#### CHAPTER V



#### RESULT

# PART I: IDENTIFICATION OF Vibrio parahaemolyticus.

Two hundred and eleven samples were examined in this study. These 211 samples consisted of one- hundred and eighty-nine of non-clinical isolates of *Vibrio spp.*, which were randomly collected from shrimp, sediment, coastal water, and cockle samples and twenty-two strains of *Vibrio parahaemolyticus* isolated from stool samples. All isolates were tested using 23 selected biochemical methods as listed in Table 5.

Seventy isolates were identified as *Vibrio parahaemolyticus*. Of these isolates, 32 isolates showed 5 atypical biochemical characteristics. The negative results were found in 28 isolates for ornithine decarboxylation test, 6 isolates for arabinose fermentation test, 1 isolate for MR test. The positive results were found in 3 isolates for 10 % NaCl requirement test.

Table 5: Characteristics of the 70 isolates of Vibrio parahaemolyticus identified.

| Strain no | o. Source | Ovidose* | Caluado | Indole* | MR | Vp* | Citrate |   | Motility<br>TSI* | O% NaCI* | 3% NaCI* | 6% NaCI* | 8% NaCI* | 10% NaCl * | Arginine* | Ornithine* | Lysine* | Glucose* | Manito!* | Mannose | Arabinose* | Sucrose* | Lactose*     | Inositol | Rhamnose |
|-----------|-----------|----------|---------|---------|----|-----|---------|---|------------------|----------|----------|----------|----------|------------|-----------|------------|---------|----------|----------|---------|------------|----------|--------------|----------|----------|
| CA 1      | C         | +        |         | +       | +  | -   |         | - | + K/A            |          | +        | +        | +        |            | -         | +          | +       | +        | +        | +       | +          | -        | <del>-</del> | <u> </u> |          |
| CA 5      | C         | +        |         | +       | +  | -   | -       | + | K/A              | -        | +        | +        | +        | -          |           | +          | +       | +        | +        | +       | +          |          |              |          |          |
| CA 6      | C         | +        |         | +       | +  | -   | -       | 4 | K/A              | -        | +        | +        | +        | -          | -         | +          | +       | +        | +        | +       | +          |          |              |          |          |
| CA 10     | C         | +        | -       | +       | +  | -   | -       | + | K/A              |          | +        | +        | +        |            |           | +          | +       | +        | +        | +       | +          |          |              |          |          |
| CA 11     | C         | +        |         | +       | +  | -   | -       | + | K/A              | /4       | +        | +        | +        | -          | 100       | +          | +       | +        | +        | +       | +          |          | _            |          |          |
| CA 12     | C         | +        | +       | +       | +  | -   | 1       | + | K/A              | 1        | +        | +        | +        |            |           | +          | +       | +        | +        | +       | +          |          | 6.2          |          |          |
| CA 13     | C         | +        | 4       | +       | +  | -   | -       | + | K/A              | / -      | +        | +        | +        | -          |           | -          | +       | +        | +        | +       | +          |          |              |          |          |
| CA 17     | C         | +        | +       | ۰       | +  |     | -       | + | K/A              | 4        | +        | +        | +        | _          |           | +          | +       | +        | +        | +       | +          |          |              |          |          |
| CA 19     | С         | +        | +       | -       | +  | 2:  | _       | + | K/A              |          | +        | +        | +        | _          |           | +          | +       | +        | +        | +       | _          |          |              | -        |          |
| CA 20     | С         | +        | +       |         | +  | -   | -       | + | K/A              |          | +        | +        | +        | _          |           | +          | +       | +        | +        | +       | +          |          |              |          | -        |
| CA 21     | C         | +        | +       |         | +  | -   | -       | + |                  | 66       | +        | +        | +        |            | -         | +          | +       | +        | +        | +       | +          |          |              | -        | -        |
| CA 22     | С         | +        | +       |         | +  | -   | -       | + | K/A              |          | +        | +        | +        | _          |           | +          | +       | +        | +        | +       | ·<br>+     |          |              |          | -        |
| CA 23     | C         | +        | +       |         | +  | -   |         | + |                  |          | +        | +        | +        |            |           | 1          | +       | +        | +        | _       |            | ġ.       | -            | -        |          |
| CA 24     | С         | +        | +       |         | +  | -   | 1       | + | K/A              |          | +        | +        | +        |            |           | +          | +       | +        | +        | _       | Ì          | i î      | -            | -        |          |
| CA 25     | С         | +        | +       |         | +  | -   |         | + | K/A              | -        | +        | +        | +        | _          |           | _          | +       | +        | +        | ·<br>+  | <u>.</u>   |          |              |          |          |
| CA 32     | С         | +        | +       |         | +  | -   | - 1     | + | K/A              |          | +        | +        | +        |            |           | +          | +       | +        | +        | _       | į          |          |              |          |          |
| CA 33     | С         | +        | +       |         |    | 1   | 9       | + | K/A              |          | +        | +        | +        | 12         | 1         | 7          | 5       | +        | +        | ·       | _          |          |              | -        |          |
| CA 34     | C         | +        | +       | _       | +  | _   | -       | + | K/A              |          | +        | +        | +        |            |           |            | +       | +        | +        |         | _          |          | -            | Ž.       |          |
| CA 35     | С         | +        | +       | gi.     | -  | a   | A       | + | Κ/Λ              |          | +        | +        | +        | a,         | M         | 414        | +       | +        | +        | _       |            |          |              | Ī        |          |
| CA 36     | С         | +        | +       | 4       | H  | -   |         |   | K/A              |          | +        | +        | +        |            |           | +          | +       | +        | +        | +       | _          |          |              |          | •        |
| CA 40     | С         | +        | +       | +       | +  | -   | -       |   | K/A              |          | +        | +        | +        |            |           |            |         | +        | +        | +       |            | Ī        |              |          |          |
| CA 41     | С         | +        | +       | +       |    |     |         |   | K/A              |          | +        | +        | +        |            |           | +          |         |          | +        | +       | +          |          |              |          |          |
| EP 10     | RP/CHN    | +        | +       | +       |    |     |         |   | K/A              |          | +        |          | +        |            |           |            |         |          | +        |         |            |          | •            |          |          |
| EP 11     | RP/CHN    | +        | +       | +       |    |     |         |   | K/A              |          | +        |          | +        |            |           |            |         |          | +        | +       | +          |          |              |          |          |
| EP 16     | RP/CHN    | +        | +       | +       |    |     | -       |   | K/A              | -        | +        | +        | +        |            |           |            |         |          |          | +       | +          |          |              |          |          |
| EP 18     | RP/CHN    | +        | +       | +       |    |     |         |   | K/A              | -        | +        |          | +        |            |           |            |         |          |          | +       | _          |          | •            |          |          |
| EP 22     | RP/CHN    | +        | +       | +       |    |     |         |   | K/A              | -        | +        |          | +        | -          |           |            |         |          |          | +       | +          |          |              |          |          |
|           |           |          |         |         |    |     |         |   |                  |          |          |          | (a)      | Carl A     |           |            |         |          |          |         |            |          |              |          |          |

| Strain no. | Source | Oxidase* | Indole* | MR | VP*      | Citrate | Motility | TSI* | O% NaCl* | 3% NaCl* | 6% NaCI* | 8% NaCI* | 10% NaCl * | Arginine* | Ornithine* | Lysine* | Glucose* | Manitol* | Mannose | Arabinose* | Sucrose* | Lactose* | Inositol | Rhamnose |
|------------|--------|----------|---------|----|----------|---------|----------|------|----------|----------|----------|----------|------------|-----------|------------|---------|----------|----------|---------|------------|----------|----------|----------|----------|
| EP 25      | RP/CHN | +        | +       | +  | -        | -       | +        | K/A  | -        | +        | +        | +        | -          | -         | +          | +       | +        | +        | +       | +          | -        | -        |          | -        |
| EP 26      | RP/CHN | +        | +       | +  | -        | Į.      | +        | K/A  |          | +        | +        | +        | -          |           | +          | +       | +        | +        | +       | +          | -        | -        | -        | -        |
| EP 29      | RP/CHN | +        | +       | +  | -        |         | +        | K/A  | -        | +        | +        | +        |            | -         | +          | +       | +        | +        | +       | +          | -        | -        |          | -        |
| EP 35      | RP/CHN | +        | +       | +  | -        | -       | +        | K/A  | -        | +        | +        | +        | -          | -         | +          | +       | +        | +        | +       | +          | -        | -        | -        | -        |
| SMV 1      | SP/SRT | +        | +       | +  | -        | -       | +        | K/A  | -        | +        | +        | +        | -          | -         | +          | +       | +        | +        | +       | +          | -        |          | -        | -        |
| SMV 2      | SP/SRT | +        | +       | +  | -        | - 7     | +        | K/A  | -        | +        | +        | +        |            | -         | +          | +       | +        | +        | +       | +          | -        | -        | -        | -        |
| SMV 3      | SP/SRT | +        | +       | +  | -        | -       | +        | K/A  |          | +        | +        | +        | -          | -         | +          | +       | +        | +        | +       | +          | -        | -        | -        | _        |
| SMV 5      | SP/SRT | +        | +       | +  | -        | -       | +        | K/A  |          | +        | +        | +        | -          | -         | +          | +       | +        | +        | +       | -          | -        | -        | -        | -        |
| SMV 6      | SP/SRT | +        | +       | +  | -        | -       | +        | K/A  | -        | +        | +        | +        | -          | -         | +          | +       | +        | +        | +       | +          | -        | -        | -        | -        |
| SMV 7      | SP/SRT | +        | +       | +  | -        | -       | +        | K/A  | 4        | +        | +        | +        | -          | -         | -          | +       | +        | +        | +       | +          | -        | -        | -        | -        |
| SMV 8      | SP/SRT | +        | +       | +  | -        | -       | +        | K/A  | - (      | +        | +        | +        | -          | -         | -          | .+      | +        | +        | +       | +          |          | _        | -        | -        |
| SMV 9      | SP/SRT | +        | +       | +  | -        | -       | +        | K/A  | 22       | +        | +        | +        | -          | _         | -          | +       | +        | +        | +       | +          |          | -        | -        | -        |
| SMV 12     | SP/SRT | +        | +       | +  | -        | -       | +        | K/A  | 17       | +        | +        | +        | -          | -         | -          | +       | +        | +        | +       | +          | 2        | -        | -        | -        |
| SMV 13     | SP/SRT | +        | +       | +  | -        | _       | +        | K/A  | 6-6      | +        | +        | +        | _          | -         | -          | +       | +        | +        | +       | -          | -        | -        | -        | -        |
| SMV 14     | SP/SRT | +        | +       | +  | -        |         | +        | K/A  | 15/1     | +        | +        | +        | -          | -         | -          | +       | +        | +        | +       | +          | -        | -        | -        | -        |
| SMV 15     | SP/SRT | +        | +       | +  | <u>a</u> | 3       | +        | K/A  | -        | +        | +        | +        | +          | 1         |            | +       | +        | +        | +       | +          | _        |          | -        | -        |
| SMV 16     | SP/SRT | +        | +       | +  | V        | -       | +        | K/A  | 1        | +        | +        | +        | +          |           |            | +       | +        | +        | +       | +          | -        | -        | -        | _        |
| SMV 17     | SP/SRT | +        | +       | +  | -[       |         | +        | K/A  |          | +        | +        | +        | -          | -         | +          | +       | 4        | +        | 4       | -          | -        | -        | -        | -        |
| SMV 18     | SP/SRT | +        | +       | +  | -        | 8       | +        | K/A  |          | +        | +        | +        | +          | -         | -          | +       | +        | +        | +       | +          |          |          |          | -        |
| SMV 19     | SP/SRT | +        | +       | H  | 11       | ¥       | +        | K/A  | 1        | +        | +        | +        | 1          | 17        | +          | +       | +        | +        | +       | +          | -        | -        |          | _        |
| SMV 21     | SP/SRT | +        | +       | +  | -        |         | +        | K/A  | -        | +        | +        | +        |            |           | +          | +       | +        | +        | +       | +          |          | i<br>D   |          |          |
| SMV 22     | SP/SRT | +        | +       | ŀ  |          |         |          | K/A  | 10       | +        | +        | +        |            | 1-0       | in         | +       | +        | +        | +       | +          | -        |          |          |          |
| SMV 29     | RP/SRT | +        | +       | +  |          |         |          | K/A  |          | +        | +        | +        |            |           | +          | +       | +        | +        | +       | +          | -        |          |          | _        |
| SMV 31     | RP/SRT | +        | +       | +  | -        |         |          | K/A  | -        | +        | +        | +        |            |           |            | +       | +        | +        | +       | +          |          | -        | Ŀ        | _        |
| SMV 33     | RP/SRT | +        | +       | +  |          |         |          |      |          | +        | +        | +        |            |           | +          | +       | +        | +        | +       | +          | -        |          |          |          |
| SMV 34     | RP/SRT | +        | +       | +  | -        |         |          | K/A  |          | +        | +        | +        |            |           |            | +       | +        | +        | +       | +          |          |          |          |          |
| SMV 35     | SP/SRT | +        | +       | +  |          |         |          | K/A  |          | +        | +        | +        |            |           | +          | +       | +        | +        | +       | +          | -        |          |          | -        |
| SMV 36     | SP/SRT | +        | +       | +  |          |         |          | K/A  |          | +        | +        | +        |            |           |            | +       | +        | +        | +       | +          |          |          |          |          |
| SMV 37     | SP/SRT | +        | +       | +  |          |         |          |      | •        | +        | +        | +        |            | •         |            | +       | +        | +        | +       | +          |          |          |          | _        |
| SMV 38     | RP/SRT | +        | +       | +  |          |         |          | K/A  |          | +        | +        | +        |            |           |            | +       | +        |          |         |            |          |          |          |          |

| Strain no. | Source | Oxidase* | Indole* | MR | vp* | Citrate | Motility | TSI* | 0% NaCI* | 3% NaCI* | 6% NaCI* | 8% NaCI* | 10% NaCI* | Arginine* | Ornithine* | Lysine* | Glucose* | Manitol* | Mannose | Arabinose* | Sucrose* | Lactose* | Inositol | Rhamnose |
|------------|--------|----------|---------|----|-----|---------|----------|------|----------|----------|----------|----------|-----------|-----------|------------|---------|----------|----------|---------|------------|----------|----------|----------|----------|
| SMV 39     | SP/SRT | +        | +       | +  |     |         | +        | K/A  |          | +        | +        | +        | -         | -         |            | +       | +        | -1       | 1       |            | -        | -        | -        | -        |
| SMV 40     | SP/SRT | +        | +       | +  |     |         | +        | K/A  | -        | +        | +        | +        |           | -         | •          | +       | +        | +        | +       |            |          |          | -        | -        |
| SMV 41     | SP/SRT | +        | +       | +  | -   | -       | +        | K/A  |          | +        | +        | +        | -         | -         | -          | +       | +        | +        | +       | +          | -        | -        | _        | -        |
| SMV 43     | SP/SRT | +        | +       | +  |     |         | +        | K/A  |          | +        | +        | +        |           |           |            | +       | +        | +        | +       | +          | _        | -        |          |          |
| SMV 44     | SP/SRT | +        | +       | +  |     |         | +        | K/A  | -        | +        | +        | +        | -         | -         |            | +       | +        | +        | +       | +          | -        | -        | -        | -        |
| SMV 45     | SP/SRT | +        | +       | +  |     | -       | +        | K/A  | -        | +        | +        | +        |           |           | +          | +       | +        | +        | +       | +          | -        |          | -        | -        |
| SMV 46     | SP/SRT | +        | +       | +  | -   | -       | +        | K/A  | -        | +        | +        | +        | -         |           | +          | +       | +        | +        | +       | +          | -        | -        | -        | _        |
| SMV 47     | SP/SRT | +        | +       | +  |     | -       | +        | K/A  | //       | +        | +        | +        |           |           | +          | +       | +        | +        | +       | +          | -        | -        | _        | _        |
| SMV 48     | SP/SRT | +        | +       | +  | -   | -       | +        | K/A  | <u> </u> | +        | +        | +        |           | -         | -          | +       | +        | +        | +       | +          | _        | -        | _ '      | _        |
| SMV 49     | SP/SRT | +        | +       | +  | -/  | -       | +        | K/A  |          | +        | +        | +        | -         | -         | -          | +       | +        | +        | +       | +          | -        | -        | -        | _        |
| SMV 50     | SP/SRT | +        | +       | +  | -   | -/      | +        | K/A  | -/       | +        | +        | +        | -         | -         | +          | +       | +        | +        | +       | +          |          | -        | _        | _        |
| SMV 51     | SP/SRT | +        | +       | +  |     | -       | +        | K/A  | J.Z.     | +        | +        | +        | -         | -         | -          | +       | +        | +        | +       | +          | J        | -        | -        | -        |
| SMV 52     | SP/SRT | +        | +       | +  | -   |         | +        | K/A  | 1        | +        | +        | +        | _         | _         | +          | +       | +        | +        | +       | +          | ~        | _        | _        | _        |
| ATCC       | -      | +        | +       | +  | -   | -       | +        | K/A  | 4.0      | +        | +        | +        | _         | -         | +          | +       | +        | +        | +       | +          | -        | -        | -        | -        |
| 17802      |        |          |         |    |     |         |          |      |          |          |          |          |           |           |            |         |          |          |         |            |          |          |          |          |

K/A: alkaline top and acidic bottom; +, positive; -, negative

 $C: clinical \ isolate \ ; \ RP: shrimp \ from \ shrimp \ pond \ ;$ 

SP: sediment from shrimp pond; CHN: Chonburi province;

SRT: Suratthani province

<sup>\*</sup> Test is recommended as part of the routine set for Vibrio identification

## PART II: ANTIMICROBIAL SUSCEPTIBILITY TESTING.

The results of antimicrobial susceptibility test of ciprofloxacin were summarized in Table 6. MIC distribution of *Vibrio parahaemolyticus* isolates are shown in Fig 4 - 8. For 70 *Vibrio parahaemolytiucus* isolates (Fig 4.), 5 isolates have MIC  $\leq 0.064~\mu g/ml$ , 24 isolates have MIC = 0.128  $\mu g/ml$ , 16 isolates have MIC = 0.256  $\mu g/ml$ , 7 isolates have MIC = 1  $\mu g/ml$ , 12 isolates have MIC = 2  $\mu g/ml$ , 5 isolates have MIC = 4  $\mu g/ml$  and 1 isolates has MIC  $\geq$  8  $\mu g/ml$ . MIC distribution of 48 environmental isolates is shown in Fig. 5. Two isolates have MIC  $\leq$  0.064  $\mu g/ml$ , 5 isolates have MIC = 0.128  $\mu g/ml$ , 16 isolates have MIC = 0.256  $\mu g/ml$ , 7 isolates have MIC = 1  $\mu g/ml$ , 12 isolates have MIC = 2  $\mu g/ml$ , 5 isolates have MIC = 4  $\mu g/ml$  and 1 isolates have MIC  $\geq$  8  $\mu g/ml$ .

MIC distribution of 34 sediment isolates is demonstrated in Fig 6 comprising of 1 isolates have MIC  $\leq 0.064~\mu g/ml$ , 5 isolates have MIC = 0.128  $\mu g/ml$ , 11 isolates have MIC = 0.256  $\mu g/ml$ , 6 isolates have MIC = 1  $\mu g/ml$ , 8 isolates have MIC = 2  $\mu g/ml$ , 3 isolates have MIC = 4  $\mu g/ml$ . For 14 shrimp isolates MIC distribution are shown in Fig 7. One isolates have MIC  $\leq 0.064~\mu g/ml$ , 5 isolates have MIC = 0.256  $\mu g/ml$ , 1 isolates have MIC = 1  $\mu g/ml$ , 4 isolates have MIC = 2  $\mu g/ml$ , 2 isolates have MIC = 4  $\mu g/ml$  and 1 isolates has MIC  $\geq$  8  $\mu g/ml$ . MIC distribution of 22 clinical isolates are shown in Fig 8. Three isolates have MIC  $\leq 0.064~\mu g/ml$  and 19 isolates have MIC = 0.128  $\mu g/ml$ . MIC 90 and MIC 50 value are demonstrated in Table 8.

Twenty-one isolates of 70 Vibrio parahaemolyticus isolates were indicated to have MIC values  $\geq$  1 µg/ml. Of these isolates, none of Vibrio

parahaemolyticus clinical isolates were found to have MIC values  $\geq$  1 µg/ml. All selected isolates were comprised of 13 sediment isolates and 8 shrimp isolates. MIC values ranged between 1-8 µg/ml. The highest MIC values, 8 µ g/ml, was isolated from shrimp in Chonburi province.



Table 6: MIC of 70 Vibrio parahaemolyticus isolates.

| Strain no. | Source | MIC<br>(μg/ml) | Strain no. | Source | MIC<br>(μg/ml) | Strain no. | Source | MIC<br>(μg/ml) |
|------------|--------|----------------|------------|--------|----------------|------------|--------|----------------|
| CA I       | С      | 0.064          | EP 16      | RP/CHN | 2              | SMV 21     | SP/SRT | 0.128          |
| CA 5       | С      | 0.064          | EP 18      | RP/CHN | 2              | SMV 22     | SP/SRT | 0.256          |
| CA 6       | С      | 0.128          | EP 22      | RP/CHN | 1              | SMV 29     | RP/SRT | 0.256          |
| CA 10      | С      | 0.128          | EP 25      | RP/CHN | 8              | SMV 31     | RP/SRT | 0.256          |
| CA 11      | С      | 0.128          | EP 26      | RP/CHN | 4              | SMV 33     | RP/SRT | 0.256          |
| CA 12      | C      | 0.128          | EP 29      | RP/CHN | 4              | SMV 34     | RP/SRT | 0.256          |
| CA 13      | C      | 0.128          | EP 35      | RP/CHN | 0.064          | SMV 35     | SP/SRT | 0.256          |
| CA 17      | C      | 0.128          | SMV I      | SP/SRT | 2              | SMV 36     | SP/SRT | 1              |
| CA 19      | C      | 0.128          | SMV 2      | SP/SRT | 2              | SMV 37     | SP/SRT | 4              |
| CA 20      | С      | 0.128          | SMV 3      | SP/SRT | 0.064          | SMV 38     | RP/SRT | 0.256          |
| CA 21      | С      | 0.128          | SMV 5      | SP/SRT | 0.128          | SMV 39     | SP/SRT | 0.256          |
| CA 22      | С      | 0.128          | SMV 6      | SP/SRT | 0.128          | SMV 40     | SP/SRT | 0.256          |
| CA 23      | С      | 0.128          | SMV 7      | SP/SRT | 0.128          | SMV 41     | SP/SRT | 0.256          |
| CA 24      | С      | 0.128          | SMV 8      | SP/SRT | 0.256          | SMV 43     | SP/SRT | 1              |
| CA 25      | C      | 0.128          | SMV 9      | SP/SRT | 0.256          | SMV 44     | SP/SRT | 2              |
| CA 32      | С      | 0.128          | SMV 12     | SP/SRT | 1              | SMV 45     | SP/SRT | 3              |
| CA 33      | C      | 0.064          | SMV 13     | SP/SRT | 1              | SMV 46     | SP/SRT | 2              |
| CA 34      | С      | 0.128          | SMV 14     | SP/SRT | 0.128          | SMV 47     | SP/SRT | 0.256          |
| CA 35      | С      | 0.128          | SMV 15     | SP/SRT | 1              | SMV 48     | SP/SRT | 1              |
| CA 36      | С      | 0.128          | SMV 16     | SP/SRT | 0.256          | SMV 49     | SP/SRT | 2              |
| CA 40      | С      | 0.128          | SMV 17     | SP/SRT | 0.256          | SMV 50     | SP/SRT | 4              |
| CA 41      | С      | 0.128          | SMV 18     | SP/SRT | 0.256          | SMV 51     | SP/SRT | 2              |
| EP 10      | RP/CHN | 2              | SMV 19     | SP/SRT | 2              | SMV 52     | SP/SRT | 2              |
| EP 11      | RP/CHN | 2              |            |        |                |            |        |                |

C: clinical isolate; RP: shrimp from shrimp pond;

SP: sediment from shrimp pond; CHN: Chonburi province;

SRT: Suratthani province

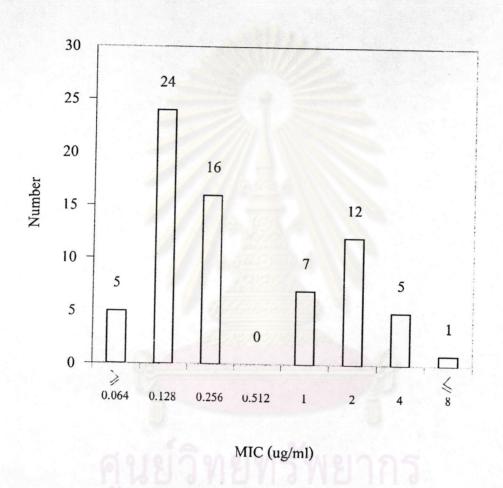



Fig. 4 MIC distribution of 70 Vibrio parahaemolyticus isolates

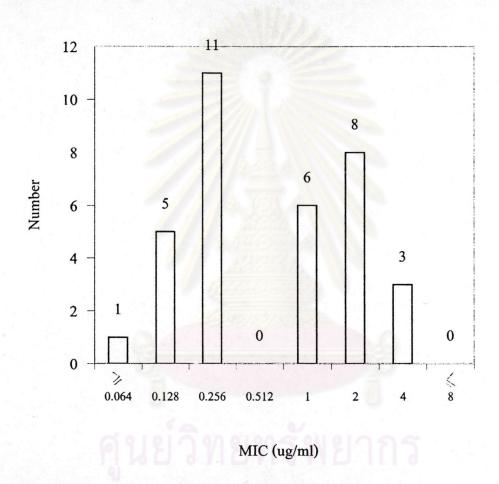




Fig. 5 MIC distribution of 48 environmental isolates



ALTOLARIA DES SAVELLO SELDE LOI D

Fig. 6 MIC distribution of 34 sediment isolates

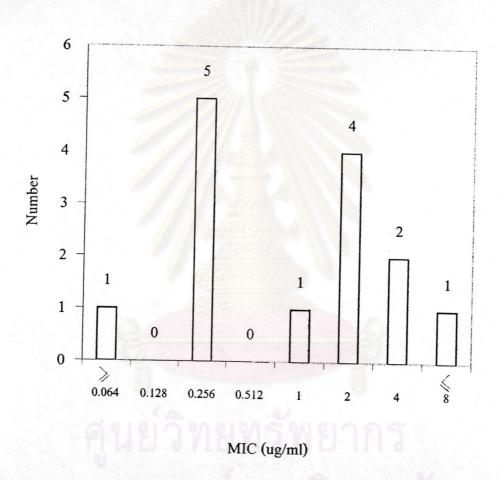



Fig. 7 MIC distribution of 14 shrimp isolates

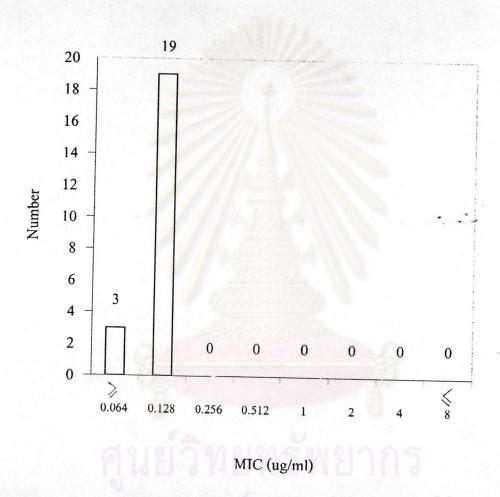



Fig. 8 MIC distribution of 22 clinical isolates

Table 7 :  $MIC_{50}$  and  $MIC_{90}$  of Vibrio parahaemolyticus isolates from different sources

| Source of V. parahaemolyticus | MIC range   | MIC 90  | MIC <sub>50</sub> |
|-------------------------------|-------------|---------|-------------------|
| Isolates (n)                  | (μg/ml)     | (μg/ml) | (µg/ml)           |
| Environmental isolates (48)   | 0.064-8     | 3.3     | 1                 |
| : sediment isolates (34)      | 0.064-4     | 2       | 0.5               |
| : shrimp isolates (14)        | 0.064-8     | 4       | 1.5               |
| Clinical isolates (22)        | 0.064-0.128 | 0.128   | 0.128             |
| All isolates (70)             | 0.064-8     | 2       | 0.256             |

(n): number of testing isolates

คุนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

# PART III : CONFIRMATION OF Vibrio parahaemolyticus BY PCR.

PCR assays using gyrB primer described by Venkateswaran et al., 1997 were performed to support biochemical identifications of 21 Vibrio parahaemolyticus isolates which have MIC values  $\geq$  1  $\mu$ g/ml.

Specific 285-bp amplicon for *Vibrio parahaemolyticus* were amplified in all twenty-one isolates including reference strain of *Vibrio parahemolyticus* ATCC 17802. None of *Vibrio alginolyticus*-bands were detected as demonstrated in Fig 9.

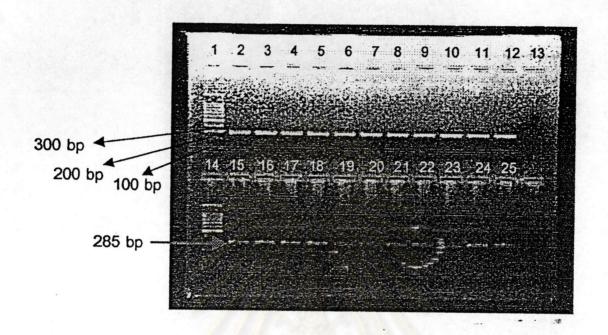



Fig 9. Agarose gel electrophoresis of specific 285-bp amplicon.

Lane 1 & 14: 100bp DNA ladder

Lane 2-11: EP 10, 11, 16, 18, 22, 25, 26, 29,

SMV 1, SMV 2

Lane 12 : Vibrio parahemolyticus ATCC 17802

Lane 13: Vibrio alginolyticus ATCC 17749

Lane 15-25: SMV 19, 37, 43, 44, 45, 46, 48, 49,

50, 51, 52

### PART IV: DNA SEQUENCING.

The QRDRs of the gyrA and parC of ciprofloxacin resistant mutants were amplified by single step PCR with specific primers. PCR was expected to yield amplicons of 200 and 214 bp for gyrA QRDR and the parC QRDR, respectively (Fig 10). The nucleotide sequences were determined by automate sequencing method. Mutations detected within the amplified regions of the mutant strains are summarized in Table 9.

The mutations in *gyrA* were found in 19 isolates at codon 83 resulting in amino acid changes from Ser (AGT) to Lle (ATT), however, 200 bp amplicon of *gyrA* QRDR cannot be amplified in two isolates, SMV37 and SMV43. For *parC* gene, the point mutations were found at codon 85 in all isolates resulting in amino acid changes from Ser (TCT) to Phe (TTT), excepted SMV48 which has mutation only in *gyrA*. In additional, silent mutations were found at codon 79 in *gyrA* QRDR of SMV 50 and SMV 51 with no amino acid changes but base changes from CCA to CCG.

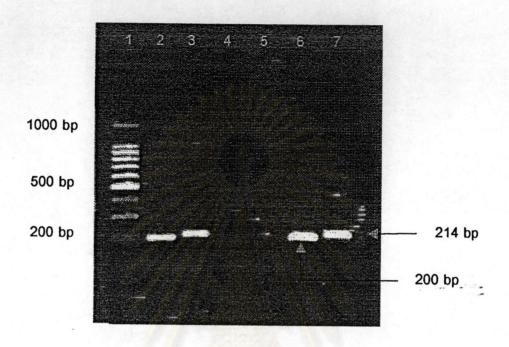



Fig. 10 Agarose electrophoresis showed amplicons of 200 and 214 bp for gyrA QRDR and the parC QRDR, respectively.

Lane 1: 100bp DNA ladder.

Lane 2: gyrA QRDR of Vibrio parahaemolyticus ATCC 17802.

Lane 3: parC QRDR of Vibrio parahaemolyticus ATCC 17802.

Lane 6: gyrA QRDR of PCR product of EP10.

Lane 7: parC QRDR of PCR product of EP10.

Table 8: Mutations detected in gyr A and par C sequences of MIC  $\geq$ 1 µg/ml of 21 Vibrio parahaemolyticus isolates.

|               |                     |             |          | Mutation in g    | yrA              | 1        | Mutation in p    | ar C             | Silent mutation |             |              |  |
|---------------|---------------------|-------------|----------|------------------|------------------|----------|------------------|------------------|-----------------|-------------|--------------|--|
| Strain<br>No. | Source <sup>a</sup> | MIC (ug/ml) | Position | Base<br>Change   | Aa change        | Position | Base change      | Aa change        | Position        | Base change | Aa<br>change |  |
| EP 25         | RP/CHB              | 8           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | TCT→TTT          | Ser <b>→</b> Phe | -14             |             | -            |  |
| SMV 37        | SP/SRT              | 4           | ND       | ND               | ND               | 85       | тст→ттт          | Ser <b>→</b> Phe | -               | -           | -            |  |
| EP26          | RP/CHB              | 4           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | тст→ттт          | Ser <b>→</b> Phe | -               | 12          | -            |  |
| EP29          | SP/SRT              | 4           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | тст→ттт          | Scr→Phc          | -               | _           | -            |  |
| SMV 45        | SP/SRT              | 4           | 83       | AGT→ATT          | Ser <b>→</b> Ile | 85       | тст→ттт          | Ser→Phe          | -               | -           | _            |  |
| SMV 50        | SP/SRT              | 4           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | тст→ттт          | Scr→Phc          | 79              | CCA         | CCG          |  |
| EP 16         | RP/CHB              | 2           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | тст→ттт          | Ser <b>→</b> Phe | -               | _           | -            |  |
| SMV I         | SP/SRT              | 2           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | TCT→TTT          | Ser→Phc          |                 | -           | -            |  |
| SMV 2         | SP/SRT              | 2           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | TCT <b>→</b> TTT | Ser→Phe          | -               |             | _            |  |
| SMV 44        | SP/SRT              | 2           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | TCT <b>→</b> TTT | Scr <b>→</b> Phc | 1               | -           | -            |  |
| SMV 46        | SP/SRT              | 2           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | тст→ттт          | Ser <b>→</b> Phe | 0 1 <b>-</b> 0  | -           | -            |  |
| SMV 49        | SP/SRT              | 2           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | тст→ттт          | Scr→Phc          | -               | -           |              |  |
| SMV 52        | SP/SRT              | 2           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | тст→ттт          | Ser→Phe          |                 | -           | -            |  |
| EP 10         | RP/CHB              | 2           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | TCT <b>→</b> TTT | Scr→Phc          | -               | -           | -            |  |
| EP 11         | RP/CHB              | 2           | 83       | AGT→ATT          | Ser <b>→</b> Ile | 85       | тст→ттт          | Ser→Phe          | -               | -           | -            |  |
| EP 18         | SP/SRT              | 2           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | тст→ттт          | Scr <b>→</b> Phc | -               | -           | 10.          |  |
| SMV 19        | SP/SRT              | 2           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | тст→ттт          | Ser→Phe          | -               | -           | 33.          |  |
| SMV 51        | SP/SRT              | 2           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | тст→ттт          | Scr <b>→</b> Phc | 79              | CCA         | CCG          |  |
| EP 22         | RP/CHB              | 1           | 83       | AGT <b>→</b> ATT | Ser <b>→</b> Ile | 85       | тст→ттт          | Scr→Phc          | ] -             | -           | _            |  |
| SMV 43        | SP/SRT              | 1           | ND       | ND               | ND               | 85       | тст→ттт          | Ser <b>→</b> Phe | -               |             |              |  |
| SMV 48        | SP/SRT              | 1           | 83       | AGT→ATT          | Ser <b>→</b> Ile | -        | _                | - William        | _               | _           |              |  |

<sup>&</sup>lt;sup>a</sup> RP, shrimp; SP, sediment;

CHB, Chonburi province; SRT, Suratthani province.

Position: Residue number counted from the N-terminal residue.

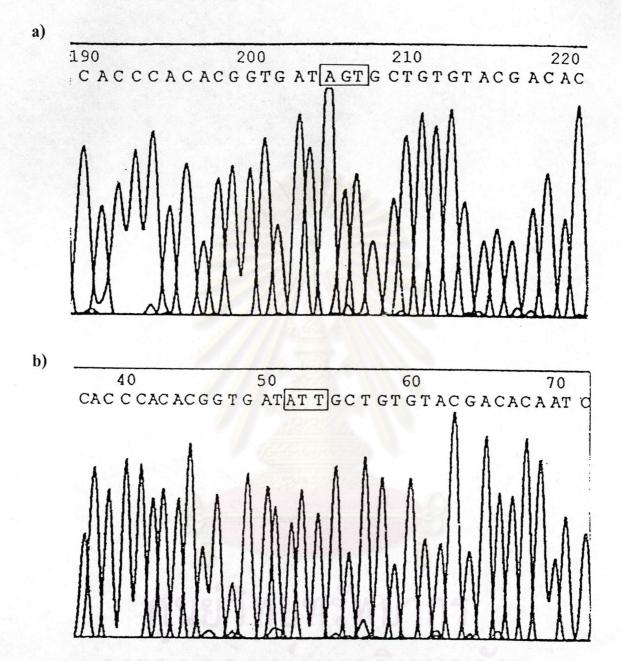



Fig 11. The chromatogram obtained from automate sequencing showed differentiation between nucleotide sequences within gyrA QRDR of Vibrio parahaemolyticus ATCC 17802 (a) and a ciprofloxacin resistant mutant (b) at the codon 83 (AGT \rightarrow ATT).

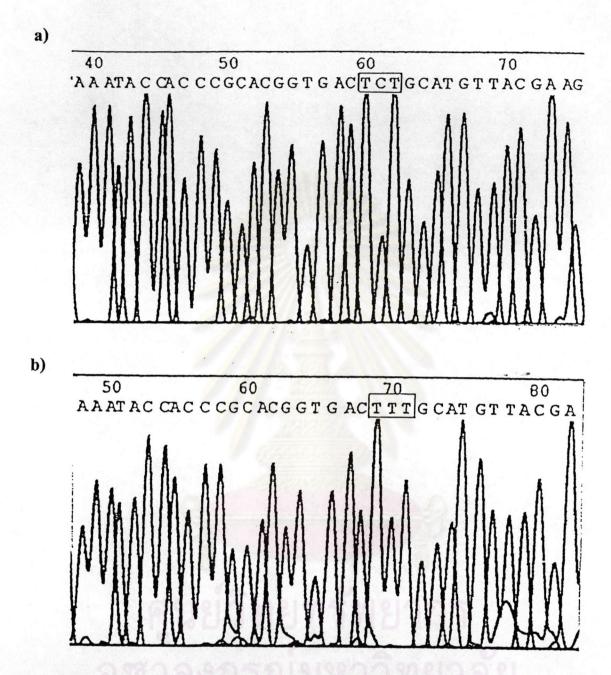



Fig 12. The chromatogram obtained from automate sequencing showed differentiation between nucleotide sequences within parC QRDR of Vibrio parahaemolyticus ATCC 17802 (a) and a ciprofloxacin resistant mutant (b) at the codon 85 (TCT—TTT).

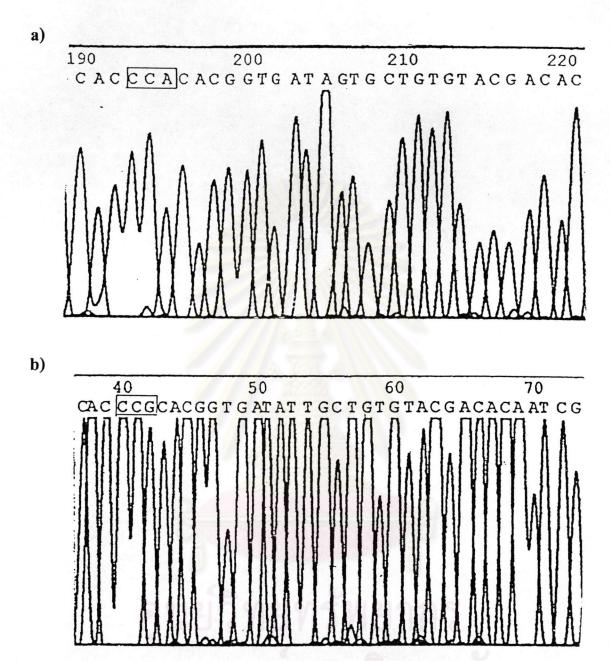



Fig 13. The chromatogram obtained from automate sequencing showed silent mutation within gyrA QRDR of a ciprofloxacin resistant mutant - SMV51 (b) at the codon 79 (CCG) comparing with Vibrio parahaemolyticus ATCC 17802 (CCA) (a).