).



12

Then φ has the form

φ(t) = eat for some constant a ∈ <. (2.18)

From this theorem and the definition of semigroup so now we may conjecture

that the operators {T (t)}t≥0 forming a C0−semigroup have the form

T (t) = eAt for some operator A. (2.19)

This conjecture leads to many important properties of the C0−semigroup such
d(T (t)x)

dt
= d(eAtx)

dt
= AeAtx = AT (t)x.

Theorem 2.4.6. [15] Let A be an infinitesimal generator of the C0 − semigroup
{T (t)}t≥0. Then

a) for all x ∈ X

lim
h→0+

1

h

∫ t+h

t

T (s)xds = T (t)x; (2.20)

b) for all x ∈ X,
∫ t

0
T (s)xds ∈ D(A) and

A

∫ t

0

T (s)xds = T (t)x− x; (2.21)

c) for all x ∈ D(A), T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax; (2.22)

d) for all x ∈ D(A)

T (s)x− T (t)x =

∫ t

s

T (τ)Axdτ =

∫ t

s

AT (τ)xdτ. (2.23)

Theorem 2.4.6 have some simple consequences which we now state.

Corollary 2.4.7. If A is the infinitesimal generator of a C0−semigroup {T (t)}t≥0

then D(A) is dense in X and A is a closed linear operator.
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2.5 Extremal Set and Extremal Points

A subset C of a real or complex vector space X is said to be a convex if, for

α ∈ [0, 1], αx1 + (1− α)x2 ∈ C for every x1, x2 ∈ X.

Definition 2.5.1. Let K be a subset of a real or complex vector space X. A

nonempty subset E of K is said to be an extremal subset of K if a proper

convex combination αx1 + (1 − α)x2, 0 < α < 1, of two point x1, x2 of K lies in

E only if both x1 and x2 lie in E. An extremal subset of K consisting of just one

point is called an extremal point of K.

Definition 2.5.2. A real value function f defined on a topological vector space X

is said to be convex (strictly) if for every x1, x2 ∈ X;

f(αx1 + (1− α)x2, ) ≤ (<)αf(x1) + (1− α)f(x2), for all 0 ≤ α ≤ 1 (2.24)

This is a classical result from the theory of extremal.

Theorem 2.5.3. [1] Let C be a weakly compact subset of a Banach space X and f a

weakly lower semi-continuous function on C, that is, f(x0) ≤ lim
n→∞

f(xn) whenever

xn → x0. Then f attains its minimum on C. Furthermore, if C is also convex

and f strictly convex, then it has a unique minimum in C.

2.6 Basic Concept of Control

In this section we will introduce a basic concept of control via the basic problem.

Let X be a Banach space. We open our discussion by considering an X−value

system in the form; x
′(t) = Ax(t) + f(t, x(t)), t > 0

x(0) = x0.
(2.25)

We are given here the initial point x0, the function f ∈ L2([0, T ], X) and A is an

infinitesimal generator of a C0−semigroup {T (t)}t≥0. The unknown is x : [0,∞)→
X, which x interpret as the state of system (2.25).
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Let us denote by U the Hilbert space of controls. We are given an operator,

B ∈ L(U,L2([0, T ], X)). (2.26)

We denote by xu a solution with respect to a control u ∈ U ofx
′(t) = Ax(t) + f(t, x(t)) +Bu(t), t > 0,

x(0) = x0.
(2.27)

More generally, we call a function u : [0,∞)→ U a control.

We also introduce

Uad = {u : [0,∞)→ U | u measurable}

to denote the collection of all admissible controls. Note very carefully that our so-

lution x(·) of system (2.27) depends upon the control u(·) and the initial condition.

We write for short,

xu(·) = x(·, u(·), x0). (2.28)

For this we need to specify a cost functional (or payoff) criterion. Let us define

the cost functional

P (u(·)) ≡
∫ T

0

r(x(t), u(t))dt+ g(x(T )), (2.29)

where x(·) is a solution corresponding the control u(·). Here r : X × U → < and

g : X → < are given, and we call r the running cost and g the terminal cost. The

terminal time T > 0 is given as well.

Our overall task will be to determine what is the best control for our system.

That is, we seek a control u0 ∈ Uad such that

P (u0) ≤ P (u), for all u ∈ Uad, i.e., P (u0) = inf
u∈Uad

P (u). (2.30)

An example is given to illustrate the concept of control.

Example 2.6.1. We consider the following problem
∂x(t,y)
∂t

= ∂2x(t,y)
∂y2 + f1(t, y, x(t, y)) +

∫
Ω
K(y, τ)u(τ, t)dτ, y ∈ Ω, 0 < t ≤ T,

x(t, y) = 0, y ∈ ∂Ω, 0 ≤ t ≤ T,

(2.31)
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where Ω ⊂ <N is a bounded open domain with sufficiently smooth boundary, ∆

is the Laplacian operator, u ∈ Lp(Ω × [0, T ]), (p > 1) and K : Ω × Ω → < is

continuous.

Suppose f1 : [0, T ] × Ω × < → < is continuous and there exist constant C1,

C2 ≥ 0 such that

|f1(t, y, ξ)| ≤ C1(1 + |ξ|); (2.32)

|f1(t, y, ξ1)− f1(s, y, ξ2)| ≤ C2(|t− s|+ |ξ1 − ξ2|). (2.33)

Let X = Lp(Ω), define Ax = ∆x for all x ∈ D(A) where D(A) = W 2p(Ω) ∩
W 1p

0 (Ω). It is well known from Lp−theory that A is the infinitesimal generator of a

C0−semigroup {T (t)}t≥0. Define x(t)(y) = x(t, y), dx(t)(y)
dt

= lim
t→0

x(t+ h)(y)− x(t)(y)

h
and f(t, x(t))(y) = f(t, y, x(t, y)). It is obvious that f satisfies,

|f(t, x)| ≤ C̄1(1 + ||x||); (2.34)

|f(t, x1)− f1(s, x2)| ≤ C̄2(|t− s|+ ||x1 − x2||), (2.35)

for some constants C̄1, C̄2 > 0. Then the problem (2.31) can be written asx
′(t) = Ax(t) + f(t, x(t)) +

∫
Ω
K(τ)u(τ, t)dτ, 0 ≤ t ≤ T,

x(0) = x0.
(2.36)

Use Theorem 2.1 in the paper of Wei W. and Xiang X.[16] to guarantee that the

system (2.36) has a unique mild solution with respect to u ∈ Lp(Ω× [0, T ]) when

delay is zero.

Let Uad = {u ∈ Lp(Ω × [0, T ]) | ||u||Lp ≤ 1}. Then Uad is closed and convex.

We consider the following cost functional ;

J(u) =

∫ T

0

∫
Ω

|x(t, τ)|dτdt+

∫ T

0

∫ 1

0

|u(t, τ)|2dt. (2.37)

Aplying Theorem 2.2 in paper of Wei W. and Xiang X.[16], we also guarantee that

there exists a u0 ∈ Uad such that J(u0) = infu∈Uad J(u).
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2.7 Impulsive Differential Equations

We begin this section by describing a set of relations which characterize an evo-

lution process subject to impulsive effects. Let us consider an evolution process

described by

i) a system of differential equation

x′(t) = Ax(t) + f(t, x) (2.38)

where f : < × Ω → X, is an open subset of a Banach space X, A is an

operator.

ii) the set M(t), N(t) ⊆ Ω for each t ∈ <

iii) the operator B(t) : M(t)→ N(t) for each t ∈ <.

Let x(t) = x(t, t0, x0) be a solution of (2.38) starting at (t0, x0). The evolution

process behaves as follows: the point Pt0 = (t0, x(t0)) begins its motion from the

initial point Pt0 = (t0, x0) and move along a curve {(t, x) | t ≥ t0, x = x(t)}
until the time t1 > t0 at which point Pt meets the set M(t). At t = t1 the

operator B(t) transfers the point Pt1 = (t1, x(t1)) into Pt+1 = (t1, x
+
1 ) ∈ N(t1)

where x+
1 = B(t1)x(t1). Then the point Pt continues to move further along the

curve with x(t) = x(t1, x
+
1 ) as a solution of (2.38 ) starting at P+

t1 = (t1, x
+
1 ) until

it hit the set M(t) at the moment t2 > t1. Then once again the point Pt = (t2, x2)

is transfered to the point Pt+ = (t2, x
+
2 ) ∈ N(t2) where x+

2 = B(t2)x(t2).

As before, the point Pt continues to move forward with x(t) = x(t, t2, x
+
2 ) as

the solution of (2.38) starting at (t2, x
+
2 ). Thus the evolution process continues

forward as long as the solution of (2.38) exists. The set of relations i), ii) and

iii) is called the characterize the above mentioned evolution process an impulsive

differential system, the curve which described by the point Pt the integral curve and

the function that defines the integral curve a solution of the impulsive differential

system. A solution of an impulsive differential system may be

a) a continuous function, if the integral curve does not intersect the set M(t)

or hit at the fixed point of operator B(t);
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b) a piecewise continuous function having finite number of discontinuous of the

first kind if the integral curve meets M(t) at a finite number of points which

are not the fixed point of the operator B(t);

c) a piecewise continuous function having a countable number of discontinuous

of the first kind if the integral curve encounters the set M(t) at a countable

number of points that are the fixed point of the operator B(t).

The moment ti at which the point Pt hits the set M(t) are called moments of

impulsive effect. We will assume that the solution x(t) of the impulsive differential

system is left continuous at ti, i ∈ N , that is

x(t−i ) = lim
h→0+

x(ti − h) = x(ti).

The meaning of the impulsive differential systems gives rise to several types of

systems such as

1) systems with impulses at fixed times;

2) systems with impulses at variable times;

3) autonomous systems with impulses.

Now, we will give description for only one type say, type 1 that we use in this

thesis. Let M(t) be a set to represent a sequence of planes t = ti where {ti} is a

sequence of time such that ti → +∞ as i→ +∞ . Let us define the operator B(t)

for t = ti only so that the sequence of operator B(i) is given by

B(i) : Ω→ Ω, B(i)(x) = x+ Ji(x),

where Ji : Ω → Ω. As a result, the set N(t) is also defined for t = ti and there-

fore N(i) = B(i)M(i). With this choice of M(i), N(i) and B(i), the differential

equation with impulses at fixed times may be described by
x′(t) + Ax(t) = f(t, x(t)), t 6= ti

∆x(ti) = Ji(x(ti)), t = ti, i ∈ N

x(t0) = x0.

(2.39)
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Example 2.7.1. Consider the impulsive differential equationx
′(t) = 1 + [x(t)]2, t 6= ti,

∆x(ti) = −1, ti = iπ
4
, i ∈ N.

(2.40)

The solution x(t) with x(0) = 0 is continual for all t ≥ 0. In fact, we have

x(t) = tan(t − iπ
4

), t ∈ ( iπ
4
, (i+1)π

4
] which is periodic with period π

4
. However, the

corresponding differential equation has the solution x(t) = tant whose interval of

existence is [0, π
2
) since lim

t→π
2
−
x(t) = +∞. This means that we can control blow-up

system to periodic bounded solution by using an impulsive control.



CHAPTER III

FRACTIONAL CALCULUS BACKGROUND

Fractional calculus is a branch of mathematical analysis that studies the possibility

of taking real number power or complex number power of the differential operator

Df(x) =
df(x)

dx

and the integration operator

D−1f(x) =

∫ x

0

f(t)dt.

In this context the term powers refers to iterative application or composition, in

the same sense that f 2 = f(f(x)). For example, one may ask the equation of

meaningfully interpreting
√
D = D

1
2

as a square root of the differentiation operator (an operator half iterate), i.e., an

expression for some operator that when applied twice to a function will have the

some effect as differentiation. More generally, one can look at the equation of

defining

Dα and D0 = I identity operator

for real number values of α in such a way that when α takes an integer value n,

the usual power of n−fold differentiation is recover for n > 0 and the n− th power

of integration for n < 0.

3.1 Fractional Derivative

In this section, we give the generalization definition to the derivative of the frac-

tional order (in fact real order and more generally complex order).
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3.1.1 Binomial formula Derivative

We will give some definitions of fractional derivative by the binomial formula.

Definition 3.1.1. Let f : < → < be a continuous(but not necessarily differen-

tiable) function and let h > 0 denote a constant discretization span. The fractional

difference of order α (α > 0) of f(x) is defined by the expression

∆αf(x) ≡
∞∑
k=0

(−1)k
(α
k
)
f [x+ (α− k)h] (3.1)

where
(α
k
)

= Γ(α+1)
k!Γ(α−k+1)

, Γ(·) is gamma function and its fractional derivative of

oder α is

Dαf(x) = lim
h→0

∆αf(x)

hα
. (3.2)

This definition is similar to the standard definition of derivative and as a direct

result the n− th derivative of a constant is zero.

Example 3.1.2. Consider the exponential function is specially simple and gives

some clues about the generalization of derivative, following (3.2) in the definition

3.1.1,

Dαeax = lim
h→0

1

hα

∞∑
k=0

(−1)k
(α
k
)
ea[x+(α−k)h]

= eax lim
h→0

1

hα

∞∑
k=0

(α
k
)

(−1)k(eah)(α−k)

= eax lim
h→0

(eah − 1)α

hα

= aαeax. (3.3)

The above limit exists for any real number α (in fact any complex number).

However, in the expression (3.2) some functions allow the substitution of the bi-

nomial formula such as Example 3.1.2, but this is not for any given function. For

applying this substitution, we require the other definitions.
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3.1.2 Riemann-Liouville-Caputo Derivative

Riemann-Liouville derivative is the most used generalization of the derivative. It

is based on Cauchy ’s formula for calculation of iterated integrals. The idea is

started at the first integral of function, is as follows,

D−1f(x) =

∫ x

0

f(t)dt. (3.4)

It is not difficult generalized to non-integer values, in what is the Riemann-Liouville

integral,

D−αf(x) ≡ 1

Γ(α)

∫ x

0

f(t)(x− t)α−1dt (3.5)

where α > 0.

The problem with this generalization is, that if α is negative or zero the integral

diverges. This problem was solved by Caputo and adopted by Caputo and Mainardi

in the frame work of the theory of linear viscoelasticity. So the Caputo fractional

derivative of order α > 0 is defined by

Dαf(x) = Dα−n(Dnf(x)) (3.6)

where 0 < n− α < 1 and Dn denote the ordinary derivative of order integer n.

However that in the above formulas the selection of 0 as the lower limit of

integration can be arbitrary, and any other number could be chosen. Generally,

the election of the integration limits in this and other generalizations of the deriva-

tive is indicated with subscripts. The Riemann-Liouville integral with the lower

integration limit a would be

aD
−α
x f(x) =

1

Γ(α)

∫ x

a

f(t)(x− t)α−1dt (3.7)

and

aD
αf(x) =a D

α−n(Dnf(x)). (3.8)

In particularly, the Riemann-Liouville derivative with the lower integration limit

of −∞ is known as the Weyl derivative.
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Example 3.1.3. consider the powers xm, by using (3.5), (3.6), and integrating by

part, for n ∈ N such 0 < n− α < 1

Dαxm = Dα−n(Dnxm) = Dα−n[
m!

(m− n)!
xm−n]

=
m!

(m− n)!
Dα−n(xm−n) =

m!

(m− n)!

1

Γ(n− α)

∫ x

0

tm−n(x− t)n−α−1dt

=
m!

(m− n)!

1

Γ(n− α)
[
−tm−n(x− t)n−α

n− α
|t=xt=0 +

m− n
α− n

∫ x

0

tm−n−1(x− t)n−αdt]

=
m!

(m− n)!

1

Γ(n− α)

(m− n)

(n− α)

∫ x

0

tm−n−1(x− t)n−αdt

=
m!

(m− n)!

1

Γ(n− α)

(m− n)(m− n− 1)

(n− α)(n− α + 1)

∫ x

0

tm−n−2(x− t)n−α+1dt

=
m!

(m− n)!

1

Γ(n− α)

(m− n)(m− n− 1) . . . (m− n− (m− n− 1))

(n− α)(n− α + 1) . . . (n− α + (m− n+ 1))∫ x

0

tm−n−(m−n)(x− t)n−α+(m−n−1)dt

=
Γ(m+ 1)

Γ(m− α + 1)
xm−α.

Domain Transforms

The Laplace and Fourier transforms to the frequency domain can be used to get

generalizations of the derivative validity for functions that allow such transforma-

tions. The Laplace transform is defined by

L{f(x)} =

∫ ∞
0

e−txf(x)dx, (3.9)

while its inverse transform is

L−1{f(x)} =
1

2πi

∫ a+i∞

a−i∞
etxf(x)dx, (3.10)

where a is chosen so that it is greater than the real part of any of the singularities

of f(x). An important of the Laplace transform is related to the m− th derivative

of a function,

L{Dmf(x)} = tmL{f(x)} −
m−1∑
k=0

tk(Dm−k−1f)(0). (3.11)
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In the cases that the terms in the summation are zero the relation is particularly

simple, and for which the generalized derivative can defined as

Dαf(x) = L−1{tαL{f(x)}}. (3.12)

On the other hand, the Fourier transform is defined by

F{f(x)} =

∫ ∞
−∞

e−itxf(x)dx (3.13)

while its inverse transform is

F−1{f(x)} =
1

2π

∫ ∞
−∞

eitxf(x)dx. (3.14)

This transform also has an analogous property related to the transform of the

n− th derivative of a function,

F{Dnf(x)} = (it)nF{f(x)} (3.15)

and the derivative can be generalized so that this property holds true for non-

integer values of α

F{Dαf(x)} = (it)αF{f(x)} (3.16)

yielding the following definition of the generalized derivative

Dαf(x) = F−1{(it)αF{f(x)}}. (3.17)

In these two generalizations the implicit limits of differentiation should be deter-

mined. In the cases of Laplace transform, the generalized derivative is a Riemann-

Liouville derivative with the lower limit of 0, whereas in the cases of Fourier trans-

form it is a Weyl derivative.

Convolution

The generalize of the derivative as expressed in sense of Riemann-Liouville suggest

that they can be formulated in terms of the convolution which would be important

the convolution is a simple operation in the frequency space achieved by Laplace
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and Fourier transforms. The following development show how this is the case, and

how after all derivative of a fraction is its convolution with certain function;

φα(x) ≡ xα−1

Γ(α)
. (3.18)

The Laplace transform of φα is

L{φα(x)} = L{x
α−1

Γ(α)
} = t−α (3.19)

and the Laplace transform of convolution

L{φα(x) ∗ φβ(x)} = L{φα(x)}L{φβ(x)} = t−(α+β) = L{φα+β(x)}. (3.20)

Implying that these functions satisfy the semigroup property,

φα ∗ φβ = φα+β. (3.21)

So the Riemann-Liouville fractional derivative of order−α, α > 0 (or the fractional

integration) can be defined as,

D−αf(x) ≡ (φα ∗ f)(x) =
1

Γ(α)

∫ x

0

f(t)(x− t)α−1dt. (3.22)

Moreover, we obtain the Laplace transform,

L{D−αf(x)} = L{φα(x) ∗ f(x)} = L{φα(x)}L{f(x)} = t−αL{f(x)}. (3.23)

And by using relation (3.21) and associativity of the convolution we obtain

L{D−αD−βf(x)} = t−αL{D−βf(x)} = t−αt−βL{f(x)}

= t−(α+β)L{f(x)} = L{D−α−βf(x)}. (3.24)

These imply that the operator of fractional integration obey the semigroup prop-

erty,

D−αD−βf(x) = D−α−βf(x). (3.25)

Example 3.1.4. (Half derivative of a simple function.) Let us assume that f(x)

is a monomial of the form f(x) = xk. By using Laplace transform

L{Dαxk} = sαL{xk} =
Γ(k + 1)

sk+1−α . (3.26)
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Hence

Dαxk = L−1

{
Γ(k + 1)

sk+1−α

}
=

Γ(k + 1)xk−α

Γ(k + 1− α)
. (3.27)

Such as, the half derivative of x,

D
1
2x =

Γ(1 + 1)x1− 1
2

Γ(1 + 1− 1
2
)

=
Γ(2)

Γ3
2

=
2
√
x√
π
. (3.28)

Moreover,

D
1
2 (D

1
2x) = D

1
2 (

2
√
x√
π

) =
2D

1
2x

1
2

√
π

=
2√
π

Γ(3
2
)

Γ(1)
=

2√
π

√
π

2
= 1 (3.29)

which is indeed expected result of

D1/2(D1/2x) = Dx = 1. (3.30)

Proposition 3.1.5. Assume that the function in the definition 3.1.1 has a Laplace

’s transform. Then its fractional derivative of order α is defined by the following

expression

D−αf(x) ≡ 1

Γ(α)

∫ x

0

f(t)(x− t)α−1dt (3.31)

where α > 0.

For positive, one will set

Dαf(x) = Dn(Dα−nf(x)) (3.32)

where 0 < n− α < 1 and Dn denote the ordinary derivative of order integer n.

Definition 3.1.6. (Riemann-Liouville derivative.) Refer to the function of Propo-

sition 3.1.5. Then its fractional derivative of order α is defined by the expression

(3.31).

With this definition, the Laplace transform of the fractional derivative is

L{Dαf(x)} = sαL{f(x)} for all 0 < α < 1. (3.33)
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Proposition 3.1.7. Let f : < → < be a continuous function and has fractional

derivative of order kα, k ∈ N and 0 < α ≤ 1. Then the following fractional Taylor

series holds, which is

f(x+ h) =
∞∑
k=0

hαkfαk(x)

Γ(1 + αk)
, 0 < α ≤ 1 (3.34)

this is equivalent to

f(x) =
∞∑
k=0

(x− a)αkfαk(a)

Γ(1 + αk)
, 0 < α ≤ 1. (3.35)

We say, the fractional Taylor expansion about point x = a, if a = 0, this

expansion is called the fractional Mac-Loaurin expansion.

Corollary 3.1.8. Assume that a function f in Proposition 3.1.7 is the α − th

differentiable. Then the following equality holds, which are

fα(x) = lim
h→0

∆αf(x)

hα
= Γ(1 + α) lim

h→0

∆f(x)

hα
, 0 < α ≤ 1. (3.36)

Moreover, the equation (3.36) provides the useful relation

∆αf(x) ∼= Γ(1 + α)∆f(x) or dαf(x) ∼= Γ(1 + α)df. (3.37)

We obtain some properties for 0 < α ≤ 1 (or more detail see [7] );

Dα[u(x)v(x)] = u(x)Dαv(x) + v(x)Dαu(x), (3.38)

Dαf(u(x)) =
df(u)

du
Dαu(x) = Dα

uf(u)(
du

dx
)α. (3.39)

Note in the previous part that for α = 0, D0 denote the identity operator that is

D0f = f , for α > 0, Dα is denote the fractional derivative and D−α denote the

fractional integration, in particularly if α is an integer value it should be equal to

ordinary derivative and ordinary integration respectively.

As in the case of differentiation and integration of integer order, Dn is a left

inverse of D−n, but in general it is not a right inverse. More precisely, we have the

following theorem.
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Theorem 3.1.9. Let α > 0 and integer n, 0 < α − n < 1. Assume that the

function f has a Laplace’s transform. Then

DαD−αf(x) = f(x) (3.40)

but in general not a right inverse;

D−αDαf(x) = f(x)−
n−1∑
k=0

f (k)(0)φk+1(t). (3.41)

Note from Theorem 3.1.9 that in the sense of Riemann-Liouville derivative Dα
t

is again a left inverse of D−αt but in general not a right inverse:

DαD−αf(x) = f(x)

D−αDαf(x) = f(x)−
n−1∑
k=0

(φn−α ∗ f)(k)(0)φα+k+1−n(t).

3.2 Mittag-Leffler functions

In this section, we summarize some properties of the general exponential function

that called the Mittag-Leffler function which plays an important role in the

study of fractional differential equations.

Definition 3.2.1. For each α, β > 0 and z ∈ C, the Mittag-Leffler function

is defined as follows;

Eα,β(z) ≡
∞∑
n=0

zn

Γ(αn+ β)
=

1

2πi

∫
C

uα−βeu

uα − z
du, (3.42)

where C is a contour which starts and ends at −∞ and encircles the disc |u| ≤
|z|1/α counter-clockwise.

For short, Eα(z) ≡ Eα,1(z). It is provided a simple generalization of the

exponential function: E1(z) = ez and the cosine function: E2(z2) = cosh(z),

E2(−z2) = cos(z), and plays an important role in the theory of the fractional

differential equations. Similarly to the differential equation d/dt(eωt) = ωeωt the

Mittag-Leffler function Eα(z) satisfies a more general differential relation

Dα
t Eα(ωtα) = ωEα(ωtα). (3.43)
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The most interesting properties of the Mittag-Leffler functions are associated with

their Laplace integral∫ ∞
0

e−λttβ−1Eα,β(ωtα)dt =
λα−β

λα − ω
, Reλ > ω1/α, ω > 0, (3.44)

and with their asymptotic expansion as z →∞. If 0 < α < 2, β = 1 then Eα(z) = 1
α
e1/α + εα(z), |arg(z)| ≤ 1

2
απ,

Eα(z) = εα(z), |arg(−z)| ≤ (1− 1
2
α)π,

(3.45)

where

εα(z) = −
N−1∑
n=1

z−n

Γ(1− αn)
+O(|z|−N), z →∞ and for some N ∈ N.

Let us consider the ordinary fractional differential equation

Dα
t u(t) = −ωu(t), 0 < α < 2, ω > 0. (3.46)

According to the cases 0 < α < 1 and 1 < α < 2 it can be referred to as the

fractional relaxation and the fractional oscillation equation, respectively. In

the former cases, it must be equipped with an initial, say u(0) = u0, and in the

later with two initial conditions, say u(0) = u0 and u′(0) = u1. The solution of

(3.46) can be obtained by applying the Laplace transform technique which implies;

u(t) = u0Eα(−ωtα), α ∈ (0, 1),

u(t) = u0Eα(−ωtα) + u1tEα,2(−ωtα), α ∈ (1, 2).



CHAPTER IV

FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION

WITH C0−SEMIGROUP

In this chapter, we introduce a mild solution for the fractional integro-differential

equation with time delay by using semigroup approach. Some useful theorems

(say Gronwall lemma) are listed in section 4.1. They can be used to estimate the

integral inequalities. In section 4.2, we configure a mild solution to the nonlinear

integro-differential controlled system with time delay;D
α
t x(t) = Ax(t) + f(t, x(t), Kx(t)) +Gx(t) +B(t)u(t), t ∈ [0, T ]

x(t) = ϕ(t), t ∈ [−r, 0]
(4.1)

where Gx(t) =
∫ t
−r h(t, s)g(s,Hx(s))ds. Then the optimal control will be discussed

in section 4.3 and an example is established to clarify our results in section 4.4.

4.1 Gronwall Lemma with Singularity

Throughout this thesis, we denote [0, T ] by I. Let X and Y be two Banach spaces,

L(X, Y ) denote the space of bounded linear operators from X to Y . Particularly

L(X) = L(X,X) whose norm is denoted by || · ||L(X). Suppose that r > 0. Let

C([−r, a], X) be the Banach spaces of continuous functions from [−r, a] to X with

the usual supremum norm. If a = 0, we denote this space simply by C and its

norm by || · ||C . Now we state the Gronwall lemma and a generalized Gronwall

lemma with singularity.

Lemma 4.1.1. (Gronwall Lemma) For t ≥ 0, let a function x ∈ C([−r, T ], X)

such that

||x(t)|| ≤ a+

∫ t

0

b(s)||x(s)||ds, t ∈ I (4.2)
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where a > 0, b(s) is a nonnegative integrable function. Then

||x(t)|| ≤ ae
∫ t
0 b(s)ds, for all t ∈ I. (4.3)

Proof. Let g(t) be the right hand side of equation (4.2), we obtain

g′(t) = b(t)||x(t)|| ≤ b(t)g(t), g(0) = a, (4.4)

which yield after integrating from 0 to t, hence

||x(t)|| ≤ g(t) ≤ ae
∫ t
0 b(s)ds. (4.5)

This completes the proof.

Let ϕ be a given continuous function, we denote

B = {x ∈ C([−r, T ], X) | x(t) = ϕ(t) for − r ≤ t ≤ 0} (4.6)

whose moving norm is defined by

||xt||B = sup
−r≤s≤t

||x(s)||. (4.7)

So a generalized Gronwall lemma with time delay is established.

Lemma 4.1.2. Suppose that x ∈ C([−r, T ], X) satisfies the following inequality||x(t)|| ≤ a+
∫ t

0
b(s)||x(s)||ds+

∫ t
0
c(s)||xs||Bds, t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0],
(4.8)

where a > 0, b(s) and c(s) are nonnegative continuous functions. Then

||x(t)|| ≤ [a+ (1− e−2b̄t)||ϕ||C ]eb̄t for all t ∈ I, (4.9)

where b̄ = sup
s∈I

[b(s) + c(s)].

Proof. Let x ∈ C([−r, T ], X) which satisfies the inequality (4.8). Note that

||x(t)|| ≤ sup
−r≤s≤t

||x(s)|| = ||xt||B for all t ∈ I. Then for any t ∈ I, we have

||x(t)|| ≤ a+ 2b̄

∫ t

0

||xs||Bds
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where b̄ = sup
s∈I

[b(s) + c(s)]. Setting

g(t) = a+ 2b̄

∫ t

0

||xs||Bds for t ∈ I. (4.10)

Then g is monotonously increasing and ||x(t)|| ≤ g(t) for all t ∈ I. Moreover, we

obtain that

g′(t) = 2b̄||xt||B = 2b̄ sup
−r≤s≤t

||x(s)|| ≤ 2b̄||ϕ||C + 2b̄g(t), g(0) = a, (4.11)

That is,

de−2b̄tg(t) ≤ e−2b̄t2b̄||ϕ||Cdt (4.12)

which yield after integrating from 0 to t, hence

g(t) ≤ [a+ (1− e−2b̄t)||ϕ||C ]e2b̄t. (4.13)

Therefore,

||x(t)|| ≤ [a+ (1− e−2b̄t)||ϕ||C ]e2b̄t for all t ∈ I,

where b̄ = sup
s∈I

[b(s) + c(s)].

The proof is completed.

We give a generalized Gronwall inequality with singularity.

Lemma 4.1.3. Suppose x ∈ C([−r, T ], X) satisfies the following inequality||x(t)|| ≤ a+
∫ t

0
b(s)(t− s)β−1||x(s)||ds+

∫ t
0
c(s)(t− s)β−1||xs||Bds, t ∈ I,

x(t) = ϕ(t); t ∈ [−r, 0],

(4.14)

where 0 < β ≤ 1 and a > 0, b(s) and c(s) are nonnegative continuous functions.

Then

||x(t)|| ≤ [||ϕ||C + a]e
b̄tβ

β , for all t ∈ I, (4.15)

where b̄ = sup
s∈I

[b(s) + c(s)].
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Proof. Note that ||x(t)|| ≤ sup
−r≤s≤t

||x(s)|| = ||xt||B for all t ∈ I. So

||x(t)|| ≤ a+

∫ t

0

[b(s) + c(s)](t− s)β−1||xs||Bds

≤ a+ b

∫ t

0

(t− s)β−1||xs||Bds (4.16)

where b̄ = sup
s∈I

(b(s) + c(s)).

Let g(t) =
∫ t

0
(t − s)β−1||xs||Bds. Then g is monotonously increasing. Indeed, use

the fact that ||xt||B is monotonously increasing, so for 0 ≤ τ < t,

g(t)− g(τ) =

∫ t

0

(t− s)β−1||xs||Bds−
∫ τ

0

(τ − s)β−1||xs||Bds

=

∫ t

0

uβ−1||xt−u||Bdu−
∫ τ

0

uβ−1||xτ−u||Bdu

=

∫ τ

0

uβ−1 [||xt−u||B − ||xτ−u||B] du+

∫ t

τ

uβ−1||xt−u||Bdu > 0. (4.17)

This implies that g(s) ≤ g(t) for all 0 ≤ s ≤ t,

||xt||B ≤ sup
−r≤s≤0

||ϕ(s)||+ sup
0≤s≤t

||x(s)||

≤ ||ϕ||C + sup
0≤s≤t

[a+ bg(s)]

≤ ||ϕ||C + a+ b̄

∫ t

0

(t− s)β−1||xs||Bds. (4.18)

Applying the lemma 4.1.1, we obtain

||x(t)|| ≤ ||xt||B ≤ [||ϕ||C + a]e
∫ t
0 b̄(t−s)

β−1ds ≤ [||ϕ||C + a]e
b̄tβ

β .

This completes the proof.

Using lemma 4.1.3, we devise the following new generalized Gronwall lemma

which is very important for our work.

Lemma 4.1.4. Suppose x ∈ C([−r, T ], X) satisfies the following inequality
||x(t)|| ≤ a+ b

∫ t
0
(t− s)β−1||x(s)||ds+ c

∫ t
0
(t− s)β−1||xs||Bds

+ e
∫ t

0
(t− s)β−1||x(s)||γds, t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0],
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where 0 < γ, β ≤ 1, a, b, c, e are nonnegative constants. Then

||x(t)|| ≤ [||ϕ||C + a+
eT β

β
]e

(b+c+e)tβ

β , t ∈ I. (4.19)

Proof. Note that ||x(s)|| ≤ sup
−r≤τ≤s

||x(τ)|| = ||xs||B, for s ∈ I and ||xt||B is increas-

ing function. We will prove this theorem by considering 4 cases;

Case 1)||xt||B ≤ 1 for all t ∈ I.

Case 2)||xt||B ≥ 1 for all t ∈ I.

Case 3) There is a t0 ∈ [0, T ] such that ||xt||B ≤ 1 for all t ∈ [0, t0] and ||xt||B > 1

for all t ∈ [t0, T ].

Case 4) There is a t0 ∈ [0, T ] such that ||xt||B > 1 for all t ∈ [0, t0] and ||xt||B ≤ 1

for all t ∈ [t0, T ].

The proof in each cases are similar, we will show only Case 3). If there is a

t0 ∈ [0, T ] such that ||xt||B ≤ 1 for all t ∈ [0, t0] and ||xt||B > 1 for all t ∈ [t0, T ].

For t ∈ [0, T ], ||xt||B > 1 , we have

||x(t)|| ≤ a+ b

∫ t

0

(t− s)β−1||x(s)||ds+ c

∫ t

0

(t− s)β−1||xs||Bds+ e

∫ t

0

(t− s)β−1||xs||γds

≤ a+ b

∫ t

0

(t− s)β−1||x(s)||ds+ c

∫ t

0

(t− s)β−1||xs||Bds+ e

∫ t0

0

(t0 − s)β−1||xs||γds

+ e

∫ t

t0

(t− s)β−1||xs||γds

≤ a+
etβ0
β

+ b

∫ t

0

(t− s)β−1||x(s)||ds+ (c+ e)

∫ t

0

(t− s)β−1||xs||Bds.

Applying the lemma 4.1.3, we obtain that

||x(t)|| ≤ [||ϕ||C + a+
eT β

β
]e

(b+c+e)tβ

β , for all t ∈ [0, T ].

4.2 Existence of Solution to Controlled System with Delay

In what follow, let X be a separable Banach space and Y be a reflexive Banach

space. For 1 < q < ∞, the Banach space Lq(I, Y ) consist of the usual strongly

measurable Y− value functions having q − th power summable norms. Let A :
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D(A) → X be an infinitesimal generator of a C0−semigroup {T (t)}t≥0 satisfying

||T (t)||L(X) ≤Meωt for some M ≥ 1, ω > 0, for all t ≥ 0.

Definition 4.2.1. Let (X, || · ||) be a Banach space and let F : D(F )→ X, D(F )

is a subset of X denoting the domain of F .

(i) F satisfied a Lipschitz condition on D(F ) if there exists a positive constant

κ such that

||F (f)− F (g)|| ≤ κ||f − g||, for all f, g ∈ D(F ). (4.20)

(ii) F satisfies a local Lipschitz condition if, given u0 ∈ D(F ), a closed ball

B(u0, r) = {f ∈ X | ||f − u0|| ≤ r} exists such that

||F (f)− F (g)|| ≤ k||f − g||, for all f, g ∈ B(u0, r) ∩D(F ) (4.21)

where k will in general depend on u0 and r.

Consider the controlled system with delay;D
α
t x(t) = Ax(t) + f(t, x(t), Kx(t)) +Gx(t) +B(t)u(t), t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0]
(4.22)

where ϕ ∈ C([−r, 0], X)(or ϕ ∈ PC([−r, 0], X)) is fixed. The integral operator

G : X → X is defined by

Gx(t) =

∫ t

−r
h(t, s)g(s,Hx(s))ds, for all x ∈ X (4.23)

where h is kernel function of G and g is an input function. For 0 < α < 1, Dα
t

denote the Riemann-Liouville fractional derivative, f : I ×X ×X → X is a given

continuous function. Suppose:

(HK) K : X → X is bounded linear operator.

(HF1) f : I ×X ×X → X is uniformly continuous in t and locally Lipschitz in x

and y that is, for some ρ > 0, there is constant af = af (ρ, τ) such that

||f(t, x1, y1)− f(t, x2, y2)|| ≤ af [||x1 − x2||+ ||y1 − y2||] (4.24)

provided ||x1||, ||x2||, ||y1||, ||y2|| ≤ ρ and for all t ∈ [0, τ ].
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(HF2) There exists c ≥ 0 such that ||f(t, x, y)|| ≤ c(1+ ||x||+ ||y||), for all x, y ∈ X,

for all t ∈ I .

(HB) Y is another separable reflexive Banach space from which the controls u take

the value B(s) ∈ L(Lq(I, Y ), Lp(I,X)), 1 < p, q <∞ for all s ∈ [0, T ].

Before proving the existence of system (4.22), we will prove some properties of the

integral operator G : X → X in the delay system such that it is defined by

Gx(t) =

∫ t

−r
h(t, s)g(s,Hx(s))ds, for all t ∈ I, x ∈ X,

under the following assumptions, say condition (HG)

(HG1) g : [−r, T ] × X → X is measurable function in t on [−r, T ] and locally

Lipschitz continuous in x, i.e., for ρ > 0, for all x1, x2 ∈ X satisfying ||x1||,
||x2|| ≤ ρ there exists a constant Lg = Lg(ρ) > 0 such that

||g(t, x1)− g(t, x2)|| ≤ Lg||x1 − x2||, for all t ∈ I. (4.25)

(HG2) There exist a constant ag > 0 such that

||g(t, x)|| ≤ ag(1 + ||x||) for all t ∈ I, x ∈ X. (4.26)

(HG3) h ∈ C([−r, T ]2,<) and H is a bounded linear operator.

By using the moving norm || · ||B, we obtain the following lemmas;

Lemma 4.2.2. Under the assumption (HG), the operator G has the following

properties;

1) G : C([−r, T ], X)→ C([−r, T ], X).

2) For each x1, x2 ∈ C([−r, T ], X) such that ||x1||, ||x2|| ≤ ρ, we have

||Gx1(t)−Gx2(t)|| ≤ Lg||h||(T + r)||(x1)t − (x2)t||B, for all t ∈ I.
(4.27)
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3) For each x ∈ C([−r, T ], X), we have

||Gx(t)|| ≤ ag(T + r)||h||(1 + ||xt||B), for all t ∈ I. (4.28)

Proof. (1) Let x ∈ C([−r, T ], X). Since h is continuous on the compact set

[−r, T ]2, h is uniformly continuous. So, for each ε > 0 there exists δ1 > 0

such that if s ∈ I and |t− a| < δ1, then |h(t, s)− h(a, s)| < ε for all a, t ∈ I.

Given ε > 0. Choose δ = min{δ1,
ε

||h||(1+||H||||x||} and 0 < τ < δ. Then for

each t ∈ I.

||Gx(t+ τ)−Gx(t)|| =||
∫ t+τ

−r
h(t+ τ, s)g(s,Hx(s))ds−

∫ t

−r
h(t, s)g(s,Hx(s))ds||

≤
∫ t

−r
||h(t+ τ, s)− h(t, s)||||g(s,Hx(s))||ds

+

∫ t+τ

t

||h(t+ τ, s)||||g(s,Hx(s))||ds

≤(T + r)εag(1 + ||H||||x||) + δ||h||(1 + ||H||||x||)
(4.29)

≤ [(T + r)ag(1 + ||H||||x||) + 1]ε. (4.30)

Since ε is arbitrary, Gx ∈ C([−r, T ], X).

(2) Let x1, x2 ∈ C([−r, T ], X) such that ||x1||, ||x2|| ≤ ρ. Then, for any t ∈ I,

we have

||Gx1(t)−Gx2(t)|| =||
∫ t

−r
h(t, s)g(s,Hx1(s))ds−

∫ t

−r
h(t, s)g(s,Hx2(s))ds||

≤
∫ t

−r
||h(t, s)||||g(s,Hx1(s))− g(s,Hx2(s))||ds

≤||h||(T + r)Lg||H||||(x1)t − (x2)t||B. (4.31)

(3) Let x ∈ C([−r, T ], X). Then, for any t ∈ I, we have

||Gx(t)|| ≤
∫ t

−r
||h(t, s)||||g(s,Hx(s))||ds

≤||h||(T + r)(1 + ||H||||xt||B). (4.32)
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Now, we will prove the existence and uniqueness of a mild solution for the

system (4.22) which state as following definition. Recall the system (4.22);D
α
t x(t) = Ax(t) + f(t, x(t), Kx(t)) +Gx(t) +B(t)u(t), t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0].

Let A be an infinitesimal generator of a C0−semigroup {T (t)}t≥0 and 0 < α < 1.

Define a function φ by φα(t) = tα

Γ(α+1)
for all t ≥ 0, for short, we denote φα(t) by

φ(t). If x is a solution of (4.22), then the X−valued function w(s) = T (φ(t) −
φ(s))x(s) is α−differentiable for 0 < s < t and we use the properties (3.38) and

(3.39) to obtain that

Dα
sw(s) = T (φ(t)− φ(s))Dα

s x(s)− ATα(φ(t)− φ(s))x(s)

= T (φ(t)− φ(s))[Ax(s) + f(s, x(s), Kx(s)) +Gx(s) +B(s)u(s)]

− AT (φ(t)− φ(s))x(s)

= T (φ(t)− φ(s))[f(s, x(s), Kx(s)) +Gx(s) +B(s)u(s)]. (4.33)

If f is integrable, then the right hand side of (4.33) is integrable in the sense of

Bochner and integrating (4.33) of order α from 0 to t and apply the initial value

w(0) = T (φ(t))ϕ(0), yields

x(t) =T (φ(t))ϕ(0) +
1

Γ(α)

∫ t

0

(t− s)α−1T (φ(t)− φ(s))[f(s, x(s), Kx(s)) +Gx(s)

+B(s)u(s)]ds, for all t ∈ I.

So we give the definition of mild solution for the system (4.22)

Definition 4.2.3. For every u ∈ Lq(I, Y ), 1 < q < ∞, if there exists a t0 =

t0(u) > 0 and x ∈ C([−r, t0], X) such that
x(t) = T (φ(t))ϕ(0) + 1

Γ(α)

∫ t
0
(t− s)α−1T (φ(t)− φ(s))[f(s, x(s), Kx(s)) +Gx(s)

+B(s)u(s)]ds, t ∈ [0, t0],

x(t) = ϕ(t), t ∈ [−r, 0]

(4.34)
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then the system (4.22) is called mildly solvable with respect to (w.r.t) u on [−r, t0]

and this x is said to be a mild solution w.r.t. u on [−r, t0].

Now, for each τ > 0, Cτ denote the space C([−r, τ ], X) with the usual supre-

mum norm and for λ > 0, we set

S(λ, τ) = {y ∈ Cτ | max
0≤t≤τ

||y(t)−ϕ(0)|| ≤ λ, y(t) = ϕ(t) for −r ≤ t ≤ 0}. (4.35)

Then S(λ, τ) is nonempty closed convex subset of Cτ . Define P : S(λ, τ)→ Cτ by
Py(t) = T (φ(t))ϕ(0) + 1

Γ(α)

∫ t
0
(t− s)α−1T (φ(t)− φ(s))[f(s, y(s), Ky(s)) +Gy(s)

+B(s)u(s)]ds, t ∈ [0, τ ],

Py(t) = ϕ(t), t ∈ [−r, 0]

(4.36)

for all y ∈ S(λ, τ).

To prove the existence of mild solution, we construct the map P as in (4.36)

and show that it contains a fixed point by following these lemmas.

Lemma 4.2.4. Assume the hypotheses (HB), (HF ), (HK) and (HG). For τ >

0, the map P defined as (4.36) is bounded, i.e., there exists M > 0 such that

||Py(t)|| ≤M for all y ∈ S(λ, τ).

Proof. Let y ∈ S(λ, τ). By using (HF2) and lemma 4.2.2, there exist L1, L2 > 0

such that for all s ∈ [0, τ ]

||f(s, y(s), Ky(s)) +Gy(s)|| ≤ ||f(s, y(s), Ky(s))||+ ||Gy(s)||

≤ L1(1 + ||y(s)||) + L2(1 + ||ys||B)) ≤ N (4.37)

for some N > 0 since ||y|| and ||ys||B are continuous on [0, τ ]. Then apply the
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condition (HB) and for each t ∈ [0, τ ], we obtain that

||Py(t)|| ≤ ||T (φ(t))||L(X)||ϕ(0)||

+
1

Γ(α)

∫ t

0

(t− s)α−1||T (φ(t)− φ(s))||L(X)||f(s, y(s), Ky(s)) +Gy(s)||ds

+
1

Γ(α)

∫ t

0

(t− s)α−1||T (φ(t)− φ(s))||L(X))||B(s)u(s)||ds

≤Meωφ(T )||ϕ||C +
NMeωφ(T )

Γ(α)

∫ t

0

(t− s)α−1ds+
Meωφ(T )

Γ(α)

∫ t

0

(t− s)α−1||B(s)u(s)||ds.

≤Meωφ(T )||ϕ||C +
NMeωφ(T )Tα

αΓ(α)

+
Meωφ(T )

Γ(α)
[

∫ T

0

(t− s)
p(α−1)
p−1 ds]

p−1
p [

∫ T

0

||B(s)u(s)||pds]
1
p

≤Meωφ(T )||ϕ||C +
NMeωφ(T )Tα

αΓ(α)
+
Meωφ(T )(p− 1)T

p(α−1)
p−1 ||B(·)u||Lp(I,X)

(pα− 1)Γ(α)
<∞.

Then the map P is bounded.

Lemma 4.2.5. For τ > 0, the operator P is well-defined on S(λ, τ). Moreover,

there exists τ0 > 0 such that P maps S(λ, τ0) into itself, i.e., P (S(λ, τ0)) ⊆ S(λ, τ0).

Proof. For τ > 0, let {yn} be a sequence in S(λ, τ) and y ∈ S(λ, τ) such yn → y.

Then by using (HK), (HF2) and lemma 4.2.2, there exist N1, N2 > 0 such that

for all s ∈ [0, τ ],

||f(s, yn(s), Kyn(s))− f(s, y(s), Ky(s))|| ≤ N1||yn − y||S(λ,τ) (4.38)

||Gyn(s)−Gy(s)|| ≤ N2||(yn)τ − yτ ||B. (4.39)

Note that ||(yn)τ − yτ ||B= sup
0≤s≤τ

||yn(s)− y(s)||≤ ||yn − y||S(λ,τ), so, we have

||Pyn(t)− Py(t)||

≤ 1

Γ(α)

∫ t

0

(t− s)α−1||T (φ(t)− φ(s))||||f(s, yn(s), Kyn(s))− f(s, y(s), Ky(s))||ds

+
1

Γ(α)

∫ t

0

(t− s)α−1||T (φ(t)− φ(s))||||Gyn(s)−Gy(s)||ds

≤ Meωφ(T )N1

Γ(α)

∫ t

0

(t− s)α−1ds||yn − y||S(λ,τ) +
Meωφ(T )N2

Γ(α)

∫ t

0

(t− s)α−1ds||(yn)τ − yτ ||B

≤ Meωφ(T )(N1 +N2)Tα

αΓ(α)
||yn − y||S(λ,τ).
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Since ||yn − y||S(λ,τ) → 0 as n→ +∞, ||Pyn − Py|| → 0 as n→ +∞.

This implies that the map P is well-defined.

We next will show that there exists τ0 such P map S(λ, τ0) into itself.

Given ρ > 0 and y ∈ S(λ, τ). By using assumptions (HF ) and lemma 4.2.2, there

exists κ > 0 such that

||f(0, y(0), Ky(0)) +Gy(0)|| ≤ ||f(0, y(0), Ky(0))||+ ||Gy(0)||

≤ κ(2 + ||ϕ||C + ||y0||B) ≤ 2κ(1 + ||ϕ||C), (4.40)

and for all s ∈ [0, τ ], there exists a(ρ, τ) > 0

||f(s, y(s), Ky(s)) +Gy(s)− f(0, y(0), Ky(0))−Gy(0)||

≤ ||f(s, y(s), Ky(s)) +Gy(s)− f(0, y(0), Ky(0))||+ ||Gy(s)−Gy(0)||

≤ a(ρ, τ)[||y(s)− y(0)||+ ||K||||y(s)− y(0)||+ ||yτ − y0||B]

≤ a(ρ, τ)(||K||+ 2)λ. (4.41)

So, we obtain

||Py(t)− ϕ(0)||

≤||T (φ(t))ϕ(0)− ϕ(0)||+ Meωφ(τ)

Γ(α)

∫ t

0

(t− s)α−1||f(0, y(0), Ky(0)) +Gy(0)||ds

+
Meωφ(τ)

Γ(α)

∫ t

0

(t− s)α−1||f(s, y(s), Ky(s)) +Gy(s)− f(0, y(0), Ky(0))−Gy(0)||ds

+
Meωφ(τ)

Γ(α)

∫ t

0

(t− s)α−1||B(s)u(s)||ds
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≤ max
0≤t≤τ

||T (φ(t))ϕ(0)− ϕ(0)||+ Meωφ(τ)2κ(1 + ||ϕ||C)

Γ(α)

∫ t

0

(t− s)α−1ds

+
Meωφ(τ)a(ρ, τ)(||K||+ 2)λ

Γ(α)

∫ t

0

(t− s)α−1ds

+
Meωφ(τ)

Γ(α)
[

∫ τ

0

(t− s)
p(α−1)
p−1 ds]

p−1
p [

∫ τ

0

||B(s)u(s)||pds]
1
p

≤ max
0≤t≤τ

||T (φ(t))ϕ(0)− ϕ(0)||+
Meωφ(τ)(p− 1)τ

p(α−1)
p−1 ||B(·)u||Lp([0,τ ],X)

(pα− 1)Γ(α)

+
Meωφ(τ)[2κ(1 + ||ϕ||C) + a(ρ, τ)(||K||+ 2)λ]τα

αΓ(α)

≤λq(u, τ)

where

q(u, τ) =
1

λ

[
max
0≤t≤τ

||T (φ(t))ϕ(0)− ϕ(0)||+
Meωφ(τ)(p− 1)τ

p(α−1)
p−1 ||B(·)u||Lp([0,τ ],X)

(pα− 1)Γ(α)

+
Meωφ(τ)[2κ(1 + ||ϕ||C) + a(ρ, τ)(||K||+ 2)λ]τα

αΓ(α)

]
.

Since q(u, τ)→ 0 as τ → 0+, a suitable τ0 can be found such that 0 < q(u, τ0) < 1.

We conclude that P maps S(λ, τ0) into itself, i.e., P (S(λ, τ0)) ⊆ S(λ, τ0).

Theorem 4.2.6. Suppose (HK), (HF ), (HB) and (HG) hold. Then for each

u ∈ Lq(I, Y ) and 1 < q < ∞, there exist a t0 > 0 such that the system (4.22) is

mildly solvable on [−r, t0) w.r.t. u and the mild solution is unique.

Proof. For τ > 0, setting

S(1, τ) = {y ∈ Cτ | max
0≤t≤τ

||y(t)− ϕ(0)|| ≤ 1, y(t) = ϕ(t) for all − r ≤ t ≤ 0}.

Then S(1, τ) is the nonempty close convex set.

Define the operator P : S(1, τ)→ Cτ by
Py(t) = T (φ(t))ϕ(0) + 1

Γ(α)

∫ t
0
(t− s)α−1T (φ(t)− φ(s))[f(s, y(s), Ky(s)) +Gy(s)

+B(s)u(s)]ds, t ∈ [0, τ ]

Py(t) = ϕ(t), t ∈ [−r, 0].
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By lemma 4.2.4, the operator P is well-defined on S(1, τ) and there exist τ0 such

P maps S(1, τ0) into itself . We now only show that P is strictly contraction on

S(1, τ0). Given ρ > 0, let y1, y2 ∈ S(1, τ0) such that ||y1||, ||y2|| ≤ ρ. By lemma

4.2.4 and condition (HF ) , there exists b(ρ) > 0 such that for all s ∈ [0, τ ]

||f(s, y1(s), Ky1(s))− f(s, y2(s), Ky2(s))||+ ||Gy1(s)−Gy2(s)||

≤ b(ρ)(||y1(s)− y2(s)||+ ||(y1)s − (y2)s||B) ≤ 2b(ρ)||y1 − y2||S(1,τ). (4.42)

So, we obtain

||Py1(t)− Py2(t)||

≤ Meωφ(τ)

Γ(α)

∫ t

0

(t− s)α−1||f(s, y1(s), Ky1(s))− f(s, y2(s), Ky2(s))||+ ||Gy1(s)−Gy2(s)||ds

≤ Meωφ(τ)2b(ρ)

Γ(α)

∫ t

0

(t− s)α−1ds||y1 − y2||S(1,τ)

≤ Meωφ(τ)2b(ρ)τα

αΓ(α)
||y1 − y2||S(1,τ) = q(u, τ)||y1 − y2||S(1,τ).

where q(u, τ) = Meωφ(τ)2b(ρ)τα

αΓ(α)
. Since q(u, τ) → 0+ as τ → 0+, a suitable τ̄0 can be

found such 0 < q(u, τ̄0) < 1, so the map P is strictly contraction. By contraction

mapping on Banach space, P has a unique fixed point x ∈ S(1, τ0) such that

Px(t) = x(t), i.e.,
x(t) = T (φ(t))ϕ(0) + 1

Γ(α)

∫ t
0
(t− s)α−1T (φ(t)− φ(s))[f(s, x(s), Kx(s)) +Gx(s)

+B(s)u(s)]ds, t ∈ [0, τ0)

x(t) = ϕ(t), t ∈ [−r, 0].

(4.43)

In other word, we say that x(t) is the unique mild solution of system (4.34) w.r.t.

u on [−r, τ0).

The problem now is to investigate what happens if t ≥ t0, i.e., t = t1 + τ with

τ ≥ 0 which is showed in the following corollary.

Corollary 4.2.7. Under the assumptions of theorem 4.2.6, the system (4.1) has

a unique mild solution on any given interval [−r, τ0). (Such a solution is called

global in time.)
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Proof. We start by showing that for every τ0 ≥ 0, x0 ∈ X, there exists a δ =

δ(τ, ||x0||) such that the system (4.1) has a unique mild solution x on an interval

[τ0, τ0 + δ] whose length δ is defined by,

δ(τ0, ||x0||) = min{1, [ ||x0||αΓ(α)

ρ(τ0)L(ρ(τ0), τ0 + 1) +N(τ0)
]1/α} (4.44)

where L(c, t) is the local Lipschitz constant of f and G following from (HF1) and

lemma 4.2.2, M(τ0) = sup{||T (φ(t))|| | 0 ≤ t ≤ τ0 + 1}, ρ(τ0) = 2||x0||M(τ0) and

N(τ0) = max{||f(t, 0, 0)|| + ||G0(t)|| + ||B(t)||||u||Lp([0,τ0+1],Y ) | 0 ≤ t ≤ τ0 + 1}.
Indeed, Let τ1 = τ0 + δ where δ is given by (4.44).

Define a map P : C([τ0, τ1], X)→ Cτ1 by

Px(t) =T (φ(t)− φ(τ0))x0 +

∫ t

t0

(t− s)α−1T (φ(t)− φ(s))[f(s, x(s), Kx(s))

+Gx(s) +B(s)u(s)]ds. (4.45)

As in the proof of theorem 4.2.6, one can show that the map P is well-defined and

maps the ball of radius ρ(τ0) centered at 0 of C([τ0, τ1], X) into itself. This follows

from the estimate,

||Px(t)||

≤M(τ0)||x0||+
1

Γ(α)

∫ t

t0

(t− s)α−1||T (φ(t)− φ(s))||(||f(s, x(s), Kx(s))− f(s, 0, 0)||

+ ||Gx(s)−G0(x)||) + ||f(s, 0, 0)||+ ||G0(x)||+ ||B(s)|||u||Lp([0,τ0+1],Y ))ds

≤M(τ0)||x0||+
M(τ0)ρ(τ0)L(ρ(τ0), τ0 + 1)

αΓ(α)
(t− τ0)α +

M(τ0)N(τ0)

αΓ(α)
(t− τ0)α

≤ 2M(τ0)||x0|| = ρ(τ0)

where the last inequality follows from the definition of τ1. In this ball, P satisfies

a uniform Lipschitz condition with constant L = L(ρ(τ0), τ0 + 1) and thus in the

proof of theorem 4.2.6, it possesses a unique fixed point x in the ball. This fixed

point is the desired solution of (4.1) on the interval [−r, τ1], i.e.,
x(t) = T (φ(t)))x0 +

∫ t
0
(t− s)α−1T (φ(t)− φ(s))[f(s, x(s), Kx(s))

+Gx(s) +B(s)u(s)]ds, for t ∈ [0, t1]

x(t) = ϕ(t), for t ∈ [−r, 0].

(4.46)
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From what we have just proved, it follows that if x is a mild solution of (4.1) on the

interval [−r, τ ], it can be extended to the interval [−r, τ +δ] with δ > 0 by defining

on [τ, τ + δ], x(t) = x1(t) where x1(t) is the solution of the integral equation, for

t ∈ [τ, τ + δ],

x1(t) =T (φ(t)− φ(τ))x(τ) +
1

Γ(α)

∫ t

τ

(t− s)α−1T (φ(t)− φ(s))[f(s, x1(s), Kx1(s))

+Gx1(s) +B(s)u(s)]ds.

Moreover, δ depends only on ||x(τ)||, ρ(τ) and N(τ). Corresponding, equation

(4.1) has a unique mild solution on [−r, 2τ1]. Since the above procedure can be

iterated any finite number of times (always using the same δ), we conclude that

(4.1) has a unique mild solution on any given interval [−r, τ0) and hence the unique

mild solution that is global in time.

4.3 Existence of optimal control

In this section we consider the optimal control of the fractional controlled system

(4.34). Suppose Y is a separable reflexive Banach space and system (4.34) is mildly

solvable on [−r, T ] for every u ∈ Lq(I, Y ) , 1 < q <∞. Let Uad be the admissible

control set. We consider the Bolza problem :

(P ) Find (x0, u0) ∈ X × Uad such that

J(x0, u0) ≤ J(x, u) , u ∈ Uad

where

J(xu, u) =

∫ T

0

l(t, xu(t), xut , u(t))dt+ Φ(xu(T )),

xu denote the mild solution of system (4.34) corresponding to the control u ∈ Uad
and Φ : X → < is continuous function. We call (xu, u) an admissible state-control

pair. Since solution x is corresponding to the control u, so for short, we denote

J(xu, u) by J(u). We will minimize the fractional controlled system (4.34) under

the following assumptions:

(HU) Uad = Lq(I, Y ), B(s) ∈ L(Lq(I, Y ), Lp(I,X)) for all s ∈ I, 1 < p, q <∞ and

B(·) is strongly continuous.
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(HL) l : I ×X ×X × Y → [0,∞] is Borel measurable satisfying these conditions:

1) l(t, ·, ·, ·) is sequentially lower semicontinuous on X × X × Y for a.e.

t ∈ I.

2) l(t, ξ, ν, ·) is convex on Y for each ξ ∈ X, ν ∈ X and for a.e. t ∈ I.

3) There exist constants a, b ≥ 0, c > 0 and η ∈ L1(I,<+) such that

l(t, ξ, νt, u) ≥ η(t) + a||ξ||+ b||νt||B + c||u||qY .

Theorem 4.3.1. Under the assumption (HK), (HF ), (HU) and (HL) the optimal

control problem (P ) has a solution that is, there exists an admissible state-control

pair (x0, u0) such that

J(x0, u0) =

∫ T

0

l(t, x0(t), x0
t , u

0(t))dt+ Φ(x0(T )) ≤ J(x, u), for all u ∈ Uad.

Proof. If inf{J(u) | u ∈ Uad} = +∞ there is nothing to prove. So we assume that

inf{J(u) | u ∈ Uad} = m < +∞. By (HL3), there are constants a, b ≥ 0, c > 0

and η ∈ L1(I,<+) such that

l(t, x, xt, u) ≥ η(t) + a||xu||+ b||xut ||B + c||u||qY .

Since η is nonnegative, we have

J(u) =

∫ T

0

l(t, xu(t), xut , u(t))dt+ Φ(xu(T ))

≥
∫ T

0

η(t)dt+ a

∫ T

0

||xu(t)||dt+ b

∫ T

0

||xut ||Bdt+ c

∫ T

0

||u(t)||qY dt+ Φ(xu(T ))

≥ −σ > −∞,

for some σ > 0, for all u ∈ Uad. Hence m ≥ −σ > −∞. By definition of minimum,

there exists a minimizing sequence {un} of J , that is lim
n→∞

J(un) = m and

J(un) ≥
∫ T

0

η(t)dt+ a

∫ T

0

||xun(t)||dt+ b

∫ T

0

||xunt ||Bdt+ c

∫ T

0

||un(t)||pY dt+ Φ(xun(T )).

So there exist N0 > 0 such that for all n ≥ N0,

m+ m̃ ≥ J(un) ≥ c

∫ T

0

||u(t)||qY dt
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for some m̃ > 0 and hence ||un||qLq(I,Y ) ≤
m̃+m
c

.

This show that un is contained in a bounded subset of the reflexive Banach space

Lq(I, Y ). So un has a convergence subsequence relabeled as un and un → u0 for

some u0 ∈ Uad = Lq(I, Y ). Let xn ⊆ C([−r, T ], X) be the corresponding sequence

of solutions for the integral equation;
xn(t) = T (φ(t))ϕ(0) + 1

Γ(α)

∫ t
0
(t− s)α−1T (φ(t)− φ(s))[f(s, xn(s), Kxn(s)) +Gxn(s)

+B(s)un(s)]ds, t ∈ I

xn(t) = ϕ(t), t ∈ [−r, 0].

(4.47)

From the a priori estimate, there exists a constant ρ > 0 such that

||xn||C([−r,T ],X) ≤ ρ, for all n = 0, 1, 2, ...

where x0 denote the solution corresponding to u0, that is
x0(t) = T (φ(t))ϕ(0) + 1

Γ(α)

∫ t
0
(t− s)α−1T (φ(t)− φ(s))[f(s, x0(s), Kx0(s)) +Gx0(s)

+B(s)u0(s)]ds, t ∈ I

x0(t) = ϕ(t), t ∈ [−r, 0].

(4.48)

By (HF ), (HK), (HG) and lemma 4.2.2 there are constants a(ρ), b(ρ) such that

||f(s, xn(s), Kxn(s))− f(s, x0(s), Kx0(s))|| ≤ a(ρ)||xn(s)− x0(s)||

||Gxn(t)−Gx0(t)|| ≤ b(ρ)||(xn)t − (x0)t||B
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for each s ∈ I and t ∈ [−r, T ].

||xn(t)− x0(t)|| ≤ Meωφ(T )a(ρ)

Γ(α)

∫ t

0

(t− s)α−1||xn(s)− x0(s)||ds

+
Meωφ(T )b(ρ)

Γ(α)

∫ t

0

(t− s)α−1||(xn)s − (x0)s||Bds

+
Meωφ(T )

Γ(α)

∫ t

0

(t− s)α−1||B(s)un(s)−B(s)u0(s)||ds

≤ Meωφ(T )a(ρ)

Γ(α)

∫ t

0

(t− s)α−1||xn(s)− x0(s)||ds

+
Meωφ(T )b(ρ)

Γ(α)

∫ t

0

(t− s)α−1||(xn)s − (x0)s||Bds

+
Meωφ(T )(p− 1)T

αp−1
p−1

(αp− 1)Γ(α)
||B(·)un −B(·)u0||Lp(I,X).

Note that xn(s)− x0(s) = 0 for s ∈ [−r, 0] and use lemma 4.1.2, then

||xn(t)− x0(t)|| ≤ M̃ ||B(·)un −B(·)u0||Lp(I,X)

where M̃ is a constant, independent of u, n and t. Since B is strongly continuous,

we have ||B(·)un − B(·)u0||Lp(I,X) → 0. This implies that ||xn − x0|| → 0 in

C([−r, T ], X). Let us set ln(t) = l(t, xn(t), (xn)t, un(t)) for all t ∈ [0, T ]. Then by

(HL3), {ln(t)} is a sequence of non-negative measurable functions. So, by using

Fatou ’s Lemma,

lim
n→∞

∫ T

0

ln(t)dt ≥
∫ T

0

lim
n→∞

ln(t)dt. (4.49)

By (HL1) and (4.49),

m = lim
n→∞

J(un) ≥ lim
n→∞

[

∫ T

0

ln(t)dt+ Φ(xn(T ))]

≥
∫ T

0

lim
n→∞

ln(t)dt+ Φ( lim
n→∞

xn(T ))

=

∫ T

0

lim
n→∞

l(t, xn(t), (xn)t, un(t))dt+ Φ(x0(T ))

≥
∫ T

0

l(t, x0(t), x0
t , u

0(t))dt+ Φ(x0(T )) = J(u0).

This show that J(u0) = m, i.e., J(u0) ≤ J(u) for all u ∈ Uad.
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4.4 Application to Nonlinear Schrödinger Equation

In this section, we consider a simple application of the results of section 4.2 and

section 4.3 to the control problem for the following generalization nonlinear time

dependent Schrödinger Equation with delay in <N ,

1

i

∂αΨ(x, t)

∂tα
=∆Ψ(x, t) + f(t, x,Ψ(x, t),OΨ(x, t))

+

∫ t

−r
h(t− s)g(s, x,Ψ(x, s),OΨ(x, t))ds

+

∫
Ω

B(x, ξ)u(ξ, t)dξ, (x, t) ∈ Ω× I, (4.50)

Ψ(x, t) =ϕ(x, t), (x, t) ∈ Ω̄× [−r, 0], (4.51)

Ψ(x, t) =0, (x, t) ∈ ∂Ω× I, (4.52)

where Ω is boundary domain of <N , ϕ ∈ C([−r, 0]×Ω̄), u ∈ Lq(Ω×I), 1 < q <∞,

h ∈ L1([−r, T ],<) and B : Ω̄ × Ω̄ → < is continuous. The space in which this

problem will be considered is L2(<N).

(AAf) Suppose that f : I × Ω̄×C×<N → < and g : [−r, T ]× Ω̄×C×<N → <
are satisfied the following conditions, there are L1, L2 ≥ 0 such that

|f(t, x, ξ, η)|+ |g(t, x, ξ, η)| ≤ L1(1 + |ξ|+ |η|) (4.53)

|f(t, x, ξ, η)−f(s, x, ξ̃, η̃)|+ |g(t, x, ξ, η)−g(s, x, ξ̃, η̃)| ≤ L2(|t−s|+ |ξ− ξ̃|+ |η− η̃|)
(4.54)

for all s, t ∈ [−r, T ], x ∈ Ω̄, ξ, ξ̄ ∈ C and η, η̄ ∈ <N .

Let Uad = Lq(I × Ω) be the admissible control set. We consider the Bolza

problem :

(P0) Find u0 ∈ Uad such that

J(u0) ≤ J(u) , u ∈ Uad

where

J(u) =

∫ T

0

∫
Ω

|Ψ(ξ, t)|2dξdt+

∫ T

0

∫
Ω

∫ 0

−r
|Ψ(ξ, t+ s)|2dsdξdt

+

∫ T

0

∫
Ω

|u(ξ, t)|qdξdt+ z(Ψ(x, T )),
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and here z ∈ C(C,<+).

We known that the Schrödinger equation can apply extensively in quantum

mechanics. A complex value function Ψ(x, t) is called wave function that de-

pend on both position variable (x) and time variable(t). We introduce the inte-

gral
∫ t
−r h(t − s)g(x, s,Ψ(x, s),OΨ(x, s))ds denoting in sense of delay term that

is impacted from the initial delay function ϕ(x, t) for t ∈ [−r, 0] in the condi-

tion (4.51). Moreover, the system is controlled by the control u via the mapping∫
Ω
B(x, ξ)u(ξ, t)dξ. In doing we will use the following notations; x = (x1, x2, ..., xN)

is a variable point in the N−dimensional Euclidean space <N . For any two

such point x = (x1, x2, ..., xN), y = (y1, y2, ..., yN) we set x · y =
∑N

i=1 xiyi

and ||x||2 = x · x. An N−tuple of nonnegative integer β = (β1, β2, ..., βN) is

called a multi-index and we define |β| =
∑N

i=1 βi and xβ = xβ1

1 x
β2

2 · · · x
βN
N for

x = (x1, x2, ..., xN). Denoting Dk = ∂/∂xk and D = (D1, D2, ..., DN) we have

Dβ = Dβ1

1 D
β2

2 · · · D
βN
N = ∂β1

∂x
β1
1

∂β2

∂x
β2
2

· · · ∂βN

∂x
βN
N

. Let Ω be a fixed domain in <N

with boundary ∂Ω and closure Ω̄. We will usually assume that ∂Ω is smooth, i.e.,

∂Ω ∈ Ck for some suitable k ≥ 1. By Cm(Ω) we denote the set of all m−times con-

tinuously differentiable real-valued or complex-valued functions in Ω. Cm
0 (Ω) will

denote the subspace of Cm(Ω) consisting of those functions which have compact

support in Ω. For x ∈ Cm(Ω) and 1 ≤ p <∞ we define

||u||m,p = (

∫
Ω

∑
|β|≤m

|Dβu|pdx)1/p. (4.55)

If p = 2 and u, v ∈ Cm(Ω) we also define

(u, v)m =

∫
Ω

∑
|β|≤m

DβuD̄βvdx. (4.56)

Denoting by C̃p(Ω) the subset of Cm(Ω) consisting of those functions u which

||u||m,p <∞, we define Wm,p(Ω) and Wm,p
0 (Ω) to be the completions in the norm

|| · ||m,p of C̃p(Ω) and Cm(Ω) respectively. It is well known that Wm,p(Ω) and

Wm,p
0 (Ω) are Banach spaces and obviously Wm,p

0 (Ω) ⊂ Wm,p(Ω). For p = 2 we

denote Wm,2(Ω) = Hm(Ω) and Wm,p
0 (Ω) = Hm

0 (Ω). The spaces Hm(Ω) and Hm
0 (Ω)

are Hilbert spaces with the scalar product (·, ·)m given by (4.56).
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We will transform the system (4.50) to the abstract form. Let X = L2(Ω) and

for t ∈ (−r, T ] define Ψ(t) : Ω→ X by

Ψ(t)(x) = Ψ(x, t) for all x ∈ Ω,

and define

Dα
t Ψ(t)(x) =

∂αΨ(x, t)

∂tα
, for all Ψ ∈ X, x ∈ Ω.

Define f : I ×X ×X → X by

f(t,Ψ(t), HΨ(t))(x) = if(x, t,Ψ(x, t),OΨ(x, t)), (4.57)

GΨ(t)(x) = i

∫ t

−r
h(t− s)g(x, s, y(x, s),Oy(x, t))ds, (4.58)

B(t)u(t)(x) = i

∫
Ω

B(x, ξ)u(ξ, t)dξ. (4.59)

We define an operator A0 associated with the differential operator i∆Ψ;

A0Ψ = i∆Ψ for all Ψ ∈ D(A0)

where D(A0) = H2(Ω). Then the system (4.50) is transformed to the abstract

problem;D
α
t Ψ(t) = AΨ(t) + f(t,Ψ(t), Ky(t)) +GΨ(t) +B(t)u(t), t ∈ I

Ψ(t) = ϕ(t), t ∈ [−r, 0].
(4.60)

Lemma 4.4.1. [15] The operator iA0 is self adjoint in L2(<N).

Corollary 4.4.2. [15] A0 is the infinitesimal generator of a group of unitary op-

erators on L2(<N).

From corollary 4.4.2, it follows that the operators A0 is the infinitesimal gen-

erator of a group of unitary operators {T (t)}t∈< on L2(<N). A simple application

of the Fourier transform gives the following explicit formula for T (t);

(T (t)v)(x) =
1

4πit

∫
<2

ei|x−y|/4tv(y)dy. (4.61)
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Lemma 4.4.3. [15] Let {T (t)}t≥0 be the semigroup given by (4.61). If ≤ p ≤ ∞
and 1/p+1/q = 1 then T (t) can be extended in a unique way to a bounded operator

from Lq(<2) into Lp(<2) and

||T (t)v||0,p ≤ (4πt)1−2/q||v||0,q. (4.62)

Lemma 4.4.3 guarantee that A = i∆ be the infinitesimal generator of the

C0−semigroup of bounded linear operator {T (t)}t≥0.

Theorem 4.4.4. Suppose assumption (AAf) holds. Then the control problem (P0)

for the generalization nonlinear time dependent Schrödinger equation with delay in

<N ( system(4.50)) has a solution, that is, there exists an admissible state-control

pair (Ψ0, u0) such that

J(Ψ0, u0) ≤ J(Ψ, u) for all u ∈ Uad.

Proof. We solve the control problem (P0) for system(4.50) via the Cauchy abstract

form (4.60). By using the assumptions (AAf) and definitions of f , g and the cost

functional J , it satisfies all the assumptions given in theorem 4.2.6 and theorem

4.3.1. Then the control problem (P0) for system(4.50) has a solution, that is, there

exists an admissible state-control pair (Ψ0, u0) such

J(Ψ0, u0) ≤ J(Ψ, u) for all u ∈ Uad.



CHAPTER V

IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL

EQUATIONS WITH C0−SEMIGROUP

The main objective of this chapter is discussing to impulsive fractional integro-

differential equations;
Dα
t x(t) = Ax(t) + f(t, x(t), Kx(t)) +G(t) +B(t)u(t), t ∈ I\D

∆x(tk) = Jk(x(tk)), tk ∈ D

x(t) = ϕ(t), t ∈ [−r, 0]

(5.1)

where I = [0, T ], D = {t1, t2, ..., tn}, the integral operator G is defined by

Gx(t) =

∫ t

−r
h(t, s)g(s,Hx(s))ds,

A is an infinitesimal generator of a compact semigroup {T (t)}t≥0 satisfying ‖T (t)‖ ≤
Meωt, M ≥ 1, ω > 0, t ≥ 0 for tk ∈ D, ∆x(tk) = x(t+k ) − x(t−k ) = x(t+k ) − x(tk)

denote the jump of state X at tk with the size of jump Jk, k = 1, 2, ..., n. We prove

the existence of solution for system (5.1) under the assumptions (HG), (HK),

(HF ), (HB) as same as the assumptions in chapter 4;

(HK) K : X → X is bounded linear operator.

(HF1) f : I ×X ×X → X is uniformly continuous in t and locally Lipschitz in x

and y, that is for any τ > 0 and ρ > 0, there exists af (ρ, τ) > 0 such that

||f(t, x1, y1)− f(t, x2, y2)|| ≤ af (ρ, τ)[||x1 − x2||+ ||y1 − y2||]

provided ||x1||, ||x2||, ||y1||, ||y2|| ≤ ρ, for all t ∈ [0, τ ].

(HF2) There exists c ≥ 0 such that ||f(t, x, y)|| ≤ c(1 + ||x||+ ||y||) for all x, y ∈ X
and t ∈ [0, T ].
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(HB) Y is another separable reflexive Banach space from which the controls u take

the value B(s) ∈ L(Lq(I, Y ), Lp(I,X)) for all s ∈ [−r, T ].

and with the another assumption, say (HJ);

(HJ1) Jk : X → X is a map such that Jk(X) is a bounded subset of X,

(HJ2) there exist ek > 0, k = 1, 2, ..., n such that

‖Jk(x1(t))− Jk(x2)(t)‖ ≤ ek‖x1(t)− x2(t)‖, (5.2)

for all x1, x2 ∈ X and t ∈ [0, T ].

5.1 Useful Definitions and Theorems

In this section, we will state some definitions and theorems that play important

for proving the main results. Let PC([−r, T ], X) ≡ {x : [−r, T ]→ X| x continues

at t ∈ [−r, T ]\D and x is continuous from left and right hand limit at t ∈ D}
where D denote {t1, t2, ..., tn}. Then we will extend the integral operator G to

PC([−r, T ], X).

Lemma 5.1.1. Assume (HG) holds. Then the operator G has the following prop-

erties

1) G : PC([−r, T ], X)→ PC([−r, T ], X).

2) For each x1, x2 ∈ PC([−r, T ], X) such that ||x1||, ||x2|| ≤ ρ,

||Gx1(t)−Gx2(t)|| ≤ Lg||h||(T + r)||(x1)t− (x2)t||B, for all t ∈ I. (5.3)

3) For each x ∈ PC([−r, T ], X), we have

||Gx(t)|| ≤ agT ||h||(1 + ||xt||B), for all t ∈ I. (5.4)

Proof. The proof is similar to the proof of lemma4.2.2.
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Since the proving existence of solutions for system (5.1) is complexity, we will

use some technique about constructing the fixed point operator, it meant that

we must show this operator is contraction and map any compact subsets of X to

compact subsets of X. The Ascoli-Arzela Theorem is an advantage choice that we

choose to solve this problem. But we cannot directly apply the Ascoli-Arzela to

our problem on PC([−r, T ], X). This is a reason why we need the generalized of

the Ascoli-Arzela Theorem for PC([−r, T ], X).

Definition 5.1.2. A set S of a norm vector space (X, ‖.‖) is (sequentially) com-

pact if every sequence of S contain a convergence subsequence, i.e., a sequence

converging to an element in S.

Definition 5.1.3. Let {Tα|α ∈ Λ} be a family of operators from L(X, Y ). If for

each x ∈ X, there exist cx such that

sup{||Tαx|| | α ∈ Λ} ≤ cx (5.5)

then the operators {Tα|α ∈ Λ} are uniformly bounded, i.e, there exist M > 0 such

that

||Tαx|| ≤M for all α ∈ Λ and for all x ∈ X. (5.6)

Theorem 5.1.4. (Ascoli-Arzela Theorem) A subset X0 of C([a, b], X) is compact

if and only if it is bounded and equicontinuous , i.e., if and only if ;

1) there exists M > 0 that ||f ||C([a,b],X) ≤M for all f ∈ X0 ;

2) for all ε > 0 there exists δ > 0 that |f(x)− f(y)| < ε for all f ∈ X0 and for

all x, y ∈ [a, b] such that |x− y| < δ.

Theorem 5.1.5. (Generalized Ascoli-Arzela Theorem) Suppose W ⊆ {x ∈
PC([−r, T ], X) | x(t) = ϕ(t) for t ∈ [−r, 0]}. If the following conditions are

satisfied;

1. W is a uniformly bounded subset of PC([−r, T ], X)

2. W is equicontinuous in I rD
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3. Its t−sections

W (t) ≡ {x(t)| x ∈ W, t ∈ I rD};

W (t+) ≡ {x(t+)| x ∈ W};

W (t−) ≡ {x(t−)| x ∈ W}

are relatively compact subsets of X. Then W is a relatively compact subset

PC([−r, T ], X).

Proof. Let {xm} be any sequence of W . Then {xm|[0,t1)} ⊂ C([0, t1), X). Using the

Ascoli-Arzela theorem in [0, t1), there exists a subsequence of {xm}, again labeled

by {xm}, such that

xm|[0,t1) → x1 in C([0, t1), X) as m→∞.

Consider {xm|[t1,t2]} ⊂ C([t1, t2], X) and set xm(t1) = xm(t+1 ). Due to the Ascoli-

Arzela theorem in [t1, t2), {xm|[t1,t2)} is a relatively compact subset of C([t1, t2), X).

Then there exists a subsequence, again labeled by {xm}, such that

xm|[t1,t2) → x2 in C([t1, t2), X) as m→∞.

Repeat the procedures until interval [tm, T ]. We know that there is a subsequence

{xm}, such that

xm|[tn,T ] → xn+1 in C([tn, T ], X) as m→∞.

Define x(t) = xi(t), t ∈ [ti−1, ti) for i = 1, ..., n+ 1. Then x ∈ PC([−r, T ], X) and

xm|[tn,T ] → x in PC([−r, T ], X) as m→∞.

Therefore W is a relatively compact set. This complete the proof.

5.2 Impulsive Integral Inequalities

The following theorems are most useful integral inequalities which is of Gronwall

type. Let PCα(<+,<) denotes the set of all functions map from <+ to < such that

their derivatives of order α exist on <+ − {tk}, k = 1, 2, ... and left continuous at

tk, k = 1, 2, ... for 0 < tk < tk+1.
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Theorem 5.2.1. Let m ∈ PCα(<+,<) and for t ≥ 0,

mα(t) ≤ m(t)p(t) + q(t), t 6= tk (5.7)

m(t+k ) ≤ akm(tk), m(0) = a0 (5.8)

where 0 < α ≤ 1, p, q ∈ C(<+,<) and ak ≥ 0 are constants. Then

m(t) ≤
∑

0≤tk≤t

(
∏

tk≤tj≤t

aje
∫ tj+1

tj
φα−1(tk+1−s)p(s)ds)

· (
∫ tk+1

tk

φα−1(tk+1 − s)q(s)e−
∫ s
tk
φα−1(s−r)p(r)dr

ds) (5.9)

where φα(t) = tα

Γ(α+1)
.

Proof. Let t ∈ [0, t1]. Then, we get from (5.7),

Dα
t [m(t)e−

∫ t
0 φα−1(t−s)p(s)ds] ≤ q(t)e−

∫ t
0 φα−1(t−s)p(s)ds (5.10)

which yields after integrating order α from 0 to t,

m(t) ≤ e
∫ t
0 φα−1(t−s)p(s)ds[a0 +

∫ t

0

φα−1(t− s)q(s)e−
∫ s
0 φα−1(s−r)p(r)drds]

= a0e
∫ t
0 φα−1(t−s)p(s)ds + e

∫ t
0 φα−1(t−s)p(s)ds

∫ t

0

φα−1(t− s)q(s)e−
∫ s
0 φα−1(s−r)p(r)drds.

For t ∈ (t1, t2], by (5.7) we have,

Dα[m(t)e
−

∫ t
t1
φα−1(t−s)p(s)ds

] ≤ q(t)e
−

∫ t
t1
φα−1(t−s)p(s)ds

(5.11)

which yields after integrating order α from t1 to t,

m(t) ≤ m(t+1 )e
∫ t
t1
φα−1(t−s)p(s)ds

+e
∫ t
t1
φα−1(t−s)p(s)ds

∫ t

t1

φα−1(t−s)q(s)e−
∫ s
t1
φα−1(s−r)p(r)dr

ds

(5.12)

and from (5.8), we get

m(t+1 ) ≤ a1m(t1)

≤ a0a1e
∫ t1
0 φα−1(t1−s)p(s)ds + a1e

∫ t1
0 φα−1(t1−s)p(s)ds

∫ t1

0

φα−1(t1 − s)q(s)e−
∫ s
0 φα−1(s−r)p(r)drds.

(5.13)
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Hence, we obtain for t ∈ (t1, t2],

m(t) ≤a0a1e
∫ t1
0 φα−1(t1−s)p(s)dse

∫ t
t1
φα−1(t−s)p(s)ds

+ a1e
∫ t1
0 φα−1(t1−s)p(s)dse

∫ t
t1
φα−1(t−s)p(s)ds

∫ t1

0

φα−1(t1 − s)q(s)e−
∫ s
0 φα−1(s−r)p(r)drds

+ e
∫ t
t1
φα−1(t−s)p(s)ds

∫ t

t1

φα−1(t− s)q(s)e−
∫ s
t1
φα−1(s−r)p(r)dr

ds. (5.14)

Assume that (5.13) holds for t ∈ [0, tk] some integer k > 1. Then for t ∈ (tk, tk+1],

it follows from (5.7) that

Dα[m(t)e
−

∫ t
tk
φα−1(t−s)p(s)ds

] ≤ q(t)e
−

∫ t
tk
φα−1(t−s)p(s)ds

. (5.15)

So

m(t) ≤ m(t+k )e
∫ t
tk
φα−1(t−s)p(s)ds

+e
∫ t
tk
φα−1(t−s)p(s)ds

∫ t

tk

φα−1(t−s)q(s)e−
∫ s
tk
φα−1(s−r)p(r)dr

ds.

(5.16)

Using (5.8) we obtain for t ∈ (tk, tk+1],

m(t) ≤ akm(tk)e
∫ t
tk
φα−1(t−s)p(s)ds

+e
∫ t
tk
φα−1(t−s)p(s)ds

∫ t

tk

φα−1(t−s)q(s)e−
∫ s
tk
φα−1(s−r)p(r)dr

ds.

(5.17)

By the induction hypothesis, (5.16) can reduced to

m(t) ≤
∑

0≤tk≤t

(
∏

tk≤tj≤t

aje
∫ tj+1

tj
φα−1(tk+1−s)p(s)ds)(

∫ tk+1

tk

φα−1(tk+1 − s)q(s)e−
∫ s
tk
φα−1(s−r)p(r)dr

ds)

(5.18)

which on simplification give the estimate (5.8) for t ∈ [0, tk+1]. The proof is

completed.

Theorem 5.2.2. Let m ∈ PCα(<+,<), 0 < α < 1 which satisfies,

m(t) ≤ a+
∑

0≤tk≤t

∫ tk+1

tk

φα−1(tk+1−s)p(s)m(s)ds+
∑

0<tk<t

ckm(tk) for t ≥ 0 (5.19)

where ck ≥ 0 and a are constant and φα(t) = tα

Γ(α+1)
. Then,

m(t) ≤
∏

0≤tk≤t

(1 + ck)e
∫ tk+1
tk

φα−1(tk+1−s)p(s)m(s)ds, t ≥ 0 (5.20)

where c0 = a− 1.
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Proof. Setting the right hand side equal to v(t) we have,v
α(t) = p(t)m(t); t 6= tk

v(t+k ) = v(tk) + ckm(tk), v(0) = a.
(5.21)

Since m(t) ≤ v(t), we then havev
α(t) = p(t)v(t); t 6= tk

v(t+k ) = (1 + ck)v(tk), v(0) = a = c0 + 1.
(5.22)

Applying theorem 5.2.1, we obtain

m(t) ≤
∏

0≤tk≤t

(1 + ck)e
∫ tk+1
tk

φα−1(tk+1−s)p(s)ds, t ≥ 0. (5.23)

Theorem 5.2.3. If x ∈ PCα([−r, T ], X), 0 < α < 1, such that

‖x(t)‖ ≤ a+
∑

0≤tk≤t

∫ tk+1

tk

φα−1(tk+1 − s)b(s)‖x(s)‖ds

+
∑

0≤tk≤t

∫ tk+1

tk

φα−1(tk+1 − s)c(s)‖xs‖Bds+
∑

0<tk<t

dk‖x(xk)‖, t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0].

(5.24)

Then

‖x(t)‖ ≤ (a+ ‖ϕ‖C)
∏

0<tk≤t

(1 + dk)e
b(tk+1−tk)α

αΓ(α) , for all t ∈ I (5.25)

where φα(t) = tα

Γ(α+1)
and b = sup

s∈I
[b(s) + c(s)].

Proof. Note that ‖x(t)‖ ≤ ‖xt‖B for all t ∈ I. So

‖x(t)‖ ≤ a+ b
∑

0≤tk≤t

∫ tk+1

tk

φα−1(tk+1 − s)‖xs‖Bds. (5.26)

Setting

g(t) =
∑

0≤tk≤t

∫ tk+1

tk

φα−1(tk+1 − s)‖xs‖Bds, for all t ∈ I. (5.27)
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Then g(t) is monotonous increasing. Indeed, for tk < τ < t ≤ tk+1, k = 1, 2, ... ,

we have

g(t)− g(τ) =

∫ t

tk

φα−1(t− s)‖xs‖Bds−
∫ τ

tk

φα−1(τ − s)‖xs‖Bds

=

∫ t−tk

0

uα−1‖xt−u‖Bdu−
∫ τ−tk

0

uα−1‖xτ−u‖Bdu

=

∫ τ−tk

0

uα−1[‖xt−u‖B − ‖xτ−u‖B]du+

∫ t−tk

0

uα−1‖xt−u‖Bdu. (5.28)

Since ‖xt‖B is monotonous increasing, ‖xt−u‖B−‖xτ−u‖B > 0. Hence g(t) > g(τ).

We know that

‖xt‖B ≤ ‖ϕ‖C + sup
t∈[0,T ]

‖x(t)‖ ≤ (a+ ‖ϕ‖C) + b
∑

0≤tk≤t

∫ tk+1

tk

φα(tk+1 − s)‖xs‖Bds.

(5.29)

Therefore by using theorem 5.2.2,

‖x(t)‖ ≤ ‖xt‖B ≤ (a+ ‖ϕ‖C)
∏

0<tk≤t

(1 + dk)e
b(tk+1−tk)α

αΓ(α) , for all t ∈ I. (5.30)

5.3 Existence of Solution of Impulsive Fractional Differen-

tial system

In the following, we consider the impulsive fractional differential equations with

time delay;
Dα
t x(t) = Ax(t) + f(t, x(t), Kx(t)) +G(t) +B(t)u(t), t ∈ I\D

∆x(tk) = Jk(x(tk)), tk ∈ D

x(t) = ϕ(t), t ∈ [−r, 0]

(5.31)

where I = [0, T ], D = {t1, t2, ..., tn}, the integral operator G is defined by

Gx(t) =

∫ t

−r
h(t, s)g(s,Hx(s))ds,
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A is a infinitesimal generator of a compact semigroup {T (t)}t≥0 satisfying ‖T (t)‖ ≤
Meωt, M ≥ 1, ω > 0, t ≥ 0 for tk ∈ D ,

∆x(tk) = x(t+k )− x(t−k ) = x(t+k )− x(tk)

denote the jump of state X at tk with the size of jump Jk, k = 1, 2, ..., n. Assume

that the assumptions (HG), (HK), (HF ), (HB) and (HJ) hold. We will prove

the existence of a solution for system (5.31) by starting at this delay system,D
α
t x(t) = Ax(t) + f(t, x(t), Kx(t)) +G(t) +B(t)u(t), t ∈ [0, t1]

x(t) = ϕ(t), t ∈ [−r, 0].
(5.32)

Then, by corollary 4.2.7 we obtain,
x1(t) = T (φ(t))ϕ(0) + 1

Γ(α)

∫ t
0
(t− s)α−1T (φ(t)− φ(s))[f(s, x1(s), Kx1(s))

+Gx1(s) +B(s)u(s)]ds, t ∈ [0, t1]

x1(t) = ϕ(t), t ∈ [−r, 0]

(5.33)

be a solution of system (5.32) and

x1(t1) =T (φ(t1))ϕ(0) +
1

Γ(α)

∫ t1

0

(t1 − s)α−1T (φ(t1)− φ(s))[f(s, x1(s), Kx1(s))

+Gx1(s) +B(s)u(s)]ds (5.34)

where φ(t) ≡ φα(t) = tα

Γ(α+1)
. Next, we consider the system;

Dα
t x(t) = Ax(t) + f(t, x(t), Kx(t)) +G(t) +B(t)u(t), t ∈ (t1, t2]

x(t1) = x1(t1) + J1(x1(t1)), t = t1

x(t) = x(t1), t ∈ [−r, t1).

(5.35)

Again using corollary 4.2.7, we get,
x2(t) = T (φ(t)− φ(t1))[x1(t1) + J1(x1(t1))] + 1

Γ(α)

∫ t
t1

(t− s)α−1T (φ(t)− φ(s))

[f(s, x2(s), Kx2(s)) +Gx2(s) +B(s)u(s)]ds, t ∈ [t1, t2]

x2(t) = x1(t), t ∈ [−r, t1).

(5.36)
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We can reform (5.36) to;

x2(t) = T (φ(t))ϕ(0) + 1
Γ(α)

∫ t1
0

(t1 − s)α−1T (φ(t)− φ(s))[f(s, x2(s), Kx2(s))

+Gx2(s) +B(s)u(s)]ds,+ 1
Γ(α)

∫ t
t1

(t− s)α−1T (φ(t)− φ(s))[f(s, x2(s), Kx2(s))

+Gx2(s) +B(s)u(s)]ds+ T (φ(t)− φ(t1))J1(x1(t1)), t ∈ [t1, t2]

x2(t) = x1(t), t ∈ [−r, t1)

(5.37)

and

x2(t2) = T (φ(t2))ϕ(0) +
1

Γ(α)

∫ t1

0

(t1 − s)α−1T (φ(t1)− φ(s))[f(s, x2(s), Kx2(s))

+Gx2(s) +B(s)u(s)]ds+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1T (φ(t)− φ(s))[f(s, x2(s), Kx2(s))

+Gx2(s) +B(s)u(s)]ds+ T (φ(t2)− φ(t1))J1(x1(t1)). (5.38)

Continues this process and consider the delay system;
Dα
t x(t) = Ax(t) + f(t, x(t), Kx(t)) +Gx(t) +B(t)u(t), t ∈ (tk, tk+1]

x(tk) = xk(tk) + Jk(xk+1(tk)), t = tk

x(t) = xk(t), t ∈ [−r, tk).

(5.39)

Then, by corollary 4.2.7, we obtain,
xk+1(t) = T (φ(t)− φ(tk))[xk(tk) + Jk(xk(tk))] + 1

Γ(α)

∫ t
tk

(t− s)α−1T (φ(t)− φ(s))

[f(s, xk+1(s), Kxk+1(s)) +Gxk+1(s) +B(s)u(s)]ds, t ∈ [tk, tk+1]

xk+1(t) = xk(t), t ∈ [−r, tk).

(5.40)



62

Since xk+1(t) = xk(t) for all t ∈ [−r, tk] and for t ∈ (tk, tk+1]

xk+1(t) = T (φ(t)− φ(tk))[T (φ(tk))ϕ(0) +
1

Γ(α)

∑
0≤ti≤tk

∫ ti+1

ti

(ti+1 − s)α−1

· T (φ(tk)− φ(s))[f(s, xk(s), Kxk(s)) +Gxk(s) +B(s)u(s)]ds+ Jk(xk(tk))]

+
∑

0<ti<tk

T (φ(tk)− φ(ti))Jixk(ti)] +
1

Γ(α)

∫ t

tk

(t− s)α−1T (φ(t)− φ(s))

· [f(s, xk+1(s), Kxk+1(s)) +Gxk+1(s) +B(s)u(s)]ds

=T (φ(t))ϕ(0) +
1

Γ(α)

∑
0≤ti≤t

∫ ti+1

ti

(ti+1 − s)α−1T (φ(t)− φ(s))[f(s, xk(s), Kxk+1(s))

+Gxk+1(s) +B(s)u(s)]ds+
∑

0<ti<t

T (φ(t)− φ(ti))Jixk+1(ti). (5.41)

So for k = 0, 1, ..., n where t0 = 0, tn+1 = T we obtain,

xk+1(t) = T (φ(t))ϕ(0) + 1
Γ(α)

∑
0≤ti≤t

∫ ti+1

ti

(ti+1 − s)α−1T (φ(t)− φ(s))

·[f(s, xk+1(s), Kxk+1(s)) +Gxk+1(s) +B(s)u(s)]ds

+
∑

0<tk<t

T (φ(t)− φ(tk))Jkxk+1(tk), t ∈ (tk, tk+1]

xk+1(t) = xk(t), t ∈ [−r, tk)

(5.42)

be a solution for system (5.40). Moreover, from these process we obtain a solution

of system (5.31) is

x(t) = T (φ(t))ϕ(0) + 1
Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1T (φ(t)− φ(s))[f(s, x(s), Kx(s))

+Gx(s) +B(s)u(s)]ds+
∑

0<tk<t

T (φ(t)− φ(tk))Jkx(tk), t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0].

(5.43)

The solution in this form is called a piecewise continuous mild solution of

system (5.31) with respect to a control u in admissible control set Uad on [−r, T ]

and for short, we call a PC−mild solution.
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Definition 5.3.1. For any u ∈ Uad and x ∈ PC([−r, T ], X) such that

x(t) = T (φ(t))ϕ(0) + 1
Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1T (φ(t)− φ(s))[f(s, x(s), Kx(s))

+Gx(s) +B(s)u(s)]ds+
∑

0<tk<t

T (φ(t)− φ(tk))Jkx(tk), t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0]

(5.44)

then the system (5.44) is call a mildly solvable with respect to u on [−r, T ] and this

x is called a PC− mild solution with respect to u on [−r, T ].

Theorem 5.3.2. Suppose the assumptions (HF ), (HG), (HK), (HU), (HJ)

holds and the operator A is the infinitesimal generator of a C0− semigroup {T (t)}t≥0

with ‖T (t)‖ ≤ Meωt, M ≥ 1, ω > 0, t ≥ 0, then the system (5.1) has a unique

PC− mild solution with respect to u ∈ Uad on [−r, T ].

Proof. Apply the result of corollary 4.2.7 directly to each interval [tk, tk+1], k =

0, 1, ..., n where t0 = 0, tn = T .

After this, we will show the other method to prove the existence of a PC−
mild solution of the system (5.1) by using the Leray-Schauder fixed point theorem

and the compactness of semigroup {T (t)}t≥0. From the definition of a PC− mild

solution we define the operator F by

Fx(t) = T (φ(t))ϕ(0) + 1
Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1T (φ(t)− φ(s))[f(s, x(s), Kx(s))

+Gx(s) +B(s)u(s)]ds+
∑

0<tk<t

T (φ(t)− φ(tk))Jkx(tk), t ∈ I

Fx(t) = ϕ(t), t ∈ [−r, 0]

(5.45)

for all x ∈ PC([−r, T ], X). Then F is well-defined. Let x ∈ PC([−r, T ], X). By

(HF2), (HK), (HB), (HJ) and lemma 5.1.1, there are constants af > 0 such that

‖f(s, x(s), Kx(s))‖+ ‖Gx(s)‖ ≤ af (2 + ‖x(s)‖+ ‖xs‖B) ≤ N (5.46)



64

for some N > 0, for all s ∈ [0, T ] by continuity of ‖x(t)‖ and ‖xt‖B. So, we obtain

that

|Fx(t)| ≤Meωφ(t)‖ϕ‖C +
Meωφ(t)

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1[‖f(s, x(s), Kx(s))‖

+ ‖Gx(s)‖+ ‖B(s)u(s)‖]ds+Meωφ(t)
∑

0<tk<t

‖Jkx(tk)‖

≤Meωφ(t)‖ϕ‖C +
MNeωφ(t)

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1ds

+
Meωφ(t)

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1‖B(s)u(s)‖ds+Meωφ(t)
∑

0<tk<t

ek‖x(tk)‖

≤Meωφ(t)‖ϕ‖C +
MN(n+ 1)eωφ(t)Tα

αΓ(α)

+
Meωφ(t)K̃

Γ(α)

n∑
k=0

[

∫ tk+1

tk

(tk+1 − s)
p(α−1)
p−1 ds]

p−1
p [

∫ tk+1

tk

‖B(s)u(s)‖pds]
1
p

+MNeωφ(t)
∑

0<tk<t

ek

≤Meωφ(t)‖ϕ‖C +
MNeωφ(t)Tα

αΓ(α)
+
Meωφ(t)(p− 1)(n+ 1)T

pα−1
p−1 ‖B(·)u‖Lp(I,X)

(pα− 1)Γ(α)

+MNeωφ(t)

n∑
k=1

ek <∞.

Therefore the operator F is bounded.

Lemma 5.3.3. Assume that assumption (HF ), (HK), (HB), (HJ) holds. Then

the operator F is continuous and bounded.

Proof. Let xn be a sequence in PC([−r, T ], X) that converging to x in PC([−r, T ], X).

Then there exists N0 > 0 and for all n > N0, ‖xn − x‖PC ≤ 1. Then ‖xn‖ ≤
1 + ‖x‖ ≡ ρ. By using (HF2), (HK), (HJ), lemma 5.1.1, for s ∈ (0, T ) there exist

b(ρ), L̃g > 0 such that

‖f(s, xn(s), Kxn(s))− f(s, x(s), Kx(s))‖ ≤ b(ρ)‖xn − x‖PC

||Gxn(s)−Gx(s)|| ≤ L̃g||(xn)t − xt||B.
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So we have

|Fxn(t)− Fx(t)| ≤ 1

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1‖T (φ(t)− φ(s))‖

· [‖f(s, xn(s), Kxn(s))− f(s, x(s), Kx(s))‖+ ‖Gxn(s)−Gx(s)‖]ds

+
∑

0<tk<t

‖T (φ(t)− φ(tk))‖‖Jkxn(tk)− Jkx(tk)‖

≤MeωT

Γ(α)
[b(ρ)||xn − x||PC + L̃g||(xn)t − (x)t||B]

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1ds

+MeωT
∑

0<tk<t

ek||xn(tk)− x(tk)||

≤MeωT

αΓ(α)
[b(ρ)||xn − x||PC + L̃g||(xn)t − (x)t||B](n+ 1)Tα +

k=n∑
k=0

ek||xn − x||PC .

Since ||(xn)t−xt||B = sup
0≤s≤t

||(xn)s−xs||B = sup
0≤s≤t

||xn(s)−x(s)|| ≤ ||xn−x||PC → 0,

as n→ +∞ , so ||Fxn − Fx|| → 0 , as n→ +∞ . This implies that the map F is

continuous on PC([−r, T ], X).

Corollary 5.3.4. The operator F maps bounded sets into bounded sets.

Proof. Let us prove that for any r > 0 the exists a γ > 0 such that for each

x ∈ Br ≡ {x ∈ PC([−r, T ], X) | ||x||PC ≤ r}, we have ||Fx||PC ≤ γ. The result is

followed from the proof of lemma 5.3.3.

Lemma 5.3.5. Suppose conditions (HF ), (HK), (HB), (HJ) holds and A is the

infinitesimal generator of a compact semigroup {T (t)}t≥0. Then F is a compact

operator.

Proof. Let B be a bounded subset of PC([−r, T ], X). By corollary 5.3.4, F (B) is

bounded. Define

Q = F (B) and Q(t) = {Fx(t) | x ∈ B}. (5.47)

Clearly, for t ∈ [−r, 0], Q(t) = {ϕ(t)} is compact.

We only necessary consider for t > 0. Given ε > 0. For 0 < ε ≤ t ≤ T , for short
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we denote f(s, x(s), Kx(s) +Gx(s) +B(s)u(s)) by f̃u(s, x(s)). Define

Qε(t) ≡ Fε(B)(t) = T (φ(ε))T (φ(t)− φ(ε))ϕ0

+
T (φ(ε))

Γ(α)

∑
0≤tk<t

∫ tk+1

tk

(tk+1 − s)α−1T (φ(tk+1)− φ(ε)− φ(s))f̃u(s, x(s))ds

+
T (φ(ε))

Γ(α)

∫ t−ε

tk

(t− s)α−1T (φ(t)− φ(ε)− φ(s))f̃u(s, x(s))ds

+ T (φ(ε))
∑

0<tk<t

T (φ(tk)− φ(ε)− φ(s))Jk(x(tk)). (5.48)

Since φ(t) is continuous and T (t), for t ≥ 0 is compact inX, the set {Qε(t) | x ∈ B}
is relatively compact in X for every ε sufficiently small, t ∈ (ε, T ]. For t ∈ (0, t1]

the equation (5.48) reduce to

Qε(t) = Fε(B)(t) = T (φ(ε))T (φ(t)− φ(ε))ϕ0

+
T (φ(ε))

Γ(α)

∫ t−ε

0

(t− s)α−1T (φ(t)− φ(ε)− φ(s))f̃u(s, x(s))ds. (5.49)

Furthermore, since ||x(t)|| and ||xt|| are continuous on (0, t1], there exist N > 0

such that ||x(t)||, ||xt||B ≤ N . By assumptions (HF2), (HB) and lemma 5.1.1,

there exist Lg, Lk > 0 such that

||f̃u(s, x(s))|| ≤ ||f(s, x(s)), Kx(s)||+ ||Gx(s)||+ ||B(s)u(s)||

≤ Lk(1 + ||x||) + Lg(1 + ||xt||B) + ||B(·)u||Lp(I,X)

≤ (Lk + Lg)(1 +N) + ||B(·)u||Lp(I,X)|| ≡ Lu. (5.50)

Then for t ∈ (ε, t1]

sup
x∈B
||Fx(t)− Fεx(t)|| = 1

Γ(α)
sup
x∈B
||
∫ t

0

(t− s)α−1T (φ(t)− φ(s))f̃u(s, x(s))ds

− T (φ(ε))

∫ t−ε

0

(t− s)α−1T (φ(t)− φ(ε)− φ(s))f̃u(s, x(s))ds||

=
1

Γ(α)
sup
x∈B
||
∫ t

t−ε
(t− s)α−1T (φ(t)− φ(s))f̃u(s, x(s))ds||

≤ MLu
Γ(α)

∫ t

t−ε
(t− s)α−1ds =

MLuε
α

Γ(α + 1)
.
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Therefore there are relatively compact sets arbitrary close to the set Q(t) for

t ∈ (0, t1]. Hence Q(t) itself is relatively compact in X for (0, t1].

Consider for t ∈ (t1, t2), we define

Q(t+1 ) ≡ Q(t−1 ) + J1(Q(t−1 )) = Q(t1) + J1(Q(t1)).

By the condition (HJ), we get J1(Q(t1)) is relatively compact and this implies

Q(t+1 ) is also relatively compact. Let x(t+1 ) = x1. Then for t ∈ (t1, t2], the equation

5.48 reduce to

Qε(t) = Fε(B)(t) = T (φ(ε))T (φ(t)− φ(t1)− φ(ε))x1

+
T (φ(ε))

Γ(α)

∫ tk+1

0

(t1 − s)α−1T (φ(t1)− φ(ε)− φ(s))f̃u(s, x(s))ds

+
T (φ(ε))

Γ(α)

∫ t−ε

t1

(t− s)α−1T (φ(t)− φ(ε)− φ(s))f̃u(s, x(s))ds

+ T (φ(ε))T (φ(t1)− φ(ε)− φ(s))J1(x(t1)). (5.51)

Furthermore, for t ∈ (t1 + ε, t2]

sup
x∈B
{||Fx(t)− Fx(t)||} ≤ MLuε

α

Γ(α + 1)
.

Therefore Q(t) is relatively compact on (t1, t2]. In general , given any tk ∈ D =

{t0 = 0, t1, t2, ..., tn, tn+1 = T}, define x(t+k ) = xk and

Q(t+k ) ≡ Q(t+k ) + Jk(Q(t−k )) = Q(tk) + Jk(Q(tk)) for tk ∈ D

Similarly,for t ∈ (tk, tk+1] the equation (5.48) reduce to

Qε(t) = Fε(B)(t) = T (φ(ε))T (φ(t)− φ(tk)− φ(ε))xk

+
T (φ(ε))

Γ(α)

∑
0≤tk<t

∫ tk+1

tk

(tk+1 − s)α−1T (φ(tk+1)− φ(ε)− φ(s))f̃u(s, x(s))ds

+
T (φ(ε))

Γ(α)

∫ t−ε

tk

(t− s)α−1T (φ(t)− φ(ε)− φ(s))f̃u(s, x(s))ds

+ T (φ(ε))
∑

0<tk<t

T (φ(tk)− φ(ε)− φ(s))Jk(x(tk)). (5.52)
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Furthermore, for t ∈ (tk, tk+1]

sup
x∈B
{||Fx(t)− Fx(t)||} ≤ MLuε

α

Γ(α + 1)
. (5.53)

By repeating these process till the time interval which expanded, Q(t) is relatively

compact for t ∈ I\D and Q(t+k ) is relatively compact for tk ∈ D. Next, we will

show that the map Q is equicontinuous on (tk, tk+1), k = 0, 1, ..., n. Since B is

bounded and follow from the inequality(5.3.5), there exists a Lu > 0 such that

||f̃u(s, x(s))|| ≤ Lu. (5.54)

Let h > 0 and for 0 < t < t+ h < t1 and for x ∈ B, we obtain

||Fx(t+ h)− Fx(t)|| ≤ ||T (φ(t+ h))ϕ(0)− T (φ(t))ϕ(0)||

+ || 1

Γ(α)

∫ t+h

0

(t+ h− s)α−1T (φ(t+ h)− φ(s))f̃u(s, x(s))ds

− 1

Γ(α)

∫ t

0

(t− s)α−1T (φ(t)− φ(s))f̃u(s, x(s))ds||

≤||T (φ(t))||||T (φ(h))− I||||ϕ||C

+
1

Γ(α)

∫ t+h

t

(t+ h− s)α−1||T (φ(t+ h)− φ(s))||||f̃u(s, x(s))||ds

+
1

Γ(α)

∫ t

0

||T (φ(t)− φ(s))||||(t− s+ h)α−1T (φ(h))− (t− s)α−1I||||f̃u(s, x(s))||ds

≤Meωφ(T )||ϕ||C ||T (φ(h))− I||+ Meωφ(T )

αΓ(α)
Luh

α

+
Meωφ(T )

Γ(α)
Lu

∫ t

0

||(t− s+ h)α−1T (h)− (t− s)α−1I||ds.

Since lim
h→0
||(t−s+h)α−1T (φ(h))− (t−s)α−1I|| = 0 for all t > 0 and lim

h→0
||T (φ(h))−

I|| = 0, so the right hand side of this equation can be made as desired by choosing

h sufficiently small. Hence F is equicontinuous on (0, t1). In general, for (tk, tk+1),

k = 0, 1, 2, ..., n, for tk < t < t+ h < tk+1

||Fx(t+ h)− Fx(t)|| ≤ ||T (φ(t))||||T (φ(h))− I||||xk||

+
1

Γ(α)

∫ t+h

t

(t+ h− s)α−1||T (φ(t+ h)− φ(s))||||f̃u(s, x(s))||ds

+
1

Γ(α)

∫ t

0

||T (φ(t)− φ(s))||||(t− s+ h)α−1T (φ(h))− (t− s)α−1I||||f̃u(s, x(s))||ds
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≤Meωφ(T )||xk||||T (φ(h))− I||+ Meωφ(T )

αΓ(α)
Luh

α

+
Meωφ(T )

Γ(α)
Lu

∫ t

0

||(t− s+ h)α−1T (h)− (t− s)α−1I||ds.

Using the same idea, one can show that Q is equicontinuous on (tk, tk+1), k =

0, 1, 2, ..., n. So, the generalized Ascoli-Arzela theorem implies that FB is a rela-

tively compact subset of PC([−r, T ], X). Further, F is a compact operator.

Lemma 5.3.6. The set Ω ≡ {x ∈ PC([−r, T ], X) | x = σFx, σ ∈ [0, 1]} is

bounded on PC([−r, T ], X)

Proof. Let x ∈ Ω. Since ϕ ∈ C, Then, for t ∈ [−r, 0]

||x(t)|| = ||σFx(t)|| ≤ ||Fx(t)||||ϕ(t)|| ≤M for some M > 0.

By using assumptions (HF2), (HB) and lemma 5.1.1, there exist ag, af > 0 such

that for t ∈ (0, T ], we have

||x(t)|| = ||σFx(t)|| ≤ ||Fx(t)|| ≤ ||T (φ(t))||||ϕ||C

+
1

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1||T (φ(t)− φ(s))||[||f(s, x(s), Kx(s))||+ ||Gx(s)||

+ ||B(s)u(s)||]ds+
∑

0<tk<t

||T (φ(t)− φ(tk))||||Jk(x(tk))||

≤Meωφ(T )||ϕ||C

+
Meωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1[af (1 + ||x(s)||) + ag(1 + ||xs||B)]ds

+
Meωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1||B(s)u(s)||ds+Meωφ(T )
∑

0<tk<t

ek||x(tk)||
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≤Meωφ(T )||ϕ||C +
Meωφ(T )

αΓ(α)
(af + ag)T

α(n+ 1)

+
Meωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1||x(s)||ds

+
Meωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1||xs||Bds

+
Meωφ(T )

Γ(α)

n∑
k=0

[

∫ tk+1

tk

(tk+1 − s)
p(α−1)
p−1 ds]

p−1
p [

∫ tk+1

tk

||B(s)u(s)||pds]
1
p

+Meωφ(T )
∑

0<tk<t

ek||x(tk)||

≤Meωφ(T )[||ϕ||C +
(af + ag)T

α(n+ 1)

αΓ(α)
+

(af + ag)T
pα−1
p−1 (n+ 1)(p− 1)||B(·)u||Lp(I,X)

(pα− 1)Γ(α)
]︸ ︷︷ ︸

a∗

+
Meωφ(T )

Γ(α)︸ ︷︷ ︸
b∗

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1||x(s)||ds

+
Meωφ(T )

Γ(α)︸ ︷︷ ︸
c∗

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1||xs||Bds+Meωφ(T )︸ ︷︷ ︸
d∗

∑
0<tk<t

ek||x(tk)||

≤ a∗ + b∗
∑

0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1||x(s)||ds+ c∗
∑

0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1||xs||Bds

+ d∗
∑

0<tk<t

ek||x(tk)||.

By theorem 5.2.3, there exists M > 0 such that ||x(t)|| ≤ M for all t ∈ (0, T ] for

all x ∈ Ω. Hence Ω is a bounded subset of PC([−r, T ], X).

Theorem 5.3.7, the main result in this section guarantees the existence of

PC−mild solution with respect to a control u ∈ Uad on [−r, T ] for system(5.31).

Theorem 5.3.7. Suppose that assumptions (HF ), (HG), (HK), (HJ), (HU)

holds and the operator A is the infinitesimal generator of a compact semigroup

{T (t)}t≥0, then the system (5.31) has at least PC−mild solution with respect to a

control u ∈ Uad on [−r, T ].
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Proof. Define the operator F by

Fx(t) = T (φ(t))ϕ(0) + 1
Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1T (φ(t)− φ(s))[f(s, x(s), Kx(s))

+Gx(s) +B(s)u(s)]ds+
∑

0<tk<t

T (φ(t)− φ(tk))Jkx(tk), t ∈ I

Fx(t) = ϕ(t), t ∈ [−r, 0]

Then by lemma 5.3.3 and lemma 5.3.5, we have F is continuous on PC([−r, T ], X)

and compact. Set Ω ≡ {x ∈ PC([−r, T ], X) | x = σFx, σ ∈ [0, 1]}. The lemma

5.3.6 implies Ω is a bounded subset of PC([−r, T ], X). Thus, by Leray-Schauder

fixed point theorem we obtain F has a fixed point in PC([−r, T ], X). This implies

that the system (5.16) has at least PC−mild solution with respect to the control

u ∈ Uad on PC([−r, T ], X).

5.4 Existence of Optimal Controls

In the previous section we already prove the existence of the PC−mild solution

for the impulsive system. For this section we solve the optimize control problem

to the impulsive system. Let Uad be the admissible control set, we consider the

Bolza problem say problem (P );

Find u ∈ Uad corresponding to x0 such that

J(x0, u0) ≤ J(x, u) for all u ∈ Uad (P)

where

J(xu, u) =

∫ T

0

l(t, xu(t), xut , u(t))dt+ Φ(xu(T )).

xu denote the mild solution of system (5.16) corresponding to the control u ∈ Uad
and Φ : X → < is nonnegative continuous function. For short, we denote J(x, u)

by J(u).

We solve the optimizing control problem under the following assumption (HL).

Let l : I ×X × Y → (−∞,∞] be Borel measurable satisfying these conditions:
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(HL1) l(t, ·, ·, ·) is sequentially lower semicontinuous on X ×X × Y for a.e. on I.

(HL2) l(t, ξ, ν, ·) is convex on Y for each ξ ∈ X, ν ∈ X and for a.e. t ∈ I.

(HL3) There exist constants a, b ≥ 0, c > 0 and η ∈ L1(I,<) such that

l(t, ξ, νt, u) ≥ η(t) + a||ξ||+ b||νt||B + c||u||qY .

Theorem 5.4.1. Under the assumption (HF ), (HU), (HB) and (HL) the optimal

control problem (P ) has a solution, that is, there exists an admissible state-control

pair (x0, u0) such that

J(x0, u0) ≤ J(x, u) for all u ∈ Uad.

Proof. If inf{J(u) | u ∈ Uad} = +∞ then there is nothing to prove. So we assume

that inf{J(u) | u ∈ Uad} = m < +∞. By (HL3), there are constants a, b ≥ 0, c > 0

and η ∈ L1(I,<) such that

l(t, x, xt, u) ≥ η(t) + a||x||+ b||xt||B + c||u||qY .

Since η is nonnegative we have

J(u) =

∫ T

0

l(t, xu(t), xut , u(t))dt+ Φ(xu(T ))

≥
∫ T

0

η(t)dt+ a

∫ T

0

||xu(t)||dt+ b

∫ T

0

||xut ||Bdt+ c

∫ T

0

||u(t)||qY dt

≥ −σ > −∞ for some ξ > 0, for all u ∈ Uad.

Hence m ≥ −σ > −∞ . By definition of minimum, there exists a minimizing

sequence {un} of J , that is lim
n→∞

J(un) = m and

J(un) ≥
∫ T

0

η(t)dt+ a

∫ T

0

||xun(t)||dt+ b

∫ T

0

||xunt ||Bdt+ c

∫ T

0

||un(t)||qY dt.

So there exists N0 > 0 such that for all n ≥ N0,

m+ m̃ ≥ J(un) ≥ c

∫ T

0

||un(t)||qY dt
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for some m̃ > 0 and hence ||un||qLq(I,Y ) ≤
m̃+m
c

. This show that un is contained in

a bounded subset of the reflexive Banach space Lq(I, Y ). So un has a convergence

subsequence relabeled as un and un → u0 for some u0 ∈ Uad = Lq(I, Y ). Let

xn ∈ PC([−r, T ], X) be the corresponding sequence of solutions for the integral

equation;

xn(t) = T (φ(t))ϕ(0) + 1
Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1T (φ(t)− φ(s))[f(s, xn(s), Kxn(s))

+Gxn(s) +B(s)un(s)]ds+
∑

0<tk<t

T (φ(t)− φ(tk))Jkxn(tk), t ∈ [0, T ]

xn(t) = ϕ(t), t ∈ [−r, 0].

From the a priori estimate, there exists a constant ρ > 0 such that

||xn||PC([−r,T ],X) ≤ ρ for all n = 0, 1, 2, ...

where x0 denote the solution corresponding to u0, that is

x0(t) = T (φ(t))ϕ(0) + 1
Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1T (φ(t)− φ(s))[f(s, x0(s), Kx0(s))

+Gx0(s) +B(s)u(s)]ds+
∑

0<tk<t

T (φ(t)− φ(tk))Jkx
0(tk), t ∈ I

x0(t) = ϕ(t), t ∈ [−r, 0].

By (HF ), (HK), (HG) and lemma 5.1.1 there are constants a(ρ), b(ρ) such that

||f(s, xn(s), Kxn(s))− f(s, x0(s), Kx0(s))|| ≤ a(ρ)||xn(s)− x0(s)|| and

||Gxn(t)−Gx0(t)|| ≤ b(ρ)||(xn)t − (x0)t||B

for each s ∈ [0, T ] and t ∈ [−r, T ]. We use the fact that xn(s) − x0(s) = 0 for
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s ∈ [−r, 0] , so we have

||xn(s)− x0(s)|| ≤ 1

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1T (φ(t)− φ(s))

· [||f(s, xn(s), Kxn(s))− f(s, x0(s), Kx0(s))||+ ||Gxn(t)−Gx0(t)||

+ ||B(s)un(s)−B(s)u0(s)||]ds+
∑

0<tk<t

T (φ(t)− φ(tk))||Jkxn(tk)− Jkx0(tk)||

≤ Meωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1[a(ρ)||xn(s)− x0(s)||+ b(ρ)||(xn)t − (x0)t||B]ds

+
∑

0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1||B(s)un(s)−B(s)u0(s)||ds+Meωφ(T )
∑

0<tk<t

ek||xn(tk)− x0(tk)||

≤ [a(ρ) + b(ρ)]Meωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1||xn(s)− x0(s)||ds

+
Meωφ(T )

Γ(α)

k=n∑
k=1

[

∫ tk+1

tk

(tk+1 − s)
pα−1
p−1 ds]

p−1
p [

∫ tk+1

tk

||B(s)un(s)−B(s)u0(s)||pds]
1
p

+Meωφ(T )
∑

0<tk<t

ek||xn(tk)− x0(tk)||

≤ Meωφ(T )(p− 1)(n+ 1)T
pα−1
p−1 ||B(·)un −B(·)u0||p

(pα− 1)Γ(α)

+
[a(ρ) + b(ρ)]Meωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk

(tk+1 − s)α−1||xn(s)− x0(s)||ds

+Meωφ(T )
∑

0<tk<t

ek||xn(tk)− x0(tk)||.

By using theorem 5.2.2, we obtain there exist M̃ > 0 independent on u, n and t

such that

||xn(t)− x0(t)|| ≤ M̃ ||B(·)un −B(·)u0||Lq(I,Y ).

Since B(·) is strongly continuous, we have ||B(·)un−B(·)u0||Lq(I,Y )
s→ 0. This im-

plies that ||xn−x0|| s→ 0 in C([−r, T ], X). Let us set ln(t) = l(t, xn(t), (xn)t, un(t))

for all t ∈ [0, T ]. Then by (HL3), {ln(t)} is a sequence of non-negative measurable

functions. So, by using Fatou ’s Lemma,

lim
n→∞

∫ T

0

ln(t)dt ≥
∫ T

0

lim
n→∞

ln(t)dt. (5.55)
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By (HL1) and (5.55),

m = lim
n→∞

J(un) ≥ lim
n→∞

[

∫ T

0

ln(t)dt+ Φ(xn(T ))]

≥
∫ T

0

lim
n→∞

ln(t)dt+ Φ( lim
n→∞

xn(T ))

=

∫ T

0

lim
n→∞

l(t, xn(t), (xn)t, un(t))dt+ Φ(x0(T ))

≥
∫ T

0

l(t, x0(t), x0
t , u

0(t))dt+ Φ(x0(T )) = J(u0).

This show that J(u0) = m, i.e., J(u0) ≤ J(u) for all u ∈ Uad.

5.5 Application to Nonlinear Heat Equation

Consider the boundary value problem with delay and control;

∂αy(x, t)

∂tα
=∆y(x, t) + f(x, t, y(x, t),Oy(x, t))

+

∫ t

−r
h(t− s)g(x, s, y(x, s),Oy(x, t))ds

+

∫
Ω

B(x, ξ)u(ξ, t)dξ, (x, t) ∈ Ω× I\D (5.56)

∆y(x, tk) =Jk(y(x, tk)), tk ∈ D (5.57)

y(x, t) =ϕ(x, t), (x, t) ∈ Ω̄× [−r, 0] (5.58)

y(x, t) =0, (x, t) ∈ ∂Ω× I (5.59)

where I = [0, T ], D = {t1, t2, ..., tn}, Ω is boundary domain of <N , ϕ ∈ C([−r, 0]×
Ω̄), u ∈ Lq(Ω× I), h ∈ C([−r, T ]2,<) and B : Ω̄× Ω̄→ < is continuous.

(HHf) Suppose that f : Ω̄× I ×<×<N → <, g : Ω̄× I ×<×<N → < and there

are L1, L2 ≥ 0 such that

|f(x, t, ξ, η)|+ |g(x, t, ξ, η)| ≤ L1(1 + |ξ|+ |η|), (5.60)

and

|f(x, t, ξ, η)−f(x, s, ξ̃, η̃)|+ |g(x, t, ξ, η)−g(x, s, ξ̃, η̃)| ≤ L2(|t−s|+ |ξ− ξ̃|+ |η− η̃|).
(5.61)
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(HHJ) Suppose that Jk : < → <, k = 1, 2, ..., n satisfies the following conditions,

there are ek > 0, k = 1, 2, ..., n such that

|Jk(ξ)− Jk(ξ̃)| ≤ ek|ξ − ξ̃|. (5.62)

If we interpret y(x, t) as temperature at the point x ∈ Ω at time t, then condition

(5.56) means that the temperature at the initial time t = 0 is prescribed. Condition

(5.59) means that the temperature on the boundary ∂Ω is equal to zero. The

function f describes an external heat sources,for this system f and u are given.

We introduce the integral
∫ t
−r h(t − s)g(x, s, y(x, s),Oy(x, s))ds denoting in sense

of delay term that is impacted from the initial delay function ϕ(x, t) for t ∈ [−r, 0]

in the condition (5.58). Moreover, the system is controlled by the control u via the

sensor mapping
∫

Ω
B(x, ξ)u(ξ, t)dξ. Let Uad = Lq(Ω× I) be the admissible control

set. We will solve the optimal problem (P0) via the cost functional;

J(u) =

∫ T

0

∫
Ω

|y(ξ, t)|2dξdt+

∫ T

0

∫
Ω

∫ 0

−r
|y(ξ, t+ s)|2dsdξdt

+

∫ T

0

∫
Ω

|u(ξ, t)|2dξdt+ Φ(y(x, T )),

where Φ ∈ C(<,<+).

That is, find u0 ∈ Uad Let X = Lp(Ω). For t ∈ [−r, T ], define y(t) : Ω→ X by

y(t)(x) = y(x, t) for all x ∈ Ω,

and define

Dα
t y(t)x =

∂αy(x, t)

∂tα
, for all y ∈ X, x ∈ Ω.

We define

f(t, y(t), Hy(t))(x) = f(x, t, y(x, t),Oy(x, t)), (5.63)

Gy(t)(x) =

∫ t

−r
h(t− s)g(x, s, y(x, s),Oy(x, t))ds, (5.64)

B(t)u(t)(x) =

∫
Ω

B(x, ξ)u(ξ, t)dξ (5.65)

Jk(y(t))(x) = Jk(y(x, t)). (5.66)
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Define an operator A : X → X as

Ay = ∆y for all y ∈ D(A)

where D(A) consists of all C2(Ω̄) function vanishing on ∂Ω. Now we introduce the

eigenvalue problem for the negative Laplacian;

Ay = λy for all y ∈ D(A).

Using the standard definition of the inner product, we define that for any y1,

y2 ∈ D(A);

< Ay1, y2 >=

∫
Ω

ȳ24y1dy =

∫
Ω

ȳ14y2dy =< y1, Ay2 > . (5.67)

So that A is symmetric and its eigenvalues must be real. Furthermore, for any

y ∈ D(A), we have

< Ay, y >=< 4y, y >=

∫
Ω

ȳ4ydy =

∫
Ω

|grady|2dy ≥ 0. (5.68)

The right hand side vanishes only if y is constant but the only constant in D(A)

is the zero constant. Thus, we obtain

λ||y||2 =< λy, y >=< Ay, y >> 0, for all y 6= 0 in D(A). (5.69)

This is precisely the definition of a positive operator, A is actually strongly positive.

On account of equation (5.69), the eigenvalues of A must be positive and we obtain

a following lemma.

Lemma 5.5.1. [15] The operator A defined above is the infinitesimal generator of

a compact C0-semigroup {T (t)}t≥0 on X.

Then the system (5.56) can transform to the abstract problem as followed;
Dα
t y(t) = Ay(t) + f(t, y(t), Ky(t)) +Gy(t) +B(t)u(t), t ∈ I\D

∆y(tk) = Jk(y(tk)), tk ∈ D

y(t) = ϕ(t), t ∈ [−r, 0].

(5.70)
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Theorem 5.5.2. Suppose the assumptions (HHf) and (HHJ) hold. Then the

control problem (P0) for the generalization nonlinear heat equation with delay in

<N ( system (5.56)) has a solution, that is, there exists an admissible state-control

pair (y0, u0) such

J(y0, u0) ≤ J(y, u) for all u ∈ Uad.

Proof. We solve the control problem (P0) for system(5.56) via the Chauchy abstract

form (5.70). By using the assumptions (HHf), (HHJ) and definitions of f , g,

Jk (k = 1, 2, ..., n) and the cost functional J , it satisfies all the assumptions given in

theorem 5.3.7 and theorem 5.4.1. Then the control problem (P0) for system(5.56)

has a solution, that is, there exists an admissible state-control pair (y0, u0) such

J(y0, u0) ≤ J(y0, u) for all u ∈ Uad.



CHAPTER VI

FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION

OF MIXED TYPE WITH SOLUTION OPERATOR

In this chapter, we consider a fractional integro-differential equations of mixed

type; D
α
t x(t) = Ax(t) + f(t, x(t), Gx(t), Sx(t)), t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0],
(6.1)

on infinite dimensional Banach space X, where I = [0, T ], 0 < α ≤ 1, Dα
t denote

the fractional derivative in the sense of Riemann-Liouville, f : I×X×X×X → X,

and ϕ : [−r, 0]→ X are given continuous functions, A is an infinitesimal generator

of a solution operator {Tα(t)}t≥0 in X and G, S are nonlinear integral operators

given by

Gx(t) =

∫ t

−r
k(t, s)g(s, x(s))ds, Sx(t) =

∫ T

0

h(t, s)q(s, x(s))ds. (6.2)

We will prove the existence and uniqueness of mild solution for system (6.1).

6.1 Background of Solution operator

In this section, the fractional evolution in the sense of Riemann-Liouville, which

will be studied throughout this chapter, is formulated. The notion of solution

operator plays a basic role in its study.

We study solution operator by starting at the Cauchy problem for the fractional

evolution of order α, 0 < α < 1, ;D
α
t x(t)− Ax(t) = f(t); t > 0

x(0) = x0

(6.3)
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where a closed linear operator A densely defined in a Banach Space X. Certainly,

if α = 1 ,then from system (6.3), we get;Dtx(t)− Ax(t) = f(t); t > 0

x(0) = x0.
(6.4)

We will seek a form of solution for (6.4). If f is integrable, then we have

Ds[e
A(t−s)x(s)] = eA(t−s)Dsx(s)− eA(t−s)x(s)

= eA(t−s)[Ax(s) + f(s)]− eA(t−s)x(s)

= eA(t−s)f(s). (6.5)

Integrating (6.5) from 0 to t and we have,

x(t) = eAtx0 +

∫ t

0

eA(t−s)f(s)ds. (6.6)

It is well known that {T (t) = eAt}t≥0 form a C0−semigroup. So the equality (6.6)

is equivalent to

x(t) = T (t)x0 +

∫ t

0

T (t− s)f(s)ds. (6.7)

This equation is called a mild solution of system (6.4) for α = 1.

We can extend this concept to the fractional evolution of order α, 0 < α < 1

by using the generalized exponential(the Mittag Leffler function). Similarly, we

seek the solution in the integral from by using the relation

Dα
t f(u(t)) = Dα

uf(u).(
du

dt
)α

and

Dα
t [u(t)v(t)] = u(t)Dα

t v(t) + v(t)Dα
t u(t),

so we obtain,

Dα
s (Eα(A(t− s)α)x(s)) = Eα(A(t− s)α)Dα

s x(s)− A[Eα(A(t− s)α)]x(s). (6.8)

Applying the equality (6.3), yields

Dα
s (Eα(A(t− s)α)x(s)) = Eα(A(t− s)α)[Ax(s) + f(s)]− AEα(A(t− s)α)x(s)

(6.9)
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So,

Dα
s (Eα(A(t− s)α)x(s)) = Eα(A(t− s)α)f(s). (6.10)

Integrating of order α from 0 to t and applying an initial x(0) = x0,

x(t) = Eα(Atα)x0 +
1

Γ(1 + α)

∫ t

0

(t− s)α−1Eα(A(t− s)α)f(s)ds (6.11)

For short, we denote this family {Eα(Atα)}t≥0 by {Tα(t)}t≥0. So the equality 6.11

can be written as

x(t) = Tα(t)x0 +
1

Γ(1 + α)

∫ t

0

(t− s)α−1Tα(t− s)f(s)ds. (6.12)

Also, (6.12) is called mild solution of system (6.4) for 0 < α < 1.

We conjecture that a family {Eα(Atα)}t≥0 will be a C0−semigroup. Unfortu-

nately, it is not formed a C0−semigroup. For example, the Mittag-Leffler function

Eα(z) for α = 1/2 is computed by

E1/2(z) =
∞∑
k=0

zk

Γ(k/2 + 1)
= ez

2 · erfc(−z),

where erfc(z) is the complementary error function, which is defined by

erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt (6.13)

Let a = 1 and t = s = 1. Then we have,

E1/2(a(t+ s)1/2) = E1/2(
√

2) = e2 · erfc(−
√

2),

E1/2(at1/2)E1/2(as1/2) = [E1/2(1)]1/2 = e2 · [erfc(−1)]2.

Using the software computer to compute erfc(z) with 0.1 percent precision, we

get the result that erfc(−1) ≈ 1.8427 and erfc(−
√

2) ≈ 1.9545, which show that

E1/2(a(t + s)1/2) 6= E1/2(at1/2)E1/2(as1/2). This is an evidence guarantee that the

family {Eα(Atα)}t≥0 is not a C0−semigroup.

However, the family {Eα(Atα)}t≥0 is interesting and now we will discuss about

its properties and study the equality (6.12) that is why we refer several times

to this monograph for basic results on evolutionary equations. For shortness, we

define the solution operator of (6.3) in terms of the corresponding the integral

equation (6.12).
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Definition 6.1.1. Let A be a linear operator on Banach space X. For each α ∈
(0, 1), a family {Tα(t)}t≥0 of bounded linear operators on X is called a solution

operator generated by A if the following conditions are satisfied;

1. Tα(t) is strongly continuous for t ≥ 0 and Tα(0) = I;

2. Tα(t)x ∈ D(A) for all x ∈ D(A) and ATα(t)x = Tα(t)Ax;

3. Tα(t)x = x+ 1
Γ(1+α)

∫ t
0
(t− τ)α−1ATα(τ)xdτ for all x ∈ D(A).

Definition 6.1.2. The solution operator Tα(t) is called exponential bounded if

there is a constant M ≥ 1 and ω > 0 such that

||Tα(t)|| ≤Meωt, t ≥ 0. (6.14)

Example 6.1.3. Let X = Lp(<) with 1 ≤ p < ∞ and A ∈ L(X) define the

operator

Tα(t)x ≡ Eα(Atα)x =
∞∑
n=0

Antαn

x
Γ(αn+ 1). (6.15)

Then the right hand side of (6.15) converge in norm for every t ≥ 0 and defines a

bounded linear operator Tα(t);

||Tα(t)|| ≤
∞∑
n=0

||A||ntαn

Γ(αn+ 1)
= Eα(||A||tα). (6.16)

If α ∈ (0, 2), then the inequality (6.16) implies that Tα(t) is exponentially bounded.

Indeed, the asymptotic expansion (3.45) and the continuity of the Mittag-Leffler

function in t ≥ 0 imply that if ω > 0, there is a constant C such that

Eα(ωtα) ≤ Ceω
1/αt, for t ≥ 0, α ∈ (0, 2). (6.17)

Therefore (6.16)and (6.17) imply,

||Tα(t)|| ≤ Ce||A||
1/αt, for t ≥ 0, α ∈ (0, 2). (6.18)

Then Tα(t) satisfies conditions of definition 6.1.1, hence Tα(t) define as (6.15) is

the solution operator.

Moreover, estimating the power series yields

||Tα(t)− I|| ≤
∞∑
n=1

||A||ntαn

Γ(αn+ 1)
= tα||A||Eα,α+1(||A||tα),
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therefore lim
t→0+
||Tα(t) − I|| = 0, i.e., the solution operator Tα(t) is uniformly con-

tinuous.

From this definition we get some facts.

Proposition 6.1.4. Let A a linear operator on X. If {Tα(t)}t≥0 is a solution

operator generated by A, then Tα(t)Tα(s) = Tα(s)Tα(t) for all s, t ≥ 0

Proof. For x ∈ D(A), for each t > 0,

Tα(t)x = x+
1

Γ(1 + α)

∫ t

0

(t− τ)α−1ATα(τ)xdτ (6.19)

and

Dα
τ Tα(τ)x = ATα(τ)x. (6.20)

Similarly, for x ∈ D(A) we have for all s, τ ≥ 0,

Dα
τ Tα(τ)Tα(s)x = ATα(τ)Tα(s)x = Tα(τ)ATα(s)x = Tα(τ)Tα(s)Ax. (6.21)

Integrating of order α from 0 to t,

Tα(t)Tα(s)x = Tα(s)x+
1

Γ(1 + α)

∫ t

0

(t− τ)α−1Tα(τ)Tα(s)Axdτ

= Tα(s)[x+
1

Γ(1 + α)

∫ t

0

(t− τ)α−1Tα(τ)Axdτ ]

= Tα(s)Tα(t)x

Proposition 6.1.5. If {Tα(t)}t≥0 is the solution operator generated by a linear

operator A on X then

Ax = Γ(α + 1) lim
t→0+

Tα(t)x− x
tα

, (6.22)

for any x ∈ X for which this limit exists.
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Proof. For any function f ∈ C(<+, X) we have

∆αf(t) ∼= Γ(1 + α)∆f(t).

Hence, for any x ∈ X,

∆αTα(t)x ∼= Γ(1 + α)∆Tα(t)x. (6.23)

Dividing by tα and take a limit t near 0+ on both sides of (6.23) we obtain,

lim
t→0+

∆αTα(t)x

tα
= Γ(1 + α) lim

t→0+

∆Tα(t)x

tα
. (6.24)

Using the condition (1) and (3) in definition 6.1.1 ,

ATα(0)x = Γ(1 + α) lim
t→0+

Tα(t)x− Tα(0)x

tα
. (6.25)

We success and get the target equality (6.22).

Proposition 6.1.6. If {Tα(t)}t≥0 is the solution operator generated by a linear

operator A on X then for every x ∈ D(A), lim
s→0+

Tα(t+ s)x− Tα(s)Tα(t)x

sα
= 0.

Proof. From the definition 6.1.1, for each x ∈ D(A) we have Dα
t Tα(t)x = ATα(t)x

and

Dα
t Tα(t)x = lim

s→0

∆αTα(t)x

sα

= Γ(α + 1) lim
s→0

Tα(t+ s)x− Tα(t)x

sα

= Γ(α + 1) lim
s→0

Tα(t+ s)x− Tα(s)Tα(t)x+ Tα(s)Tα(t)x− Tα(t)x

sα

= Γ(α + 1)[lim
s→0

Tα(t+ s)x− Tα(s)Tα(t)x

sα
+ lim

s→0

Tα(s)Tα(t)x− Tα(t)x

sα
]

= Γ(α + 1) lim
s→0

Tα(t+ s)x− Tα(s)Tα(t)x

sα
+ ATα(t)x.

This implies that lim
s→0+

Tα(t+ s)x− Tα(s)Tα(t)x

sα
= 0, for every x ∈ D(A).

Now we introduce the definition for the solution operator that equivalent to the

definition 6.1.1, defined by purely algebraic conditions and give diverse properties

of them as well.
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Definition 6.1.7. For each α ∈ (0, 1), a family {Tα(t)}t≥0 of bounded linear op-

erators on X is called a solution operator if the following condition are satisfied;

1. Tα(t) is strongly continuous for t ≥ 0 and Tα(0) = I;

2. for every s, t ≥ 0, Tα(s)Tα(t) = Tα(t)Tα(s);

3. for every x ∈ X, lim
s→0+

Tα(t+ s)x− Tα(s)Tα(t)x

sα
= 0.

A solution operator {Tα(t)}t≥0 is uniformly continuous if

lim
t→0+
||Tα(t)− I||L(X) = 0. (6.26)

The operator A defined by

Ax = Γ(α + 1) lim
t→0+

Tα(t)x− x
tα

for all x ∈ D(A) (6.27)

is called the infinitesimal generator of solution operator {Tα(t)}t≥0 where

D(A) = {x ∈ X | lim
t→0+

Tα(t)x− x
tα

exists in X}

the domain of A.

From the definition (6.1.7), we have a {Tα(t)}t≥0 with a unique infinitesimal

generator. If Tα(t) is uniformly continuous, its infinitesimal generator is a bounded

operator. On the other hand, every bounded linear operator A is the infinitesimal

generator of solution operator of a uniformly continuous solution operator Tα(t)

and this solution operator is unique.

6.2 Existence of Solutions to Fractional Integro-differential

equations of mixed type

Consider the nonlinear fractional system (6.1),D
α
t x(t) = Ax(t) + f(t, x(t), Gx(t), Sx(t)), t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0],
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where A : D(A) → X be the infinitesimal generator of a solution operator

{Tα(t)}t≥0 satisfying ||Tα(t)||L(X) ≤ Meωt for some M ≥ 1, ω > 0 for all t ≥ 0,

f : I × X × X × X → X and ϕ ∈ C([−r, T ], X) are given functions satisfies

following conditions (HF );

(HF1) f : I ×X ×X ×X → X is uniformly continuous in t and locally Lipschitz

in x, ξ, η that is for any ρ > 0, there are constants af = af (ρ, τ) such that

||f(t, x1, ξ1, η1) − f(t, x2, ξ2, η2)|| ≤ af [||x1 − x2|| + ||ξ1 − ξ2|| + ||η1 − η2||]
provided ||x1||, ||x2||, ||ξ1||, ||ξ2||, ||η1||, ||η2|| ≤ ρ and for all t ∈ [0, τ ].

(HF2) There exists cf ≥ 0 such that ||f(t, x, ξ, η)|| ≤ cf (1 + ||x|| + ||ξ|| + ||η||) for

all x, ξ, η ∈ X and t ∈ I.

First of all, we study the properties of integral operators;

Gx(t) =

∫ t

−r
k(t, s)g(s, x(s))ds, Sx(t) =

∫ T

0

h(t, s)q(s, x(s))ds, for all x ∈ X.

We introduce the following assumptions (HG) and (HS);

(HG1) g : [−r, T ]×X → X is measurable in t on I and locally Lipschitz in x, i.e.,

let ρ > 0, there exists a constant Lg(ρ) such that

||g(t, x1)− g(t, x2)|| ≤ Lg||x1 − x2||

provided ||x1||, ||x2|| ≤ ρ, for all t ∈ [−r, T ].

(HG2) There exists a constant ag such that

||g(t, x)|| ≤ ag(1 + ||x||), for all t ∈ [−r, T ], x ∈ X.

(HG3) k ∈ C([−r, T ]2,<).

(HS1) q : I × X → X is measurable in t on I and locally Lipschitz in x, i.e., let

ρ > 0, there exists a constant Lq(ρ) such that

||q(t, x1)− q(t, x2)|| ≤ Lq||x1 − x2||

provided ||x1||, ||x2|| ≤ ρ, for all t ∈ I.
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(HS2) There exists a constant aq such that for 0 < γ < 1,

||q(t, x)|| ≤ aq(1 + ||x||γ), for all t ∈ I, x ∈ X.

(HS3) h ∈ C(I2,<).

Using moving norm || · ||B one can verify that integral operator G and S have the

following properties.

Lemma 6.2.1. Under the assumption (HG), the operator G has the following

properties;

(1) G : C([−r, T ], X)→ C([−r, T ], X).

(2) Let x1, x2 ∈ C([−r, T ], X) and ||x1||, ||x2|| ≤ ρ, then

||Gx1(t)−Gx2(t)|| ≤ Lg(ρ)(T + r)||k||||(x1)t − (x2)t||B, for all t ∈ [−r, T ].

(3) For x ∈ C([−r, T ], X), we have ||Gx(t)|| ≤ ag(T+r)||k||(1+||xt||B), for all t ∈
[−r, T ].

Proof. The proof is similar to the proof of lemma 4.2.2.

We can similarly obtain the following lemma.

Lemma 6.2.2. Under the assumption (HS), the operator S has the following

properties;

(1) S : C(I,X)→ C(I,X).

(2) Let x1, x2 ∈ C(I,X) and ||x1||, ||x2|| ≤ ρ, then

||Sx1(t)− Sx2(t)|| ≤ Lq(ρ)||h||T ||x1 − x2||C(I,X), for all t ∈ I.

(3) For x ∈ C(I,X), we have ||Sx(t)|| ≤ aqT ||h||(1 + ||x||γC(I,X)), for all t ∈
[−r, T ].

Proof. The proof is similar to the proof of lemma 4.2.2.



88

Recall the fractional integro-differential equations of mixed type system (6.1);D
α
t x(t) = Ax(t) + f(t, x(t), Gx(t), Sx(t)), t ∈ (0, T ]

x(t) = ϕ(t), t ∈ [−r, 0].

Let 0 < α < 1 . If x is a solution of (6.1), then the X−valued function

w(s) = Tα(t− s)x(s) is α−differentiable for 0 < s < t and

Dα
sw(s) = Tα(t− s)Dα

s x(s)− ATα(t− s)x(s)

= Tα(t− s)[Ax(s) + f(s, x(s), Gx(s), Sx(s))]− ATα(t− s)x(s)

= Tα(t− s)f(s, x(s), Gx(s), Sx(s)). (6.28)

Since f is integrable, the right hand side of (6.28) is integrable in the sense of

Bochner and integrating (6.28) of order α from 0 to t and applying the initial

w(0) = Tα(t)ϕ(0), yields

x(t) = Tα(t)ϕ(0) +
1

Γ(α)

∫ t

0

(t− s)α−1Tα(t− s)f(s, x(s), Gx(s), Sx(s))ds, for t ∈ I.

Therefore we will give a definition of mild solution for system (6.1) as follows.

Definition 6.2.3. Let x ∈ C([−r, t0], X). If there exists a t0 > 0 such thatx(t) = Tα(t)ϕ(0) + 1
Γ(α)

∫ t
0
(t− s)α−1Tα(t− s)f(s, x(s), Gx(s), Sx(s))ds, t ∈ [0, t0]

x(t) = ϕ(t), t ∈ [−r, 0].

(6.29)

Then the system (6.1) is called mildly solvable on [−r, t0] and this x is said to

be a mild solution on [−r, t0].

Lemma 6.2.4. (An a priori bound) If x ∈ C([−r, T ], X) is any solution of system

(6.1) then x has an a priori bound, i.e., there is a ρ > 0, if x is solution of (6.1)

on [−r, T ] then ||x(t)|| ≤ ρ, for all t ∈ [−r, T ].

Proof. Let x ∈ C([−r, T ], X). For t ∈ [0, T ], we use (HF2), lemma 6.2.1 and

lemma 6.2.2, there exists a constant cf such that for all s ∈ [0, T ]

||f(s, x(s), Gx(s), Sx(s))|| ≤ cf (1 + ||x(s)||+ ||xs||B + ||x(s)||γ) (6.30)
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and

||x(t)|| ≤MeωT ||ϕ||C +
MeωT cf

Γ(α)

∫ t

0

(t− s)α−1(1 + ||x(s)||+ ||xs||B + ||x(s)||γ)ds.

≤MeωT ||ϕ||C +
MeωT cfT

α

αΓ(α)
+
MeωT cf

Γ(α)

∫ t

0

(t− s)α−1(||x(s)||+ ||xs||B)ds

+
MeωT cf

Γ(α)

∫ t

0

(t− s)α−1||x(s)||γds.

By lemma 4.1.4, there exists a constant ρ > 0 such that ||x(t)|| ≤ ρ, for t ∈ I.

We will prove the existence and uniqueness of mild solution for the system

(6.1). We construct an operator F and prove that it is a strictly contraction by

following next lemmas.

For τ > 0, Cτ ≡ C([−r, τ ], X) with the usual supremum norm and for λ > 0, we

set S(λ, τ) = {y ∈ Cτ | max
0≤t≤τ

||y(t)− y(0)|| ≤ λ and y(0) = ϕ(0), t ∈ [−r, 0]}.
Then S(λ, τ) is a nonempty closed convex subset of Cτ .

Define F : S(λ, τ)→ Cτ byFy(t) = Tα(t)ϕ(0) + 1
Γ(α)

∫ t
0
(t− s)α−1Tα(t− s)f(s, y(s), Gy(s), Sy(s))ds, t ∈ [0, τ ],

Fy(t) = ϕ(t) t ∈ [−r, 0].

(6.31)

Then the map F is bounded. Indeed, by using (6.30), we obtain

||Fy(t)|| ≤MeωT ||ϕ||C +
MeωT cf

Γ(α)

∫ t

0

(t− s)α−1(1 + ||y(s)||+ ||ys||B + ||y(s)||γ)ds.

Since y ∈ Cτ , there is a constant N > 0 such that 1+||y(s)||+||ys||B+||y(s)||γ ≤ N ,

so

||Fy(t)|| ≤MeωT ||ϕ||C +
MeωT cfNT

α

αΓ(α)
<∞.

Moreover, some properties of the map F are listed as follows.

Lemma 6.2.5. The operator F is well-defined on S(λ, τ) for τ > 0. Moreover,

there exists τ0 > 0 such that F maps S(λ, τ)) into itself, i.e., F (S(λ, τ)) ⊆ S(λ, τ)).
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Proof. For λ > 0 and τ > 0. Let {yn} be a sequence in S(λ, τ) and y ∈ S(λ, τ)

such yn → y.

By condition (HF1), lemma 6.2.1 and lemma 6.2.2, there exists a constant L̃(λ+

||ϕ||C , τ) > 0 such that for all s ∈ [0, τ ],

||f(s, yn(s), Gyn(s), Syn(s))−f(s, y(s), Gy(s), Sy(s))||

≤ L̃(λ+ ||ϕ||C , τ)[||yn(s)− y(s)||+ ||(yn)s − ys||B]

and for each t ∈ [0, τ ]

||Fyn(t)− Fy(t)|| ≤ Meωτ L̃(λ+ ||ϕ||C , τ)

Γ(α)

∫ t

0

(t− s)α−1[||yn(s)− y(s)||+ ||(yn)s − ys||B]ds

≤ Meωτ L̃(λ+ ||ϕ||C , τ)τα

αΓ(α)
[||yn − y||C([0,τ ],X) + ||(yn)t − yt||B].

Since ||(yn)t − yt||B = sup
0≤s≤t

||yn(s) − y(s)|| ≤ ||yn − y||C([0,τ ],X) → 0 as n → +∞ ,

||Fyn − Fy|| → 0 as n→ +∞. This implies that the map F is well-defined.

We next show that there is a τ0 such that F map S(λ, τ0) into itself.

For each y ∈ S(λ, τ) and t ∈ [0, τ ], by assumptions (HF ), lemma 6.2.1 and lemma

6.2.2, there exists a κ, L(λ+ ||ϕ||C , τ) > 0 such that

||f(0, y(0), Gy(0), Sy(0))|| ≤ κ(1 + ||ϕ||C),

and for each s ∈ [0, τ ],

||f(s, y(s), Gy(s), Sy(s))−f(0, y(0), Gy(0), Sy(0))||

≤ L(λ, τ)[||y(s)− ϕ(0)||+ ||ys − y0||B]

≤ 2λL(λ+ ||ϕ||C , τ).

we obtain,

||Fy(t)− ϕ(0)||

≤ ||Tα(t)ϕ(0)− ϕ(0)||+ Meωτ

Γ(α)

∫ t

0

(t− s)α−1||f(0, y(0), Gy(0), Sy(0))||ds

+
Meωτ

Γ(α)

∫ t

0

(t− s)α−1||f(s, y(s), Gy(s), Sy(s))− f(0, y(0), Gy(0), Sy(0))||ds

≤ max
0≤t≤τ

||Tα(t)ϕ(0)− ϕ(0)||+ Meωτ [κ(1 + ||ϕ||C) + 2λL(λ+ ||ϕ||C , τ)]τα

αΓ(α)
≤ λq(τ)
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where

q(τ) =
1

λ
[ max
0≤t≤τ

||Tα(t)ϕ(0)− ϕ(0)||+ Meωτ [κ(1 + ||ϕ||C) + 2λL(λ+ ||ϕ||C , τ)]τα

αΓ(α)
].

Since q(τ)→ 0+ as τ → 0+, a suitable τ0 can be found such that 0 < q(τ0) < 1, so

we conclude that the F maps S(λ, τ0) into itself, i.e., F (S(λ, τ0)) ⊆ S(λ, τ0).

Theorem 6.2.6. Suppose (HF ), (HS), (HG) holds and A is an corresponding

to a solution operator {Tα(t)}t≥0 with exponentially bound. Then there exists a τ0

such that the system (6.1) is mildly solvable on [−r, τ0] and the mild solution is

unique.

Proof. For τ > 0, set S(1, τ) = {y ∈ Cτ | max
0≤t≤τ

||y(t)− ϕ(0)|| ≤ 1, y(0) = ϕ(t), t ∈
[−r, 0]}. Then S(1, τ) is the nonempty close convex set. Define the operator F :

S(1, τ)→Cτ , by (6.31). Then, by lemma 6.2.5, the operator F is well-defined on

S(1, τ) and there exists a τ0 such that F maps S(1, τ0) into itself. We now only

show that F is strictly contraction on S(1, τ0).

Given ρ = 2, let y1, y2 ∈ S(1, τ0) such that ||y1||, ||y2|| ≤ 2. By (HF1), lemma 6.2.1,

lemma 6.2.2 and lemma 6.2.5, for 0 ≤ s ≤ τ ≤ τ0, there exists b(1 + ||ϕ||C , τ) > 0

such that

||f(s, y1(s), Gy1(s), Sy1(s))− f(s, y2(s), Gy2(s), Sy2(s))||

≤ b(1 + ||ϕ||C , τ)[||y1(s)− y2(s)||+ ||(y1)s − (y2)s||B] ≤ 2b(1 + ||ϕ||C , τ)||y1 − y2||C([0,τ0],X).

Then

||Fy1(t)− Fy2(t)|| ≤ 2Meωτb(1 + ||ϕ||C , τ)τα

αΓ(α)
||y1 − y2||C([0,τ0],X) = p(τ)||y1 − y2||C([0,τ0],X)

where p(τ) = 2Meωτ b(1+||ϕ||C ,ρ)τα

αΓ(α)
. Since p(τ) → 0 as τ → 0+, a suitable τ̄0 ≤ τ0

can be found such 0 < p(τ̄0) < 1, so we conclude that the map F is strictly

contraction. By the contraction mapping on Banach space, F has a unique fixed

point x ∈ S(1, τ0) such that Fx(t) = x(t), i.e.,x(t) = Tα(t)x0 + 1
Γ(α)

∫ t
0
(t− s)α−1Tα(t− s)f(s, x(s), Gx(s), Sx(s))ds, t ∈ [0, τ0]

x(t) = ϕ(t), t ∈ [−r, 0].
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In other word, we say that x(t) is the unique mild solution of system (6.1) on

[0, τ0].

We break the main system (6.1) for a moment and consider the initial value

problem, D
α
t x(t) = Ax(t) + f(t, x(t), Gx(t), Sx(t)), t ≥ t0

x(t0) = x0

(6.32)

where A is the infinitesimal generator of a solution operator {Tα(t)}t≥0 and f :

[t0, T ] × X × X × X → X is continuous in t on [t0, T ] and uniformly Lipschitz

continuous on X. We have the following results.

Definition 6.2.7. A continuous solution x of the integral equation,

x(t) = Tα(t− t0)x0 +
1

Γ(α)

∫ t

t0

(t− s)α−1Tα(t− s)f(s, x(s), Gx(s), Sx(s))ds, t ∈ [t0, T ]

(6.33)

will be called a mild solution of the system (6.32).

Theorem 6.2.8. Under the assumption (HF2), (HG) and (HS), if f : [t0, T ] ×
X ×X ×X → X is continuous in t on [t0, T ] and uniformly Lipschitz continuous

(with constant L) on X then for every x0 ∈ X the initial value problem (6.32) has

a unique mild solution x ∈ C([t0, T ], X). Moreover, the map x0 → x is Lipschitz

continuous from X into C([t0, T ], X).

Proof. For a given x0 ∈ X, we define a mapping F : C([t0, T ], X)→ C([t0, T ], X)

by

Fx(t) = Tα(t− t0)x0 +
1

Γ(α)

∫ t

t0

(t− s)α−1Tα(t− s)f(s, x(s), Gx(s), Sx(s))ds, t ∈ [t0, T ].

(6.34)

Then F is well-defined and bounded, it follows readily from the definition of F ,

lemma 6.2.1 and lemma 6.2.2 that

||Fx(t)− Fy(t)|| ≤MαL(t− t0)||x− y||C([t0,T ],X) (6.35)
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where Mα is a bound of 1
αΓ(α)

||Tα(t)|| on [t0, T ]. Using (6.34), (6.35) and induction

on n it follows that

||F nx(t)− F ny(t)|| ≤ (MαL(t− t0)α)n

n!
||x− y||C([t0,T ],X) (6.36)

whence ||F nx− F ny|| ≤ (MαLT
α)n

n!
||x− y||C([t0,T ],X).

(6.37)

For n large enough (MαLTα)n

n!
< 1 and by a well-known extension of the contraction

principle, F has a unique fixed point x in C([t0, T ], X). This fixed point is desired

mild solution of (6.32).

The uniqueness of x and the Lipschitz continuity of the map x0 → x are

consequences of the following argument. Let y be a mild solution of (6.32) on

[t0, T ] with the initial value y0. Then,

||x(t)− y(t)|| ≤ ||Tα(t− t0)x0 − Tα(t− t0)y0||

+
1

Γ(α)

∫ t

t0

(t− s)α−1||Tα(t− s)||||f(s, x(s), Gx(s), Sx(s))− f(s, y(s), Gy(s), Sy(s))||ds

≤ αΓ(α)Mα||x0 − y0||+MαL

∫ t

t0

(t− s)α−1[||x(s)− y(s)||+ ||xs + ys||B]ds

which implies, by lemma 4.1.3, that

||x(t)− y(t)|| ≤ αΓ(α)Mαe
MαL(T−t0)α||x0 − y0||, for all t ∈ [0, T ]

and therefore

||x− y||C([t0,T ],X) ≤ αΓ(α)Mαe
MαL(T−t0)α||x0 − y0||

which yields both the uniqueness of x and the Lipschitz continuity of the map

x0 → x.

From the result of theorem 6.2.8, if f is uniform Lipschitz, we have the existence

and uniqueness of a global mild solution for system (6.1). But if we assume that f

satisfies only local Lipschitz in x, uniformly continuous in t on bounded intervals,

then we have the following local version of theorem 6.2.8.
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Theorem 6.2.9. Assume the assumptions of theorem 6.2.6 are holding. Then for

every x0 ∈ X, there is a tmax ≤ ∞ such that the initial value problemD
α
t x(t) = Ax(t) + f(t, x(t), Gx(t), Sx(t)), t > 0

x(0) = x0

(6.38)

has a unique mild solution x on [−r, tmax). Moreover, if tmax <∞, then lim
t→tmax

||x(t)|| =
∞.

Proof. We start by showing that for every τ0 ≥ 0, x0 ∈ X, there exists a δ =

δ(τ, ||x0||) such that the system (6.32) has a unique mild solution x on an interval

[τ0, τ0 + δ] whose length δ is defined by,

δ(τ0, ||x0||) = min{1, [ ||x0||αΓ(α)

ρ(τ0)L(ρ(τ0), τ0 + 1) +N(τ0)
]1/α} (6.39)

where L(c, t) is the local Lipschitz constant of f following from (HF1), lemma 6.2.1

and lemma 6.2.2, M(τ0) = sup{||Tα(t)|| | 0 ≤ t ≤ τ0 + 1}, ρ(τ0) = 2||x0||M(τ0)

and N(τ0) = max{||f(t, 0, G0(t), S0(t))|| | 0 ≤ t ≤ τ0 +1}. Indeed, Let τ1 = τ0 +δ

where δ is given by (6.39). Define a map F by (6.34) maps the ball of radius ρ(τ0)

centered at 0 of C([τ0, τ1], X) into itself. This follows from the estimate,

||Fx(t)|| ≤M(τ0)||x0||+
1

Γ(α)

∫ t

t0

(t− s)α−1||Tα(t− s)||(||f(s, x(s), Gx(s), Sx(s))

− f(s, 0, G0(s), S0(s))||+ ||f(s, 0, G0(s), S0(s))||)ds

≤M(τ0)||x0||+
M(τ0)ρ(τ0)L(ρ(τ0), τ0 + 1)

αΓ(α)
(t− τ0)α +

M(τ0)N(τ0)

αΓ(α)
(t− τ0)α

≤ 2M(τ0)||x0|| = ρ(τ0)

where the last inequality follows from the definition of τ1. In this ball, F satisfies

a uniform Lipschitz condition with constant L = L(ρ(τ0), τ0 + 1) and thus in the

proof of theorem 6.2.8, it possesses a unique fixed point x in the ball. This fixed

point is the desired solution of (6.32) on the interval [τ0, τ1].

From what we have just proved, it follows that if x is a mild solution of (6.38)

on the interval [0, τ ], it can be extended to the interval [0, τ + δ] with δ > 0 by
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defining on [τ, τ+δ], x(t) = w(t) where w(t) is the solution of the integral equation,

for t ∈ [τ, τ + δ],

w(t) = Tα(t− τ)x(τ) +
1

Γ(α)

∫ t

τ

(t− s)α−1Tα(t− s)f(s, w(s), Gw(s), Sw(s))ds.

Moreover, δ depends only on ||x(τ)||, ρ(τ) and N(τ).

Let [−r, tmax) be the maximum interval of existence of mild solution x for (6.38).

If tmax < ∞, then lim
t→tmax

||x(t)|| = +∞, indeed, if it is false, then there exists a

sequence {tn} and C > 0 such that tn → tmax and ||x(tn)|| ≤ C for all n. This

implies that for each tn near enough to tmax, x define on [−r, tn] can be extended

to [−r, tn+δ] where δ > 0 is independent of tn, hence x can be extend beyond tmax,

this contradicts the definition of tmax. So if tmax <∞, then lim
t→tmax

||x(t)|| = +∞.

To prove the uniqueness of the local mild solution of (6.38) we note that if y

is a mild solution of (6.38), then on every closed interval [−r, τ0] on which both x

and y exist they coincide by the uniqueness argument given in the end of the proof

of theorem 6.2.8. Therefore, both x and y have the same tmax and on [−r, tmax),
x = y.

Theorem 6.2.10. If the assumptions of theorem 6.2.6 are holding, then the system

(6.1) has a unique mild solution on [−r, T ].

Proof. Let [−r, tmax) be the maximum interval of existence of mild solution x for

(6.1). If tmax > T , there is nothing to prove. If tmax < T , by theorem 6.2.9, then

lim
t→tmax

||x(t)|| = +∞, contradicts with an a priori bound of solution. So the system

(6.1) has a unique mild solution on [−r, T ].

6.3 Existence of Optimal Controls

In this section, we discuss the existence of optimal controls of systems governed

by the fractional integro-differential equation (6.1).

We suppose thatA is the infinitesimal generator of a solution operator {Tα(t)}t≥0

and Y is another separable reflexive Banach space from which the controls u take
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the values. Let Uad = Lq(I, Y ), 1 < q < ∞ denoting the admissible controls set.

Consider the following controlled system;D
α
t x(t) = Ax(t) + f(t, x(t), Gx(t), Sx(t)) +B(t)u(t), t ∈ [0, T ]

x(t) = ϕ(t), t ∈ [−r, 0].
(6.40)

Suppose (HB):B(s) ∈ L(Lq(I, Y ), Lp(I,X)) for all s ∈ I and B(·) is strongly

continuous where 1 < q <∞ and p > 1/α. Then B(·)u ∈ Lp(I,X) for all u ∈ Uad
and we give the definition of mild solution with respect to a control in Uad.

Definition 6.3.1. Let x ∈ C([−r, T ], X) and u ∈ Uad. If x is a solution of,x(t) = Tα(t)ϕ(0) + 1
Γ(α)

∫ t
0
(t− s)α−1Tα(t− s)[f(s, x(s), Gx(s), Sx(s)) +B(s)u(s)]ds, t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0]

then this x is said to be a mild solution with respect to (w.r.t.) u on [−r, T ].

Theorem 6.3.2. Under assumptions (HF ), (HG), (HS), (HB) and A is the

infinitesimal generator of a solution operator {Tα(t)}t≥0, for every u ∈ Uad, system

(6.40) has a mild solution corresponding to u.

Proof. Let u ∈ Uad, define f̃(t, x(t)) = f(t, x(t), Gx(t), Sx(t)) + B(t)u(t), for all

x ∈ X. Use the fact that B(·)u ∈ Lp(I,X) for all u ∈ Uad and use assumption

(HF ), lemma 6.2.1 and lemma 6.2.2, we obtain that f̃ satisfies the assumption

(HF ). By theorem 6.2.6, so we have complete the proof.

We consider the Lagrange problem (P0): Find (x0, u0) ∈ X × Uad such that

J(x0, u0) ≤ J(xu, u), for all u ∈ Uad (6.41)

where

J(xu, u) =

∫ T

0

l(t, xu(t), xut , u(t))dt, (6.42)

for short, denoting J(xu, u) by J(u) and xu denotes the mild solution of system

(6.40) corresponding to the control u ∈ Uad.
We impose some assumption on l. Assumption (HL);
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1) l : I ×X ×X × Y → (−∞,∞] is Borel measurable.

2) l(t, ·, ·, ·) is sequentially lower semicontinuous on X × Y for a.e. on I.

3) l(t, x, yt, ·) is convex on Y for each (x, yt) ∈ X ×X and for a.e. t ∈ I.

4) There exist constants a, b ≥ 0, c > 0 and η ∈ C(I,<) such that

l(t, x, yt, u) ≥ η(t) + a||x||+ b||yt||B + c||u||qY

A pair (xu, u) is said to be feasible if it satisfies equation (6.40).

Theorem 6.3.3. Suppose the assumption (HL) and the assumptions of theorem

6.3.2 hold. Then problem (P0) for system (6.40) admits at least one optimal pair.

Proof. If inf{J(u)|u ∈ Uad} = +∞ there is nothing to prove. So we assume that

inf{J(u)|u ∈ Uad} = m < +∞. By (HL4), there are constants b ≥ 0, c > 0 and

η ∈ L1(I,<) such that l(t, xu, xut , u) ≥ η(t) + a||xu||+ b||xut ||B + c||u||qY . Since η is

nonnegative, we have

J(u) =

∫ T

0

l(t, xu(t), xut , u(t))dt

≥
∫ T

0

η(t)dt+ a

∫ T

0

||xu(t)||dtb
∫ T

0

||xut ||dt+ c

∫ T

u

||u(t)||qY dt

≥ −ξ > −∞

for some ξ > 0, for all u ∈ Uad. Hence m ≥ −ξ > −∞. By definition of minimum,

there exists a minimizing sequence {un} of J , that is lim
n→∞

J(un) = m and

J(un) ≥
∫ T

0

η(t)dt+ a

∫ T

0

||xun(t)||dt+ b

∫ T

0

||xunt ||dt+ c

∫ T

0

||un(t)||qY dt.

So there exists N0 > 0 such that for all n ≥ N0,

m+ m̃ ≥ J(un) ≥ c

∫ T

0

||u(t)||qY dt

for some m̃ > 0 and hence ||un||qLq(I,Y ) ≤
m̃+m
c

.

This show that un is contained in a bounded subset of the reflexive Banach space
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Lq(I, Y ). So un has a convergence subsequence relabeled as un and un → u0 for

some u0 ∈ Uad = Lq(I, Y ). Let xn ⊆ C([−r, T ], X) be the corresponding sequence

of solutions for the integral equation;
xn(t) = Tα(t)ϕ(0) + 1

Γ(α)

∫ t
0
(t− s)α−1Tα(t− s)[f(s, xn(s), Gxn(s), Sxn(s))

+B(s)un(s)]ds, t ∈ I

xn(t) = ϕ(t), t ∈ [−r, 0].

(6.43)

From the a priori estimate, there exists a constant ρ > 0 such that

||xn||C(I,X) ≤ ρ, for all n = 0, 1, 2, ...

where x0 denote the solution corresponding to u0, that is
x0(t) = Tα(t)ϕ(0) + 1

Γ(α)

∫ t
0
(t− s)α−1Tα(t− s)[f(s, x0(s), Gx0(s), Sx0(s))

+B(s)u0(s)]ds, t ∈ I,

x0(t) = ϕ(t), t ∈ [−r, 0].

(6.44)

By (HF ), (HG), (HS), (HL), lemma 6.2.1 and lemma 6.2.2, there is a constant

a(ρ) such that for each t ∈ I,

||xn(t)− x0(t)|| ≤ MeωTa(ρ)

Γ(α)

∫ t

0

(t− s)α−1[||xn(s)− x0(s)||+ ||(xn)t − (x0)t||B]ds

+
MeωT

Γ(α)

∫ t

0

(t− s)α−1||B(s)un(s)−B(s)u0(s)||ds

≤ MeωTa(ρ)

Γ(α)

∫ t

0

(t− s)α−1[||xn(s)− x0(s)||+ ||(xn)t − (x0)t||B]ds

+
MeωT

Γ(α)
[
(p− 1)T (αp−1)/(p−1)

αp− 1
]
p−1
p ||B(·)un −B(·)u0||Lp(I,X).

By using lemma 4.1.3,

||xn(t)− x0(t)|| ≤ M̃ ||B(·)un −B(·)u0||Lp(I,X)

where M̃ is a constant,independent of u, n and t. Since B(·) is strongly continuous,

we have ||B(·)un − B(·)u0||Lp(I,X) → 0. This implies that ||xn − x0|| → 0 in
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C([−r, T ], X). Let us set ln(t) = l(t, xn(t), (xn)t, un(t)) for all t ∈ [0, T ]. Then by

(HL1) and (HL3), {ln(t)} is a sequence of non-negative measurable functions. So,

by using Fatou ’s Lemma,

lim
n→∞

∫ T

0

ln(t)dt ≥
∫ T

0

lim
n→∞

ln(t)dt. (6.45)

By (HL2) and (6.45),

m = lim
n→∞

J(un) ≥ lim
n→∞

∫ T

0

ln(t)dt

≥
∫ T

0

lim
n→∞

ln(t)dt

=

∫ T

0

lim
n→∞

l(t, xn(t), (xn)t, un(t))dt

≥
∫ T

0

l(t, x0(t), x0
t , u

0(t))dt = J(u0).

This show that J(u0) = m, i.e., J(u0) ≤ J(u) for all u ∈ Uad.

6.4 Application to Nonlinear Heat Equation

Consider the nonlinear heat equation control;

∂αy(x,t)
∂tα

= ∆y(x, t) + f1(x, t, y(x, t)) +
∫ t
−r h(t− s)g(x, s, y(x, s))ds

+
∫ T

0
k(t− s)q(x, s, y(x, s))ds+

∫
Ω
B(x, ξ)u(ξ, t)dξ, (x, t) ∈ Ω̄× I

y(x, t) = 0, (x, t) ∈ ∂Ω× I

y(x, t) = ϕ(x, t), (x, t) ∈ Ω̄× [−r, 0],

(6.46)

where Ω is boundary domain of <N , u ∈ Lq(Ω×I), h, k ∈ C(I2,<) and B : Ω̄×Ω̄→
< and ϕ : Ω̄ × [−r, 0] → < are continuous. Suppose that f : Ω̄ × I × < → <,

g : Ω̄× [−r, T ]×< → <, q : Ω̄× I ×< → < , and for each ρ > 0 there are L1, L2,

L3 > 0 such that

|f(x, t, ξ)− f(x, s, ξ̃)| ≤ L1(|t− s|+ |ξ − ξ̃|), (F)

|g(x, t, ξ)− g(x, s, ξ̃)| ≤ L2(|t− s|+ |ξ − ξ̃|), (G)
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|q(x, t, ξ)− q(x, s, ξ̃)| ≤ L3(|t− s|+ |ξ − ξ̃|), (S)

provided ||ξ||, ||ξ̃|| ≤ ρ and s, t ∈ I. If we interpret y(x, t) as temperature at the

point x ∈ Ω at time t, then condition (6.46) means that the temperature at the

initial time t = 0 is prescribed. Condition y(x, t) = 0, (x, t) ∈ ∂Ω× I means that

the temperature on the boundary ∂Ω is equal to zero. The function f describes an

external heat sources, for this system f and u are given. We introduce the integral

Gy(x, t) =
∫ t
−r h(t− s)g(x, s, y(x, s))ds and Sy(x, t) =

∫ T
0
k(t− s)q(x, s, y(x, s))ds,

both terms directly impact to the system. Moreover, the system is controlled by

the control u via the sensor mapping
∫

Ω
B(x, ξ)u(ξ, t)dξ. Let Uad = Lq(Ω× I) be

the admissible control set. We will solve the optimal problem (P0) via the cost

functional;

J(u) =

∫ T

0

∫
Ω

|y(ξ, t)|2dξdt+

∫ T

0

∫
Ω

∫ 0

−r
|y(ξ, t+ s)|2dsdξdt+

∫ T

0

∫
Ω

|u(ξ, t)|2dξdt.

That is, find u0 ∈ Uad such that J(u0) ≤ J(u) for all u ∈ Uad.
Let X = Lp(Ω). For t ∈ [−r, T ], define y(t) : Ω→ X by

y(t)(x) = y(x, t) for all x ∈ Ω,

and define

Dα
t y(t)(x) =

∂αy(x, t)

∂tα
, for all y ∈ X, x ∈ Ω.

We define

f(t, y(t), Gy(t), Sy(t))(x) = f(x, t, y(x, t)) +Gy(t)(x) + S(t)(x), (6.47)

B(t)u(t)(x) =

∫
Ω

B(x, ξ)u(ξ, t)dξ, (6.48)

where

Gy(t)(x) =

∫ t

−r
h(t− s)g(x, s, y(x, s))ds, (6.49)

Sy(t)(x) =

∫ T

0

k(t− s)q(x, s, y(x, s))ds. (6.50)

Define an operator A : X → X as

Ay = ∆y for all y ∈ D(A)

where D(A) consists of all C2(Ω̄) function vanishing on ∂Ω.
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Lemma 6.4.1. The operator A defined above is the infinitesimal generator of a

solution operator {Tα(t)}t≥0 on X.

Proof. Consider the general heat equation of fractional order 0 < α ≤ 1,

Dα
t u = Au, u(0, x) = f(x). (6.51)

Applying the Fourier transformation, we obtain

Dα
t û = −|ξ|2û, û(0, ξ) = f̂(ξ). (6.52)

By solving (6.52),

û(ξ, t) = Eα(−tα|ξ|2)û(ξ). (6.53)

Take the inverse Fourier formula, the solution of (6.51) is,

u(t, x) = Eα(tαA)f(x) = (2π)−n/2
∫
<n
Eα(−tα|ξ|2)f̂(ξ)eixξdξ. (6.54)

Set Tα(t) = Eα(tαA). Then Tα(t) satisfies the conditions of lemma 6.1.7. Therefore

The operator A = ∆ is the infinitesimal generator of a solution operator {Tα(t)}t≥0

on X.

Then by lemma 6.4.1 and all above, the system (6.46) can transform to the

abstract problem as followed;D
α
t y(t) = Ay(t) + f(t, y(t), Ky(t)) +Gy(t) +B(t)u(t), t ∈ I

y(t) = ϕ(t), t ∈ [−r, 0].
(6.55)

Theorem 6.4.2. Suppose assumptions (F), (G) and (S) hold. Then the control

problem (P0) for system(6.46) has a solution, that is there exists an admissible

state-control pair (y0, u0) such

J(y0, u0) ≤ J(y0, u) for all u ∈ Uad.

Proof. We solve the control problem (P0) for system(6.46) via the Cauchy abstract

form (6.55). By using the assumptions (F ), (G), (S) and the cost functional J , it

satisfies all the assumptions given in theorem 6.3.3 and theorem 6.2.6. Then the

control problem (P0) for system(6.46) has a solution.
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CONCLUSIONS AND OUTLOOK

In this work, we start considering the nonlinear fractional integro-differential sys-

tem (4.1) in Chapter 4 when −A is the infinitesimal generator of C0−semigroup

satisfying the exponential stability. We win to prove the existence and uniqueness

of mild solution. We propose a method for proving existence whose main com-

ponent is the use semigroup of bounded linear operators and Banach fixed point

theorem. We successfully apply this method and use some assumptions to prove

the existence and uniqueness of mild solution. We win to prove the existence of the

optimal control problem via the Bolza condition. Beside the study of the solution,

we give some examples (model of problem in the real world). Then we transform

them to the abstract form and use our main result to conclude that these systems

have a mild solution with respect to a control in admissible control set and the

Bolza problem for this system has a solution.

In Chapter 6, we consider the fractional integro-differential equations of mixed

type, this system resemble the system (6.1) in Chapter 4. The idea of semigroup

of bounded linear operators is replaced by the idea of solution operators. We win

to prove the existence of a mild solution with respect to a control in the admissible

controls set and also the existence of a solution of the Lagrange problem for the

fractional integro-differential equations of mixed type, system (6.1).

In Chapter 5, we consider the impulsive fractional introgro-differential equation

(5.1). We successfully prove the existence of piecewise continuous mild solution

w.r.t a control in the admissible controls set with compact semigroup of bounded

linear operators. In this case, we use Leray-Schauder theorem and the new version

of generalization Gronwall lemma for the fractional order. Also we successfully

prove the existence the optimal control problem by using the Bolza condition. In

the last section, some example was established to supporting the main result.
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Last but not least we should be interested in developing this method and use

weakly assumptions to prove the existence and uniqueness of classical solution a

little further. Moreover, we should be interested in studying the solution behaviors

for example;the stable property. Even though it seems likely that efforts in this

direction can be successful, there no guarantee for that. Therefore, we can only

hope for the best, but have to expect the worst.
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