สมาชิกปกติของกึ่งกรุปการแปลงที่รักษาอันดับและกึ่งกรุปการแปลง ที่รักษาอันดับนัยทั่วไปบางชนิด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญูญูววิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2553
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title

By
Field of Study
Thesis Advisor

REGULAR ELEMENTS OF SOME ORDER-PRESERVING TRANSFORMATION SEMIGROUPS AND GENERALIZED ORDER-PRESERVING TRANSFORMATION SEMIGROUPS Miss Winita Mora Mathematics Professor Yupaporin Kemprasit, Ph.D.

Accepted by the Eacuity of Science, Chulalongkorn University in Partial Fulfillment of the Requirements foy the Doctoral Degree

Dean of the Faculty of Science
(Professor Supo Hamongbua, Dr.rer.nat.)

THESIS COMMITTEE
(Associate Professor Patanee Udomkavamich, Ph.D.)

Sureeporn Chaopraknol....Examiner
(Assistant Professor Sureeporn Chaopraknoi, Ph.D.)

(Associate Professor Somporn Sutinuntopas, Ph.D.)

วินิตา โมรา : สมาชิกปกติของกึ่งกรุปการแปลงที่รักบาอันดับและกึ่งกรุปการแปลงที่รั้กษาอันดับนัยทั่วไป บางชนิด. (REGULAR ELEMENTS OF SOME ORDER-PRESERVING TRANSFORMATION SEMIGROUPS AND GENERALIZED ORDER-PRESERVING TRANSFORMATION SEMIGROUPS) อ. ที่ปรีกษาวิทยานิพนธ์หลัก : ศ. ตร. ชุพาภรณ์์ เข็มประสิทธิ์, 69 หน้า.

สำหรับเซตอันดับบางส่วน X และ Y ใดๆ ให้ $O T(X, Y), O P(X, Y)$ และ $O I(X, Y)$ แทนเซตของการ แปลงที่รักษาอันดับของ X ไปยัง Y ทั้งหมด เชตของการไปลงบางส่วนที่รักษาอันดับของ X ไปยัง Y ทั้งหมด และเซตของการแปลงบางส่วนหนึ่งต่อหนึ่งที่รักษาอันด้เขอร X ไขัง Y ทั้งหมด ตามลำดับ ให้ $O T(X), O P(X)$ และ $\operatorname{OI}(X)$ แทน $O T(X, X), O P(\bar{X}, X)$ सกะะ $O I(X, X)$ ตททกาดับ ตังนั้น $O T(X), O P(X)$ และ $O I(X)$ เป็นกึ่ง กรุปภายใด้การประกอบ ถ้า y เงึ่นเซตटออยวว่างของ x แล้ว $O T(X, Y), O P(X, Y)$ และ $O I(X, Y)$ เป็นกึ่งกรุป ย่อยของ $O T(X), O P(X)$ และ OI(x) ตามตาวัน ถำทรับเรต่อยไม่ว่าง Y ของเซตอันดับบางส่วน X เราให้ $\overline{O T}(X, Y)=\{\alpha \in O T(X) \mid$ X $\subseteq X 1, \overline{O P}(X, Y)=\{\alpha \in O P(X) \mid(\operatorname{dom} \alpha \cap Y) a \subseteq Y\}$ และ $\overline{O I}(X, Y)=$ $\{\alpha \in O I(X) \mid(\operatorname{dom} \alpha \cap H) \alpha, Y\}$ เรคได้ว่ว $\overline{O T}(X, Y), \overline{O P}(X, Y)$ และ $\overline{O I}(X, Y)$ เป็นกึ่งกรุปข่อยของ $O T(X), O P(X)$ และ $O I(X)$ ซึ่งบรรจ $O T(x, \gamma), \overrightarrow{Q P(X, Y)}$ และ $O I(X, Y)$ ตามลำดับ เราสามารถมองได้ว่ากึ่งกรุป $O T(X, Y)$ และ $\overline{O T}(X, Y)$ เป็นการวางนั่ทั่วไป่วิอง $O T(X)$ และในทำนองเดียวกันกับ $O P(X, Y), \overline{O P}(X, Y)$, $O I(X, Y)$ และ $\overline{O I}(X, Y)$

สำหรับเซตอันดับบางส่วน X, Y t芭 $\theta \in O T(Y, X)$ ให้ $(O T(X, Y), \theta)$ แทนกึ่งกรุป $(O T(X, Y), *)$ โดยที่ $\alpha * \beta=\alpha \theta \beta$ สำหรับทุก $\alpha, \beta \in Q \not Q X, \eta)$ เรามิยามกึ่งกรุป $(O P(X, Y), \theta$ โดยที่ $\theta \in O P(Y, X)$ และ กึ่งกรุป $(O I(X, Y), \theta)$ โดยที่ $\theta \in O I(Y, X)$ đนที่นยงเติยวกัน เราะะเห็นได้ว่า $(O T(X, Y), \theta),(O P(X, Y), \theta)$ และ $(O I(X, Y), \theta)$ เป็นคตรวางนับทั่วไปขอร $O T(x), O P(x)$ และ O Oस x) ตามลำดับ

เป็นที่รุ้กันแล้ว่าา สับรับเซตอันดับทุกส่วน X ใดา $O P(X)$ และ $O I(X)$ เป็นกึ่งกรุปปกติ และได้มีการ ให้ลักษณะของสมาชิกปกติของ $O T(X)$ อิ่งไปกว่านั้นในกรณีที่ X เป็แเซตอันดับทุกส่วนจำกัด ได้มีการนับ จำนวนสมาชิกของ $O T(X), O P(X)$ आละ $O I(X)$ จดมุ่งตินทยของงานวิจันนี้ เพื่อบอกลักษณะของสมาชิกปกติของ
 ส่วน และ $\varnothing \neq Y \subseteq X$ และ $(O T(X, Y), \theta),(O P(X, Y), \theta)$ และ $(O I(X, Y), \theta)$ โดยที่ X และ Y เป็นเซต
 $\overline{O T}(X, Y), \frac{O}{\partial P}(X, Y)$ เละ $\frac{\partial I}{}(X, Y)$ ดวย เม่อ $X=\{, 2, \ldots, n\}$ และ $Y=\{1,2, \ldots, m\}$ โดยที่ $m \leq n$

ภาควิชา.......คณิตศาสตร์...... สาขาวิชา.....คณิตศาสตร์...... ปีการศึกษา. \qquad .. 2553

ลายมือชื่อนิสิต วันิตา โมรา

\# \# 5073878123 : MAJOR MATHEMATICS
KEYWORDS : REGULAR ELEMENT / ORDER-PRESERVING TRANSFORMATION SEMIGROUP / GENERALIZED ORDER-PRESERVING TRANSFORMATION SEMIGROUP

WINITA MORA : REGULAR ELEMENTS OF SOME ORDER-PRESERVING TRANSFORMATION SEMIGROUPS AND GENERALIZED ORDERPRESERVING TRANSFORMATION SEMIGROUPS. THESIS ADVISOR : PROF. YUPAPORN KEMPRASIT, Ph.D., 69 pp.

For any posets X and Y, let $O T(X, Y), O P(X, Y)$ and $O I(X, Y)$ denote respectively the set of all order-preserving transformations, the set of all order-preserving partial transformations and the set of all order-preserving 1-1 partial transformations of X into Y. Let $O T(X), O P(X)$ and $O I(X)$ stand for $O T(X, X), O P(X, X)$ and $O I(X, X)$, respectively. Then $O T(X), O P(X)$ and $O I(X)$ are semigroups under composition. If Y is a nonempty/sudset of X, then $O T(X, Y), O P(X, Y)$ and $O I(X, Y)$ are subsemigroups of $O T(X), O P(X)$ and $O I(X)$, respectively. For a nonempty subset Y of a poset X, we let $\overline{O T}(X, Y) \mathcal{F}) \in O T(X) \mid Y \alpha \subseteq Y\}, \overline{O P}(X, Y)=\{\alpha \in$ $O P(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y\}$ and $\overline{O I}(X, Y)=\{\alpha \in O I(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y\}$. We have that $\overline{O T}(X, Y), \overline{O P}(X, Y)$ and $\bar{Q}(X, Y)$ are subsemigroups of $O T(X), O P(X)$ and $O I(X)$ containing $O T(X, Y)$ al $O P(X, Y)$ and $O I(X, Y)$, respectively. The semigroups $O T(X, Y)$ and $\overline{O T}(X, Y)$ oant be considered as generalizations of $O T(X)$ and likewise for $O P(X, Y), \overline{O P}(X, Y), \Theta H X, Y)$ and $\overline{O I}(X, Y)$.

For posets X, Y and $\mathscr{F} E T(Y, X)$, tet $(O T(X, Y), \theta)$ be the semigroup $(O T(X, Y), *)$ where $\alpha * \beta=\alpha \theta \beta$ for all $\alpha, \beta \in O T X, Y)$. The semigroups $(O P(X, Y), \theta)$ where $\theta \in O P(Y, X)$ and $(O I(X, Y), \theta)$ where $\theta \in O I(Y, X)$ are defined similarly. We can see that $(O T(X, Y), \theta),(O P(X, Y), \theta)$ and $(O I(X, Y), \theta)$ are generalizations of $O T(X), O P(X)$ and $O I(X)$, respectively.

It is known that for any chain $X, Q P(X)$ and $O I(X)$ are regular semigroups and the regulay elements of $O T(X)$ chave been characterizec. Moreover, if X is a finite chain, the catdinalittes of $\overline{O T}(X), \bigcirc P(X)$ and $\langle I(X)$ have been determined. The purpose of this research is to, characterize the regular elements of $O T(X, Y)$, $O P(X, Y)_{0} Q I(X, Y), \overline{O T}(X Y), \overline{O P}(X, Y)$ and $\overline{O T}\left(X_{0} Y\right)$ where X is a chain and $\varnothing \neq Y 0 \in X$ and $(O T(X, Y) \theta)_{\theta}(O P(X, Y), \theta)$ and $\left(\phi Y(X, Y) \theta^{\theta}\right)$ where X and Y are any chains. In addition, the regular elements of $O T(X, Y), O P(X, Y), O I(X, Y)$, $\overline{O T}(X, Y), \quad \overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$ are counted when $X=\{1,2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$ where $m \leq n$.

Department Mathematics.
Field of Study :Mathematics....
Academic Year : \qquad 2010

Student's Signature. Winita Mora.....
Advisor's Signature.? up.a.p.osm. Kampresit

ACKNOWLEDGEMENTS

I am greatly indebted to Professor Dr.Yupaporn Kemprasit, my thesis advisor, for her consistent encouragement, helpfulness and valuable suggestions throughout the preparation and completion of this dissertation. I am also grateful to the other members of my thesis committee, Associate Professor Dr. Patanee Udomkavanich, Associate Professor Dr. Amorn Wasanawichit, Assistant Professor Dr. Sureeporn Chaopraknoi and Associate Professor Dr. Somporn Sutinuntopas. Moreover, I would like to thank all of the lecturers for their previous valuable lectures while studying.

I acknowledge the 3 -year support of the University Development Commission (UDC) Scholarship for the Ph.D.program in mathematics at Chulalongkorn University. I would like to thankPrince of Songkla University for allowing me to further study in this program.

Finally, my sincere gratitude and appreciation goes to my beloved mother for her encouragement throughout my study.

ศูนย์วิทยทรัพยากร

จุหาลงกรณ์มหาวิทยาลัย

CONTENTS

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENTS vi
CONTENTS vii
INTRODUCTION 1
CHAPTERS
I PRELIMINARIES 6
II SEMIGROUPS OF ORDER-PRESERVING TRANSFORMATIONS WITH RESTRICTED RANGE 17
2.1 Characterizations of Regular Elements 17
2.2 Combinatorial Resuts on Regular Elements 23
III SEMIGROUPS OF ORDER-PRESERVING TRANSFORMATIONS SENDING A FIXED SET INTO ITSELF 31
3.1 Characterizations of Regular Elements 31
3.2 Compinatorial Resultson Regylar Elements .i.o. 43 ฯ
IV REGULAR ELEMENTS OF GENERALIZED ORDERePRESERVING 57REFERENCES66
VITA 69

INTRODUCTION

Transformation semigroups play an important role in Semigroup Theory. It is well-known that every semigroup can be embedded in a full transformation semigroup ([8], p. 3 or [11], p. 7). As we know, regularity is a crucial notion in Semigroup Theory. All standard transformation semigroups are regular semigroups. In addition, the full linear transformation semigroup on a vector space and the full $n \times n$ matrix semigroup over a division ring are both regular. Semigroups of order-preserving tranformations have been widely studied. Combinatorial results for them have been of interest in this subject. See [5], [6], [7], [9], [10], [12], [13], [14], [15], [16], [17], [18], [22], [23], [24], [26] and [27] for example. Order-preserving transformation semigroups need not be regular in general. In this research, the regular elements of certain order-preserving transformation semigroups on chains are of our interest to characterize. Combinatorial results on the regular elements of some of these semgroups are also considered.

For a nonempty set X, let $T(X), P(X)$ and $I(X)$ denote respectively the full transformation sendigroup on X, the partial transformation semigroup on X and the 1-P partiat transformation semigroup on X, respectively. It is wellknown that all the semigroups $T_{6}(X), P(X)$ and $I(X)$ are regular ([8], p. 4 or [11], p. 63 and 149) ${ }^{9}$ For nonempty sets X and 9 Y, Ret $T(X) Y, y(X, Y)$ and $I(X, Y)$ ibe the set of all transformations, the set of all partial transformations and the set of all 1-1 partial transformations of X into Y, respectively. If Y is a nonempty subset of X, then $T(X, Y), P(X, Y)$ and $I(X, Y)$ are clearly subsemigroups of $T(X), P(X)$ and $I(X)$, respectively. For $\varnothing \neq Y \subseteq X$, let $\bar{T}(X, Y)=\{\alpha \in T(X) \mid Y \alpha \subseteq Y\}, \bar{P}(X, Y)=\{\alpha \in P(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y\}$ and $\bar{I}(X, Y)=\{\alpha \in I(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y\}$. Then $\bar{T}(X, Y), \bar{P}(X, Y)$ and $\bar{I}(X, Y)$ are subsemigroups of $T(X), P(X)$ and $I(X)$ containing $T(X, Y), P(X, Y)$
and $I(X, Y)$, respectively. We may consider $T(X, Y)$ and $\bar{T}(X, Y)$ as generalizations of $T(X)$. The semigroups $P(X, Y)$ and $\bar{P}(X, Y)$ generalize $P(X)$ as well as $I(X, Y)$ and $\bar{I}(X, Y)$ generalize $I(X)$. The semigroup $T(X, Y)$ was introduced and studied by Symons [29] in 1975 while Magill [19] introduced and studied the semigroup $\bar{T}(X, Y)$ in 1966. In [25], the authors characterized the regular elements of the transformation semigroups $T(X, Y)$ and $\bar{T}(X, Y)$. In addition, the number of regular elements of these two sets when X is finite was given in terms of $|X|,|Y|$, and their Stirling numbers of second kind.

Let X and Y be nonempty sets. For $\theta \in T(Y, X)$, let $(T(X, Y), \theta)$ denote the semigroup $(T(X, Y), *)$ where $\alpha * \beta=\alpha \theta \beta$ for all $\alpha, \beta \in T(X, Y)$. The semigroups $(P(X, Y), \theta)$ where $\theta \in P(Y, X)$ and $(I(X, Y), \theta)$ where $\theta \in I(Y, X)$ are defined similarly. These semigroups can be also considered as generalizations of $T(X), P(X)$ and $I(X)$, respectively. They are special cases of generalized partial transformation semigroups introduced by Sullivan [28] in 1975. In 1975, Magill and Subbiah [20]_characterized the regular elements of the semigroups $(T(X, Y), \theta)$ and $(P(X, Y), \theta)$. Recently, Chinram [3] considered when the semigroup $(P(X, Y), \theta)$ is regular and gave a characterization of its regular elements in a different version. A characterization of the regularity of the semigroup $(T(X, Y), \theta)$ was given in [2]. The regularity and the regular elements of the semigroups $(I(X, Y), \theta)$ were introduced in [4].

For a partially ofdered set X, let $O T(X), O P(X)$ and $O F(X)$ denote the orderpreserving full dransformation semigroup on X, the order-preserving partial transformation semigroup on $\rightarrow X$ and the orfer-preserving 1 , 1 partial transformation semigroup on X, respectively. It is known that $O T(X)$ is a regular semigroup if X is a finite chain ([8], p. 203). Kemprasit and Changphas [14] extended this result by showing that $O T(X)$ is regular for any chain which is order-isomorphic to a subset of \mathbb{Z}, the set of integers under the natural order. It was also shown in [14] that for any chain $X, O P(X)$ and $O I(X)$ are regular semigroups. In fact, Kim and Kozhukhov [16] characterized a countable chain X for which $O T(X)$ is a regular semigroup. It was also proved in [14] that if X is an interval in \mathbb{R}, the set
of real numbers under the usual order, then $O T(X)$ is a regular semigroup if and only if X is closed and bounded. Rungrattrakoon and Kemprasit [26] extended this fact by showing that for a nontrivial interval X in a subfield F of $\mathbb{R}, O T(X)$ is regular if and only if $F=\mathbb{R}$ and X is closed and bounded. Then it follows as a direct consequence that for any nontrivial interval X in \mathbb{Q}, the set of rational numbers under the usual order, $O T(X)$ is not a regular semigroup. In fact, the result in [26] mentioned above is a consequence of the main theorem in [13]. In [23], the regularity of the semigroup $O T(X)$ was investigated for a certain dictionary chain X and it was studiec in [24] for X being an other dictionary chain. In general, $O T(X)$ need not be vegular. Then we gave in [22] a characterization determining when an element of $O T(X)$ is regular where X is any chain. In the case of a finite chain X, Howie [10] gave the cardinality of $O T(X)$ and in [7], Howie and Gomes provided the cardinality of $O P(X)$. See also the papers [17] and [18] of Laradji and Umar and the paper [9] of Higgins. The cardinality of $O I(X)$ was first presented by Ganba in [6]. It was also given in [5].

Let X and Y be partially ordered sets. Denote by $O T(X, Y), O P(X, Y)$ and $O I(X, Y)$ the set of all order-preserving transformations, the set of all orderpreserving partial transformations and the set of all order-preserving 1-1 partial transformations of X into Y, respectively. If Y is a nonempty subset of X, then $O T(X, Y), O P(X, Y)$ and $O I(X, Y)$ are subsemigroups of $O T(X), O P(X)$ and $O I(X)$, respectively. For $\widehat{\varnothing} \neq Y \subset Q, \bar{G}$ let $\overline{O T}(X, Y) \Rightarrow\{a \in O T(X) \mid Y \alpha \subseteq Y\}$, $\overline{O P}(X, Y)=\{\propto \in O P(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y\}$ and $O I(X, Y)=\{\alpha \in O I(X) \mid$ (dom $\alpha Q Y) \alpha \in Y$, Then $\overline{O T}(X, Y, \overline{O P}(X, Y$ and $\overline{O I}(X, Y)$ are subsemigroups of $O T(X), O P(X)$ and $O I(X)^{0}$ containing $O T\left(X, Y^{r}\right), O P(X, Y)$ and $O I(X, Y)$, respectively. Also, we have that $O T(X, Y)$ and $\overline{O T}(X, Y)$ generalize $O T(X)$ and likewise for $O P(X, Y), \overline{O P}(X, Y), O I(X, Y)$ and $\overline{O I}(X, Y)$. The regularity of the semigroups $O T(X, Y), O P(X, Y)$ and $O I(X, Y)$ was studied in [27] where X is a chain.

For any partially ordered sets X, Y and $\theta \in O T(Y, X)$, let $(O T(X, Y), \theta)$ be the semigroup $(O T(X, Y), *)$ where $\alpha * \beta=\alpha \theta \beta$ for all $\alpha, \beta \in O T(X, Y)$. The semi-
groups $(O P(X, Y), \theta)$ where $\theta \in O P(Y, X)$ and $(O I(X, Y), \theta)$ where $\theta \in O I(Y, X)$ are defined analogously. We also have that $(O T(X, Y), \theta),(O P(X, Y), \theta)$ and $(O I(X, Y), \theta)$ generalize $O T(X), O P(X)$ and $O I(X)$, respectively. In [15], the authors considered when the semigroup $(O T(X, Y), \theta)$ is regular where X and Y are any chains. Also, the regularity of the semigroups $(O P(X, Y), \theta)$ and $(O I(X, Y), \theta)$ was determined in [12] where X and Y are chains.

In this research, we extend above results for order-preserving transformation semigroups. The regular elements of following semigroups are characterized: $O T(X, Y), O P(X, Y), \overline{O I(X, Y)} \overline{O T}(X, Y), \overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$ where X is a chain and $\varnothing \neq Y \subseteq X$ and $O T(X, Y), \theta),(O P(X, Y), \theta)$ and $(O I(X, Y), \theta)$ where X and Y are any chains and θ belongs to $O T(Y, X), O P(Y, X)$ and $O I(Y, X)$, respectively. In addition, if $X=\{1,2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$ where $m \leq n$, the number of negular elements of the semigroups $O T(X, Y), O P(X, Y)$, $O I(X, Y), \overline{O T}(X, Y), O P(X, Y)$ and $O I(X, Y)$ is investigated.

This research is organized as follows:
Chapter I contains the basic-definitions, notations and quoted results which will be used for this research.

In Chapter II, we give necessary and sufficient conditions for the elements of the semigroups $O \vec{T}(X, Y), O P(X, Y)$ and $O I(X, \bar{Y})$ to be regular when X, Y are chains and $\varnothing \neq Y \subseteq X$. Then these characterizations are applied to prove the above known results concerning the regularity $\mathrm{Of} O T(X, Y), O P(X, Y)$ and $O I(X, Y)$. In addition, the regular elements of $O T(X, Y), O P(X, Y)$ and $O I(X, Y)$ are counted when $1 \frac{9}{7}\{1,2, \%, n\}$ and $\}\{1,2, \cap, ? m\}$ where $m \leq n$.

In Chapter III, necessary and sufficient conditions for the elements of the semigroups $\overline{O T}(X, Y), \overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$ to be regular are provided when X, Y are chains and $\varnothing \neq Y \subseteq X$. These conditions are then applied to determine the regularity of $\overline{O T}(X, Y), \overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$. Moreover, we also provide the number of regular elements in each of the semigroups $\overline{O T}(X, Y), \overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$ when $X=\{1,2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$ where $m \leq n$.

Chapter IV contains characterizations of the regular elements of the gener-
alized order-preserving transformation semigroups $(O T(X, Y), \theta),(O P(X, Y), \theta)$ and $(O I(X, Y), \theta)$ where X and Y are any chains. In addition, the regularity of $(O T(X, Y), \theta),(O P(X, Y), \theta)$ and $(O I(X, Y), \theta)$ is determined by making use of our characterizations.

Note that a condition of the regularity of an element in some semigroups of our interest is given in terms of the regularity of an elements in $O T(X)$ where X is a chain. Recall that the regular elements of $O T(X)$ were characterized in [22].

CHAPTER I

PRELIMINARIES

For a set X, let $|X|$ denote the cardinality of X. The notation \dot{U} stands for a disjoint union.

An element a of a semigroup S is said to be regular if $a=a x a$ for some $x \in S$, and S is called a regular semigroup if every element of S is regular. The set of all regular elements of a semigroup S will be denoted by $\operatorname{Reg}(S)$, that is,

$$
\operatorname{Reg}(S)=\{a \in S \mid a=a x a \text { for some } x \in S\}
$$

The domain and the range of a mapping α will be denoted by dom α and $\operatorname{ran} \alpha$, respectively. For an element x in the domain of a mapping α, the image of x under α is written as $x \alpha$. Notice that dom $\alpha=\bigcup_{x \in \operatorname{ran} \alpha} x \alpha^{-1}$. For $A \subseteq \operatorname{dom} \alpha$, denote by $\alpha_{\left.\right|_{A}}$ the restriction of α to A. The identity mapping on a nonempty set A is denoted by 1_{A}. For any mappings α and β, the composition $\alpha \beta$ of α and β is defined as follows: $\alpha \beta=0$ if $\operatorname{ran} \alpha \cap \operatorname{dom} \beta=\varnothing$, otherwise, $\alpha \beta$ is the usual composition of the mappings $\alpha_{\left.\right|_{\left(\text {ran } \alpha(\operatorname{dom} \beta) \alpha^{-1}\right.}}$ and $\beta_{(\operatorname{ran} \alpha \cap \operatorname{dom} \beta)}$ where 0 is the empty transformation, that is, the mapping/with empty domain. Then for any mappings α, β end γ, we have

$$
\begin{aligned}
& \operatorname{ran}(\alpha \beta)=(\operatorname{ran} \alpha \cap \operatorname{dom} \beta) \beta \subseteq \operatorname{ran} \beta, \\
& \text { for } x \in X, \quad x \in \operatorname{dom}(\alpha \beta) \Leftrightarrow x \in \operatorname{dom} \alpha \text { and } x \alpha \in \operatorname{dom} \beta, \\
& (\alpha \beta) \gamma=\alpha(\beta \gamma) .
\end{aligned}
$$

Let X be a nonempty set. We call a mapping α from X into itself a transformation of X. By a partial transformation of X we mean a mapping from a subset of X into X. Then the empty transformation 0 is a partial transformation of X.

Let $T(X), P(X)$ and $I(X)$ denote the set of all transformations of X, the set of all partial transformations of X and the set of all 1-1 partial transformations of X, respectively, that is,

$$
\begin{aligned}
& T(X)=\{\alpha \mid \alpha: X \rightarrow X\}, \\
& P(X)=\{\alpha: A \rightarrow X \mid A \subseteq X\}, \\
& I(X)=\{\alpha \in P(X) \mid \alpha \text { is } 1-1\} .
\end{aligned}
$$

We can see that all of $T(X), P(X)$ and $I(X)$ contain $1_{X}, 0$ is contained in $P(X)$ and $I(X)$ but not in $T(X)$ and $T(X)$, and $I(X)$ are subsets of $P(X)$. Therefore, under the composition of mappings, $P(X)$ is a semigroup having $T(X)$ and $I(X)$ as its subsemigroups. The semigroups $T(X), P(X)$ and $I(X)$ are called the full transformation semigroup on X, the partial transformation semigroup on X and the 1-1 partial transformation semigroup or the symmetric inverse semigroup on X, respectively. By a transformation semigroup on X we mean a subsemigroup of $P(X)$. It is well-known that all the semigroups $P(X), T(X)$ and $I(X)$ are regular for every set X ([8], p. 4 or [11], D. 63 and 149).

For convenience, we sometimes write a mapping by using a bracket notation. For example,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { stands for the mapping } \alpha \text { with dom } \alpha=\{a, b\}, \operatorname{ran} \alpha=\{c, d\},
$$

$$
a \alpha=c \text { and } b \alpha=d,
$$

By the above notations, a mapping α can be written as $\alpha=\binom{x \alpha^{-1}}{x}_{x \in \operatorname{ran} \alpha}$.

$$
\begin{aligned}
& \operatorname{ran} \beta=\{a\} \cup\left\{x^{\prime} \mid x \in X \backslash A\right\} \text { and } x \alpha= \begin{cases}a & \text { if } x \in A, \\
x^{\prime} & \text { if } x \in X \backslash A .\end{cases}
\end{aligned}
$$

For nonempty sets X and Y, let

$$
\begin{aligned}
T(X, Y) & =\{\alpha \mid \alpha: X \rightarrow Y\} \\
P(X, Y) & =\{\alpha: A \rightarrow Y \mid A \subseteq X\} \\
I(X, Y) & =\{\alpha \in P(X, Y) \mid \alpha \text { is } 1-1\} .
\end{aligned}
$$

Notice that $T(X, X)=T(X), P(X, X)=P(X)$ and $I(X, X)=I(X)$. If Y is a nonempty subset of X, then
$\overline{T(X, Y)}=\{\alpha \in T(X) \mid \operatorname{ran} \alpha \subseteq Y\}$,
$P(X, Y)=\{\alpha \in P(X) \mid \operatorname{ran} \alpha \subseteq Y\}$,
$I(X, Y)=\{\alpha \in I(X) \mid \operatorname{ran} \alpha \subseteq Y\}$
which are clearly subsemigroups of $T(X), P(X)$ and $I(X)$, respectively.
For $\varnothing \neq Y \subseteq X$,

$$
\begin{aligned}
& \bar{T}(X, Y)=\{\alpha \in P(X) \mid Y \alpha \subseteq Y\}, \\
& \bar{P}(X, Y)=\{\alpha \in P(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y\}, \\
& \bar{I}(X, Y)=\{\alpha \in I(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y\} .
\end{aligned}
$$

Then $T(X, Y) \subseteq \bar{T}(X, Y), P(X, Y) \subseteq \bar{P}(X, Y)$ and $I(X, Y) \subseteq \bar{I}(X, Y)$. Also, $\bar{T}(X, Y), \bar{P}(X, Y)$ and $\bar{I}(X, Y)$ are subsemigroups of $T(X), P(X)$ and $I(X)$, respectively. Aotice that $\hat{A} \in \mathscr{T}(X, Y)$ but, $\nmid x \notin T(X, Y)$ if $Y \subsetneq X$. The semigroups $\bar{T}(X, Y$ and $T(X, Y)$ were introduced and studied by Magill [19] in 1966 and Symons, $[29]$ in 1975, respectively ove observe that $T\left(X^{2}, X\right)=\bar{T}(X, X)=$ $T(X), P_{q}(X, X)=\bar{P}(X, X) \triangleq P(X)$ and $I(X, X)=\bar{I}(X, X) Q I(X)$.

The characterizations of the regular elements in $T(X, Y)$ and $\bar{T}(X, Y)$ are respectively given as follows:

Theorem 1.1. ([25]) Let X be a nonempty set, $\varnothing \neq Y \subseteq X$ and $\alpha \in T(X, Y)$. Then $\alpha \in \operatorname{Reg}(T(X, Y))$ if and only if $\operatorname{ran} \alpha=Y \alpha$.

Theorem 1.2. ([25]) Let X be a nonempty set, $\varnothing \neq Y \subseteq X$ and $\alpha \in \bar{T}(X, Y)$. Then $\alpha \in \operatorname{Reg}(\bar{T}(X, Y))$ if and only if $\operatorname{ran} \alpha \cap Y=Y \alpha$.

Next, let X and Y be any nonempty sets. Let $S(X, Y)$ be $T(X, Y), P(X, Y)$ or $I(X, Y)$. For $\theta \in S(Y, X)$, we define a sandwich operation $*$ on $S(X, Y)$ by

$$
\alpha * \beta=\alpha \theta \beta \quad \text { for all } \alpha, \beta \in S(X, Y)
$$

Then $(S(X, Y), *)$ is a semigroup which we denote by $(S(X, Y), \theta)$. The semigroups $(T(X, Y), \theta),(P(X, Y), \theta)$ and $(I(X, Y), \theta)$ are called the generalized full transformation semigroup, the generalized partial transformation semigroup and the generalized 1-1 partial transformation semigroup of X into Y induced by θ, respectively. Generalized partial transformation semigroups introduced by Sullivan [28] in 1975 have these semigroups as special cases. In particular, $\left(T(X, X), 1_{X}\right)$, $\left(P(X, X), 1_{X}\right)$ and $\left(I(X, X), 1_{X}\right)$ are respectively the semigroups $T(X), P(X)$ and $I(X)$.

Example 1.3. ([12]) Let X and Y be nonempty sets and $a \in X$. Then $\left(T(X, Y),\binom{Y}{a}\right)$ is the semigroup $T(X, Y)$ with the operation $*$ defined by

$$
\left.\alpha * \beta=\alpha\binom{Y}{a} \frac{\beta=(X}{a \beta}\right) \text { for all } \alpha, \beta \in T(X, Y) \text {. }
$$

Also, $\left(P(X, Y),\binom{Y}{a}\right.$) is the semigroup $P(X, Y)$ with the operation \circ defined by

Moreover, for $b \in Y$, the semigroutp $\left(I(X, Y),\left(\frac{b}{a}\right)\right)$ is the semigtoup $(I(X, Y), \bullet)$

$$
\alpha \bullet \beta=\alpha\binom{b}{a} \beta= \begin{cases}\binom{b \alpha^{-1}}{a \beta} & \text { if } b \in \operatorname{ran} \alpha \text { and } a \in \operatorname{dom} \beta \\ 0 & \text { otherwise } .\end{cases}
$$

For a nonempty subset A of a partially ordered set (poset) X, we let $\max (A)$ and $\min (A)$ denote the maximum and the minimum of A, respectively if they exist. Also, for nonempty subsets A and B of X, let $A<B$ mean that $a<b$
for all $a \in A$ and $b \in B$. For $x \in X$, let $x<A$ stand for $\{x\}<A$. We define $A>B, A \leq B, A \geq B, x>A, x \leq A$ and $x \geq A$ analogously. The set of all upper bounds of A in X and the set of all lower bounds of A in X are denoted by $\mathrm{ub}(A)$ and $\mathrm{lb}(A)$, respectively. Notice that $x \in \mathrm{ub}(A)$ if and only if $x \geq A$, and $x \in \operatorname{lb}(A)$ if and only if $x \leq A$.

Let X and Y be partially ordered sets. For $\alpha \in P(X, Y), \alpha$ is said to be order-preserving if

$$
\text { for any } x_{1}, x_{2} \in \text { dom } \alpha, x_{1} \leq x_{2} \text { in } X \Rightarrow x_{1} \alpha \leq x_{2} \alpha \text { in } Y \text {. }
$$

A bijection $\varphi: X \rightarrow Y$ is called an order-isomorphism if φ and φ^{-1} are orderpreserving. It is clear that if both X and Y are chains and $\varphi: X \rightarrow Y$ is an order-preserving bijection, then φ is an order-isomorphism from X onto Y. We say that X and Y are order-isomorphic if there is an order-isomorphism from X onto Y.

A transformation semigroup on a partially ordered set X is said to be an order-preserving transformation semigroup on X if all of its elements are orderpreserving. Let
$Q T(X)=\{\alpha \in T(X) \mid \alpha$ is order-preserving $\}$,
$O P(X)=\{\alpha \in P(X) \mid \alpha$ is order-preserving $\}$,
$O I(X)=\{\alpha \in I(X) \mid \alpha$ is order-preserving $\}$.
Then $O T(X), Q P(x)$ and $O I(X)$ are respectively subsemigroups of $T(X), P(X)$ and $I(X)$. Observe that 0 and 1_{X} belong to $O P(X)$ and $O I(X)$ and $1_{X} \in O T(X)$. The semigfoups $O T(X), O P_{0}(X)$ and $O H X$ are called the order-preserving full transformation semigroup on X, the order-preserving partial transformation semigroup on X and the order-preserving 1-1 partial transformation semigroup on X, respectively.

The following results for the semigroups $O T(X), O P(X)$ and $O I(X)$ are known.

Theorem 1.4. ([8], p.203) If X is a finite chain, then $O T(X)$ is a regular semigroup.

Theorem 1.5. ([14]) For any chain X, the semigroups $O P(X)$ and $O I(X)$ are regular.

A characterization determining when an element of $O T(X)$ is regular where X is a chain was given in [22] as follows:

Theorem 1.6. ([22]) Let X be a chain and $\alpha \in O T(X)$. Then $\alpha \in \operatorname{Reg}(O T(X))$ if and only if the following three conditions hold.
(i) If $\mathrm{ub}(\operatorname{ran} \alpha) \neq \varnothing$, then $\max (\operatorname{ran} \alpha)$ exists.
(ii) If $\operatorname{lb}(\operatorname{ran} \alpha) \neq \varnothing$, then $\min (\operatorname{ran} \alpha)$ exists.
(iii) If $x \in X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))$, then $\max (\{t \in \operatorname{ran} \alpha \mid t<x\})$
exists or $\min (\{t \in \operatorname{ran} \alpha \mid t>\bar{x}\})$ exists.
The following corollary is a direct consequence of Theorem 1.6.

Corollary 1.7. Let $\alpha \in O T(X)$ If ran α is finite, then $\alpha \in \operatorname{Reg}(O T(X))$.

Notice that Corollary 1.7 is generalization of Theorem 1.4.
In the case that X is a finite chain, the cardinalities of $O T(X), O P(X)$ and $O I(X)$ were given as follows:

Theorem 1.8. ([9], [10], [18]) If X is a finite chain of n elements, then

Theorem 1.9. ([7], [17]) If X is a finite chain of n elements, then

$$
|O P(X)|=\sum_{r=0}^{n}\binom{n}{r}\binom{n+r-1}{r}
$$

Theorem 1.10. ([5], [6]) If X is a finite chain of n elements, then

$$
|O I(X)|=\sum_{r=0}^{n}\binom{n}{r}^{2}=\binom{2 n}{n}
$$

For partially ordered sets X and Y, let

$$
\begin{aligned}
& O T(X, Y)=\{\alpha \in T(X, Y) \mid \alpha \text { is order-preserving }\} \\
& O P(X, Y)=\{\alpha \in P(X, Y) \mid \alpha \text { is order-preserving }\} \\
& O I(X, Y)=\{\alpha \in I(X, Y) \mid \alpha \text { is order-preserving }\}
\end{aligned}
$$

Proposition 1.11. Let X and Y be chains. If $\alpha \in O P(X, Y)$ and $a, b \in \operatorname{ran} \alpha$ are such that $a<b$ in Y, then $a \alpha^{-1}<b a a^{-1}$ in X.

Proof. Let $x \in a \alpha^{-1}$ and $y \in b \alpha^{-1}$. Then $x \alpha=a$ and $y \alpha=b$. Since X is a chain, $x<y$ or $x \geq y$. If $x \geq y$, then $x \alpha \geq y \alpha$ since α is order-preserving. This implies that $a \geq b$, a contradiction. Hence $x<y$.

If α and β are mappings with disjoint domains, we define the mapping $\alpha \cup \beta$ as follows: $\operatorname{dom}(\alpha \cup \beta)=\operatorname{dom} \alpha \cup \operatorname{don} \beta,(\alpha \cup \beta)_{\mid \operatorname{dom} \alpha}=\alpha$ and $(\alpha \cup \beta)_{\mid \operatorname{dom} \beta}=\beta$.

The following facts are clearly seen.
Proposition 1.12. Let X and Ye partially ordered sets and $\alpha \in O P(X, Y)$. If $\operatorname{dom} \alpha=A \dot{\cup} B$, then $\alpha_{\left.\right|_{A}} \in O T(A, Y), \alpha_{\left.\right|_{B}} \in O T(B, Y)$ and $\alpha=\alpha_{\left.\right|_{A}} \cup \alpha_{\left.\right|_{B}}$.

Proposition 1.13. Let X and Y be chains. If $\alpha, \beta \in O P(X, Y)$ are such that $\operatorname{dom} \alpha<\operatorname{dom} \beta$ and $\operatorname{ran} \alpha \leq \operatorname{ran} \beta$, then $\alpha \cup \beta \in O P(X, Y)$.

If Y is a nonempty subset of a partially ordered set X, then
$O T(X, Y)=\{\alpha \in O T(X) \mid \operatorname{ran} \alpha \subseteq Y\}$,

$O I(X, Y)=\{\alpha \in O I(X) \mid \operatorname{ran} \alpha \subseteq Y\}$.

It is easy to see that $O T(X, Y), O P(X, Y)$ and $O I(X, Y)$ are subsemigroups of $O T(X), O P(X)$ and $O I(X)$, respectively.

Due to the semigroup $\bar{T}(X, Y)$ introduced by Magill [19] and those $\bar{P}(X, Y)$ and $\bar{I}(X, Y)$ mentioned previously for a set X and $\varnothing \neq Y \subseteq X$, the following order-preserving transformation semigroups are defined for a partially ordered set
X and $\varnothing \neq Y \subseteq X$ analogously as follows:

$$
\begin{aligned}
& \overline{O T}(X, Y)=\{\alpha \in O T(X) \mid Y \alpha \subseteq Y\}, \\
& \overline{O P}(X, Y)=\{\alpha \in O P(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y\}, \\
& \overline{O I}(X, Y)=\{\alpha \in O I(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y\} .
\end{aligned}
$$

Then

$$
\begin{gathered}
O T(X, Y) \subseteq \overline{O T}(X, Y) \subseteq O T(X), \quad O P(X, Y) \subseteq \overline{O P}(X, Y) \subseteq O P(X), \\
O I(X, Y) \subseteq \overline{O I}(X, Y) \subseteq O I(X), \quad \overline{O T(X, X)}=\overline{O T}(X, X)=O T(X), \\
O P(X, X)=\overline{O P}(X, X) \cong Q P(X), O I(X, X)=\overline{O I}(X, X)=O I(X)
\end{gathered}
$$

and 0 belongs to all of the semigroups $O P(X, Y), \overline{O P}(X, Y), O I(X, Y)$ and $\overline{O I}(X, Y)$.

The regularity of $O T(X, Y), O P(X, Y)$ and $O I(X, Y)$ where X is a chain and $\varnothing \neq Y \subseteq X$ was studied in [27].

Theorem 1.14. ([27]) Let X bera chain and $\varnothing \neq Y \subseteq X$. Then $O T(X, Y)$ is a regular semigroup if and only if one of the following statements holds.
(i) $Y=X$ and $Q T(X)$ is a regular semigroup.
(ii) $|Y|=1$.
(iii) $|Y|=2, \min (X)$ and $\max (X)$ exist, and $Y=\{\min (X), \max (X)\}$.

Theorem 1.15. $9(27)$ Let X beal chainfand $\varnothing \neq Y \uparrow X$.
(i) $O P(X, Y)$ is a regular semigroup if and only if $Y=X$.
(ii) OI (X, Y) s a reguar semigroup if and only if Y © $X . Q$ \&

Next, let X and Y be any partially ordered sets. For $\theta \in O T(Y, X)$, let $(O T(X, Y), \theta)$ denote the semigroup $O T(X, Y)$ under the sandwich operation determined by θ and likewise for $(O P(X, Y), \theta)$ with $\theta \in O P(Y, X)$ and $(O I(X, Y), \theta)$ with $\theta \in O I(Y, X)$. We call the semigroups $(O T(X, Y), \theta),(O P(X, Y), \theta)$ and $(O I(X, Y), \theta)$ the generalized order-preserving full transformation semigroup, the generalized order-preserving partial transformation semigroup and the generalized order-preserving 1-1 partial transformation semigroup of X into Y induced by θ,
respectively. As before, $\left(O T(X, X), 1_{X}\right),\left(O P(X, X), 1_{X}\right)$ and $\left(O I(X, X), 1_{X}\right)$ are respectively the semigroups $O T(X), O P(X)$ and $O I(X)$.

The following theorem provided in [15] can be considered as a generalization of Theorem 1.14.

Theorem 1.16. ([15]) Let X, Y be any chains and $\theta \in O T(Y, X)$. Then the semigroup $(O T(X, Y), \theta)$ is regular if and only if one of the following statements holds.
(i) The semigroup $O T(X)$ is regular and θ is an order-isomorphism from Y onto X.
(ii) $|X|=1$.
(iii) $|Y|=1$.
(iv) $|Y|=2, \min (X)$ and $\max (X)$ (exist, and $\operatorname{ran} \theta=\{\min (X), \max (X)\}$.

The following two theorems given in \{12] can be also considered as generalizations of Theorem 1.15(i) and Theorem 1.15(ii), respectively.

Theorem 1.17. ([12]) Let Xand Ye bhains. For $\theta \in O P(Y, X)$, the semigroup $(O P(X, Y), \theta)$ is regular if and only if
(i) θ is an order-isomorphism from Y onto X or
(ii) $\operatorname{dom} \theta=Y, \operatorname{ran} \theta=X$ and $|X|=1$.

Theorem 1.18. $([121)$ Let X and Ybe chains. For $\theta \in O \tilde{I}(Y, X)$, the semigroup $(O I(X, Y), \theta)$ is regular if and only if θ is an order-isomorphism from Y onto X.

To count the regular elements of the semigroups $O T(X, Y), O P(X, Y), O I(X, Y)$, $\overline{O T}(X, Y), \overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$ when $X=\{1,2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$ where $m \leq n$, the following proposition will be used. It is obtained from some combinatorial ideas given in [7].

Proposition 1.19. ([7]) Let X and Y be finite chains. If $|X|=n$ and $|Y|=r$, then the number of all order-preserving transformations from X onto Y is $\binom{n-1}{r-1}$.

Moreover, the following standard combinatorial results are also used for our counting.

Result 1.20. ([9]) For all natural numbers m and n with $n \leq m$,

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{m}{k}=\binom{n+m}{m}
$$

Result 1.21. ([17]) For all natural numbers n and r,

$$
\sum_{k=1}^{n}\binom{k+r-2}{k-1}=\binom{n+r-1}{n-1}=\binom{n+r-1}{r}
$$

Result 1.22. ([18]) For all natural numbers n and r,

Result 1.23. ([21], p.68) For every natural number n,

Result 1.24. ([21], p.53) For all natural numbers $m=$ and n with $n \leq m$,

Result 1.25. ([1], p.42) For all nâtural numbers m, p and q, e

Result 1.25 yields the following result.

Result 1.26. For all natural numbers m and n,

$$
\sum_{r=1}^{m}\binom{m}{r}\binom{n-1}{r-1}=\binom{m+n-1}{n}
$$

Proof. For all natural numbers m and n, we have

$$
\begin{aligned}
\sum_{r=1}^{m}\binom{m}{r}\binom{n-1}{r-1} & =\sum_{k=0}^{m-1}\binom{m}{k+1}\binom{n-1}{k} \\
& =\sum_{k=0}^{m-1}\binom{m}{m-(k+1)}\binom{n-1}{k} \\
& =\sum_{k=0}^{m-1}\binom{n-1}{k}\binom{m}{(m-1)-k} \\
& \binom{m+n-1}{m-1} \text { by Result } 1.25
\end{aligned}
$$

The following result is a direct consequence of Result 1.24 and Result 1.26.

Result 1.27. For all natural numbers m and n,

CHAPTER II

SEMIGROUPS OF ORDER-PRESERVING TRANSFORMATIONS WITH RESTRICTED RANGE

The purpose of this chapter is to characterize the regular elements of the semigroups $O T(X, Y), O P(X, Y)$ and $O I(X, Y)$ where X is a chain and $\varnothing \neq$ $Y \subseteq X$. These results are then applied to prove Theorem 1.14 and Theorem 1.15, respectively. In addition, the number of regular elements in each of the semigroups $O T(X, Y), O P(X, Y)$ and $O I(X, Y$) is provided when $X=\{1,2, \ldots, n\}$ and $Y=$ $\{1,2, \ldots, m\}$ where $m \leq n$. First, we recall that
$O T(X, Y)\{\{\alpha \in O T(X) \mid \operatorname{ran} \alpha \subseteq Y\}$,
$O P(X, Y)=\{\alpha \in O P(X) \mid \operatorname{ran} \alpha \subseteq Y\}$,

2.1 Characterizations of Regular Elements

 Throughout this section, X denotes a chain and $\varnothing \neq Y \subseteq x$.We begin this section by chatacterizing the regular elements of the semigroup $Q T(\mathcal{A}, Y) 6$ Recall thatt the gegular elements of the Semigroups $T(X, Y)$ and $O T(X)$ are introduced in Theorem 1.1 and Theorem 1.6, respectively.

Theorem 2.1.1. For $\alpha \in O T(X, Y), \alpha \in \operatorname{Reg}(O T(X, Y))$ if and only if $\alpha \in$ $\operatorname{Reg}(T(X, Y))$ and $\alpha \in \operatorname{Reg}(O T(X))$. Consequently,

$$
\operatorname{Reg}(O T(X, Y))=\operatorname{Reg}(T(X, Y)) \cap \operatorname{Reg}(O T(X))
$$

Proof. Assume that $\alpha \in \operatorname{Reg}(O T(X, Y))$. Since $O T(X, Y)$ is a subsemigroup of $T(X, Y)$ and $O T(X)$, it follows that α is regular in $T(X, Y)$ and $O T(X)$, i.e.,
$\alpha \in \operatorname{Reg}(T(X, Y))$ and $\alpha \in \operatorname{Reg}(O T(X))$.
For the converse, assume that $\alpha \in \operatorname{Reg}(T(X, Y))$ and $\alpha \in \operatorname{Reg}(O T(X))$. By Theorem 1.1, $\operatorname{ran} \alpha=Y \alpha$ or equivalently, $x \alpha^{-1} \cap Y \neq \varnothing$ for all $x \in \operatorname{ran} \alpha$. For each $x \in \operatorname{ran} \alpha$, choose $y_{x} \in x \alpha^{-1} \cap Y$. Then $y_{x} \alpha=x$ for all $x \in \operatorname{ran} \alpha$. Let $\beta \in O T(X)$ be such that $\alpha=\alpha \beta \alpha$. Then $X \alpha=X \alpha \beta \alpha \subseteq X \beta \alpha \subseteq X \alpha=\operatorname{ran} \alpha$. It follows that $\operatorname{ran} \alpha=\operatorname{ran}(\beta \alpha)$. Thus $X=\bigcup_{x \in \operatorname{ran}(\beta \alpha)} x(\beta \alpha)^{-1}=\bigcup_{x \in \operatorname{ran} \alpha} x(\beta \alpha)^{-1}$. Define $\beta^{\prime}: X \rightarrow Y$ by a bracket notation as follows:

If $x \in X$, then $x \alpha=(x \alpha) \beta \alpha$, so $x \alpha \in(x \alpha)(\beta \alpha)^{-1}$ which implies that $x \alpha \beta^{\prime} \alpha=$ $y_{x \alpha} \alpha=x \alpha$. Hence $\alpha=\alpha \beta^{\prime} \alpha$. To show that β^{\prime} is order-preserving, let $x_{1}, x_{2} \in X$ be such that $x_{1}<x_{2}$. Then $x_{1} \beta \alpha<x_{2} \beta \alpha$. If $x_{1} \beta \alpha=x_{2} \beta \alpha$, then $x_{1}, x_{2} \in$ $\left(x_{1} \beta \alpha\right)(\beta \alpha)^{-1}$, so $x_{1} \beta^{\prime}=y_{x_{1} \beta \alpha}=x_{2}^{2} \beta^{2}$. If $x_{1} \beta \alpha<x_{2} \beta \alpha$, then by Proposition 1.11, $\left(x_{1} \beta \alpha\right) \alpha^{-1}<\left(x_{2} \beta \alpha\right) \alpha^{-1}$. It follows that $y_{x_{1} \beta \alpha}<y_{x_{2} \beta \alpha}$. Since $\left(\left(x_{1} \beta \alpha\right)(\beta \alpha)^{-1}\right) \beta^{\prime}=$ $\left\{y_{x_{1} \beta \alpha}\right\}$ and $\left(\left(x_{2} \beta \alpha\right)(\beta \alpha)^{-1}\right) \beta^{\prime}=\left\{y_{x_{2} \beta \alpha}\right\}$, we have that $x_{1} \beta^{\prime}=y_{x_{1} \beta \alpha}<y_{x_{2} \beta \alpha}=$ $x_{2} \beta^{\prime}$.

The proof is thereby complete.

The following theorem is another version of Theorem 2.1.1. It follows directly from Theorem 1,1 Theorem 1 . 6 and Theorem 2. 2.1.
Theorem 2.1.2. For $\alpha \in O T(X, Y), \alpha \in \operatorname{Reg}(O T(X, Y))$ if and only if the

(i) $\operatorname{ran} \alpha=Y \alpha$.
(ii) If $\mathrm{ub}(\operatorname{ran} \alpha) \neq \varnothing$, then $\max (\operatorname{ran} \alpha)$ exists.
(iii) If $\operatorname{lb}(\operatorname{ran} \alpha) \neq \varnothing$, then $\min (\operatorname{ran} \alpha)$ exists.
(iv) If $x \in X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))$, then $\max (\{t \in \operatorname{ran} \alpha \mid t<x\})$ exists or $\min (\{t \in \operatorname{ran} \alpha \mid t>x\})$ exists.

The next result follows directly from Theorem 1.1, Corollary 1.7 and Theorem 2.1.1.

Corollary 2.1.3. Let $\alpha \in O T(X, Y)$. If $\operatorname{ran} \alpha$ is finite, then $\alpha \in \operatorname{Reg}(O T(X, Y))$ if and only if $\operatorname{ran} \alpha=Y \alpha$.

Example 2.1.4. (1) Let $X=\mathbb{R}$ and $Y=(-2,2)$. Define $\alpha: X \rightarrow Y$ by

Then $\alpha \in O T(X, Y), \operatorname{ran} \alpha=\{0,1\}$ and $Y \alpha=\{0,1\}$. By Corollary 2.1.3, $\alpha \in$ $\operatorname{Reg}(O T(X, Y))$. Let $\left.Y^{\prime}=0,2\right) .1$ Then $\alpha \in O T\left(X, Y^{\prime}\right)$ and $Y^{\prime} \alpha=\{1\}$, so $\alpha \notin \operatorname{Reg}\left(O T\left(X, Y^{\prime}\right)\right)$ by Corollary 2.1.3.
(2) Let $X=\mathbb{R}$ and $Y=[0, \infty)$. Define $\beta: X \rightarrow Y$ by

Then $\beta \in O T(X, Y)$ and ran $\beta=10,1)$. Since $\operatorname{ran} \beta$ has an upper bound in X but $\operatorname{ran} \beta$ has no maximum, by Theorem 2.1.2, $\beta \notin \operatorname{Reg}(O T(X, Y))$.
(3) Let $X=Y=[0,1) \cup(1,2]$. Define $\lambda: X \rightarrow Y$ by
 $\mathrm{lb}(\operatorname{ran} \lambda)$),

$$
\left\{x \in \operatorname{ran} \lambda \left\lvert\, x<\frac{2}{3}\right.\right\}=\left[0, \frac{1}{3}\right)
$$

and

$$
\left\{x \in \operatorname{ran} \lambda \left\lvert\, x>\frac{2}{3}\right.\right\}=(1,2],
$$

it follows that $\left\{x \in \operatorname{ran} \lambda \left\lvert\, x<\frac{2}{3}\right.\right\}$ has no maximum and $\left\{x \in \operatorname{ran} \lambda \left\lvert\, x>\frac{2}{3}\right.\right\}$ has no minimum. By Theorem 2.1.2, $\lambda \notin \operatorname{Reg}(O T(X, Y))$.

Next, we shall apply Theorem 2.1.2 to prove Theorem 1.14 given in [27]. The following series of lemmas is needed.

Lemma 2.1.5. Let $|Y| \geq 2$. If there is an element $a \in X$ such that $a>Y$ or $a<Y$, then the semigroup $O T(X, Y)$ is not regular.

Proof. Let $e, f \in Y$ be such that $e<f$, Define $\alpha: X \rightarrow Y$ by

$$
\alpha=\left(\begin{array}{ll}
u & v \\
e & f
\end{array}\right)_{\substack{u<a \\
v \geq a}} \text { if } a>Y \text { and } \alpha=\left(\begin{array}{ll}
u & v \\
e & f
\end{array}\right)_{\substack{u \leq a \\
v>a}} \text { if } a<Y
$$

Then $\alpha \in O T(X, Y)$, ran $\alpha=\{e, f\}, Y \alpha=\{e\}$ for $a>Y$ and $Y \alpha=\{f\}$ for $a<Y$. By Corollary 2.1.3, $a \notin \operatorname{Reg}(O T(X, Y))$. Hence $O T(X, Y)$ is not a regular semigroup.

Lemma 2.1.6. If $Y \nsubseteq X$ and $|Y| \geqslant 3$, then $O T(X, Y)$ is not a regular semigroup.
Proof. Let $e, f, g \in Y$ be such that $e<f<g$ and let $a \in X \backslash Y$. If $a>Y$ or $a<Y$, then by Lemma 2.1.5, OT (X, Y) is not regular. Assume that $a \ngtr Y$ and $a \nless Y$. Then $\{t \in Y \mid t<a\}$ and $\{t \in Y \mid t>a\}$ are nonempty. Define $\alpha: X \rightarrow Y$ by

Then $\alpha \in O T(X, Y), \operatorname{can} \alpha=\{e, f f g\}$ and $Y \alpha=\{e, g\}$ If follows from Corollary 2.1.3 that $\alpha \notin \operatorname{Reg}(O T(X, Y))$ and we conclude that $O T(X, Y)$ is not a regular

Lemma 2.1.7. Let $|Y|=2$. Then $O T(X, Y)$ is a regular semigroup if and only if $\min (X)$ and $\max (X)$ exist, and $Y=\{\min (X), \max (X)\}$.

Proof. Let $Y=\{e, f\}$ be such that $e<f$. Assume that $O T(X, Y)$ is regular. Then by Lemma 2.1.5, for every $a \in X, a \ngtr Y$ and $a \nless Y$. Thus $e \leq a \leq f$ for all $a \in X$. This implies that $e=\min (X)$ and $f=\max (X)$.

Conversely, assume that $\min (X)$ and $\max (X)$ exist, $e=\min (X)$ and $f=$
$\max (X)$. Let $\alpha \in O T(X, Y)$. If $|\operatorname{ran} \alpha|=1$, then $\alpha^{2}=\alpha$, so $\alpha \in \operatorname{Reg}(O T(X, Y))$. If $\operatorname{ran} \alpha=\{e, f\}$, then $e \alpha=e$ and $f \alpha=f$ since α is order-preserving. Thus $\operatorname{ran} \alpha=Y \alpha$, so Corollary 2.1.3 implies that $\alpha \in \operatorname{Reg}(O T(X, Y))$.

Theorem 2.1.8. The semigroup $O T(X, Y)$ is regular if and only if one of the following statements holds.
(i) $Y=X$ and $O T(X)$ is a regular semigroup.
(ii) $|Y|=1$.
(iii) $|Y|=2, \min (X)$ and $\max (X)$ exist, and $Y=\{\min (X), \max (X)\}$.

Proof. Assume that OT (X, Y) is regular and suppose that (i) and (ii) are false. Then $(Y \subsetneq X$ or $O T(X)$ is not regular $)$ and $|Y| \geq 2$, so there are two cases to be considered.

Case 1: $Y \subsetneq X$ and $|Y| \geq 2$. Then the regularity of $O T(X, Y)$ and Lemma 2.1.6 yield $|Y|=2$. Hence (iii) holds by Lemmá 2.1.7.

Case 2: $O T(X)$ is not regular and $\mid \geqslant 2$. Since $O T(X, Y)$ is regular, it follows that $Y \subsetneq X$, so by Lemma 2.1.6, $|Y|=2$. Thus (iii) hotds by Lemma 2.1.7.

Conversely, $O T(X, Y)$ is obviously regular if (i) =or (ii) holds. We have by Lemma 2.1.7 that $O P(X, Y)$ is regular if (iii) holds.

Next, we give characterizations of the regular elements in $O P(X, Y)$ and

Lemma 2.1.9. Let A be a nonempty set and $\varnothing \neq B \subseteq A$. For $\alpha \in P(A, B)$, $\alpha \in \operatorname{Reg}(P(A, B))$ if and only if $\operatorname{ran} \alpha=(\operatorname{dom} \alpha \cap B) \alpha$.

Proof. Assume that $\alpha \in \operatorname{Reg}(P(A, B))$. Let $\beta \in P(A, B)$ be such that $\alpha=\alpha \beta \alpha$. Then $\operatorname{ran}(\alpha \beta) \subseteq B$, so

$$
\operatorname{ran} \alpha=\operatorname{ran}(\alpha \beta \alpha)=(\operatorname{ran}(\alpha \beta) \cap \operatorname{dom} \alpha) \alpha \subseteq(B \cap \operatorname{dom} \alpha) \alpha \subseteq \operatorname{ran} \alpha
$$

which implies that $\operatorname{ran} \alpha=(\operatorname{dom} \alpha \cap B) \alpha$.

Conversely, assume that $\operatorname{ran} \alpha=(\operatorname{dom} \alpha \cap B) \alpha$. Then $x \alpha^{-1} \cap B \neq \varnothing$ for all $x \in \operatorname{ran} \alpha$. For each $x \in \operatorname{ran} \alpha$, choose $d_{x} \in x \alpha^{-1} \cap B$. Then $d_{x} \alpha=x$ for all $x \in \operatorname{ran} \alpha$. Define $\beta: \operatorname{ran} \alpha \rightarrow B$ by

$$
\beta=\binom{x}{d_{x}}_{x \in \operatorname{ran} \alpha}
$$

Then $\beta \in P(A, B)$. Since for $x \in \operatorname{dom} \alpha, x \alpha \in \operatorname{dom} \beta$ and $x \alpha \beta \in \operatorname{dom} \alpha$, it follows that $\operatorname{dom}(\alpha \beta \alpha)=\operatorname{dom} \alpha$. If $x \in \operatorname{dom} \alpha$, then $x \alpha \beta \alpha=(x \alpha) \beta \alpha=d_{x \alpha} \alpha=x \alpha$. Therefore $\alpha=\alpha \beta \alpha$, so $\alpha \in \operatorname{Reg}(P(A, B)$, as desired.

Theorem 2.1.10. For $\alpha \in O P(X, Y), \alpha \in \operatorname{Reg}(O P(X, Y))$ if and only if $\operatorname{ran} \alpha=$ ($\operatorname{dom} \alpha \cap Y) \alpha$. Consequently,

$$
\operatorname{Reg}(O P(X, Y)) \equiv \operatorname{Reg}(P(X, Y)) \cap O P(X)
$$

Proof. If $\alpha \in \operatorname{Reg}(O P(X, Y))$, then $\alpha \in \operatorname{Reg}(P(X, Y))$ since $O P(X, Y)$ is a subsemigroup of $P(X, Y)$, so ran $\alpha=(d o m \alpha \cap Y) \alpha$ by Lemma 2.1.9.

For the converse, assume that $\operatorname{ran} \alpha=(\operatorname{dom} \alpha \cap Y) \alpha$. Define $\beta: \operatorname{ran} \alpha \rightarrow Y$ as in the proof of Lemma 2.1.9. Then $\beta \in P(X, Y)$ and $\alpha=\alpha \beta \alpha$. Since α is order-preserving, it follows from Proposition 1.11 that β is order-preserving. Thus $\beta \in O P(X, Y)$, and so $\alpha \in \operatorname{Reg}(O P(X, Y))$, as desired.

Lemma 2.1.11. Let A, be a nonempty set and $\varnothing \neq B \subseteq A$. For $\alpha \in I(A, B)$,

Proof. Assume that $\alpha \in \operatorname{Reg}(I(A, B))$. Since $I(A, B)$ is a subsemigroup of $P(A, B)$, itfollows that α ERep $(P(A, B)) \cap$ By Lemma 2.1.9, ran $\alpha=(\operatorname{dom} \alpha \cap$ $B) \alpha$. Then $(\operatorname{dom} \alpha) \alpha=(\operatorname{dom} \alpha \cap B) \alpha$, so $\operatorname{dom} \alpha=\operatorname{dom} \alpha \cap B$ since α is 1-1. Hence $\operatorname{dom} \alpha \subseteq B$.

Conversely, assume that dom $\alpha \subseteq B$. Then $\alpha \in I(B)$. Since $I(B)$ is a regular subsemigroup of $I(A, B)$, it follows that $\alpha \in \operatorname{Reg}(I(A, B))$.

Theorem 2.1.12. For $\alpha \in O I(X, Y), \quad \alpha \in \operatorname{Reg}(O I(X, Y))$ if and only if $\operatorname{dom} \alpha \subseteq Y$. Consequently, $\operatorname{Reg}(O I(X, Y))=O I(Y)$.

Proof. If $\alpha \in \operatorname{Reg}(O I(X, Y))$, then $\alpha \in \operatorname{Reg}(I(X, Y))$ since $O I(X, Y)$ is a subsemigroup of $I(X, Y)$. So dom $\alpha \subseteq Y$ by Lemm 2.1.11.

Conversely, assume that dom $\alpha \subseteq Y$. Then $\alpha \in O I(Y)$, so $\alpha \in \operatorname{Reg}(O I(Y))$ by Theorem 1.5, and hence $\alpha \in \operatorname{Reg}(O I(X, Y))$ since $O I(Y)$ is a subsemigroup of $O I(X, Y)$.

We close this section with the proof of Theorem 1.15 by using Theorem 2.1.10 and Theorem 2.1.12.

Theorem 2.1.13. Let $O S(X, Y)$ be $O P(X, Y)$ or $O I(X, Y)$. Then $O S(X, Y)$ is a regular semigroup if and only if $Y=X$.

Proof. Suppose that $Y \subset X$. Let $\vec{a} \in X>Y$ and $b \in Y$. Then $\alpha=\binom{a}{b} \in$ $O I(X, Y) \subseteq O P(X, Y)$. But dom $\alpha \cap Y=\varnothing, \operatorname{ran} \alpha=\{b\}$ and $\operatorname{dom} \alpha=\{a\} \nsubseteq Y$, so by Theorem 2.1.10 and Theorem 2.1.12, $\alpha \notin \operatorname{Reg}(O S(X, Y))$. If $Y=X$, then $O P(X, Y)=O P(X), O I(X, Y)=O I(X)$, and both $O P(X)$ and $O I(X)$ are regular semigroups by Theorem-1.5, completing the proof.

2.2 Combinatorial Results on Regular Elements

We begin this section by determining $|O T(X, Y)|, \overparen{\mid T} O P(X, Y) \mid$ and $|O I(X, Y)|$ where X and Y are any finite chains ${ }^{\text {e }}$ Then for $X=\{1,2, \ldots, n\}$ and
 $|\operatorname{Reg}(O I(X, Y))|$ are provided. In this case, the nonregular elements in $O T(X, Y)$,

The following two lemmas are needed to obtain the first purpose.
Lemma 2.2.1. Let X and Y be finite chains, $|X|=n$ and $|Y|=m$. Then for $1 \leq r \leq n$ and $1 \leq s \leq m$,

$$
\mid\{\alpha \in O P(X, Y)| | \operatorname{dom} \alpha \mid=r \quad \text { and }|\operatorname{ran} \alpha|=s\} \left\lvert\,=\binom{n}{r}\binom{m}{s}\binom{r-1}{s-1} .\right.
$$

Proof. Let $\varnothing \neq X^{\prime} \subseteq X$ and $\varnothing \neq Y^{\prime} \subseteq Y$ be such that $\left|X^{\prime}\right|=r$ and $\left|Y^{\prime}\right|=s$. Then by Proposition 1.19, the number of order-preserving transformations from
X^{\prime} onto Y^{\prime} is $\binom{r-1}{s-1}$. It follows that

$$
\mid\left\{\alpha \in O P(X, Y) \mid \operatorname{dom} \alpha=X^{\prime} \text { and } \operatorname{ran} \alpha=Y^{\prime}\right\} \left\lvert\,=\binom{r-1}{s-1} .\right.
$$

This implies that for $1 \leq r \leq n$ and $1 \leq s \leq m$,

$$
\mid\{\alpha \in O P(X, Y)| | \operatorname{dom} \alpha \mid=r \text { and }|\operatorname{ran} \alpha|=s\} \left\lvert\,=\binom{n}{r}\binom{m}{s}\binom{r-1}{s-1} .\right.
$$

Lemma 2.2.2. Let X and Y beffinite chains, $|X|=n$ and $|Y|=m$. Then for $1 \leq r \leq n$,

$$
|\{\alpha \in O P(X, Y) \mid \overrightarrow{\text { dom } \alpha \mid}=r\}|=\binom{n}{r}\binom{m+r-1}{r} .
$$

Proof. Note that for all $\alpha \in O \underline{P(-X, Y)}<\{0\}, 1 \leq|\operatorname{ran} \alpha| \leq \min \{|\operatorname{dom} \alpha|,|Y|\}$. Then

$$
\begin{aligned}
& =\binom{n}{r} \sum_{s=1}^{\min \{r, m\}}\binom{m}{s}\binom{r-1}{s-1} \\
& =\binom{n}{r}\binom{m+r-1}{r} \quad \text { by Result } 1.27 .
\end{aligned}
$$

Theorem 2.2.3. Let X and Y be finite chains. If $|X|=n$ and $|Y|=m$, then
(i) $|O T(X, Y)|=\binom{m+n-1}{n}$.
(ii) $|O P(X, Y)|=\sum_{r=0}^{n}\binom{n}{r}\binom{m+r-1}{r}$.
(iii) $|O I(X, Y)|=\binom{n+m}{m}$.

Proof. (i) We have that

$$
|O T(X, Y)|=\left|\bigcup_{s=1}^{\min \{n, m\}}\{\alpha|\in O T(X, Y)||\operatorname{ran} \alpha|=s\}\right|
$$

$$
=\sum_{s=1}^{\min \{n, m\}}|\{\alpha \in \overline{O T}(X, Y)| | \operatorname{ran} \alpha \mid=s\}|
$$

$$
=\sum_{s=1}^{\min \{n, m\}} \mid\{\alpha \in Q \sin O P(X, Y)| | \operatorname{dom} \alpha \mid=n \text { and }|\operatorname{ran} \alpha|=s\} \mid
$$

$$
=1+\sum_{r=1}^{n}|\{\alpha \in O P(X, Y)| | \operatorname{dom} \alpha \mid=r\}|
$$

$$
=1+\sum_{r=1}^{n}\binom{n}{r}\binom{m+r-1}{r} \quad \text { by Lemma 2.2.2 }
$$

$$
=\sum_{r=0}^{n}\binom{n}{r}\binom{m+r-1}{r} .
$$

(iii) The following equalities hold.

$$
\begin{aligned}
|O I(X, Y)| & =\left|\{0\} \cup \bigcup_{r=1}^{n}\{\alpha \in O I(X, Y)| | \operatorname{dom} \alpha \mid=r\}\right| \\
& =1+\sum_{r=1}^{n}|\{\alpha \in O I(X, Y)| | \operatorname{dom} \alpha \mid=r\}| \\
& =1+\sum_{r=1}^{n}|\{\alpha \in O P(X, Y)| | \operatorname{dom} \alpha|=|\operatorname{ran} \alpha|=r\} \mid
\end{aligned}
$$

$$
=1+\sum_{r=1}^{n}\binom{n}{r}\binom{m}{r}\binom{r-1}{r-1} \quad \text { by Lemma 2.2.1 }
$$

$$
\begin{aligned}
&=\left\{\begin{array}{l}
\sum_{r=0}^{n}\binom{n}{r}\binom{m}{r} \\
\sum_{r=0}^{m} \\
n \\
n \\
r
\end{array}\right)\binom{m}{r} \text { if } n \leq m, \\
&\binom{n}{m} \\
&=\left(\begin{array}{l}
n>m
\end{array}\right. \\
& \text { aud Result } 1.20 .
\end{aligned}
$$

Notice that Theorem 1.8, Theorem 1.9 and Theorem 1.10 are special cases of Theorem 2.2.3 when $Y=X$.

The following lemma is needed to determine $|\operatorname{Reg}(O T(X, Y))|$ when $X=$ $\{1,2, \ldots, n\}, Y=\{1,2, \ldots, m\}$ and $m \leq n$.

Lemma 2.2.4. Let $\left.X^{6}=\lambda, 2,0, n\right\}$ and 1 for $\alpha \in O T\left(X_{0} Y\right), \operatorname{ran} \alpha=Y \alpha$ if and only if $(X<Y) \alpha=\{m \alpha\}$.
 Since $x \alpha \in \operatorname{ran} \alpha=Y \alpha$, we can choose $y \in Y$ such that $x \alpha=y \alpha$. Since α is order-preserving, it follows that $m \alpha \leq x \alpha=y \alpha \leq m \alpha$, so $x \alpha=m \alpha$. This proves that $(X \backslash Y) \alpha=\{m \alpha\}$. If $(X \backslash Y) \alpha=\{m \alpha\}$, then $(X \backslash Y) \alpha \subseteq Y \alpha$, this implies that $\operatorname{ran} \alpha=Y \alpha$, and the proof is complete.

Theorem 2.2.5. Let $X=\{1,2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$ where $m \leq n$. Then

$$
|\operatorname{Reg}(O T(X, Y))|=\binom{2 m-1}{m}
$$

Proof. If $m=n$, then $Y=X$, so $O T(X, Y)=O T(Y)$. This together with Theorem 1.4 yields $\operatorname{Reg}(O T(X, Y))=O T(Y)$. Then the result for $m=n$ follows from Theorem 1.8. Assume that $m<n$. Let $\varnothing \neq Y^{\prime} \subseteq Y$ and $\left|Y^{\prime}\right|=s$. By Proposition 1.19, the number of all order-preserving transformations from Y onto Y^{\prime} is $\binom{m-1}{s-1}$. Then

$$
\mid\left\{\alpha \in O T(X, Y) \mid Y \alpha=Y^{\prime} \text { and }(X \backslash Y) \alpha=\{m \alpha\}\right\} \left\lvert\,=\binom{m-1}{s-1}\right.
$$

It follows from Lemma 2.2.4 that

$$
\left\{\alpha \in O T(X, Y) \mid Y \alpha=Y^{\prime} \text { and }(X, Y) \alpha=\{m \alpha\}\right\}
$$

$$
=\left\{\alpha \in O T(X, Y) \mid \operatorname{ran} \alpha=Y \alpha=Y^{\prime}\right\}
$$

Hence

$$
\left|\left\{\alpha \in O T(X, Y), \operatorname{ran} \alpha=Y \alpha=Y^{\prime}\right\}\right|=\binom{m-1}{s-1}
$$

But we have from Corollary 2.1.3 that mon

so

$$
\left|\left\{\alpha \in \operatorname{Reg} O T(X Y Q) \mid \operatorname{ran} \alpha=s \bar{N}^{s}\right\}\right|=\binom{m}{s}\binom{m-1}{s-1}
$$

Therefore, it follows that

We obtain from Result 1.26 that

$$
|\operatorname{Reg}(O T(X, Y))|=\binom{2 m-1}{m}
$$

Next, we count the regular elements of $O P(X, Y)$ when $X=\{1,2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$ where $m \leq n$. Before proceeding, we require the following lemmas.

Lemma 2.2.6. Let $X=\{1,2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$ where $m<n$. For $\alpha \in O P(X, Y), \operatorname{ran} \alpha=(\operatorname{dom} \alpha \cap Y) \alpha$ if and only if either
(i) $\operatorname{dom} \alpha \subseteq Y$ or
(ii) $\operatorname{dom} \alpha \cap Y \neq \varnothing, \operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing \quad$ and $\quad(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha=$ $\{\max ((\operatorname{dom} \alpha \cap Y) \alpha)\}$.

Proof. Assume that $\operatorname{ran} \alpha=(\operatorname{dom} \alpha \cap Y) \alpha$ and suppose that (i) is false, i.e., $\operatorname{dom} \alpha \nsubseteq Y$. Then $\operatorname{dom} \alpha \cap Y \neq \varnothing$ and dom $\alpha \cap(X \backslash Y) \neq \varnothing$. To show that $(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha=\{\max ((\operatorname{dom} \alpha \cap Y) \alpha)\}$, let $x \in \operatorname{dom} \alpha \cap(X \backslash Y)$. Then $x>m \geq \max (\operatorname{dom} \alpha \cap Y)$ and $x \alpha \in(\operatorname{dom} \alpha \cap Y) \alpha$ by assumption. Since α is order-preserving, we obtain that
$\max ((\operatorname{dom} \alpha \cap Y) \alpha)=(\max (\operatorname{dom} \alpha \cap Y)) \alpha \leq x \alpha \leq \max ((\operatorname{dom} \alpha \cap Y) \alpha)$, and we deduce that $x \alpha=\max ((\operatorname{doman} Y) \alpha)$. Hence (ii) holds.

Conversely, if (i) holds, then (dom $\alpha \cap Y) \alpha=(\operatorname{dom} \alpha) \alpha=\operatorname{ran} \alpha$. Next, assume that (ii) holds. Then (eloma $\mathcal{\cap}(X \backslash Y)) \alpha=\{\max ((\operatorname{dom} \alpha \cap Y) \alpha)\} \subseteq$ $(\operatorname{dom} \alpha \cap Y) \alpha$. This implies thatran $\alpha=(\operatorname{dom} \alpha \cap Y) \alpha \cup(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha=$ $(\operatorname{dom} \alpha \cap Y) \alpha$.

Hence the proof is complete.

Lemma 2.2.7. Let $X \underset{\approx}{F}, 2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$ where $m<n$. Then for $1 \leq s \leq$ moand

$$
=\binom{m}{s}\binom{n-m}{t}\binom{m+s-1}{s}
$$

Proof. Let $\varnothing \neq Y^{\prime} \subseteq Y$ and $\varnothing \neq Z^{\prime} \subseteq X \backslash Y$ be such that $\left|Y^{\prime}\right|=s$ and $\left|Z^{\prime}\right|=t$. Then by Theorem 2.2.3(i), the number of order-preserving transformations from Y^{\prime} into Y is $\binom{m+s-1}{s}$. Therefore it follows that the number of order-preserving transformations $\alpha: Y^{\prime} \cup Z^{\prime} \rightarrow Y$ such that $Z^{\prime} \alpha=\max \left(Y^{\prime} \alpha\right)$ is also $\binom{m+s-1}{s}$.

Consequently,

$$
\begin{aligned}
& \left.\begin{array}{l}
\mid\{\alpha \in O P(X, Y) \mid \\
\quad \operatorname{dom} \alpha \cap Y=Y^{\prime}, \operatorname{dom} \alpha \cap(X \backslash Y)=Z^{\prime} \text { and } \\
\\
\quad(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha=\{\max ((\operatorname{dom} \alpha \cap Y) \alpha)\}\} \mid \\
s
\end{array}\right) .
\end{aligned}
$$

This implies that for $1 \leq s \leq m$ and $1 \leq$

$$
\begin{aligned}
& \mid\{\alpha \in O P(X, Y) \mid \text { doma } \cap Y|=s,|\operatorname{dom} \alpha \cap(X \backslash Y)|=t \text { and } \\
& =\binom{m}{s}\binom{n-m}{t}\binom{m+s-1}{s}
\end{aligned}
$$

Theorem 2.2.8. Let $X=\{1,2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$ where $m \leq n$. Then

$$
|\operatorname{Reg}(Q P(X, Y))|=1+2^{n-m} \sum_{s=1}^{m}\binom{m}{s}\binom{m+r-1}{s}
$$

Proof. If $m=n$, then $O P(X, Y)=O P(Y)$, so $\operatorname{Reg}(O P(X, Y))=O P(Y)$ by Theorem 1.5 and then the result for $m_{\mathcal{F}} n$ follows from Theorem 1.9. Next,

$$
\begin{aligned}
& \operatorname{Reg}(O P(X, Y))=\{\alpha \in O P(X, Y \mid \operatorname{ran} \alpha=(\operatorname{dom} \alpha, Y) \alpha \in \\
& =\{\alpha \notin O P(X, Y) \mid \operatorname{dom} \alpha \subseteq Y\} \cup \\
& \{\alpha \in O P(X, Y) \mid \operatorname{dom} \alpha \cap Y \neq \varnothing, \operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing \text { and } \\
& (\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha=\{\max ((\operatorname{dom} \alpha \cap Y) \alpha)\}\}
\end{aligned}
$$

$=O P(Y) \cup\{\alpha \in O P(X, Y) \mid \operatorname{dom} \alpha \cap Y \neq \varnothing, \operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing$ and $(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha=\{\max ((\operatorname{dom} \alpha \cap Y) \alpha)\}\}$.

We know from Theorem 1.9 that

$$
\begin{equation*}
|O P(Y)|=\sum_{s=0}^{m}\binom{m}{s}\binom{m+s-1}{s} \tag{2}
\end{equation*}
$$

Also, by Lemma 2.2.7, we have

$$
\begin{align*}
& \mid\{\alpha \in O P(X, Y) \mid \operatorname{dom} \alpha \cap Y \neq \varnothing, \operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing \text { and } \\
& \left.(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha_{1}=\{\max ((\operatorname{dom} \alpha \cap Y) \alpha)\}\right\} \mid \\
& =\sum_{s=1}^{m} \sum_{t=1}^{n-m} \mid\{\alpha \in O P(X, Y)| | \operatorname{dom} d \curvearrowleft \gamma|\leq s,|\operatorname{dom} \alpha \cap(X \backslash Y)|=t \text { and } \\
& (\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha=\{\max ((\operatorname{dom} \alpha \cap Y) \alpha)\}\} \mid \\
& =\sum_{s=1}^{m} \sum_{t=1}^{n-m}\binom{m}{s}\binom{n-m}{t}\left(\begin{array}{c}
m-1
\end{array}\right) . \tag{3}
\end{align*}
$$

From (1), (2) and (3), we have that

$$
\begin{aligned}
& |\operatorname{Reg}(O T(X, Y))|=\sum_{s=0}^{m}\binom{m}{s}\binom{m+1}{m}+\sum_{s=1}^{m} \sum_{t=1}^{n-m}\binom{m}{s}\binom{n-m}{t}\binom{m+s-1}{s} \\
& =1+\sum_{s=1}^{m}\binom{m}{s}\binom{m+s-1}{s}+\sum_{t=1}^{n-m}\binom{n-m}{5} \sum_{s=1}^{m}\binom{m}{s}\binom{m+s-1}{s} \\
& =1+\sum_{t=0}^{n-m}\binom{n-m}{t} \sum_{s=1}^{m}\binom{m}{s}\binom{m+s-1}{s}
\end{aligned}
$$

> The cast result of this section follows directly from theorem 2.1.12 and Theorem 1.10.

Theorem 2.2.9. If X is a finite chain and $\varnothing \neq Y \subseteq X$, then

$$
|\operatorname{Reg}(O I(X, Y))|=\binom{2|Y|}{|Y|}
$$

CHAPTER III

SEMIGROUPS OF ORDER-PRESERVING TRANSFORMATIONS SENDING
 A FIXED SET INTO ITSELF

In this chapter, we consider the semigroups $\overline{O T}(X, Y), \overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$ where Y is a nonempty subset of a chain X. The main purpose of this chapter is to characterize the regular elements of $\overline{O T}(X, Y), \overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$. We also give necessary and sufficient conditions in terms of Y for $\overline{O T}(X, Y)$, $\overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$ to be regular semigroups. Moreover, the cardinalities of $\operatorname{Reg}(\overline{O T}(X, Y)), \operatorname{Reg}(\overline{O P}(X, Y))$ and $\operatorname{Reg}(\overline{O I}(X, Y))$ are provided when $X=$ $\{1,2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$ where $m \leq n$.

Recall that the semigroups $\overline{O I}(X, Y), \overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$, where Y is a nonempty subset of a chain X, are defined as follows:

3.1 Characterizations of Regular Elements

Throughout this section, let X be any chain and $\varnothing \neq Y \subseteq X$.
We first give a necessary and sufficient condition for an element of $\overline{O T}(X, Y)$ to be regular. The following two lemmas give necessary conditions for the regular elements of $\overline{O T}(X, Y)$.

Lemma 3.1.1. Let $\alpha \in \operatorname{Reg}(\overline{O T}(X, Y))$. Then the following statements hold.
(i) If $\mathrm{ub}(\operatorname{ran} \alpha) \cap Y \neq \varnothing$, then $\max (\operatorname{ran} \alpha)$ exists and belongs to Y.
(ii) If $\mathrm{lb}(\operatorname{ran} \alpha) \cap Y \neq \varnothing$, then $\min (\operatorname{ran} \alpha)$ exists and belongs to Y.

Proof. Assume that $\mathrm{ub}(\operatorname{ran} \alpha) \cap Y \neq \varnothing$. Let $u \in \mathrm{ub}(\operatorname{ran} \alpha) \cap Y$ and let $\beta \in$ $\overline{O T}(X, Y)$ be such that $\alpha=\alpha \beta \alpha$. Then $\operatorname{ran} \alpha \leq u$, and thus

$$
\operatorname{ran} \alpha=X \alpha=X \alpha \beta \alpha=(\operatorname{ran} \alpha) \beta \alpha \leq u \beta \alpha \in \operatorname{ran} \alpha
$$

This implies that $\max (\operatorname{ran} \alpha)=u \beta \alpha$ and $u \beta \alpha \in Y \beta \alpha \subseteq Y$. This proves (i), and (ii) follows in the same way.

Lemma 3.1.2. Let $\alpha \in \operatorname{Reg}(O T(X, Y)$ and $x \in X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup$ $\mathrm{lb}(\operatorname{ran} \alpha))$. If $x \in Y$,
(i) $\max (\{t \in \operatorname{ran} \alpha \mid t<x\})$ exists and belongs to Y or
(ii) $\min (\{t \in \operatorname{ran} \alpha \not t>x\})$ exists and belongs to Y

Proof. Let $\beta \in \overline{O T}(X, Y)$ be such that $\alpha=\alpha \beta \alpha$. Since $x \in X \backslash(\operatorname{ran} \alpha \cup$ $\mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))$, it follows that $1 /$

$$
\begin{aligned}
& \{t \in \operatorname{ran} \alpha \mid t<x\} \neq \varnothing,\{t \in \operatorname{ran} \alpha \mid t>x\} \neq \varnothing, \\
& \operatorname{ran} \alpha=\{t \in \operatorname{ran} \alpha \mid t<x\} \cup\{t \in \operatorname{ran} \alpha \mid t>x\} .
\end{aligned}
$$

Since $x \beta \alpha \in \operatorname{ran} \alpha$. it follows that $x \beta \alpha<x$ or $x \beta \alpha \int x$. For $s \in X$, if $s \alpha<x$, then $s \alpha=(s \alpha) \beta \alpha \leq x \beta \alpha$. If $s \alpha>x$, then $s \alpha=(s \alpha) \beta \alpha \geq x \beta \alpha$.
This shows that

Now we give a necessary and sufficient condition for an element of $\overline{O T}(X, Y)$ to be regular.

Theorem 3.1.3. Let $\alpha \in \overline{O T}(X, Y)$. Then $\alpha \in \operatorname{Reg}(\overline{O T}(X, Y))$ if and only if the following four conditions hold.
(i) $\operatorname{ran} \alpha \cap Y=Y \alpha$.
(ii) If $\mathrm{ub}(\operatorname{ran} \alpha) \neq \varnothing$, then $\max (\operatorname{ran} \alpha)$ exists.

If $\mathrm{ub}(\operatorname{ran} \alpha) \cap Y \neq \varnothing$, then $\max (\operatorname{ran} \alpha) \in Y$.
(iii) If $\mathrm{lb}(\operatorname{ran} \alpha) \neq \varnothing$, then $\min (\operatorname{ran} \alpha)$ exists.

If $\mathrm{lb}(\operatorname{ran} \alpha) \cap Y \neq \varnothing$, then $\min (\operatorname{ran} \alpha) \in Y$.
(iv) If $x \in X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))$, then $\max (\{t \in \operatorname{ran} \alpha \mid t<x\})$ exists or $\min (\{t \in \operatorname{ran} \alpha \mid t>x\})$ exists.
If x is also in Y, then $\max (\{t \in \operatorname{ran} \alpha \mid t<x\})$ exists and belongs to Y or $\min (\{t \in \operatorname{ran} \alpha \mid t>x\})$ exists and belongs to Y.

Proof. Assume that $\alpha \in \operatorname{Reg}(\overline{O T}(X, Y))$ Since $\overline{O T}(X, Y)$ is a subsemigroup of $\bar{T}(X, Y)$ and $O T(X)$, it follows that $\alpha \in \operatorname{Reg}(\bar{T}(X, Y))$ and $\alpha \in \operatorname{Reg}(O T(X))$. By Theorem 1.2, ran $\alpha \cap Y=Y$, so (i) holds. Also, by Theorem 1.6, the first parts of (ii), (iii) and (iv) are true. For the second parts of (ii), (iii) and (iv), we obtain from Lemma 3.1.1(i), Lemma 3.1.1(ii) and Lemma 3.1.2, respectively.

For the converse, assume that (i), (ii), (iii) and (iv) hold. If $u b(\operatorname{ran} \alpha) \neq \varnothing$, let $u=\max (\operatorname{ran} \alpha)$ and so $u \in Y_{\text {if }}$ ub $(\operatorname{ran} \alpha) \cap Y \neq \varnothing$. If $\operatorname{lb}(\operatorname{ran} \alpha) \neq \varnothing$, let $l=\min (\operatorname{ran} \alpha)$ and so $l \in Y$ if 1 ($\operatorname{ran} \alpha) \cap Y \neq \varnothing$. For $x \in(X \backslash(\operatorname{ran} \alpha \cup$ $\mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))$), if $x \in \Gamma$ let

$$
m_{x}=\left\{\begin{array}{lc}
\max (\{t \in \operatorname{ran} \alpha \mid t<x\}) & \text { if } \max (\{t \in \operatorname{ran} \alpha \mid t<x\}) \text { exists } \\
\text { and belongs to } Y, \\
\min ^{\left.\min \left(\left\{t \in \tan \alpha \phi^{t}\right\rangle x\right\}\right)} & \text { otherwise }
\end{array}\right.
$$

and if $x \notin Y$, let

$$
\begin{aligned}
& \text { if } x \notin Y \text {, let } \\
& n_{x}= \begin{cases}\max (\{t \in \operatorname{ran} \alpha \mid t<x\}) & \text { if } \max (\{t \in \operatorname{ran} \alpha \mid t<x\}) \text { exists }, \\
\min (\{t \in \operatorname{ran} \alpha \mid t>x\}) & \text { otherwise. }\end{cases}
\end{aligned}
$$

By (iv), $m_{x} \in Y$ for all $x \in(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$.
For each $y \in(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$, let

$$
\begin{aligned}
A_{y}=\{x \in X \mid\{t \in \operatorname{ran} \alpha \mid t<x\} & =\{t \in \operatorname{ran} \alpha \mid t<y\} \text { and } \\
\{t \in \operatorname{ran} \alpha \mid t>x\} & =\{t \in \operatorname{ran} \alpha \mid t>y\}\} .
\end{aligned}
$$

Notice that $y \in A_{y}$ for all $y \in(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$ and for $y_{1}, y_{2} \in(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \operatorname{lb}(\operatorname{ran} \alpha))) \cap Y$, either $A_{y_{1}} \cap A_{y_{2}}=\varnothing$ or $A_{y_{1}}=A_{y_{2}}$. It follows that if $x \notin A_{y}$ for all $y \in(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$, then $x \notin Y$. Since $\operatorname{ran} \alpha \cap Y=Y \alpha$ by (i), this implies that $x \alpha^{-1} \cap Y \neq \varnothing$ for all $x \in \operatorname{ran} \alpha \cap Y$. For each $x \in \operatorname{ran} \alpha$, choose an element

Then $x^{\prime} \in Y$ for all $x \in \operatorname{ran} \alpha \neq y$ and $x^{\prime} \alpha=x$ for all $x \in \operatorname{ran} \alpha$. Also, we have from Proposition 1.11 that
for $x_{1}, x_{2} \in \operatorname{ran} \alpha, x_{1}<x_{2}$ implies $x_{1}^{\prime}<x_{2}^{\prime}$.
Define $\beta: X \rightarrow X$ by

for all $y \in(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$.
We see that $Y \beta$ er and for $x \in X, x \alpha \in \operatorname{ran} \alpha$, and thus 6 b

$$
x \alpha \beta \alpha=(x \alpha) \beta \alpha=(x \alpha)^{\prime} \alpha=x \alpha .
$$

Hence $\beta \in \bar{T}(X, Y)$ and $\alpha=\alpha \beta \alpha$. It remains to show that β is order-preserving. Let $x_{1}, x_{2} \in X$ be such that $x_{1}<x_{2}$. We can see that $u^{\prime}=\max (\operatorname{ran} \beta)$ if $\mathrm{ub}(\operatorname{ran} \alpha) \neq \varnothing$ and $l^{\prime}=\min (\operatorname{ran} \beta)$ if $\mathrm{lb}(\operatorname{ran} \alpha) \neq \varnothing$. It follows that if $x_{2} \in$ $\mathrm{ub}(\operatorname{ran} \alpha)$ or $x_{1} \in \mathrm{lb}(\operatorname{ran} \alpha)$, then $x_{1} \beta \leq x_{2} \beta$. Also, we have that if $x_{1}, x_{2} \in \operatorname{ran} \alpha$, then $x_{1} \beta=x_{1}{ }^{\prime}<x_{2}{ }^{\prime}=x_{2} \beta$. Therefore there are six cases to clarify as follows:

Case 1: $x_{1} \in \operatorname{ran} \alpha$ and $x_{2} \in X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))$.
Subcase 1.1: $x_{2} \in A_{y}$ for some $y \in(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \operatorname{lb}(\operatorname{ran} \alpha))) \cap Y$. Then $\left\{t \in \operatorname{ran} \alpha \mid t<x_{2}\right\}=\{t \in \operatorname{ran} \alpha \mid t<y\}$ and $\left\{t \in \operatorname{ran} \alpha \mid t>x_{2}\right\}=$ $\{t \in \operatorname{ran} \alpha \mid t>y\}$. If $m_{y}=\max (\{t \in \operatorname{ran} \alpha \mid t<y\})$, then $x_{1} \leq m_{y}$ since $x_{1} \in\left\{t \in \operatorname{ran} \alpha \mid t<x_{2}\right\}=\{t \in \operatorname{ran} \alpha \mid t<y\}$. Thus $x_{1} \beta=x_{1}{ }^{\prime} \leq m_{y}{ }^{\prime}=x_{2} \beta$. If $m_{y}=\min (\{t \in \operatorname{ran} \alpha \mid t>y\})$, then $x_{1}<\mid x_{2}<m_{y}$ since $m_{y} \in\{t \in \operatorname{ran} \alpha \mid t>$ $y\}=\left\{t \in \operatorname{ran} \alpha \mid t>x_{2}\right\}$. So $x_{1} \beta=x_{1}^{\prime} \leqslant m_{y}^{\prime}=x_{2} \beta$.

Subcase 1.2: $x_{2} \notin A_{y}$ for all $y \in(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$. If $n_{x_{2}}=\max \left(\left\{t \in \operatorname{ran} \alpha \mid t<x_{2}\right\}\right)$, then $x_{1} \leq n_{x_{2}}$, and so $x_{1} \beta=x_{1}{ }^{\prime} \leq n_{x_{2}}{ }^{\prime}=x_{2} \beta$. If $n_{x_{2}}=\min \left(\left\{t \in \operatorname{ran} \alpha \mid t>x_{2}\right\}\right)$, then $x_{1}<x_{2}<n_{x_{2}}$, and thus $x_{1} \beta=x_{1}{ }^{\prime}<$ $n_{x_{2}}{ }^{\prime}=x_{2} \beta$.

Case 2: $x_{1} \in X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \operatorname{lb}(\operatorname{ran} \alpha))$ and $x_{2} \in \operatorname{ran} \alpha$.
Subcase 2.1: $x_{1} \in A_{y}$ forseme $y \in(X \backslash(\operatorname{ran} \alpha \cup u b(\operatorname{ran} \alpha) \cup \operatorname{lb}(\operatorname{ran} \alpha))) \cap Y$. Then $\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\}=\{t \in \operatorname{ran} \alpha \mid t<y\}$ and $\left\{t \in \operatorname{ran} \alpha \mid t>x_{1}\right\}=\{t \in$ $\operatorname{ran} \alpha \mid t>y\}$. If $m_{y}=\max (\{t \in \operatorname{ran} \alpha \mid t<y\})$, then $m_{y}<x_{1}<x_{2}$ since $m_{y} \in\{t \in \operatorname{ran} \alpha \mid t<y\}=\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\}, \operatorname{so} x_{1} \beta=m_{y}{ }^{\prime}<x_{2}{ }^{\prime}=x_{2} \beta$. If $\left.m_{y}=\min (\{t \in \operatorname{ran} \alpha] t>y\}\right)$, then $m_{y} \leq x_{2}$ since $\bar{x}_{2} \in\left\{t \in \operatorname{ran} \alpha \mid t>x_{1}\right\}=$ $\{t \in \operatorname{ran} \alpha \mid t>y\}$. Therefore $x_{1} \beta=m_{y}{ }^{\prime} \leq x_{2}{ }^{\prime}=x_{2} \beta$.

Subcase 29.2: $\quad \frac{x_{1}}{1} \notin A_{y}$ for all $y €(X X($ ran $\alpha \psi$ ub $(\operatorname{ran} \alpha) \cup \operatorname{lb}(\operatorname{ran} \alpha))) \cap Y$. If $n_{x_{1}}=\max \left(\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\}\right)$, then $n_{x_{1}}<x_{1}<x_{2}$, so $x_{1} \beta_{\odot}=n_{x_{1}}^{\prime}<x_{2}^{\prime}=x_{2} \beta$.
 $x_{2} \beta$.

Case 3: $x_{1}, x_{2} \in X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha)), x_{1} \in A_{y_{1}}$ and $x_{2} \in A_{y_{2}}$ for some $y_{1}, y_{2} \in(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$. Then $\{t \in \operatorname{ran} \alpha \mid$ $\left.t<x_{1}\right\}=\left\{t \in \operatorname{ran} \alpha \mid t<y_{1}\right\},\left\{t \in \operatorname{ran} \alpha \mid t>x_{1}\right\}=\left\{t \in \operatorname{ran} \alpha \mid t>y_{1}\right\}$, $\left\{t \in \operatorname{ran} \alpha \mid t<x_{2}\right\}=\left\{t \in \operatorname{ran} \alpha \mid t<y_{2}\right\}$ and $\left\{t \in \operatorname{ran} \alpha \mid t>x_{2}\right\}=\{t \in \operatorname{ran} \alpha \mid$ $\left.t>y_{2}\right\}$.

Subcase 3.1: $m_{y_{1}}=\max \left(\left\{t \in \operatorname{ran} \alpha \mid t<y_{1}\right\}\right)$ and $m_{y_{2}}=\max (\{t \in$ $\left.\operatorname{ran} \alpha \mid t<y_{2}\right\}$). Since $\left\{t \in \operatorname{ran} \alpha \mid t<y_{1}\right\}=\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\} \subseteq\{t \in$ $\left.\operatorname{ran} \alpha \mid t<x_{2}\right\}=\left\{t \in \operatorname{ran} \alpha \mid t<y_{2}\right\}$, it follows that $m_{y_{1}} \leq m_{y_{2}}$, and so $x_{1} \beta=m_{y_{1}}{ }^{\prime} \leq m_{y_{2}}{ }^{\prime}=x_{2} \beta$.

Subcase 3.2: $m_{y_{1}}=\max \left(\left\{t \in \operatorname{ran} \alpha \mid t<y_{1}\right\}\right)$ and $m_{y_{2}}=\min (\{t \in$ $\left.\left.\operatorname{ran} \alpha \mid t>y_{2}\right\}\right)$. Then $m_{y_{1}} \in\left\{t \in \operatorname{ran} \alpha \mid t<y_{1}\right\}=\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\}$ and $m_{y_{2}} \in\left\{t \in \operatorname{ran} \alpha \mid t>y_{2}\right\}=\left\{t \in \operatorname{ran} \alpha \mid>x_{2}\right\}$. Hence $m_{y_{1}}<x_{1}<x_{2}<m_{y_{2}}$, so $x_{1} \beta=m_{y_{1}}{ }^{\prime}<m_{y_{2}}{ }^{\prime}=\overline{x_{2}} \beta$.

Subcase 3.3: $m_{y_{1}}=\min \left(\left\{t|\in \operatorname{ran} \alpha| t>y_{1}\right\}\right)$ and $m_{y_{2}}=\max (\{t \in \operatorname{ran} \alpha \mid$ $\left.\left.t<y_{2}\right\}\right)$. If $\left\{t \in \operatorname{ran} \alpha \mid y_{1}<t<y_{2}\right\}=\varnothing$, then $\left\{t \in \operatorname{ran} \alpha \mid t<y_{1}\right\}=\{t \in$ $\left.\operatorname{ran} \alpha \mid t<y_{2}\right\}$ which impossible since $\left\{t \in \operatorname{ran} \alpha \mid t<y_{1}\right\}$ has no maximum or $\max \left(\left\{t \in \operatorname{ran} \alpha \mid t<y_{1}\right\}\right)$ exists and $\max \left(\left\{t \in \operatorname{ran} \alpha \mid t<y_{1}\right\}\right) \notin Y$ but $\max \left(\left\{t \in \operatorname{ran} \alpha \mid t<y_{2}\right\}\right)$ exists and $\max \left(\left\{t \in \operatorname{ran} \alpha \mid t<y_{2}\right\}\right) \in Y$. Then there exists an element $c \in \operatorname{ran} \alpha$ such that $y_{1} \& c<y_{2}$. Consequently, $m_{y_{1}} \leq c \leq m_{y_{2}}$. Hence $x_{1} \beta=m_{y_{1}}^{\prime} \leq m_{y_{2}}^{\prime}=x_{2} \beta$ R.5.d.spman

Subcase 3.4: $m_{y_{1}}=\min \left(\left\{t \in \operatorname{ran} \alpha \mid t>y_{y_{1}}\right\}\right)$ and $m_{y_{2}}=\min (\{t \in$ $\left.\left.\operatorname{ran} \alpha \mid t>y_{2}\right\}\right)$. Since $\left\{t \in \operatorname{ran} \alpha \mid t>y_{1}\right\}=\left\{t \in \operatorname{ran} \alpha \mid t>x_{1}\right\} \supseteq\{t \in$ $\left.\operatorname{ran} \alpha \mid t>x_{2}\right\}=\left\{t \in \operatorname{ran} \alpha \mid t>y_{2}\right\}$, it follows that $m_{y_{1}} \leq m_{y_{2}}$, and then $x_{1} \beta=m_{y_{1}}^{\prime} \leq m_{y_{2}}^{\prime}=x_{2} \beta$.
Case 4: $x_{1}, x_{2} e_{1} \& x^{2}(\operatorname{ran} \alpha \cup \operatorname{bb}(\operatorname{ran} \alpha) \cup \operatorname{lb}(\tan \alpha)), x_{1} \in A_{y}$ for some $y \in$ $(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \Omega Y$ and $x_{2} \notin A_{y}$ for all $y \in(X \backslash(\operatorname{ran} \alpha \cup$ $\operatorname{ub}(\operatorname{ran} \alpha) \cup \operatorname{lb}(\operatorname{ran} \alpha))$ § Y. Then $\left\{t \in \operatorname{ran} \alpha \mid \theta<x_{1}\right\}=\{t \in \operatorname{ran} \alpha \mid t<y\}$ and $\left\{t \in \operatorname{ran} \alpha \mid t>x_{1}\right\}=\{t \in \operatorname{ran} \alpha \mid t>y\}$.

Subcase 4.1: $m_{y}=\max (\{t \in \operatorname{ran} \alpha \mid t<y\})$ and $n_{x_{2}}=\max (\{t \in \operatorname{ran} \alpha \mid$ $\left.\left.t<x_{2}\right\}\right)$. Since $\{t \in \operatorname{ran} \alpha \mid t<y\}=\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\} \subseteq\left\{t \in \operatorname{ran} \alpha \mid t<x_{2}\right\}$, we get $m_{y} \leq n_{x_{2}}$, and it follows that $x_{1} \beta=m_{y}{ }^{\prime} \leq n_{x_{2}}{ }^{\prime}=x_{2} \beta$.

Subcase 4.2: $m_{y}=\max (\{t \in \operatorname{ran} \alpha \mid t<y\})$ and $n_{x_{2}}=\min (\{t \in$ $\left.\left.\operatorname{ran} \alpha \mid t>x_{2}\right\}\right)$. Then $m_{y} \in\{t \in \operatorname{ran} \alpha \mid t<y\}=\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\}$
and $n_{x_{2}} \in\left\{t \in \operatorname{ran} \alpha \mid t>x_{2}\right\}$. Hence $m_{y}<x_{1}<x_{2}<n_{x_{2}}$, and therefore $x_{1} \beta=m_{y}{ }^{\prime}<n_{x_{2}}{ }^{\prime}=x_{2} \beta$.

Subcase 4.3: $m_{y}=\min (\{t \in \operatorname{ran} \alpha \mid t>y\})$ and $n_{x_{2}}=\max (\{t \in \operatorname{ran} \alpha \mid$ $\left.t<x_{2}\right\}$). If $\left\{t \in \operatorname{ran} \alpha \mid y<t<x_{2}\right\}=\varnothing$, then $\left\{t \in \operatorname{ran} \alpha \mid t<x_{2}\right\}=\{t \in \operatorname{ran} \alpha \mid$ $t<y\}$ and $\left\{t \in \operatorname{ran} \alpha \mid t>x_{2}\right\}=\{t \in \operatorname{ran} \alpha \mid t>y\}$, so $x_{2} \in A_{y}$, contradicting the assumption. Then there exists an element $c \in \operatorname{ran} \alpha$ such that $y<c<x_{2}$. This implies that $m_{y} \leq c \leq n_{x_{2}}$. Hence $x_{1} \beta=m_{y}^{\prime} \leq n_{x_{2}}^{\prime}=x_{2} \beta$.

Subcase 4.4: $\overline{m_{\bar{y}}}=\min (\{t \in \operatorname{ran} \bar{\alpha} \mid t>y\})$ and $n_{x_{2}}=\min (\{t \in \operatorname{ran} \alpha \mid$ $\left.\left.t>x_{2}\right\}\right)$. Since $\{t \in \operatorname{ran} \alpha \mid t>y\} \mid=\left\{t \in \operatorname{ran} \alpha \mid t>x_{1}\right\} \supseteq\left\{t \in \operatorname{ran} \alpha \mid t>x_{2}\right\}$, we have $m_{y} \leq n_{x_{2}}$, so $x_{1} \beta=m_{y}^{\prime} \leq n_{x_{2}}^{\prime}=x_{2} \beta$.

Case 5: $x_{1}, x_{2} \in X<(\operatorname{ran} \alpha \cup u b(\operatorname{ran} \alpha) \cup \operatorname{lb}(\operatorname{ran} \alpha)), x_{1} \notin A_{y}$ for all $y \in$ $(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$ and $x_{2} \in A_{y}$ for some $y \in(X \backslash(\operatorname{ran} \alpha \cup$ $\operatorname{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$. Then $\left\{t \in \operatorname{ran} \alpha \mid t<x_{2}\right\}=\{t \in \operatorname{ran} \alpha \mid t<y\}$ and $\left\{t \in \operatorname{ran} \alpha \mid t>x_{2}\right\}=\{t \in \operatorname{ran} \alpha \mid \vec{t}>y\}$.

Subcase 5.1: $\left.n_{x_{1}}=\max \left(\bar{r} t \in \operatorname{ran} \alpha \mid t<x_{1}\right\}\right)$ and $m_{y}=\max (\{t \in \operatorname{ran} \alpha \mid$ $t<y\})$. Since $\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\} \subseteq\left\{t \in \operatorname{ran} \alpha \mid t<x_{2}\right\}=\{t \in \operatorname{ran} \alpha \mid t<y\}$, we obtain that $n_{x_{1}} \leq m_{y}$. Then $x_{1} \beta=n_{x_{1}}{ }^{\prime} \leq m_{y}{ }^{\prime}=x_{2} \beta$.

Subcase 5.2: $n_{x_{1}}=\max \left(\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\}\right)$ and $m_{y}=\min (\{t \in \operatorname{ran} \alpha \mid$ $t>y\})$. Then $n_{x_{1}} \in\left\{t \in \operatorname{ran} \alpha d t \in x_{0}\right\}$ and $m_{\mu} \in\{t \in \operatorname{can} \alpha \mid t>y\}=\{t \in$ $\left.\operatorname{ran} \alpha \mid t>x_{2}\right\}_{\text {Q1 }}$ Thus $n_{x_{1}}<x_{1}<x_{2}<m_{y}^{d}$, so $x_{1} \beta=n_{x_{1}}<m_{m^{\prime}}=x_{2} \beta$.
 $\operatorname{ran} \alpha \mid t<y\}$ and $\left\{t \in \operatorname{ran} \alpha \mid t>x_{1}\right\}=\{t \in \operatorname{ran} \alpha \mid t>y\}$, so $x_{1} \in A_{y}$, a contradiction. Then there is an element $c \in \operatorname{ran} \alpha$ such that $x_{1}<c<y$. This implies that $n_{x_{1}} \leq c \leq m_{y}$, and thus $x_{1} \beta=n_{x_{1}}{ }^{\prime} \leq m_{y}{ }^{\prime}=x_{2} \beta$.

Subcase 5.4: $n_{x_{1}}=\min \left(\left\{t \in \operatorname{ran} \alpha \mid t>x_{1}\right\}\right)$ and $m_{y}=\min (\{t \in \operatorname{ran} \alpha \mid$ $t>y\})$. Since $\left\{t \in \operatorname{ran} \alpha \mid t>x_{1}\right\} \supseteq\left\{t \in \operatorname{ran} \alpha \mid t>x_{2}\right\}=\{t \in \operatorname{ran} \alpha \mid t>y\}$, it follows that $n_{x_{1}} \leq m_{y}$. Hence $x_{1} \beta=n_{x_{1}}{ }^{\prime} \leq m_{y}{ }^{\prime}=x_{2} \beta$.

Case 6: $x_{1}, x_{2} \in X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha)), x_{1} \notin A_{y}$ for all $y \in$ $(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$ and $x_{2} \notin A_{y}$ for all $y \in(X \backslash(\operatorname{ran} \alpha \cup$ $\mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$.

Subcase 6.1: $n_{x_{1}}=\max \left(\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\}\right)$ and $n_{x_{2}}=\max (\{t \in \operatorname{ran} \alpha \mid$ $\left.t<x_{2}\right\}$). Since $\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\} \subseteq\left\{t \in \operatorname{ran} \alpha \mid t<x_{2}\right\}$, we have $n_{x_{1}} \leq n_{x_{2}}$, so $x_{1} \beta=n_{x_{1}}{ }^{\prime} \leq n_{x_{2}}{ }^{\prime}=x_{2} \beta$.

Subcase 6.2: $n_{x_{1}}=\max \left(\left\{t \in \operatorname{ran} a \mid<x_{1}\right\}\right)$ and $n_{x_{2}}=\min (\{t \in \operatorname{ran} \alpha \mid$ $\left.t>x_{2}\right\}$). Then $n_{x_{1}}<x_{1}<x_{2}<n_{x_{2}}$, so $x \overline{1} \beta=n_{x_{1}}{ }^{\prime}<n_{x_{2}}{ }^{\prime}=x_{2} \beta$.

Subcase 6.3: $n_{x_{1}}=\min \left(\left\{t \in \operatorname{ran} \alpha \mid t>x_{1}\right\}\right)$ and $n_{x_{2}}=\max (\{t \in$ $\left.\operatorname{ran} \alpha \mid t<x_{2}\right\}$). Then $\left\{t \in \operatorname{ran} \alpha \nmid t<x_{1}\right\}$ has no maximum. It follows that $\left\{t \in \operatorname{ran} \alpha \mid t<x_{1}\right\} \subsetneq\left\{t \in \operatorname{ran} \alpha \mid t<x_{2}\right\}$. Hence $x_{1}<c<x_{2}$ for some $c \in \operatorname{ran} \alpha$. This implies that $n_{x_{1}} \leq c \leq n_{x_{2}}$, and thus $x_{1} \beta=n_{x_{1}}{ }^{\prime} \leq n_{x_{2}}{ }^{\prime}=x_{2} \beta$.

Subcase 6.4: $\left.n_{x_{1}}=\min \left(\{t \in \operatorname{ran} \alpha\} t>x_{1}\right\}\right)$ and $n_{x_{2}}=\min (\{t \in \operatorname{ran} \alpha \mid$ $\left.t>x_{2}\right\}$). Since $\left\{t \in \operatorname{ran} \alpha \mid t x_{1}\right\} \geq\left\{t \in \operatorname{ran} \alpha \mid t>x_{2}\right\}$, it follows that $n_{x_{1}} \leq n_{x_{2}}$, and hence $x_{1} \beta=n_{x_{1} \leq}^{\prime} \leq n_{x_{2}}^{\prime}=x_{2} \beta$.

Hence $\beta \in \overline{O T}(X, Y)$, and the theorem is completely proved.
As an immediate consequence of Theorem 3.1.3, we have
Corollary 314. Let $\alpha \subset \overline{9 T}(\alpha, X)$ be such that ran $\alpha \sim$ is finite. Then $\alpha \in$ $\operatorname{Reg}\left(\overline{O T}\left(X, Y^{\prime}\right)\right.$ if and only if the following four conditions hold.

(iii) If $\mathrm{lb}(\operatorname{ran} \alpha) \cap Y \neq \varnothing$, then $\min (\operatorname{ran} \alpha) \in Y$.
(iv) If $x \in(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$, then $\max (\{t \in \operatorname{ran} \alpha \mid$ $t<x\}) \in Y$ or $\min (\{t \in \operatorname{ran} \alpha \mid t>x\}) \in Y$.

The following result which is obtained from Theorem 2.1.2 and Theorem 3.1.3 shows that any nonregular element of $O T(X, Y)$ cannot be a regular element of $\overline{O T}(X, Y)$.

Corollary 3.1.5. $\operatorname{Reg}(\overline{O T}(X, Y) \subseteq \operatorname{Reg}(O T(X, Y)) \cup(\overline{O T}(X, Y) \backslash O T(X, Y))$, or equivalently,

$$
O T(X, Y) \backslash \operatorname{Reg}(O T(X, Y)) \subseteq \overline{O T}(X, Y) \backslash \operatorname{Reg}(\overline{O T}(X, Y))
$$

Proof. Let $\alpha \in \operatorname{Reg}(\overline{O T}(X, Y))$ and assume that $\alpha \in O T(X, Y)$. Then ran $\alpha \cap$ $Y=Y \alpha$ by Theorem 3.1.3 and ran $\alpha \subseteq Y$. Combining these two facts, we have that $\operatorname{ran} \alpha=Y \alpha$, i.e., α satisfies (i) of Theorem 2.1.2. Also, by Theorem 3.1.3, α satisfies (ii), (iii) and (iv) of Theorem 2.1.2. Hence $\alpha \in \operatorname{Reg}(O T(X, Y))$ by Theorem 2.1.2.

From the second inclusion of Corollary 3.1.5, we directly obtain the following fact.

Corollary 3.1.6. If $\overline{O T}(X, Y)$ is regular semigroup, then $O T(X, Y)$ is also regular.

Next, we characterize when $\overline{\theta T}(X, Y)$ is a regular semigroup. For our required result, the following lemmas are meeded.

Lemma 3.1.7. If $Y \mid=1$ and $\overline{O T}(X, Y) \subseteq \operatorname{Reg}(O E(X))$, then $\overline{O T}(X, Y)$ is a regular semigroup.

Proof. Assume that $\mid Y_{d} \equiv 1$ and $\overline{O T}\left(X_{0} Y\right) \subseteq \operatorname{Reg}(O T(X))$. Let $Y=\{c\}$. To show that $\overline{O T}(X, Y)$ is regulan, Ret $\Omega \in \widetilde{O T}(X, Y) \cdot$ Then $\alpha \in \operatorname{Reg}(O T(X))$ and $c \alpha=c$. Thus $У=\{c\} \subseteq \operatorname{ran} \alpha$, so $\operatorname{ran} \alpha \cap Y=Y=Y \alpha$. Hence α satisfies (i) of Theorem 3.1.3 3 since $\alpha \xi \operatorname{Reg}(O T(X)$), it followsfrom Theorrm 1.6 that α satisfies the first part of (ii), (iii) and (iv) in Theorem 3.1.3. If ub $(\operatorname{ran} \alpha) \cap Y \neq \varnothing$, then $c \in \operatorname{ub}(\operatorname{ran} \alpha)$, so $\max (\operatorname{ran} \alpha)=c \in Y$ since $c \in \operatorname{ran} \alpha$. This shows that α satisfies the second part of (ii) in Theorem 3.1.3. Similarly, if $\operatorname{lb}(\operatorname{ran} \alpha) \cap Y \neq \varnothing$, then $\min (\operatorname{ran} \alpha)=c \in Y$, so α satisfies the second part of (iii) in Theorem 3.1.3. Since $(X \backslash(\operatorname{ran} \alpha \cup \mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y=\varnothing$, we immediately obtain the second part of (iv) in Theorem 3.1.3. Hence by Theorem 3.1.3, $\alpha \in$ $\operatorname{Reg}(\overline{O T}(X, Y))$.

Lemma 3.1.8. Let $|Y|=2$. If $\overline{O T}(X, Y) \subseteq \operatorname{Reg}(O T(X)), \min (X)$ and $\max (X)$ exist and $Y=\{\min (X), \max (X)\}$, then $\overline{O T}(X, Y)$ is a regular semigroup.

Proof. Assume that $\overline{O T}(X, Y) \subseteq \operatorname{Reg}(O T(X)), \min (X)$ and $\max (X)$ exist and $Y=\{\min (X), \max (X)\}$. Let $\alpha \in \overline{O T}(X, Y)$. Then $|Y \alpha|=1$ or $|Y \alpha|=2$ because $|Y|=2$.

Case 1: $|Y \alpha|=1$. Then $Y \alpha=\{\min (X)\}$ or $Y \alpha=\{\max (X)\}$. If $Y \alpha=$ $\{\min (X)\}$, then $\min (X) \alpha=\max (X) \alpha=\min (X)$. Since α is order-preserving,

$$
\min (X)=\min (X) \alpha \leq x \alpha<\max (X) \alpha=\min (X) \text { for all } x \in X,
$$

and we deduce that $x \alpha=\min (X)$ for all $x \in X$. Hence $\alpha^{2}=\alpha$, so $\alpha \in$ $\operatorname{Reg}(\overline{O T}(X, Y))$. Likewise, if $Y \alpha=\{\max (X)\}$, then $x \alpha=\max (X)$ for all $x \in X$ and it follows that $\alpha \in \operatorname{Reg}(O T(X, Y))$.

Case 2: $|Y \alpha|=$ 2. Then $Y \alpha \sigma$. Since α is order-preserving, we have $\min (X) \alpha=\min (X)$ and $\max (X) \alpha_{2} \neq \max (X)$. It follows that $\operatorname{ran} \alpha \cap Y=Y=$ $Y \alpha, \min (\operatorname{ran} \alpha)=\min (X) \in Y$ and $\max (\tan \alpha)=\max (X) \in Y$. This implies that α satisfies (i), (ii) and (iiii) of theorem 3.1.3. We have $\alpha \in \operatorname{Reg}(O T(X))$ by assumption. Then Theorem 1.6 together with the fact that $(X \backslash(\operatorname{ran} \alpha \cup$ $\mathrm{ub}(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha) \not) \cap Y=\varnothing$ implies that α also satisfies (iv) of Theorem 3.1.3. Hence $\alpha \in \operatorname{Reg}(\overline{O T}(X, Y))$ by Theorem 3.1.3.
This shows that $\frac{\theta T}{O T}(X) Y$ is a regular semigroup, so the proof is complete. $\overline{O T}(X, \bar{Y}) \subseteq \operatorname{Reg}(O T(X))$ and one of the following conditions holds.
(i) $Y=X$.
(ii) $|Y|=1$.
(iii) $|Y|=2, \min (X)$ and $\max (X)$ exist, and $Y=\{\min (X), \max (X)\}$.

Proof. Assume that $\overline{O T}(X, Y)$ is regular. Then $\operatorname{Reg}(\overline{O T}(X, Y))=\overline{O T}(X, Y)$, and by Corollary 3.1.6, $O T(X, Y)$ is regular. Since $\overline{O T}(X, Y)$ is a subsemigroup of $O T(X)$, it follows that $\overline{O T}(X, Y)=\operatorname{Reg}(\overline{O T}(X, Y)) \subseteq \operatorname{Reg}(O T(X))$. Suppose
that (i) and (ii) are false. Then $Y \subsetneq X$ and $|Y| \geq 2$. Then the regularity of $O T(X, Y)$ and Lemma 2.1.6 imply that $|Y|=2$. Let $Y=\{e, f\}$ be such that $e<f$. Since $O T(X, Y)$ is regular, by Lemma 2.1.5, we have for every $a \in X$, $a \ngtr Y$ and $a \nless Y$. Thus $e \leq a \leq f$ for all $a \in X$. This implies that $e=\min (X)$ and $f=\max (X)$.

Conversely, $\overline{O T}(X, Y)$ is obviously regular if $\overline{O T}(X, Y) \subseteq \operatorname{Reg}(O T(X))$ and $Y=X$. If $\overline{O T}(X, Y) \subseteq \operatorname{Reg}(O T(X))$ and $|Y|=1$, then by Lemma 3.1.7, $\overline{O T}(X, Y)$ is regular. Also, by Lemma 3.1.8, $\overline{O T}(X, Y)$ is regular if $\overline{O T}(X, Y) \subseteq$ $\operatorname{Reg}(O T(X))$ and (iii) holds.

Hence the theorem is proved
Next, the regular elements of the semigroups $\overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$ are characterized.

Theorem 3.1.10. For $\alpha \in \overline{O P}(X, Y), \alpha \in \operatorname{Reg}(\overline{O P}(X, Y))$ if and only if $\operatorname{ran} \alpha \cap Y=(\operatorname{dom} \alpha \cap Y) \alpha$.

Proof. Assume that $\alpha \in \operatorname{Reg}(\overline{O P}(X, Y))$. Since $(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y$, we have that $(\operatorname{dom} \alpha \cap Y) \alpha \subseteq \operatorname{ran} \alpha \cap Y$. To show that ran $\alpha \cap Y \subseteq(\operatorname{dom} \alpha \cap Y) \alpha$, let $\beta \in \overline{O P}(X, Y)$ be such that $\alpha=\alpha \beta \alpha$ and let $x \in \operatorname{ran} \alpha \cap Y$. Then $x=a \alpha$ for some $a \in \operatorname{dom} \alpha$. Thus $x=a \alpha=a \alpha \beta \alpha=x \beta \alpha$ which implies that $x \in \operatorname{dom} \beta$ and $x \beta \in \operatorname{dom} \alpha$. It follows that $x \in \operatorname{dom} \beta \cap Y$ and hence $x \beta \in(\operatorname{dom} \beta \cap Y) \beta \subseteq Y$. We then deduee that $x \beta \in$ dom $\alpha \cap Y$ Gonsequently, $x=\sim \alpha \alpha \in(\operatorname{dom} \alpha \cap Y) \alpha$. This proves that $\operatorname{ran} \alpha \cap Y=(\operatorname{dom} \alpha \cap Y) \alpha$.

Fontheconverse, assume that tan $\alpha \cap Y=$ (dom αY) α. Then $x \alpha^{-1} \cap Y \neq \varnothing$ for all $x \in \operatorname{ran} \alpha \cap Y$. For each $x \in \operatorname{ran} \alpha \cap Y$, choose $d_{x} \in x \alpha^{-1} \cap Y$ and for each $x \in \operatorname{ran} \alpha \backslash Y$, choose $e_{x} \in x \alpha^{-1}$. Then $d_{x} \alpha=x$ for all $x \in \operatorname{ran} \alpha \cap Y$ and $e_{x} \alpha=x$ for all $x \in \operatorname{ran} \alpha \backslash Y$. Define $\beta: \operatorname{ran} \alpha \rightarrow \operatorname{dom} \alpha$ by

$$
\beta=\left(\begin{array}{cc}
x & u \\
d_{x} & e_{u}
\end{array}\right)_{\substack{x \in \operatorname{ran} \alpha \cap Y \\
u \in \operatorname{ran} \alpha \wedge Y}}
$$

Then $(\operatorname{dom} \beta \cap Y) \beta=(\operatorname{ran} \alpha \cap Y) \beta=\left\{d_{x} \mid x \in \operatorname{ran} \alpha \cap Y\right\} \subseteq Y$. Since $\alpha \in O P(X)$, it follows from Proposition 1.11 that β is order-preserving. Hence $\beta \in \overline{O P}(X, Y)$.

Since for $x \in \operatorname{dom} \alpha, x \alpha \in \operatorname{dom} \beta$ and $x \alpha \beta \in \operatorname{dom} \alpha$, we deduce that $\operatorname{dom} \alpha=$ $\operatorname{dom}(\alpha \beta \alpha)$. If $x \in \operatorname{dom} \alpha$, then

$$
x \alpha \beta \alpha= \begin{cases}d_{x \alpha} \alpha=x \alpha & \text { if } x \alpha \in Y, \\ e_{x \alpha} \alpha=x \alpha & \text { if } x \alpha \notin Y,\end{cases}
$$

so $\alpha=\alpha \beta \alpha$. Thus $\alpha \in \operatorname{Reg}(\overrightarrow{O P}(X, Y))$. as desired.

It can be seen that β constructed in the proof of Theorem 3.1.10 is $1-1$. Then $\beta \in \overline{O I}(X, Y)$.

Theorem 3.1.11. For $\alpha \in \overline{O I}(X, Y), \alpha \in \operatorname{Reg}(\overline{O I}(X, Y))$ if and only if $(\operatorname{ran} \alpha \cap Y) \alpha^{-1} \subseteq Y$.

Proof. Assume that $\alpha \in \operatorname{Reg}(\overline{O I}(X, Y))$. Since $\overline{O I}(X, Y)$ is a subsemigroup of $\overline{O P}(X, Y)$, we have that $\alpha \in \operatorname{Reg}(O P(X, Y))$. By Theorem 3.1.10, $\operatorname{ran} \alpha \cap Y=$ $(\operatorname{dom} \alpha \cap Y) \alpha$. Then $\left(\operatorname{ran} \alpha \cap Y^{-}\right) \alpha^{-1}=(\operatorname{dom} \alpha \cap Y) \alpha \alpha^{-1}$. Since $\alpha \alpha^{-1}$ is the identity mapping on $\operatorname{dom} \alpha$, it follows that ($\operatorname{dom} \alpha \cap Y) \alpha \alpha^{-1}=\operatorname{dom} \alpha \cap Y$. Hence $(\operatorname{ran} \alpha \cap Y) \alpha^{-1}=\operatorname{dom} \alpha \cap Y \subseteq Y$.

Conversely, assume that $(\operatorname{ran} \alpha \cap Y) \alpha^{-1} \subseteq Y$. But $(\operatorname{ran} \alpha \cap Y) \alpha^{-1} \subseteq \operatorname{dom} \alpha$, so $(\operatorname{ran} \alpha \cap Y) \alpha^{-1} \subseteq \operatorname{dom} \alpha \cap Y$. Thus $(\operatorname{ran} \alpha \cap Y) \alpha^{-1} \alpha \subsetneq(\operatorname{dom} \alpha \cap Y) \alpha \subseteq \operatorname{ran} \alpha \cap Y$. Since $\alpha^{-1} \alpha$ is the identity mapping on $\operatorname{ran} \alpha$, we have that $(\operatorname{ran} \alpha \cap Y) \alpha^{-1} \alpha=$
 $\alpha=\alpha \beta \alpha$ for some $\beta \in \overline{O I}(X, Y)$. Hence $\alpha \in \operatorname{Reg}(\overline{O I}(X, Y))$, as desired.
we provide a different versiontindetermining $\operatorname{Reg}(O I(X, Y))$ as follows:
Theorem 3.1.12. For $\alpha \in \overline{O I}(X, Y), \quad \alpha \in \operatorname{Reg}(\overline{O I}(X, Y))$ if and only if $(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq X \backslash Y$.

Proof. It suffices to show that $(\operatorname{ran} \alpha \cap Y) \alpha^{-1} \subseteq Y$ if and only if $(\operatorname{dom} \alpha \cap(X \backslash$ $Y)) \alpha \subseteq X \backslash Y$. Suppose first that $(\operatorname{ran} \alpha \cap Y) \alpha^{-1} \subseteq Y$. Let $x \in \operatorname{dom} \alpha \cap(X \backslash Y)$. Then $x \alpha \in \operatorname{ran} \alpha$. If $x \alpha \in Y$, then $x \in(\operatorname{ran} \alpha \cap Y) \alpha^{-1} \subseteq Y$, a contradiction. Hence $x \alpha \in X \backslash Y$, proving that $(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq X \backslash Y$. Now suppose
that $(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq X \backslash Y$. Let $x \in(\operatorname{ran} \alpha \cap Y) \alpha^{-1}$. Then $x \in \operatorname{dom} \alpha$ and $x \alpha \in Y$. If $x \in X \backslash Y$, then $x \alpha \in(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq X \backslash Y$, a contradiction. Thus $x \in Y$. This proves that $(\operatorname{ran} \alpha \cap Y) \alpha^{-1} \subseteq Y$.

As a consequence of Theorem 3.1.10 and Theorem 3.1.11, a necessary and sufficient condition for the $\overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$ to be regular semigroups can be given as follows:

Corollary 3.1.13. Let $\overline{O S}(X, Y)$ be $\overline{O P}(X, Y)$ or $\overline{O I}(X, Y)$. Then $\overline{O S}(X, Y)$ is a regular semigroup if and onty if $Y=X$.

Proof. Suppose that $Y \subset X$. Let $a \in X>Y$ and $b \in Y$. Then $\alpha=\binom{a}{b} \in$ $\overline{O S}(X, Y)$. Since dom $\alpha \cap Y=\varnothing, \operatorname{ran} \alpha \cap Y=\{b\}$ and $b \alpha^{-1}=a \notin Y$, by Theorem 3.1.10 and Theorem 3.1.11, $\alpha \notin \operatorname{Reg}(\overline{O S}(X, Y))$. If $Y=X$, then $\overline{O P}(X, Y)=O P(X), \overline{O I}(X, Y)=O I(X)$, and both $O P(X)$ and $O I(X)$ are regular semigroups by Theorem 1.5. Hence the result follows.

3.2 Combinatorial Results on Regular Elements

Throughout this section, let $X=\{1,2, \ldots, n\}$ and $Y=\{1,2, \ldots, m\}$ where $m \leq n$.

First of all, we determime the cardinalifiés of $\overline{O T}(X, Y), \overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$ and then we investigatethe numbers of the regularelements of $\overline{O T}(X, Y), \overline{O P}(X, Y)$ and $\overline{O I}(X, Y)$. Hence the numbers of the nonregular elements in $\overline{O T}(X, Y)$, $\overline{O P}(X, Y)$ and $O \overline{O b}(X, Y)$ are directly obfained. $9 /$ ही ?

The following two lemmas given in [17] are needed to obtain our required results.

Lemma 3.2.1. ([17]) For $r, s, k \in Y$,

$$
\begin{aligned}
\mid\{\alpha \in O P(Y)| | \operatorname{dom} \alpha|=r,|\operatorname{ran} \alpha|=s \text { and } & \max (\operatorname{ran} \alpha)=k\} \mid \\
& =\binom{m}{r}\binom{k-1}{s-1}\binom{r-1}{s-1} .
\end{aligned}
$$

Lemma 3.2.2. ([17]) For $r, k \in Y$,

$$
\mid\{\alpha \in O P(Y)| | \operatorname{dom} \alpha \mid=r \text { and } \max (\operatorname{ran} \alpha)=k\} \left\lvert\,=\binom{m}{r}\binom{k+r-2}{k-1} .\right.
$$

Theorem 3.2.3. $|\overline{O T}(X, Y)|=\sum_{k=1}^{m}\binom{k+m-2}{k-1}\binom{2 n-k-m}{n-m}$.
Proof. We see that

It follows from Proposition 1.12 and Proposition 1.13 that for $1 \leq k \leq m$,

$$
\begin{aligned}
& \{\alpha \in O T(X) \mid Y \alpha \subseteq Y, \max (Y)=k \text { and }(X \backslash Y) \alpha \subseteq\{k, \ldots, n\}\} \\
& =\left\{\alpha_{1} \cup \alpha_{2} \mid \alpha_{1} \in O T(Y), \max \left(1+n n \alpha_{1}\right)=k \text { and } \alpha_{2} \in O T(X \backslash Y,\{k, \ldots, n\})\right\} .
\end{aligned}
$$

Then we get

$$
\begin{aligned}
& \overline{O T}(X, Y) \Longrightarrow \bigcup_{k=1}^{m}\left\{\alpha_{1} \cup \alpha_{2} \mid \alpha_{1} \in O T(Y), \max \left(\operatorname{ran} \alpha_{1}\right)=k\right. \text { and }
\end{aligned}
$$

For $1 \leq k \leq m$ Iwe have

$=\binom{m}{m}\binom{k+m-2}{k-1}\binom{(n-k+1)+(n-m)-1}{n-m} \quad$ by Lemma 3.2.2 and Theorem 2.2.3(i)
$=\binom{k+m-2}{k-1}\binom{2 n-m-k}{n-m}$.

Hence

$$
|\overline{O T}(X, Y)|=\sum_{k=1}^{m}\binom{k+m-2}{k-1}\binom{2 n-m-k}{n-m}
$$

Theorem 3.2.4.

$$
\begin{align*}
\overline{O P}(X, Y)= & \{\alpha \in \overline{O P}(X, Y) \mid \text { dom } \alpha \subseteq X \backslash Y\} \cup \\
& \{\alpha \in \overline{O P}(X, Y) \mid \varnothing \neq \operatorname{dom} \alpha \subseteq Y\} \cup \\
& \{\alpha \in \overline{O P}(X, Y) \operatorname{dom} \alpha \cap Y \neq \varnothing \text { and } \operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing\} \\
= & O P(X \backslash Y, X\} \cup O P(Y) \backslash\{0\} \cup \\
& \{\alpha \in \overline{O P}(X, Y) \mid \text { dom } \alpha \cap Y \neq \varnothing \text { and } \operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing\} . \tag{1}
\end{align*}
$$

We know from Theorem 2.2.3(ii) that
and

To obtain the cardinality of $\overline{O P}(X, Y)$, it remains to find $\mid\{\alpha \in \overline{O P}(X, Y) \mid$ $\operatorname{dom} \alpha \cap Y \neq \varnothing$ and $\operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing\} \mid$. We see that

$$
\begin{aligned}
& \{\alpha \in \overline{O P}(X, Y) \mid \operatorname{dom} \alpha \cap Y \neq \varnothing \text { and } \operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing\} \\
& =\bigcup_{s=1}^{m} \bigcup_{t=1}^{n-m} \bigcup_{k=1}^{m}\{\alpha \in \overline{O P}(X, Y)| | \operatorname{dom} \alpha \cap Y|=s,|\operatorname{dom} \alpha \cap(X \backslash Y)|=t \\
& \quad \text { and } \max ((\operatorname{dom} \alpha \cap Y) \alpha)=k\}
\end{aligned}
$$

$$
\begin{aligned}
=\bigcup_{s=1}^{m} \bigcup_{t=1}^{n-m} \bigcup_{k=1}^{m}\{\alpha \in O P(X) \mid & |\operatorname{dom} \alpha \cap Y|=s,|\operatorname{dom} \alpha \cap(X \backslash Y)|=t \\
& (\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y, \max ((\operatorname{dom} \alpha \cap Y) \alpha)=k \\
& \text { and }(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq\{k, \ldots, n\}\} .
\end{aligned}
$$

For $1 \leq s \leq m, 1 \leq t \leq n-m$ and $1 \leq k \leq m$, we have from Proposition 1.12 and Proposition 1.13 that

$$
\begin{aligned}
& \{\alpha \in O P(X)||\operatorname{dom} \alpha \cap Y|=s,| \text { dom } \alpha \cap X \backslash Y) \mid=t,(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y, \\
& \\
& \quad \max ((\operatorname{dom} \alpha \cap Y) \alpha)=k \text { and }(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq\{k, \ldots, n\}\} \\
& =\left\{\alpha_{1} \cup \alpha_{2}\left|\alpha_{1} \in O P(Y), \operatorname{dom} \alpha_{1}\right|=s, \max \left(\operatorname{ran} \alpha_{1}\right)=k,\right. \\
& \left.\alpha_{2} \in O P(X \backslash Y,\{k,, n\}) \text { and }\left|\operatorname{dom} \alpha_{2}\right|=t\right\} .
\end{aligned}
$$

From this, we get

This shows that for $1 \leq s \leq m, 1 \leq t \leq n-m$ and $1 \leq k \leq m$,

$$
\begin{aligned}
& \mid\{\alpha \in O P(X)| | \operatorname{dom} \alpha \cap Y|=s,|\operatorname{dom} \alpha \cap(X \backslash Y)|=t,(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y, \\
& \quad \max ((\operatorname{dom} \alpha \cap Y) \alpha)=k \text { and }(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq\{k, \ldots, n\}\} \mid
\end{aligned}
$$

$$
=\binom{m}{s}\binom{k+s-2}{k-1}\binom{n-m}{t}\binom{n-k+t}{t}
$$

$$
\begin{aligned}
& \mid\{\alpha \in O P(X)| | \operatorname{dom} \alpha \cap Y|=s, \operatorname{dom} \alpha \cap(X \backslash Y)|=t,(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y, \\
& \max ((\operatorname{dom} \alpha)+a)=k \text { and }(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq\{k, \ldots, n\}\} \\
& =\left\lvert\,\left\{\alpha \in O P(Y) \left\lvert\, \frac{\operatorname{dom} \alpha \mid=s \text { and } \max (\operatorname{ran} \alpha)=k\}}{|\{\alpha \in O P(X \backslash Y,\{k, \ldots, n\})| | \operatorname{dom} \alpha \mid=t\}|}\right.\right.\right.
\end{aligned}
$$

Consequently,

$$
\begin{align*}
\mid\{\alpha \in \overline{O P}(X, Y) \mid & \operatorname{dom} \alpha \cap Y \neq \varnothing \text { and } \operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing\} \mid \\
& =\sum_{s=1}^{m} \sum_{t=1}^{n-m} \sum_{k=1}^{m}\binom{m}{s}\binom{k+s-2}{k-1}\binom{n-m}{t}\binom{n-k+t}{t} \\
& =\sum_{s=1}^{m} \sum_{k=1}^{m}\binom{m}{s}\binom{k+s-2}{k} \sum_{t=1}^{n-m}\binom{n-m}{t}\binom{n-k+t}{t} . \tag{4}
\end{align*}
$$

From (1), (2), (3) and (4) and using Resuit 1.21, we obtain

$$
\begin{aligned}
& |\overline{O P}(X, Y)|=\sum_{r=0}^{n-m}\binom{n-m}{r}\binom{n+r-1}{r}+\sum_{s=1}^{m}\binom{m}{s}\binom{m+s-1}{s}+ \\
& \sum_{s=1}^{m} \sum_{k=1}^{m}\binom{m}{s}\binom{k+s-2}{k} \sum_{t=1}^{n-m}\binom{n-m}{t}\binom{n-k+t}{t} \\
& =\sum_{r=0}^{n-m}\binom{n-m}{r}\binom{n+r}{n}+\sum_{s=1}^{m}\binom{m}{s} \sum_{k=1}^{m}\binom{k+s-2}{k-1}+ \\
& \sum_{s=1}^{m} \sum_{k=1}^{m}\left(\frac{m}{s}\right)\binom{k+s-2}{k-1} \sum_{t=1}^{n-m}\binom{n-m}{t}\binom{n-k+t}{t} \\
& \left.=(\stackrel{n-m}{n})^{n+r-1}\right)+0
\end{aligned}
$$

Theorem 3.2.5. $|\overline{O I}(X, Y)|=\binom{2 n-m}{n}+\sum_{s=1}^{m} \sum_{k=s}^{m}\binom{m}{s}\binom{k-1}{s-1}\binom{2 n-m-k}{n-k}$.
Proof. We see that

$$
\begin{aligned}
\overline{O I}(X, Y)= & \{\alpha \in \overline{O I}(X, Y) \mid \operatorname{dom} \alpha \subseteq X \backslash Y\} \cup \\
& \{\alpha \in \overline{O I}(X, Y) \mid \varnothing \neq \operatorname{dom} \alpha \subseteq Y\} \cup \\
& \{\alpha \in \overline{O I}(X, Y) \mid \operatorname{dom} \alpha \cap Y \neq \varnothing \text { and } \operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing\}
\end{aligned}
$$

$$
\begin{align*}
= & O I(X \backslash Y, X) \cup O I(Y) \backslash\{0\} \cup \\
& \{\alpha \in \overline{O I}(X, Y) \mid \operatorname{dom} \alpha \cap Y \neq \varnothing \text { and } \operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing\} . \tag{1}
\end{align*}
$$

It follows from Theorem 2.2.3(iii) that

$$
\begin{equation*}
|O I(X \backslash Y, X)|=\binom{2 n-m}{n} \tag{2}
\end{equation*}
$$

and by Theorem 1.10 and Result 1.22 , we have

$$
\begin{align*}
|O I(Y) \backslash\{0\}|=\sum_{s=1}^{m}\binom{m}{s}\binom{m}{s} & =\sum_{s=1}^{m}\binom{m}{s} \sum_{k=s}^{m}\binom{k-1}{s-1} \\
& =\sum_{s=1}^{m} \sum_{k=s}^{m}\binom{m}{s}\binom{k-1}{s-1} . \tag{3}
\end{align*}
$$

Next, we will find $\mid\{\alpha \in \overline{O I}(X, Y) \mid \operatorname{dom} \alpha \cap Y \neq \varnothing$ and $\operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing\} \mid$.
We see that if $\alpha \in \overline{O I}(X, Y)$ is such that $|\operatorname{dom} \alpha \cap Y|=s$ and $\max ((\operatorname{dom} \alpha \cap$ $Y) \alpha)=k$, then $|(\operatorname{dom} \alpha \cap Y) \alpha|=\operatorname{dom} \alpha \cap Y \mid=s$. This together with $(\operatorname{dom} \alpha \cap$ $Y) \alpha \subseteq\{1,2, \ldots, m\}$ implies that $k \geqq s$. Then we have
$\{\alpha \in \overline{O I}(X, Y) \mid \operatorname{dom} \alpha \cap Y \neq \varnothing$ and dom $\alpha \cap(X \backslash Y) \neq \varnothing\}$

For $1 \leq s \leq k \leq m$ and $1 \leq t \leq n-m$, we obtain from Proposition 1.12 and Proposition 1.13 that

$$
\begin{aligned}
& \{\alpha \in O I(X)||\operatorname{dom} \alpha \cap Y|=s,|\operatorname{dom} \alpha \cap(X \backslash Y)|=t,(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y, \\
& \\
& \max ((\operatorname{dom} \alpha \cap Y) \alpha)=k,(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq\{k+1, \ldots, n\}\} \\
& =\left\{\alpha _ { 1 } \cup \alpha _ { 2 } \left|\alpha_{1} \in O I(Y),\left|\operatorname{dom} \alpha_{1}\right|=s, \max \left(\operatorname{ran} \alpha_{1}\right)=k\right.\right. \text { and } \\
& \left.\alpha_{2} \in O I(X \backslash Y,\{k+1, \ldots, n\}) \text { and }\left|\operatorname{dom} \alpha_{2}\right|=t\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\alpha _ { 1 } \cup \alpha _ { 2 } \left|\alpha_{1} \in O P(Y),\left|\operatorname{dom} \alpha_{1}\right|=\left|\operatorname{ran} \alpha_{1}\right|=s, \max \left(\operatorname{ran} \alpha_{1}\right)=k\right.\right. \text { and } \\
& \left.\qquad \alpha_{2} \in O P(X \backslash Y,\{k+1, \ldots, n\}) \text { and }\left|\operatorname{dom} \alpha_{2}\right|=\left|\operatorname{ran} \alpha_{2}\right|=t\right\} .
\end{aligned}
$$

It follows that
$\mid\{\alpha \in O I(X)| | \operatorname{dom} \alpha \cap Y|=s,|\operatorname{dom} \alpha \cap(X \backslash Y)|=t,(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y$, $\max ((\operatorname{dom} \alpha \cap Y) \alpha)=k$ and $(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq\{k+1, \ldots, n\}\} \mid$
$=\mid\{\alpha \in O P(Y)| | \operatorname{dom} \alpha|=|\operatorname{ran} \alpha|=s$ and $\max (\operatorname{ran} \alpha)=k\} \mid$.
$|\{\alpha \in O P(X, Y,\{k+1, \ldots, n\})||\operatorname{dom} \alpha|=|\operatorname{ran} \alpha|=t\} \mid$
$=\binom{m}{s}\binom{k-1}{s-1}\binom{s-1}{s-1}\binom{n-m}{t}\binom{n-k}{t}\binom{t-1}{t-1} \quad$ by Lemma 3.2.1 and
Lemma 2.2.1
$=\binom{m}{s}\binom{k-1}{s-1}\binom{n-m}{t}\binom{n-k}{t ;} \Longrightarrow$

This shows that for $1 \leq s \leq k \leq m$ and $1 \leq t \leq n-m$,
$\mid\{\alpha \in O I(X)| | \operatorname{dom} \alpha \cap Y|=\operatorname{dom} \alpha \cap(X \backslash Y)|=t,(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y$,
$\max (((\operatorname{dom} \alpha \cap Y) \alpha)=k$ and $(\operatorname{dom} \alpha \cap(X \succ Y)) \alpha \subseteq\{k+1, \ldots, n\}\} \mid$
$=\binom{m}{s}\binom{k-1}{s-1}\binom{n-m}{t}\binom{n-k}{t}$.

From (1), (2), (3) and (4) and using Result 1.20, we obtain

$$
\begin{aligned}
|\overline{O I}(X, Y)|= & \binom{2 n-m}{n}+\sum_{s=1}^{m} \sum_{k=s}^{m}\binom{m}{s}\binom{k-1}{s-1}+ \\
& \sum_{s=1}^{m} \sum_{t=1}^{n-m} \sum_{k=s}^{m}\binom{m}{s}\binom{k-1}{s-1}\binom{n-m}{t}\binom{n-k}{t}
\end{aligned}
$$

$$
\begin{aligned}
&=\binom{2 n-m}{n}+\sum_{s=1}^{m} \sum_{k=s}^{m}\binom{m}{s}\binom{k-1}{s-1}+ \\
& \sum_{s=1}^{m} \sum_{k=s}^{m}\binom{m}{s}\binom{k-1}{s-1} \sum_{t=1}^{n-m}\binom{n-m}{t}\binom{n-k}{t} \\
&=\binom{2 n-m}{n}+\sum_{s=1}^{m} \sum_{k=s}^{m}\binom{m}{s}\binom{k-1}{s-1} \sum_{t=0}^{n-m}\binom{n-m}{t}\binom{n-k}{t} \\
&=\binom{2 n-m}{n}+\sum_{s=1}^{m} \sum_{k=s}^{m}\binom{m}{s}\binom{k-1}{s-1}\binom{2 n-m-k}{n-k},
\end{aligned}
$$

as required.
To investigate the cardinality of $\operatorname{Reg}(\overline{O T}(X, Y))$, we prove the following two lemmas.

Lemma 3.2.6. For $\alpha \in \overline{O \bar{T}}(X, Y), \alpha \in \operatorname{Reg}(\overline{O T}(X, Y))$ if and only if $\operatorname{ran} \alpha \cap Y=$ $Y \alpha$.

Proof. Necessity follows immediately from Corollary 3.1.4. To prove sufficiency, suppose that $\operatorname{ran} \alpha \cap Y=Y$. TE $u \in Y$ is an upper bound of $\operatorname{ran} \alpha$, then $1 \alpha \leq$ $2 \alpha \leq \ldots \leq n \alpha \leq u$. Since $1 \alpha \in Y \alpha \subseteq Y$ and $u \in Y$, itfollows from the property of Y that $\{1 \alpha, 2 \alpha, \ldots, n \alpha\} \subseteq Y$, i.e., $\operatorname{ran} \alpha \subseteq Y$, so $\max (\operatorname{ran} \alpha) \in Y$. We see that $\min (\operatorname{ran} \alpha)=1 \alpha \in Y \alpha \subseteq Y$. If $x \in(X \backslash(\operatorname{ran} \alpha \cup \stackrel{\mathrm{ub}}{ }(\operatorname{ran} \alpha) \cup \mathrm{lb}(\operatorname{ran} \alpha))) \cap Y$, then $\{t \in \operatorname{ran} \alpha \mid \phi \in x\} \in\{1,2, \varphi \mid, x\} \in \mathscr{G}, \operatorname{somax}(\{t \in \operatorname{man} \alpha \mid t<x\}) \in Y$. It follows from Corollary 3.1.4 that $\alpha \in \operatorname{Reg}(O T(X, Y))$.
Lemma 3.2.7. Det m kn. $(X \backslash Y) \alpha \subseteq\{\max (Y \alpha), m+1, \ldots, n\}$.

Proof. Assume that $\operatorname{ran} \alpha \cap Y=Y \alpha$. Let $x \in X \backslash Y$. Then $x \alpha \in Y$ or $x \alpha \in X \backslash Y$. If $x \alpha \in X \backslash Y$, then $x \alpha \in\{m+1, \ldots, n\}$. Assume that $x \alpha \in Y$. Then $x \alpha \in \operatorname{ran} \alpha \cap Y$, so $x \alpha=y \alpha$ for some $y \in Y$ by assumption. Since α is order-preserving, we have

$$
\max (Y \alpha)=(\max (Y)) \alpha \leq m \alpha \leq x \alpha=y \alpha \leq(\max (Y)) \alpha=\max (Y \alpha)
$$

which implies that $x \alpha=\max (Y \alpha)$. This shows that $(X \backslash Y) \alpha \subseteq\{\max (Y \alpha)$, $m+1, \ldots, n\}$.

Conversely, assume that $(X \backslash Y) \alpha \subseteq\{\max (Y \alpha), m+1, \ldots, n\}$. Then $(X \backslash Y) \alpha \cap Y \subseteq\{\max (Y \alpha)\} \subseteq Y \alpha$. Using this and the fact that $Y \alpha \subseteq Y$, we obtain that $\operatorname{ran} \alpha \cap Y=(Y \alpha \cap Y) \cup((X \backslash Y) \alpha \cap Y)=Y \alpha$.

Theorem 3.2.8. $|\operatorname{Reg}(\overline{O T}(X, Y))|=\left\lvert\,\binom{ 2 m+1}{m-1}\binom{2(n-m)}{n-m}\right.$.
Proof. If $m=n$, then $\overline{O T}(X, Y)=O \bar{T}(Y)$, so $\operatorname{Reg}(\overline{O T}(X, Y))=O T(Y)$ by Theorem 1.4. Hence the result for $m=n$ is true by using Theorem 1.8. Next, assume that $m<n$. Let $\varnothing \neq Y^{\prime} \subset Y$ be such that $\left|Y^{\prime}\right|=r$ and let $k=\max \left(Y^{\prime}\right)$. It follows from Proposition 1.12 and Proposition 1.13 that

$$
\begin{aligned}
& \left\{\alpha \in \overline{O T}(X, Y) \mid Y \alpha=Y^{\prime} \text { and }(X, Y) \alpha \subseteq\{k, m+1, \ldots, n\}\right\} \\
& =\left\{\alpha_{1} \cup \alpha_{2} \mid \alpha_{1} \in O T(Y), \operatorname{ran} \alpha_{1}, Y^{\prime} \text { and } \alpha_{2} \in O T(X \backslash Y,\{k, m+1, \ldots, n\})\right\},
\end{aligned}
$$

which implies that

$$
\mid\left\{\alpha \in \overline{O T}(X, Y) \rrbracket Y \alpha=Y^{\prime} \text { and }(X>Y) \alpha \subseteq\{k, m £ 1, \ldots, n\}\right\} \mid
$$

$$
=\left|\left\{\alpha \in O T(Y) \mid \operatorname{ran} \alpha=Y^{\prime}\right\}\right||O T(X \backslash Y,\{k, m+1, \ldots, n\})|
$$

$$
\begin{aligned}
& =\binom{m-1}{r-1}\binom{(n-m+1)+(n-m)-1}{0} \text { by Proposition } 1.19 \\
& =\left(\begin{array}{c}
n-m \\
m-1 \\
r-1
\end{array}\right)\left(\begin{array}{c}
n \\
2(n-m) \\
n-m
\end{array}\right)
\end{aligned}
$$

We have from Lemma 3.2.7 and Lemma 3.2.6 that 9 ?

$$
\begin{aligned}
\left\{\alpha \in \overline{O T}(X, Y) \mid Y \alpha=Y^{\prime}\right. \text { and } & (X \backslash Y) \alpha \subseteq\{k, m+1, \ldots, n\}\} \\
& =\left\{\alpha \in \overline{O T}(X, Y) \mid \operatorname{ran} \alpha \cap Y=Y \alpha=Y^{\prime}\right\} \\
& =\left\{\alpha \in \operatorname{Reg}(\overline{O T}(X, Y)) \mid Y \alpha=Y^{\prime}\right\}
\end{aligned}
$$

Hence

$$
\left|\left\{\alpha \in \operatorname{Reg}(\overline{O T}(X, Y)) \mid Y \alpha=Y^{\prime}\right\}\right|=\binom{m-1}{r-1}\binom{2(n-m)}{n-m} .
$$

This implies that for $1 \leq r \leq m$,

$$
\left|\left\{\alpha \in \operatorname{Reg}(\overline{O T}(X, Y))||Y \alpha|=r\} \left\lvert\,=\binom{m}{r}\binom{m-1}{r-1}\binom{2(n-m)}{n-m} .\right.\right.\right.
$$

Consequently,

$$
|\operatorname{Reg}(\overline{O T}(X, Y))|=\sum_{r=1}^{m}\binom{m}{r}\binom{m-1}{r-1}\binom{2(n-m)}{n-m}
$$

by Result 1.26.

Next, to determine the number of regular elements in $\overline{O P}(X, Y)$, the following lemmas are required.

Lemma 3.2.9. Let $m<n$.For $\alpha \in \overline{O P}(X, Y)>\{0\}, \operatorname{ran} \alpha \cap Y=(\operatorname{dom} \alpha \cap Y) \alpha$ if and only if one of the following statements holds.
(i) $\operatorname{dom} \alpha \subseteq X \backslash Y$ and $\operatorname{ran} \alpha \mathbb{C} X \backslash Y$
(ii) $\operatorname{dom} \alpha \subseteq Y$.
(iii) $\operatorname{dom} \alpha \cap Y \neq \varnothing$, dom $\alpha \cap(X \backslash Y) \neq \varnothing$ and $(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq$
$\{\max ((\operatorname{dom} \alpha \Gamma) \alpha), m+1, \ldots, n\}$.
Proof. Assume that $\tan \alpha \cap Y=(\operatorname{dom} \alpha \cap Y) \alpha$. If domanY $=\varnothing$, then $\operatorname{ran} \alpha \cap Y=$ \varnothing which implies that ran $\alpha \subseteq X \backslash Y$, so we get (i) in this case. Suppose that $\operatorname{dom} \alpha \cap Y \neq \varnothing$. If dom $\alpha \subseteq Y$, then (iii) holds Next, assume that dom $\alpha \nsubseteq Y$, i.e., $\operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing$. Let $x \in \operatorname{dom} \alpha \cap(X \backslash Y)$. Then $x \alpha \in Y$ or
 $x \alpha \in \operatorname{ran} \alpha \cap Y=(\operatorname{dom} \alpha \cap Y) \alpha$. Since α is order-preserving,

$$
\begin{aligned}
\max ((\operatorname{dom} \alpha \cap Y) \alpha) & =(\max (\operatorname{dom} \alpha \cap Y)) \alpha \\
& \leq m \alpha \leq x \alpha \leq \max ((\operatorname{dom} \alpha \cap Y) \alpha),
\end{aligned}
$$

and we deduce that $x \alpha=\max ((\operatorname{dom} \alpha \cap Y) \alpha)$. This shows that ($\operatorname{dom} \alpha \cap(X \backslash$ $Y)) \alpha \subseteq\{\max ((\operatorname{dom} \alpha \cap Y) \alpha), m+1, \ldots, n\}$. Hence (iii) holds.

For the converse, if dom $\alpha \subseteq X \backslash Y$ and $\operatorname{ran} \alpha \subseteq X \backslash Y$, then $\operatorname{dom} \alpha \cap Y=$
\varnothing and $\operatorname{ran} \alpha \cap Y=\varnothing$, so $\operatorname{ran} \alpha \cap Y=(\operatorname{dom} \alpha \cap Y) \alpha$. If $\operatorname{dom} \alpha \subseteq Y$, then $\operatorname{dom} \alpha \cap Y=\operatorname{dom} \alpha$, so $\operatorname{ran} \alpha=(\operatorname{dom} \alpha) \alpha=(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y$ which implies that $\operatorname{ran} \alpha \cap Y=\operatorname{ran} \alpha=(\operatorname{dom} \alpha \cap Y) \alpha$. Next, assume that (iii) holds. Then $(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \cap Y \subseteq\{\max ((\operatorname{dom} \alpha \cap Y) \alpha)\} \subseteq(\operatorname{dom} \alpha \cap Y) \alpha$. Also, we have ($\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y$. It follows that

$$
\begin{aligned}
\operatorname{ran} \alpha \cap Y & =((\operatorname{dom} \alpha \cap Y) \alpha \cup(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha) \cap Y \\
& =((\operatorname{dom} \alpha \cap Y) \alpha \cap))((\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \cap Y) \\
& =(\operatorname{dom} \alpha \cap Y) \alpha .
\end{aligned}
$$

The proof is thereby complete.

Lemma 3.2.10. For $1 \leq s \leq m$ and $1 \leq t \leq n-m$,

$$
\begin{aligned}
& \mid\{\alpha \in \overline{O P}(X, Y)| | \operatorname{dom} \alpha \cap Y \mid=\bar{v}) \text { dom } \alpha \cap(X, Y) \mid=t \text { and } \\
& \left(\operatorname{dom} \alpha \cap\left(X _\mathcal{X}\right)+\alpha\{\max ((\operatorname{dom} \alpha \cap Y) \alpha), m+1, \ldots, n\}\right\} \mid \\
& =\binom{m}{s}\binom{n-m}{t}\binom{m+s-1}{s}\binom{n-m+t}{t} \text {. }
\end{aligned}
$$

Proof. Let $\varnothing \neq Y_{1} \subseteq Y$ and $\varnothing \neq Z \subseteq X \backslash Y$ be such that $\left|Y_{1}\right|=s$ and $|Z|=t$.
Let $\varnothing \neq Y_{2} \subseteq Y$ be such that $\left|Y_{2}\right|=r$ where $1 \leq r \leq s$ and let $k=\max \left(Y_{2}\right)$.
Then by Proposition 1.12and Proposition/1.13, we have

$\left\{\alpha \in \overline{O P}(X, Y)\left|\mid \operatorname{dom} \alpha \cap Y=Y_{1}, \operatorname{dom} \alpha \cap(X \backslash Y)=Z,(\operatorname{dom} \alpha \cap Y) \alpha=Y_{2}\right.\right.$ and

$$
\begin{aligned}
& =\left\{\alpha_{1} \cup \alpha_{2} \mid \alpha_{1} \in O T\left(Y_{1}, Y\right), \operatorname{ran} \alpha_{1}=Y_{2} \text { and } \alpha_{2} \in O T(Z,\{k, m+1, \ldots, n\})\right\} \text {. }
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \mid\left\{\alpha \in \overline{O P}(X, Y) \mid \operatorname{dom} \alpha \cap Y=Y_{1}, \operatorname{dom} \alpha \cap(X \backslash Y)=Z,(\operatorname{dom} \alpha \cap Y) \alpha=Y_{2}\right. \text { and } \\
& (\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq\{k, m+1, \ldots, n\}\} \mid \\
& =\left|\left\{\alpha \in O T\left(Y_{1}, Y\right) \mid \operatorname{ran} \alpha=Y_{2}\right\}\right||O T(Z,\{k, m+1, \ldots, n\})|
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{s-1}{r-1}\binom{(n-m+1)+t-1}{t} \\
& =\binom{s-1}{r-1}\binom{n-m+t}{t} .
\end{aligned}
$$

This implies that for $1 \leq r \leq s$,
$\mid\left\{\alpha \in \overline{O P}(X, Y)\left|\operatorname{dom} \alpha \cap Y=Y_{1}, \operatorname{dom} \alpha \cap(X \backslash Y)=Z,|(\operatorname{dom} \alpha \cap Y) \alpha|=r\right.\right.$ and

$$
(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha-\{\max ((\operatorname{dom} \alpha \cap Y) \alpha), m+1, \ldots, n\}\} \mid
$$

$$
=\binom{m}{r}\binom{s-1}{r-1}\binom{n-m+t}{t}
$$

Hence

Theorem 3.2.11.

$$
\begin{aligned}
|\operatorname{Reg}(\overline{O P}(X, Y))|= & \sum_{r=0}^{n-m}\binom{n-m}{r}\binom{n-m+r-1}{r} \\
& +\sum_{s=1}^{m}\binom{m}{s}\binom{m+s-1}{s} \sum_{t=0}^{n-m}\binom{n-m}{t}\binom{n-m+t}{t} .
\end{aligned}
$$

$$
\begin{aligned}
& \mid\left\{\alpha \in \overline{O P}(X, Y) \mid \text { dom } \alpha \cap Y=Y_{1} \text {, doman }(X \backslash Y)=Z\right. \text {, and } \\
& (\operatorname{dom} \alpha \cap(X \vee Y)) \alpha \subset\{\max ((\operatorname{dom} \alpha \cap Y) \alpha), m+1, \ldots, n\}\} \mid \\
& =\sum_{r=1}^{s}\binom{m}{r}\binom{s-1}{r-1}\left(\begin{array}{r}
n-m \\
t
\end{array}\right. \\
& =\binom{m+s-1}{s} \\
& \text { Consequently, for } 1 \leq s \leq m \text { and } 1 \leq t \leq n-m \text {, }
\end{aligned}
$$

Proof. If $m=n$, then $\overline{O P}(X, Y)=O P(Y)$, so $\operatorname{Reg}(\overline{O P}(X, Y))=O P(Y)$ by Theorem 1.5 and then using Theorem 1.9 to obtain the result for $m=n$. Next, assume that $m<n$. It follows from Theorem 3.1.10 and Lemma 3.2.9 that

$$
\begin{align*}
& \operatorname{Reg}(\overline{O P}(X, Y))=\{\alpha \in \overline{O P}(X, Y) \mid \operatorname{ran} \alpha \cap Y=(\operatorname{dom} \alpha \cap Y) \alpha\} \\
& =\{0\} \cup\{\alpha \in \overline{O P}(X, Y) \backslash\{0\} \mid \operatorname{dom} \alpha \subseteq X \backslash Y \text { and } \operatorname{ran} \alpha \subseteq X \backslash Y\} \\
& \cup\{\alpha \in \overline{O P}(X, Y) \backslash\{0\}|\operatorname{dom} \alpha| Y \\
& \{\alpha \in \overline{O P}(X, Y) \mid \operatorname{dom} \alpha \cap Y \neq \varnothing \text {, doman }(X \backslash Y) \neq \varnothing \text { and } \\
& (\operatorname{dom} \alpha \cap(X) \backslash Y)) \alpha \subseteq\{\max ((\operatorname{dom} \alpha \cap Y) \alpha), m+1, \ldots, n\}\} \\
& =O P(X \backslash Y) \cup(O P(Y)<\{0\}) \cup \\
& \{\alpha \in \overline{O P}(X, Y) \mid \text { dom } \alpha \cap Y \neq \varnothing \text {, dom } \alpha \cap(X-Y) \neq \varnothing \text { and } \\
& (\operatorname{dom} \alpha \cap(X \vee Y)) \alpha \subseteq\{\max ((\operatorname{dom} \alpha \cap Y) \alpha), m+1, \ldots, n\}\} . \tag{1}
\end{align*}
$$

By Theorem 1.9, we have
and

$$
\left.\left\lvert\, O P(X \backslash Y) \stackrel{\sum_{r=0}^{n-m}}{\sum_{n}^{n-m} m} \begin{array}{c}
n-m+r-1 \tag{2}\\
r
\end{array}\right.\right)
$$

Also, we have

$\mid\{\alpha \in \overline{O P}(X, Y) \mid \operatorname{dom} \alpha \cap Y \neq \varnothing$, $\operatorname{dom} \alpha \cap(X \backslash Y) \neq \varnothing$ and

$$
\begin{align*}
& =\sum_{s=1}^{m} \sum_{t=1}^{n-m} \mid\{\alpha \in \overline{O P}(X, Y)| | \operatorname{dom} \alpha \cap Y|=s,|\operatorname{dom} \alpha \cap(X \backslash Y)|=t \text { and } \\
& (\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq\{\max ((\operatorname{dom} \alpha \cap Y) \alpha), m+1, \ldots, n\}\} \mid \\
& =\sum_{s=1}^{m} \sum_{t=1}^{n-m}\binom{m}{s}\binom{n-m}{t}\binom{m+s-1}{s}\binom{n-m+t}{t} \quad \text { by Lemma 3.2.10 } \\
& =\sum_{s=1}^{m}\binom{m}{s}\binom{m+s-1}{s} \sum_{t=1}^{n-m}\binom{n-m}{t}\binom{n-m+t}{t} . \tag{4}
\end{align*}
$$

From (1), (2), (3) and (4), we obtain that

$$
\begin{aligned}
|\operatorname{Reg}(\overline{O P}(X, Y))|= & \sum_{r=0}^{n-m}\binom{n-m}{r}\binom{n-m+r-1}{r}+\sum_{s=1}^{m}\binom{m}{s}\binom{m+s-1}{s} \\
& +\sum_{s=1}^{m}\binom{m}{s}\binom{m+s-1}{s} \sum_{t=1}^{n-m}\binom{n-m}{t}\binom{n-m+t}{t} \\
= & \sum_{r=0}^{n-m}\binom{n-m}{r}\binom{n-m+r-1}{r}+ \\
& \sum_{s=1}^{m}\binom{m}{s}\binom{m \neq 1}{s} \sum_{t=0}^{n-m}\binom{n-m}{t}\binom{n-m+t}{t},
\end{aligned}
$$

as desired.

Theorem 3.2.12. $\left\lvert\, \operatorname{Reg}(O I(X, Y)) \overline{=}=\binom{2 m}{m}\binom{2(n-m)}{n-m}\right.$.
Proof. By Theorem 3.1.12, we have

$$
\begin{aligned}
& \operatorname{Reg}(\overline{O I}(X, Y))=\{\alpha \in \overline{O I}(X, Y) \mid(\operatorname{dom} \alpha \cap(X \backslash Y)) \alpha \subseteq X \backslash Y\} \\
&=\{\alpha \in O \overline{O H}(X) /(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y \text { and } \\
&(\text { dom } \alpha \cap(X \backslash Y)) \alpha \subseteq X \backslash Y\} .
\end{aligned}
$$

Proposition 1.12 and Proposition 1.13 imply that

$$
\operatorname{Reg}(\overline{O I}(X, Y))=\left\{\alpha_{1} \cup \alpha_{2} \mid \alpha_{1} \in O I(Y) \text { and } \alpha_{2} \in O I(X \backslash Y)\right\} .
$$

Hence

$$
\begin{aligned}
|\operatorname{Reg}(\overline{O I}(X, Y))| & =|O I(Y)||O I(X \backslash Y)| \\
& =\binom{2 m}{m}\binom{2(n-m)}{n-m} \quad \text { by Theorem 1.10. }
\end{aligned}
$$

CHAPTER IV

REGULAR ELEMENTS OF GENERALIZED ORDER-PRESERVING TRANSFORMATION SEMIGROUPS

In the last chapter, the regular elements of the generalized order-preserving transformation semigroups $(O T(X, Y), \theta)$ where $\theta \in O T(Y, X),(O P(X, Y), \theta)$ where $\theta \in O P(Y, X)$ and $(O I(X, Y), \theta)$ where $\theta \in O I(Y, X)$ are characterized when X and Y are chains. In addition, we provide the proofs of Theorem 1.16, Theorem 1.17 and Theorem 1.18 by using these characterizations.

Throughout this chapter, let Xand Y be any chains.
Before we determine the regutar elements of $(O T(X, Y), \theta),(O P(X, Y), \theta)$ and $(O I(X, Y), \theta)$, it is convenient to have the following preliminary result.

Lemma 4.1. Let A and B be nonempty sets. If $a, \beta \in P(A, B)$ and $\gamma \in P(B, A)$ are such that $\alpha=\alpha \gamma \beta \gamma \alpha$, then the following conditions hold.
(i) $\operatorname{ran} \alpha=\operatorname{ran}(\gamma \alpha)$.

(iii) γ is 1-1 o

Proof. Since ran $Q=\operatorname{ran}(\alpha \partial \beta \gamma \alpha) \frac{g}{\operatorname{c}} \operatorname{ran}(\gamma \alpha) \not \subset \operatorname{ran} \alpha$, we obtain (i). Also, we
have

$$
\begin{aligned}
\operatorname{ran} \alpha=(\operatorname{dom} \alpha) \alpha & =(\operatorname{dom}(\alpha \gamma \beta \gamma \alpha)) \alpha \\
& \subseteq(\operatorname{dom}(\alpha \gamma)) \alpha \\
& =\left((\operatorname{ran} \alpha \cap \operatorname{dom} \gamma) \alpha^{-1}\right) \alpha \\
& =\operatorname{ran} \alpha \cap \operatorname{dom} \gamma \subseteq \operatorname{dom} \gamma
\end{aligned}
$$

This verifies (ii). Since $\alpha=\alpha \gamma \beta \gamma \alpha$, it follows that $z=z \gamma \beta \gamma \alpha$ for all $z \in \operatorname{ran} \alpha$,
or in an other word, $\gamma \beta \gamma \alpha$ is the identity on $\operatorname{ran} \alpha$. If $y_{1}, y_{2} \in \operatorname{ran} \alpha$ are such that $y_{1} \gamma=y_{2} \gamma$, then $y_{1}=y_{1} \gamma \beta \gamma \alpha=y_{2} \gamma \beta \gamma \alpha=y_{2}$, so (iii) follows.

First, we characterize the regular elements of $(O T(X, Y), \theta)$ where $\theta \in O T(Y, X)$.
Theorem 4.2. For $\theta \in O T(Y, X)$ and $\alpha \in O T(X, Y), \alpha \in \operatorname{Reg}((O T(X, Y), \theta))$ if and only if the following conditions hold.
(i) $\alpha \theta \in \operatorname{Reg}(O T(X))$.
(ii) $\operatorname{ran} \alpha=\operatorname{ran}(\theta \alpha)$.
(iii) θ is 1-1 on $\operatorname{ran} \alpha$

Proof. Assume that $\alpha \in \operatorname{Reg}((O T(X, Y), \theta))$. Then there exists $\beta \in O T(X, Y)$ such that $\alpha=\alpha \theta \beta \theta \alpha$. Thus $\alpha \theta, \beta \theta \in O T(X)$ and $\alpha \theta=(\alpha \theta)(\beta \theta)(\alpha \theta)$. This verifies (i) and, of course, (ii) and (iii) follow immediately from Lemma 4.1.

For the converse, assume that (i): (ii) and (iii) hold. Let $\beta \in O T(X)$ be such that $\alpha \theta=(\alpha \theta) \beta(\alpha \theta)$. Then $\alpha\left(\theta_{\operatorname{ran} \alpha}\right)=\alpha \theta \beta \alpha\left(\theta_{\operatorname{lan} \alpha}\right)$. Since $\theta_{\operatorname{lran} \alpha}$ is $1-1$, it follows that $\alpha=\alpha \theta \beta \alpha$. Then $\operatorname{ran} \alpha=\operatorname{ran}(\alpha \theta \beta \alpha) \subseteq \operatorname{ran}(\beta \alpha) \subseteq \operatorname{ran} \alpha$, so $\operatorname{ran} \alpha=\operatorname{ran}(\beta \alpha)$. Hence $\operatorname{ran}(\beta \alpha)=\operatorname{ran} \alpha=\operatorname{ran}(\theta \alpha)$. For each $y \in \operatorname{ran}(\beta \alpha)=\operatorname{ran}(\theta \alpha)$, choose an element $d_{y} \in y(\theta \alpha)^{-1}$. Then $d_{y} \in Y$ and $d_{y}(\theta \alpha)=y$ for all $y \in \operatorname{ran}(\beta \alpha)$. Note that $X=\bigcup_{y \in \operatorname{ran}(\beta \alpha)} y(\underline{\beta} \alpha)^{-1}$. Define $\beta^{\prime}: X \rightarrow Y$ by a bracket notation as follows:

If $x \in X$, then $x \alpha \in \operatorname{ran} \alpha=\operatorname{ran}(\beta \alpha)$ and $x \alpha=x \alpha \theta \beta \alpha=(x \alpha \theta) \beta \alpha$, so $x \alpha \theta \in(x \alpha)(\beta \alpha)^{-1}$ which implies that $x \alpha \theta \beta^{\prime} \theta \hat{\sigma} \bar{\sigma}(x \alpha \theta) \beta^{\prime} \theta \alpha_{0}=d_{x \alpha}(\theta \alpha)=x \alpha$. Hence $\alpha=\alpha \theta \beta^{\prime} \theta \alpha$. To show that β^{\prime} is order-preserving, let $x_{1}, x_{2} \in X$ be such that $x_{1}<x_{2}$. Then $x_{1} \beta \alpha \leq x_{2} \beta \alpha$. If $x_{1} \beta \alpha=x_{2} \beta \alpha$, then $x_{1}, x_{2} \in\left(x_{1} \beta \alpha\right)(\beta \alpha)^{-1}$, so $x_{1} \beta^{\prime}=d_{x_{1} \beta \alpha}=x_{2} \beta^{\prime}$. Assume that $x_{1} \beta \alpha<x_{2} \beta \alpha$. Since $\operatorname{ran}(\beta \alpha)=\operatorname{ran}(\theta \alpha)$, we get $x_{1} \beta \alpha, x_{2} \beta \alpha \in \operatorname{ran}(\theta \alpha)$. Since $\theta \alpha \in O T(Y)$, it follows from Proposition 1.11 that $\left(x_{1} \beta \alpha\right)(\theta \alpha)^{-1}<\left(x_{2} \beta \alpha\right)(\theta \alpha)^{-1}$. It follows that $d_{x_{1} \beta \alpha}<d_{x_{2} \beta \alpha}$. Since $\left(\left(x_{1} \beta \alpha\right)(\beta \alpha)^{-1}\right) \beta^{\prime}=\left\{d_{x_{1} \beta \alpha}\right\}$ and $\left(\left(x_{2} \beta \alpha\right)(\beta \alpha)^{-1}\right) \beta^{\prime}=\left\{d_{x_{2} \beta \alpha}\right\}$, we have that $x_{1} \beta^{\prime}=d_{x_{1} \beta \alpha}<d_{x_{2} \beta \alpha}=x_{2} \beta^{\prime}$.

The proof is thereby complete.

We now use the above theorem to prove Theorem 1.16. To do this, the following series of lemmas is needed.

Lemma 4.3. Let $|X|>1$. If the semigroup $(O T(X, Y), \theta)$ is regular, then θ is 1-1.

Proof. We will prove the lemma by contrapositive. Assume that θ is not 1-1. Then there are $c, d \in Y$ such that $c<d$ and $c \theta=d \theta$. Since $|X|>1$, there exist $a, b \in X$ such that $a<b$. Define $\alpha: X-X$ by

Then $\alpha \in O T(X, Y)$ and ran $\mathcal{F}\{c, d\}$. Since $c, d \in \operatorname{ran} \alpha$ are such that $c \theta=d \theta$ and $c<d$, it follows that θ is not $1-1$ on ran α. We conclude from Theorem 4.2 that α is not a regular element of $(O T(X, Y), \theta)$, and hence $(O T(X, Y), \theta)$ is not a regular semigroup.

Lemma 4.4. Let $|Y| \geq 2$. If there is an element $a \in X$ such that $a>\operatorname{ran} \theta$ or $a<\operatorname{ran} \theta$, then $(O T(X, Y), \theta)$ is not a regular semigroup.

Proof. Let $e, f \in Y$ be such that $e<f$. Let $\alpha: X \rightarrow f$ be defined by

$$
\alpha=\left(\begin{array}{ll}
u & v \\
e & f
\end{array}\right)_{\substack{u<a \\
v \geq d}} \text { if } a>\operatorname{ran} \theta \text { and } \alpha=\left(\begin{array}{ll}
u & v \\
e & f
\end{array}\right)_{\substack{u \leq a \\
v>a}} \text { if } a<\operatorname{ran} \theta \text {. }
$$

Then $\alpha \in O T(x, Y), \operatorname{ran} \alpha=\{e, f\}, \operatorname{ran}(\theta \alpha)=\{e\}$ for $a>\operatorname{ran} \theta$ and $\operatorname{ran}(\theta \alpha)=$

Lemma 4.5. If $\operatorname{ran} \theta \subsetneq X$ and $|Y| \geq 3$, then the semigroup $(O T(X, Y), \theta)$ is not regular.

Proof. Let $e, f, g \in Y$ be such that $e<f<g$ and let $a \in X \backslash \operatorname{ran} \theta$. If $a>\operatorname{ran} \theta$ or $a<\operatorname{ran} \theta$, then Lemma 4.4 implies that $(O T(X, Y), \theta)$ is not regular. Assume that $a \ngtr \operatorname{ran} \theta$ and $a \nless \operatorname{ran} \theta$. Then $\{t \in \operatorname{ran} \theta \mid t<a\}$ and $\{t \in \operatorname{ran} \theta \mid t>a\}$ are nonempty sets. Define $\alpha: X \rightarrow Y$ by

$$
\alpha=\left(\begin{array}{lll}
u & a & v \\
e & f & g
\end{array}\right)_{\substack{u<a \\
v>a}}
$$

Then $\alpha \in O T(X, Y)$ and $\operatorname{ran} \alpha=\{e, f, g\} \neq\{e, g\}=\operatorname{ran}(\theta \alpha)$. It follows immediately from Theorem 4.2 that α is not a regular element of $(O T(X, Y), \theta)$. This implies that $(O T(X, Y), \theta)$ is not a regular semigroup.

Lemma 4.6. Let $|Y|=2$. Then $(O T(X, Y), \theta)$ is a regular semigroup if and only if $\min (X)$ and $\max (X)$ exist, and $\operatorname{ran} \theta=\{\min (X), \max (X)\}$.

Proof. Let $Y=\{e, f\}$ be such that $e<f$. Assume that $(O T(X, Y), \theta)$ is regular. If $|X|=1$, then $\min (X)=\max (X)$ and $\operatorname{ran} \theta=\{\min (X)\}$. Suppose that $|X|>1$. We deduce from Lemma 4.3 that θ is 1-1. Then $e \theta<f \theta$ and $\operatorname{ran} \theta=\{e \theta, f \theta\}$. Also by Lemma 4.4, for every $a \in X, a \ngtr \operatorname{ran} \theta$ and $a \nless \operatorname{ran} \theta$. Thus $e \theta \leq a \leq f \theta$ for all $a \in X$. This implies that $e \theta=\min (X)$ and $f \theta=\max (X)$.

Conversely, assume that $\min (X)$ and $\max (X)$ exist, and $\operatorname{ran} \theta=\{\min (X)$, $\max (X)\}$. To show that $(O T(X),, \theta)$ is regular, let $\alpha \in O T(X, Y)$. Then either $|\operatorname{ran} \alpha|=1$ or $|\operatorname{ran} \alpha|=2$ because $\mid Y_{1}=2$. If $|\operatorname{ran} \alpha|=1$, then $\alpha \theta \alpha=\alpha$ because $\operatorname{ran}(\alpha \theta \alpha) \subseteq \operatorname{ran} \alpha$, So it is regular. Next, assume that/ $\operatorname{ran} \alpha \mid=2$. Then $\operatorname{ran} \alpha=$ $\{e, f\}$, so $X=e a-1 \cup f \alpha^{-1}$. Since $e<f$ and α is order-preserving, we have $\min (X) \in e \alpha^{-1}$ and $\max (X) \in f \alpha^{-1}$. Then $\min (X) \alpha=e$ and $\max (X) \alpha=f$. Therefore we get $\operatorname{ran}(\theta \alpha)=(\operatorname{ran} \theta) \alpha=\{\min (X), \max (X)\} \alpha=\{e, f\}=\operatorname{ran} \alpha$. We now haveqdon $\theta=$ aran $\theta=\{2$ and it immediately follows that θ is $1-1$. Since $\operatorname{ran}(\alpha \theta)$ is finite, by Corollary 1.7, $\alpha \theta \in \operatorname{Reg}(O T(X))$ By Theorem 4.2,

Lemma 4.7. If $(O T(X, Y), \theta)$ is a regular semigroup and θ is an orderisomorphism from Y onto X, then $O T(X)$ is a regular semigroup.

Proof. Assume that $(O T(X, Y), \theta)$ is a regular semigroup and θ is an orderisomorphism from Y onto X. Then θ^{-1} is an order-isomorphism from X onto Y. To show that $O T(X)$ is regular, let $\alpha \in O T(X)$. Then $\alpha \theta^{-1} \in O T(X, Y)$. Since $(O T(X, Y), \theta)$ is regular, we have $\alpha \theta^{-1}=\alpha \theta^{-1} \theta \beta \theta \alpha \theta^{-1}$ for some $\beta \in O T(X, Y)$.

Thus $\beta \theta \in O T(X)$ and

$$
\alpha=\alpha 1_{X}=\alpha \theta^{-1} \theta=\alpha \theta^{-1} \theta \beta \theta \alpha \theta^{-1} \theta=\alpha 1_{X} \beta \theta \alpha 1_{X}=\alpha \beta \theta \alpha .
$$

This implies that $\alpha \in \operatorname{Reg}(O T(X))$. Hence $O T(X)$ is a regular semigroup.

Theorem 4.8. The semigroup $(O T(X, Y), \theta)$ is regular if and only if one of the following statements holds.
(i) The semigroup $O T(X)$ is regular and θ is an order-isomorphism from Y onto X.
(ii) $|X|=1$.
(iii) $|Y|=1$.
(iv) $|Y|=2, \min (X)$ and $\max (X)$ exist, and $\operatorname{ran} \theta=\{\min (X), \max (X)\}$.

Proof. To prove necessity, assume that the semigroup $(O T(X, Y), \theta)$ is regular and suppose that (i), (ii) and (iii) are false. Then $|X|>1$ and $|Y|>1$ and (θ is not an order-isomorphism from Y^{-}into X or $O T(X)$ is not regular).

Case 1: $|X|>1,|Y|>1$ and θ is not an isomorphism from Y onto X. Since $(O T(X, Y), \theta)$ is regular, it follows from Lemma 4.3 thaf θ is 1-1. Then $\operatorname{ran} \theta \subsetneq X$. We therefore deduce from Lemma 4.5 that $|Y| \leq 2$, and thus $|Y|=2$. Thus (iv) holds by Lemma 4.6.

Case 2: $|X|>1,|Y|^{\circ} \gg 1$ and $O T(X)$ is not regular. Since $(O T(X, Y), \theta)$ is regular and $Q T(X)$ is not regular, it follows from Lemma 4.7 that θ is not an order-isomorphism from Y onto X. As in the proof of Case 1 , we have (iv) is "ma จุหาลงกรณมหาวทยาลย

To prove sufficiency, we first assume that (i) is true. Let $\alpha \in O T(X, Y)$. Then $\alpha \theta \in O T(X)$, so $\alpha \theta \in \operatorname{Reg}(O T(X))$ because $O T(X)$ is regular. Since θ is an isomorphism from Y onto X, it follows that θ is $1-1$ and $\operatorname{ran} \theta=X$. Then $\operatorname{ran}(\theta \alpha)=(\operatorname{ran} \theta) \alpha=X \alpha=\operatorname{ran} \alpha$. Since θ is $1-1$ and $\operatorname{ran} \alpha \subseteq Y$, we have that θ is $1-1$ on ran α. In view of Theorem 4.2, α is a regular element of $(O T(X, Y), \theta)$. Hence $(O T(X, Y), \theta)$ is a regular semigroup. Next, if $|X|=1$, then for $\alpha \in O T(X, Y),|\operatorname{ran} \alpha|=1$, so $\alpha=\alpha \theta \alpha$ because $\operatorname{ran}(\alpha \theta \alpha) \subseteq \operatorname{ran} \alpha$ and
it follows that $\alpha \in \operatorname{Reg}(O T(X, Y), \theta)$. This shows that $(O T(X, Y), \theta)$ is a regular semigroup if $|X|=1$. It is clear that $(O T(X, Y), \theta)$ is regular if $|Y|=1$ since $|O T(X, Y)|=1$. Finally, if (iv) is true, then Lemma 4.6 shows that $(O T(X, Y), \theta)$ is a regular semigroup.

Hence the theorem is completely proved.

Next, necessary and sufficient conditions for the elements of the semigroups $(O P(X, Y), \theta)$ where $\theta \in O P(Y, X)$ and $O I(X, Y), \theta)$ where $\theta \in O I(Y, X)$ to be regular are provided.

Theorem 4.9. For $\theta \in O P(Y, X)$ and $\alpha \in O P(X, Y), \alpha \in \operatorname{Reg}((O P(X, Y), \theta))$ if and only if the following conditions hold.
(i) $\operatorname{ran} \alpha=\operatorname{ran}(\theta \alpha)$
(ii) $\operatorname{ran} \alpha \subseteq \operatorname{dom} \theta$.
(iii) θ is $1-1$ on $\operatorname{ran} \alpha$.

Proof. It is immediate from Lemmat that if $\alpha \in \operatorname{Reg}((O P(X, Y), \theta))$, then (i), (ii) and (iii) hold.

Now suppose, conversely, that (i), (ii) and (iii) hold. Then $\operatorname{ran}(\alpha \theta)=(\operatorname{ran} \alpha \cap$ $\operatorname{dom} \theta) \theta=(\operatorname{ran} \alpha) \theta$. Since ran $\alpha=\operatorname{ran}(\theta \alpha)$, we get $y(\theta \alpha)^{-1} \neq \varnothing$ for every $y \in$ $\operatorname{ran} \alpha$. For each $y \in \operatorname{ran} \alpha$, choose an element $d_{y} \in y(\theta \alpha)^{-1}$. Then $d_{y} \in Y$ and $d_{y}(\theta \alpha)=y$ for all $\left.y \epsilon_{0}^{\text {rana. Define }} \beta \cdot \underset{\beta=}{\operatorname{ran}(\alpha \theta)(}=(\sin \alpha) \theta\right) \rightarrow Y$ by

The mapping β is well-defined by (iii). To show that β is order-preserving, let $y_{1}, y_{2} \in \operatorname{ran} \alpha$ be such that $y_{1} \theta<y_{2} \theta$. Since θ is order-preserving, it follows from (iii) that $y_{1}<y_{2}$. Since $\theta \alpha \in O P(Y)$ and $y_{1}, y_{2} \in \operatorname{ran} \alpha=\operatorname{ran}(\theta \alpha)$, by Proposition 1.11, $y_{1}(\theta \alpha)^{-1}<y_{2}(\theta \alpha)^{-1}$. But $d_{y_{1}} \in y_{1}(\theta \alpha)^{-1}$ and $d_{y_{2}} \in y_{2}(\theta \alpha)^{-1}$, so $d_{y_{1}}<d_{y_{2}}$. Then $\left(y_{1} \theta\right) \beta=d_{y_{1}}<d_{y_{2}}=\left(y_{2} \theta\right) \beta$. Hence $\beta \in O P(X, Y)$. It remains to show that $\alpha=\alpha \theta \beta \theta \alpha$. Since for $x \in \operatorname{dom} \alpha, x \alpha \theta \in \operatorname{dom} \beta$ and $x \alpha \theta \beta=d_{x \alpha} \in \operatorname{dom}(\theta \alpha)$, this implies that $\operatorname{dom}(\alpha \theta \beta \theta \alpha)=\operatorname{dom} \alpha$. If $x \in \operatorname{dom} \alpha$, then $x \alpha \theta \beta \theta \alpha=(x \alpha \theta) \beta \theta \alpha=$
$d_{x \alpha}(\theta \alpha)=x \alpha$. Hence $\alpha=\alpha \theta \beta \theta \alpha$. This shows that α is regular in $(O P(X, Y), \theta)$ and the verification is complete.

Theorem 4.10. For $\theta \in O I(Y, X)$ and $\alpha \in O I(X, Y), \alpha \in \operatorname{Reg}((O I(X, Y), \theta))$ if and only if the following conditions hold.
(i) $\operatorname{dom} \alpha \subseteq \operatorname{ran} \theta$.
(ii) $\operatorname{ran} \alpha \subseteq \operatorname{dom} \theta$.

Proof. Assume that α is a regular element of $(O I(X, Y), \theta)$. Then there is $\beta \in$ $O I(X, Y)$ such that $\alpha=\alpha \theta \beta \theta \alpha$. It follows from Lemma 4.1 that $\operatorname{ran} \alpha=\operatorname{ran}(\theta \alpha)$ and $\operatorname{ran} \alpha \subseteq \operatorname{dom} \theta$. Then $(\operatorname{dom} \alpha) \alpha=\operatorname{ran} \alpha=\operatorname{ran}(\theta \alpha)=(\operatorname{ran} \theta \cap \operatorname{dom} \alpha) \alpha$, so $\operatorname{dom} \alpha=\operatorname{ran} \theta \cap \operatorname{dom} \alpha$ because α is $1-1$. Hence $\operatorname{dom} \alpha \subseteq \operatorname{ran} \theta$.

Conversely, assume that (i) and (ii) hold. Then $\operatorname{ran}(\theta \alpha)=(\operatorname{ran} \theta \cap \operatorname{dom} \alpha) \alpha=$ $(\operatorname{dom} \alpha) \alpha=\operatorname{ran} \alpha$ and $\operatorname{dom}(\alpha \theta)=(\tan \alpha \cap \operatorname{dom} \theta) \alpha^{-1}=(\operatorname{ran} \alpha) \alpha^{-1}=\operatorname{dom} \alpha$. Define $\beta=(\alpha \theta)^{-1} \alpha(\theta \alpha)^{-1}$. It is evident that $\beta \in O I(X, Y)$. We also have that $\alpha \theta \beta \theta \alpha=\alpha \theta(\alpha \theta)^{-1} \alpha(\theta \alpha)-1 \theta \alpha=1 \operatorname{dom}(\alpha \theta) \alpha 1_{\operatorname{ran}(\theta \alpha)}=1_{\operatorname{dom} \alpha} \alpha 1_{\operatorname{ran} \alpha}=\alpha$, so $\alpha \in \operatorname{Reg}((O I(X, Y), \theta))$, as désired.

As in the proof of Theorem 4.10, we can see that, Theorem 4.10(i) implies Theorem 4.9(i) and the converse holds if α is $1-1$.

Finally, we shall apply Theorem 4.9 and Theorem 4.10 to prove Theorem 1.17 and Theorem 1.18, respeetively. The following lemma is required.

Lemma 4.11. Let $O S(X, Y)$ be $O P(X, Y)$ or $O I(X, Y)$ and $\theta \in O S(Y, X)$. If

Proof. We prove the lemma by contrapositive. Assume that $\operatorname{dom} \theta \neq Y$ or $\operatorname{ran} \theta \neq X$.

Case 1: $\operatorname{dom} \theta \neq Y$. Let $y \in Y \backslash \operatorname{dom} \theta$ and $x \in X$. Then $\binom{x}{y} \in O I(X, Y) \subseteq$ $O P(X, Y)$. But $\left.\operatorname{ran}\binom{x}{y}\right)=\{y\} \nsubseteq \operatorname{dom} \theta$, so by Theorem 4.9 and Theorem 4.10, we have $\binom{x}{y}$ is not a regular element of $(O S(X, Y), \theta)$.

Case 2: $\operatorname{ran} \theta \neq X$. Let $x \in X \backslash \operatorname{ran} \theta$ and $y \in Y$. Then $\binom{x}{y} \in O I(X, Y) \subseteq$ $O P(X, Y)$. But $\theta\binom{x}{y}=0, \operatorname{ran}\left(\binom{x}{y}\right)=\{y\}$ and $\operatorname{dom}\left(\binom{x}{y}\right)=\{x\} \nsubseteq \operatorname{ran} \theta$, so by

Theorem 4.9 and Theorem 4.10, $\binom{x}{y} \notin \operatorname{Reg}((O S(X, Y), \theta))$.
Hence $(O S(X, Y), \theta)$ is not a regular semigroup, and hence the lemma is proved.

Theorem 4.12. For $\theta \in O P(X, Y)$, the semigroup $(O P(X, Y), \theta)$ is regular if and only if
(i) θ is an order-isomorphism from Y onto X or
(ii) $\operatorname{dom} \theta=Y, \operatorname{ran} \theta=X$ and $|X|=1$

Proof. To prove necessity, assume that $(O P(X, Y), \theta)$ is a regular semigroup. We have by Lemma 4.11 that dom $\theta=Y$ and $\operatorname{ran} \theta=X$. If $|X|=1$, then (ii) holds. Assume that $|X|>1$. We will show that θ is an order-isomorphism from Y on to X. It remains to show that θ is 1-1. Suppose on the contrary that θ is not 1-1. Then there exist $a \in X, e, f \in Y$ such that $e<f$ and $e \theta=f \theta=a$. Since $|X|>1$, there is $b \in X \backslash\{a\}$. Since X is a chain, we get $b<a$ or $a<b$. Define $\alpha:\{a, b\} \rightarrow Y$ by

$$
\alpha=\left(\begin{array}{ll}
b & a \\
e & f
\end{array}\right) \text { if } b<a \text { and } a=\left(\begin{array}{ll}
a & b \\
e & f
\end{array}\right) \text { if } a<b .
$$

Then $\alpha \in O P(X, Y)$ Since $e, f \in \operatorname{ran} \alpha, e \theta=f \theta$ and $e<f$, it follows that θ is not 1-1 on ran θ. In view of Theorem 4.9, α is not a regular element of $(O P(X, Y), \theta)$, which is eontrary to the hypothesis. Hence we deduce that θ is

To proye sufficiency, assume that (i) or (ii) holds. 8 ? 28

Case 1: θ is an order-isomorphism from Y onto X. Then $\operatorname{dom} \theta=Y, \operatorname{ran} \theta=X$ and θ is 1-1. Let $\alpha \in O P(X, Y)$. Then $\operatorname{ran} \alpha \subseteq Y=\operatorname{dom} \theta$ and $\operatorname{ran}(\theta \alpha)=(\operatorname{ran} \theta \cap$ $\operatorname{dom} \alpha) \alpha=(X \cap \operatorname{dom} \alpha) \alpha=(\operatorname{dom} \alpha) \alpha=\operatorname{ran} \alpha$. It follows from Theorem 4.9 that α is regular in $(O P(X, Y), \theta)$. Hence $(O P(X, Y), \theta)$ is a regular semigroup.

Case 2: $\operatorname{dom} \theta=Y, \operatorname{ran} \theta=X$ and $|X|=1$. Let $\alpha \in O P(X, Y) \backslash\{0\}$. Then $|\operatorname{ran} \alpha|=1$, so θ is $1-1$ on $\operatorname{ran} \alpha$. Since $\operatorname{dom} \theta=Y, \operatorname{ran} \theta=X$ and $|X|=1$, it follows that $\operatorname{ran} \alpha \subseteq \operatorname{dom} \theta$ and $\operatorname{ran} \alpha=\operatorname{ran}(\theta \alpha)$. Hence by Theorem 4.9, α is
regular in $(O P(X, Y), \theta)$. This shows that $(O P(X, Y), \theta)$ is a regular semigroup.

Theorem 4.13. For $\theta \in O I(Y, X)$, the semigroup $(O I(X, Y), \theta)$ is regular if and only if θ is an order-isomorphism from Y onto X.

Proof. Assume that $(O I(X, Y), \theta)$ is a regular semigroup. By Lemma 4.11, $\operatorname{dom} \theta=$ Y and $\operatorname{ran} \theta=X$. Since $\theta \in O I(Y, X)$, it follows that θ is order-preserving and θ is 1-1. Therefore we deduce that θ is an order-isomorphism from Y onto X.

Conversely, assume that θ is an order-isomorphism from Y onto X. Then $\operatorname{dom} \theta=Y$ and $\operatorname{ran} \theta=X$. If $q \in O I(X, Y)$, then $\operatorname{dom} \alpha \subseteq X=\operatorname{ran} \theta$ and $\operatorname{ran} \alpha \subseteq Y=\operatorname{dom} \theta$, so by Theorem-4.10, α is regular in $(O I(X, Y), \theta)$. Hence $(O I(X, Y), \theta)$ is a regular semigroup, as required.

REFERENCES

[1] Bogart, K.P. Introductory Combinatorics. San Diego: Harcourt Academic Press, 2000.
[2] Chanmuang, P., and Chinram, R. Some remarks on regularity of generalized transformation semigroups. Int. J. Algebra 2 (12)(2008): 581-584.
[3] Chinram, R. Regularity and Green's relations of generalized partial transformation semigroups. Asian-Eur. J. Math. 1 (3)(2008): 295-302.
[4] Chinram, R. Regularity and Green's relations of generalized one-to-one partial transformation semigroups. Far East J. Math. Sci. 30 (3) (2008): 513-521.
[5] Fernandes, V.H. Semigroups of order preserving mappings on a finite chians: A new class of divisor. Semigroup Forum 54 (1997): 230-236.
[6] Garba, G.U. Nilpotents in semigroups of partial one-to-one order-preserving mappings. Semigroup Forum 48 (1994): 37-49.
[7] Gomes, G.M.S., and Howie, J.M. On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 45 (1992): 272-282.
[8] Higgins, P. M Techniques of semigroup theory. New York: Oxford Oniversity Rress, 1992 I ∂ semigroup theory. New
[9] Higgins, P. M. Combinatorial results for semigroups of order-preserving ov 9 mappings, Math Praed Camb Pril. Soc. 113 (1993): 281-296.
[10] Howie, J. M. Product of idempotents in certain semigroups of transformations. Proc. Edinburgh Math Soc. 17 (2)(1971): 223-236.
[11] Howie, J. M. Fundamentals of semigroup theory. Oxford: Clarendon Press, 1995.
[12] Jaidee, S. Order-preserving generalized transformation semigroups.
Master's Thesis, Department of Mathematics Faculty of Science Chulalongkorn University, 2003.
[13] Kemprasit, Y. Order - preserving transformation semigroups whose bi-ideals and quasi-ideals coincide. Ital. J. Pure Appl. Math. 22 (2007): 261-272.
[14] Kemprasit, Y., and Changphas, T. Regular order-preserving transformation semigroups. Bull. Austral. Math. Soc. 62 (2000): 511-524.
[15] Kemprasit, Y., and Jaidee, S. Regularity and isomorphism theorems of generalized order-preserving transformation semigroups. Vietnam J. Math. 33 (2005): 253-260
[16] Kim, V. I., and Kozhukhov, I.B. Regularity conditions for semigroups of isotone transformations of countable chains, J. Math. Sci. 152 (2008): 203-208.
[17] Laradji, A., and Unar, A. Combinatorial results for semigroups of orderpreserving partial transformations. J. Algebra 278 (2004): 342-359.
[18] Laradji, A., and Umar, A. Combinatorial results for semigroups of orderpreserving full transformations, Semigroup Forum 72 (2006): 51-62.
[19] Magill, K.D J. Subsemigroups of S(X). Math. Japonicae 11 (1966): 109-115.
[20] Magill, K.D., Jr., and Subbiah S. Green's relations for regular elements of (o) sanwich semigroups, G General results. Proc. London Math. Soc.
[21] Merris, R Combinatorics Ney dersey Fohn Wiley \&Sons, 2004.
[22] Mora, W. Regular elements of order-preserving transformation semigroups. Master's Thesis, Department of Mathematics Faculty of Science Chulalongkorn University, 2006.
[23] Mora W., and Kemprasit, Y. Regularity of full order-preserving transformation semigroups on some dictionary posets. Thai J. Math. Spec. Issue (Annual Meeting in Mathematics, 2006): 19-23.
[24] Mora W., and Kemprasit, Y. Regular transformation semigroups on some dictionary chains. Thai J. Math. Spec. Issue (Annual Meeting in Mathematics, 2007): 87-93.
[25] Nenthein, S., Youngkhong, P., and Kemprasit, Y. Regular elements of some transformation semigroups. PU.M.A. 16 (3)(2005): 307-314.
[26] Rungrattrakoon, P., and Kemprasit, Y. Regularity of full order-preserving transformation semigroups on intervals in subfields of \mathbb{R}. EastWest J. Math. Spec. Vol. for ICDMA 2003-2004: 107-110.
[27] Rungrattrakoon, P., and Kemprasit, Y. Regularity of certain semigroups of order-preserving transformations. Thai J. Math. Spec. Issue (Annual Meetings in Mathematics, 2004): 1-7.
[28] Sullivan, R. P. Generalised partial transformation semigroups. J. Austral. Math. Soc. 19 (Series.A) (1975): 470-473.
[29] Symons, J. S. V. Some results concerning a transformation semigroup. J. Austral. Math. Soer 19 (Series A) (1975): 413-425.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

VITA

