สารที่มีฤทธิ์เป็นพิษต่อเซลล์จากเอื้องคำกิ่วและเอื้องแปรงสีพัน

นายธนาวุฒิ เพชรมีค่า

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2554

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR) are the thesis authors' files submitted through the Graduate School.

CYTOTOXIC CONSTITUENTS FROM *DENDROBIUM CAPILLIPES* AND *DENDROBIUM SECUNDUM*

Mr. Thanawuth Phechrmeekha

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy Program in Pharmacognosy Department of Pharmacognosy and Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2011 Copyright of Chulalongkorn University

Thesis Title	CYTOTOXIC CONSTITUENTS FROM DENDROBIUM
	CAPILLIPES AND DENDROBIUM SECUNDUM
Ву	Mr. Thanawuth Phechrmeekha
Field of Study	Pharmacognosy
Thesis Advisor	Professor Kittisak Likhitwitayawuid, Ph.D.
Thesis Co-advisor	Associate Professor Boonchoo Sritularak, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

.....Dean of Faculty of Pharmaceutical Sciences

(Associate Professor Pintip Pongpech, Ph.D.)

THESIS COMMITTEE

(Professor Kittisak Likhitwitayawuid, Ph.D.)

(Associate Professor Boonchoo Sritularak, Ph.D.)

...... Examiner (Associate Professor Suchada Sukrong, Ph.D.)

..... Examiner

(Associate Professor Rutt Suttisri, Ph.D.)

...... External Examiner (Chaisak Chansriniyom, Ph.D.)

ธนาวุฒิ เพชรมีค่า : สารที่มีฤทธิ์เป็นพิษต่อเซลล์จากเอื้องคำกิ่วและเอื้องแปรงสีพัน. (CYTOTOXIC CONSTITUENTS FROM *DENDROBIUM CAPILLIPES* AND *DENDROBIUM SECUNDUM*) อ. ที่ปรึกษาวิทยานิพนธ์หลัก: ศ.ดร. กิตติศักดิ์ ลิขิตวิทยาวุฒิ, อ. ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ.ดร. บุญชู ศรีตุลารักษ์, 175 หน้า.

การศึกษาทางพฤกษเคมีของสารสกัดหยาบด้วยเมทานอลจากต้นเอื้องคำกิ่วและเอื้อง แปรงสีฟัน (วงศ์กล้วยไม้) สามารถแยกได้สารใหม่ 2 ชนิดซึ่งเป็นสารกลุ่ม flavonol glycoside คือ quercetin-3-*O*-α-L-rhamnopyranosyl (1→2)-β-D-xylopyranoside จากต้นเอื้องคำกิ่วและ สารกลุ่ม bibenzyl คือ 5-hydroxy-3,4,3',4',5'-pentamethoxybibenzyl จากต้นเอื้องแปรงสีฟัน พร้อมกับสารที่เคยมีรายงานมาแล้ว 10 ชนิดโดยแยกได้จากต้นเอื้องคำกิ่ว 7 ชนิด ได้แก่ chrysotobibenzyl, crepidatin, gigantol, chrysotoxine, moscatilin, kaempferol-3-O-a-Lrhamnopyranosyl (1→2)-β-D-xylopyranoside หรือ lysimachiin และ kaempferol-3-O-α-Lrhamnopyranosyl (1→2)-β-D-glucopyranoside และจากต้นเอื้องแปรงสีฟัน 3 ชนิด ได้แก่ kaempferol-3,7-O-di- α -L-rhamnopyranoside, quercetin-3-O- α -L-rhamnopyranoside use สารทั้งหมดสามารถพิสูจน์โครงสร้างได้โดยการ kaempferol-3-O- α -L-rhamnopyranoside ้วิเคราะห์ข้อมูลทางสเปกโตรสโคปี (MS, UV, IR และ NMR) ร่วมกับการเปรียบเทียบข้อมูลที่มี รายงานมาแล้ว จากการศึกษาความเป็นพิษต่อเซลล์ของสารกลุ่ม bibenzyl จากพืชทั้งสองต้น พบว่าสาร moscatilin มีฤทธิ์ดีที่สุดโดยเป็นพิษต่อเซลล์ NCI-H187 (มะเร็งปอด) และ KB (มะเร็ง เยื่อบุช่องปาก) แต่ไม่มีฤทธิ์ต่อ MCF-7 (มะเร็งเต้านม) ในขณะที่สาร gigantol และ 4,5,4'trihydroxy-3,3'-dimethoxybibenzyl มีผลต่อเซลล์มะเร็งทั้งสามชนิดแต่มีฤทธิ์อ่อน นอกจากนี้ พบว่าสาร brittonin A, chrysotoxine และ 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl ไม่มีพิษ ต่อเซลล์ปรกติ

ภาควิชาเภสัชเวทแ	ละเภสัชพฤกษศาสตร์	ลายมือชื่อ	นิสิต			
สาขาวิชา	.เภสัชเวท	ลายมือชื่อ	อ.ที่ปรึกษา	าวิทยานิพ	เนธ์หลัก.	
ปีการศึกษา	.2554	ลายมือชื่อ	อ.ที่ปรึกษา	าวิทยานิพ	เนธ์ร่วม .	

5376578733 : MAJOR PHARMACOGNOSY KEYWORDS : *DENDROBIUM CAPILLIPES / DENDROBIUM SECUNDUM /* CYTOTOXIC CONSTITUENTS

THANAWUTH PHECHRMEEKHA : CYTOTOXIC CONSTITUENTS FROM *DENDROBIUM CAPILLIPES* AND *DENDROBIUM SECUNDUM*. ADVISOR : PROF. KITTISAK LIKHITWITAYAWUID, Ph.D.,

CO-ADVISOR : ASSOC. PROF. BOONCHOO SRITULARAK, Ph.D.,

175 pp.

Phytochemical study of the MeOH extracts prepared from Dendrobium capillipes Rchb.f. and Dendrobium secundum (Blume) Lindl. (Orchidaceae) led to the isolation of two new compounds, including a flavonol glycoside named quercetin-3- $O-\alpha$ -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside from D. capillipes and a bibenzyl named 5-hydroxy-3,4,3',4',5'-pentamethoxybibenzyl from D. secundum, along with ten known compounds, including seven compounds from *D. capillipes*: chrysotobibenzyl, crepidatin, gigantol, chrysotoxine, moscatilin, kaempferol-3-O-a-L-rhamnopyranosyl $(1\rightarrow 2)$ - β -D-xylopyranoside or lysimachiin and kaempferol-3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-glucopyranoside; and three compounds from D. secundum: kaempferol-3,7-*O*-di-α-L-rhamnopyranoside, quercetin-3-O-a-Lrhamnopyranoside and kaempferol-3-O- α -L-rhamnopyranoside. Their structures were determined by analysis of their spectroscopic (MS, UV, IR and NMR) data and comparison with previously published values. In the cytoxicity study of the bibenzyls, moscatilin was found to be the most potent compound, inhibiting KB (oral human epidermal carcinoma) and NCI-H187 (human lung cancer) cells, but it had no cytotoxicity against MCF-7 (breast cancer) cells. Gigantol and 4,5,4'-trihydroxy-3,3'dimethoxybibenzyl showed cytotoxicity against all cancer cell lines, but with weak activity. In addition, brittonin A, chrysotoxine and 4,5,4'-trihydroxy-3,3'dimethoxybibenzyl showed no cytotoxicity against normal cells (Vero cells).

Department : Pharmacognosy and	Student's Signature
Pharmaceutical Botany	
Field of Study :Pharmacognosy	Advisor's Signature
Academic Year :2011	Co-advisor's Signature

ACKNOWLEDGEMENTS

The author would like to express his deepest gradtitude to his thesis advisor, Professor Dr. Kittisak Likhitwitayawuid of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for his invaluable advice, useful guidance, endless support, concern, patience and encouragement throughout the course of this study.

The author wishes to express his sincere thanks to his thesis co-advisor, Associate Professor Dr. Boonchoo Sritularak, of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for his useful advice, constant help and kindness.

The author wishes to express his thanks to the members of his thesis committee for their critical perusal and useful suggestions.

The author would like to thank the Graduate School of Chulalongkorn University for granting partial financial support to conduct this investigation.

The author would like to thank all staff members of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their assistance in research facilities.

The author is grateful to all students of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for memorable friendship, kindness and useful advice.

Finally, the author would like to thank all members in his family for their love, understanding and encouragement.

CONTENTS

ABSTRACT (THAI)	iv
ABSTRACT (ENGLISH)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SCHEMES	xv
LIST OF ABBREVIATIONS	xvi

CHAPTER

Ι	INTRO	DUCTI	ION	1
Π	HISTOF	RICAL		10
	1. Chen	nical co	onstituents of Dendrobium species	10
	2. Trad	itional ι	uses and biological activities of <i>Dendrobium</i> species	65
Ш	EXPER	RIMEN	TAL	67
	1. Sour	ce of pl	ant materials	67
	2. Gene	eral tech	nniques	67
	2.1	Analy	tical thin-layer chromatography (TLC)	67
	2.2	Colun	nn chromatography	68
		2.2.1	Vacuum liquid column chromatography (VLC)	68
		2.2.2	Flash column chromatography (FCC)	68
		2.2.3	Gel filtration chromatography	68
		2.2.4	Ion exchange chromatography	69
	2.3	Specti	roscopy	69
		2.3.1	Mass spectra (MS)	69
		2.3.2	Ultraviolet (UV) absorption spectra	69
		2.3.3	Infrared (IR) spectra	69
		2.3.4	Proton and carbon-13 nuclear magnetic resonance	
			(¹ H-and ¹³ C-NMR) spectra	70
	2.4	Physic	cal property	70

CHAPTER	ł			Page
	2.4.1	Optical	rotations	70
2.5	Solver	nts		70
3. Extra	ction a	nd isolati	on	70
3.1	Dendr	obium ca	ipillipes	70
	3.1.1	Extracti	on	70
	3.1.2	Separati	ion of methanol extract	71
		3.1.2.1	Isolation of compound DC1 (Chrysotobibenzyl)	71
		3.1.2.2	Isolation of compound DC2 (Crepidatin)	71
		3.1.2.3	Isolation of compound DC3 (Gigantol)	72
		3.1.2.4	Isolation of compounds DC4 (Chrysotoxine)	
			and DC5 (Moscatilin)	72
		3.1.2.5	Isolation of compound DC6 (Kaempferol-3-O-α-L-	
			rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside,	
			Lysimachiin)	72
		3.1.2.6	Isolation of compound DC7 (Kaempferol-3-O-α-L-	
			rhamnopyranosyl $(1\rightarrow 2)$ - β -D-glucopyranoside)	73
		3.1.2.7	Isolation of compound DC8 (Quercetin-3-O-α-L-	
			rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside)	73
3.2	Dendr	obium se	cundum	73
	3.2.1	Extracti	on	74
	3.2.2	Separati	ion of methanol extract	74
		3.2.2.1	Isolation of compound DS1 (5-Hydroxy-3,4,3',4',5'-	
			pentamethoxybibenzyl)	74
		3.2.2.2	Isolation of compound DS2 (Kaempferol-3,7-O-di-a	-L-
			rhamnopyranoside)	75
		3.2.2.3	Isolation of compound DS3 (Quercetin-3-O-α-L-	
			rhamnopyranoside)	75
		3.2.2.4	Isolation of compound DS4 (Kaempferol-3-O-α-L-	
			rhamnopyranoside)	76

CHA	PTER		Page
4.	Acid	hydrolysis of compound DC8	82
5.	Phys	ical and spectral data of isolated compounds	82
	5.1	Compound DC1 (Chrysotobibenzyl)	82
	5.2	Compound DC2 (Crepidatin)	82
	5.3	Compound DC3 (Gigantol)	83
	5.4	Compound DC4 (Chrysotoxine)	83
	5.5	Compound DC5 (Moscatilin)	83
	5.6	Compound DC6 (Kaempferol-3-O-α-L-rhamnopyranosyl	
		$(1\rightarrow 2)$ - β -D-xylopyranoside, Lysimachiin)	84
	5.7	Compound DC7 (Kaempferol-3-O-α-L-rhamnopyranosyl	
		$(1\rightarrow 2)$ - β -D-glucopyranoside)	84
	5.8	Compound DC8 (Quercetin-3-O-α-L-rhamnopyranosyl	
		$(1\rightarrow 2)$ - β -D-xylopyranoside)	85
	5.9	Compound DS1 (5-Hydroxy-3,4,3',4',5'-pentamethoxybibenzyl)	85
	5.10	Compound DS2 (Kaempferol-3,7- <i>O</i> -di-α-L-rhamnopyranoside)	86
	5.11	Compound DS3 (Quercetin-3- <i>O</i> -α-L-rhamnopyranoside)	86
	5.12	Compound DS4 (Kaempferol-3- <i>O</i> -α-L-rhamnopyranoside)	87
6.	Deter	rmination of cytotoxicity	87
	6.1	Cancer cell growth inhibition	87
	6.2	Cytotoxic against primate cell line	88
IV R	ESUL	TS AND DISCUSSION	90
1.	Struc	ture determination of isolated compounds	90
	1.1	Structure determination of compound DC1	90
	1.2	Structure determination of compound DC2	93
	1.3	Structure determination of compound DC3	96
	1.4	Structure determination of compound DC4	98
	1.5	Structure determination of compound DC5	100
	1.6	Structure determination of compound DC6	103
	1.7	Structure determination of compound DC7	106
	1.8	Structure elucidation of compound DC8	109

CHAPTER	Page
1.9 Structure elucidation of compound DS1	112
1.10 Structure determination of compound DS2	114
1.11 Structure determination of compound DS3	116
1.12 Structure determination of compound DS4	119
2. Cytotoxic activity	121
V CONCLUSION	125
REFERENCES	126
APPENDIX	134
VITA	175

LIST OF TABLES

TABL	JE	Page
1	Distribution of chemical constituents in the genus Dendrobium	10
2	NMR spectral data of compound DC1 (in CDCl ₃) and chrysotobibenzyl	
	(in CDCl ₃)	92
3	NMR spectral data of compound DC2 (in CDCl ₃), crepidatin	
	(in CDCl ₃) and erianin (in CDCl ₃)	95
4	NMR spectral data of compound DC3 (in CDCl ₃) and gigantol	
	(in CDCl ₃)	97
5	NMR spectral data of compound DC4 (in CDCl ₃) and chrysotoxine	
	(in CDCl ₃)	99
6	NMR spectral data of compound DC5 (in CDCl ₃) and moscatilin	
	(in CDCl ₃)	102
7	¹³ C NMR data for glycopyranoses and methylglycopyranosides	104
8	NMR spectral data of compound DC6 (in DMSO- d_6) and kaempferol-3-	
	<i>O</i> -α-L-rhamnopyranosyl $(1\rightarrow 2)$ -β-D-xylopyranoside or lysimachiin (in	
	DMSO- <i>d</i> ₆)	105
9	NMR spectral data of compound DC7 (in CD ₃ OD) and kaempferol-3-	
	<i>O</i> -α-L-rhamnopyranosyl (1→2)-β-D-glucopyranoside (in CD ₃ OD)	108
10	1 H (500 MHz) and 13 C (125 MHz) NMR spectral data of compound	
	DC8 (in DMSO- d_6)	111
11	1 H (300 MHz) and 13 C (75 MHz) NMR spectral data of compound DS1	
	(in CDCl ₃)	113
12	NMR spectral data of compound DS2 (in CD ₃ OD) and kaempferol-3,7-	
	<i>O</i> -di-α-L-rhamnopyranoside (in CD ₃ OD)	115
13	NMR spectral data of compound DS3 (in CD ₃ OD) and quercetin-3-O-	
	α -L-rhamnopyranoside (in DMSO- d_6)	118
14	NMR spectral data of compound DS4 (in DMSO- d_6) and kaempferol-	
	3- <i>O</i> -α-L-rhamnopyranoside (in CD ₃ OD)	120
15	IC_{50} Values (μM) for cytotoxicity of isolated compound and positive	
	controls	122

LIST OF FIGURES

FIGU	RE	Page
1	Dendrobium capillipes Rchb.f	9
2	Dendrobium secundum (Blume) Lindl	9
3	Structures of compounds previously isolated from	
	Dendrobium species	35
4	Acid hydrolysis of compound DC8	110
5	Mass spectrum of compound DC1	135
6	IR spectrum of compound DC1	135
7	UV spectrum of compound DC1	136
8	¹ H-NMR (300 MHz) spectrum of compound DC1 (CDCl ₃)	136
9	¹³ C-NMR (75 MHz) spectrum of compound DC1 (CDCl ₃)	137
10	Mass spectrum of compound DC2	137
11	IR spectrum of compound DC2	138
12	UV spectrum of compound DC2	138
13	¹ H-NMR (300 MHz) spectrum of compound DC2 (CDCl ₃)	139
14	¹³ C-NMR (75 MHz) spectrum of compound DC2 (CDCl ₃)	139
15	Mass spectrum of compound DC3	140
16	IR spectrum of compound DC3	140
17	UV spectrum of compound DC3	141
18	¹ H-NMR (300 MHz) spectrum of compound DC3 (CDCl ₃)	141
19	¹³ C-NMR (75 MHz) and DEPT spectra of compound DC3 (CDCl ₃)	142
20	Mass spectrum of compound DC4	142
21	IR spectrum of compound DC4	143
22	UV spectrum of compound DC4	143
23	¹ H-NMR (300 MHz) spectrum of compound DC4 (CDCl ₃)	144
24	¹³ C-NMR (75 MHz) spectrum of compound DC4 (CDCl ₃)	144
25	Mass spectrum of compound DC5	145
26	IR spectrum of compound DC5	145
27	UV spectrum of compound DC5	146
28	¹ H-NMR (300 MHz) spectrum of compound DC5 (CDCl ₃)	146
29	¹³ C-NMR (75 MHz) spectrum of compound DC5 (CDCl ₃)	147

LIST OF FIGURES

FIGUI	RE	Page
30	Mass spectrum of compound DC6	148
31	IR spectrum of compound DC6	149
32	UV spectrum of compound DC6	149
33	¹ H-NMR (300 MHz) spectrum of compound DC6 (DMSO- <i>d</i> ₆)	150
34	13 C-NMR (75 MHz) and DEPT spectra of compound DC6 (DMSO- d_6).	150
35	Mass spectrum of compound DC7	151
36	IR spectrum of compound DC7	152
37	UV spectrum of compound DC7	152
38	¹ H-NMR (300 MHz) spectrum of compound DC7 (CD ₃ OD)	153
39	¹³ C-NMR (75 MHz) and DEPT spectra of compound DC7 (CD ₃ OD)	153
40	Mass spectrum of compound DC8	154
41	IR spectrum of compound DC8	155
42	UV spectrum of compound DC8	155
43	¹ H-NMR (500 MHz) spectrum of compound DC8 (DMSO- <i>d</i> ₆)	156
44	¹³ C-NMR (125 MHz) spectrum of compound DC8 (DMSO- d_6)	156
45a	HSQC spectrum of compound DC8 (DMSO- <i>d</i> ₆)	157
45b	HSQC spectrum of compound DC8 (DMSO- d_6)	
	$(\delta_H 0.2-2.0, \delta_C 12-32 \text{ ppm})$	157
45c	HSQC spectrum of compound DC8 (DMSO- d_6)	
	$(\delta_{\rm H} 2.7-3.9, \delta_{\rm C} 64-80 \text{ ppm})$	158
45d	HSQC spectrum of compound DC8 (DMSO- d_6)	
	(δ _H 5.0-6.6, δ _C 92-103 ppm)	158
45e	HSQC spectrum of compound DC8 (DMSO- d_6)	
	(δ _H 6.4-8.2, δ _C 114-124 ppm)	159
46a	HMBC spectrum of compound DC8 (DMSO- <i>d</i> ₆)	159
46b	HMBC spectrum of compound DC8 (DMSO- d_6)	
	(δ _H 2.8-4.0, δ _C 75-79 ppm)	160
46c	HMBC spectrum of compound DC8 (DMSO- d_6)	
	$(\delta_{\rm H} 4.8-5.5, \delta_{\rm C} 74.5-79.5 \text{ ppm})$	160

xiii

LIST OF FIGURES

FIGUI	RE	Page
46d	HMBC spectrum of compound DC8 (DMSO- d_6)	
	(δ _H 5.0-6.3, δ _C 131-137 ppm)	161
46e	HMBC spectrum of compound DC8 (DMSO- <i>d</i> ₆)	
	$(\delta_{\rm H} 6.3-7.7, \delta_{\rm C} 154-160 \text{ ppm})$	161
47	Mass spectrum of compound DS1	162
48	IR spectrum of compound DS1	163
49	UV spectrum of compound DS1	163
50	¹ H-NMR (300 MHz) spectrum of compound DS1 (CDCl ₃)	164
51	¹³ C-NMR (75 MHz) spectrum of compound DS1 (CDCl ₃)	164
52a	NOESY spectrum of compound DS1 (CDCl ₃)	165
52b	NOESY spectrum of compound DS1 (CDCl ₃)	
	$(\delta_{\rm H} 4.8-6.6, \delta_{\rm H} 3.2-4.6 \text{ ppm})$	165
53	Mass spectrum of compound DS2	166
54	IR spectrum of compound DS2	167
55	UV spectrum of compound DS2	167
56	¹ H-NMR (300 MHz) spectrum of compound DS2 (CD ₃ OD)	168
57	¹³ C-NMR (75 MHz) and DEPT spectra of compound DS2 (CD ₃ OD)	168
58	Mass spectrum of compound DS3	169
59	IR spectrum of compound DS3	170
60	UV spectrum of compound DS3	170
61	¹ H-NMR (300 MHz) spectrum of compound DS3 (CD ₃ OD)	171
62	¹³ C-NMR (75 MHz) and DEPT spectra of compound DS3 (CD ₃ OD)	171
63	Mass spectrum of compound DS4	172
64	IR spectrum of compound DS4	173
65	UV spectrum of compound DS4	173
66	¹ H-NMR (300 MHz) spectrum of compound DS4 (DMSO- d_6)	174
67	¹³ C-NMR (75 MHz) spectrum of compound DS4 (DMSO- d_6)	174

xiv

LIST OF SCHEMES

SCH	EME	Page
1	Separation of the MeOH extract of <i>Dendrobium capillipes</i>	77
2	Separation of the MeOH extract of <i>Dendrobium secundum</i>	80

ABBREVIATIONS

$\left[oldsymbol{lpha} ight]_{_{D}}^{^{20}}$	= Specific rotation at Sodium D line (598 nm)		
br	= Broad (for NMR spectra)		
С	= Concentration		
°C	= Degree Celsius		
CC	= Column Chromatography		
CDCl ₃	= Deuterated chloroform		
CD ₃ OD	= Deuterated methanol		
CH_2Cl_2	= Dichloromethane		
cm	= Centimeter		
¹³ C NMR	= Carbon-13 Nuclear Magnetic Resonance		
1-D	= One dimensional		
2-D	= Two dimensional		
d	= Doublet (for NMR spectra)		
δ	= Chemical shift		
dd	= Doublet of doublets (for NMR spectra)		
DEPT	= Distortionless Enhancement by Polarization Transfer		
DMSO- d_6	= Deuterated dimethyl sulfoxide		
3	= Molar absorptivity		
ESI-MS	= Electrospray Ionization Mass Spectroscopy		
EtOAc	= Ethyl acetate		
FCC	= Flash column chromatography		
g	= Gram		
GF	= Gel Filtration		
Glc	= Glucose		
HMBC	= ¹ H-detected Heteronuclear Multiple Bond Correlation		
¹ H-NMR	= Proton Nuclear Magnetic Resonance		
HR	= High resolution (for Mass spectrum)		
HSQC	= ¹ H-detected Heteronuclear Single Quantum Coherence		

Hz	= Hertz
IC ₅₀	= Concentration exhibiting 50% inhibition
IEC	= Ion exchange chromatography
	= Infrared
IR	
J	= Coupling constant
Kg	= Kilogram
L	= Liter
λ_{max}	= Wavelength at maximal absorption
\mathbf{M}^+	= Molecular ion
m	= Multiplet (for NMR spectra)
MeOH	= Methanol
mg	= Milligram
μg	= Microgram
μL	= microliter
MS	= Mass spectrum
MW	= Molecular weight
<i>m/z</i> .	= Mass to charge ratio
nm	= Nanometer
υ_{max}	= Wave number at maximal absorption
NMR	= Nuclear Magnetic Resonace
pet. ether	= Petroleum ether
ppm	= Part per million
Rha	= Rhamnose
S	= Singlet (for NMR spectra)
t	= Triplet (for NMR spectra)
TLC	= Thin Layer Chromatography
UV-VIS	= Ultraviolet and Visible spectrophotometry
VLC	= Vacuum Liquid Chromatography
Xyl	= Xylose

CHAPTER I

INTRODUCTION

Cancer is an illness caused by cell proliferation with uncontrollable rate. According to the data collected between 2005-2009 on the number of deaths and death rates per 100,000 populations, malignant neoplasm or cancer in all forms is the first-ranked cause of death in Thailand (Bureau of Policy and Strategy, Ministry of Public Health, 2009). There are many approaches in the treatment of cancer including surgery, radiation and chemotherapy or combinations these of in order to increase the efficiency of the therapy. Some drugs that are used to treat cancer are originated from natural sources, for example vincristine and paclitaxel. However, discovery of new drugs with higher efficacy and safety for cancer treatment is still needed since most patients treated with chemotherapy can not tolerate side effects of currently used drugs.

Cytotoxicity is the ability of substances to inhibit the growth of cells and the cytotoxicity test is based on the research of anticancer drugs. There are various classes of recently discovered compounds that possess potent cytotoxicity, including acetogenins, alkaloids, terpenoids, flavonoids, lignans and the others (Kim and Park, 2002) but the cytotoxicity of bibenzyls is rarely reported. Interestingly, previous studies have shown that moscatilin, a bibenzyl compound isolated from several *Dendrobium* species (Orchidaceae), displayed strong cytotoxicity (Ho and Chen, 2003), and is now in preclinical trials (Chen *et al.*, 2008c). Moreover, several studies on this plant genus reported the presence of chemical constituents with potent cytotoxicity against cancer cells (Zhang *et al.*, 2005).

Dendrobium is the biggest genus of Orchidaceae family, represented by more than 1,100 species. The plants of this genus are either epiphytic, or occasionally lithophytic. These plants adapted to widely different habitats and are distributed throughout Asia, Europe and Australia (Seidenfaden, 1985; Guanghua *et al.*, 2009).

Plants of the genus *Dendrobium* found in Thailand (Royal Forest Department, The Forest Herbarium, 2001) are more than 90 species as follows.

Dendrobium acerosum Lindl.	กล้วยไม้มือนาง Kluai mai mue nang (Chumphon)		
D. acinaciforme Roxb.	เอื้องยอดสร้อย Ueang yot soi (Northern)		
D. albosanguineum Lindl.	เอื้องตางัว Ueang ta ngua (Mae Hong Son)		
D. aloifolium (Blume) Rchb.f.	เอื้องมณี Ueang mani (Bangkok)		
D. anosmum Lindl.	เอื้องสาย Ueang sai (Chiang Mai, Peninsular)		
D. aphyllum (Roxb.) C.E.C.Fisch.	เอื้องงวงช้าง Ueang nguang chang (Mae Hong		
	Son)		
D. bellatulum Rolfe	เอื้องแซะภู Ueng sae phu (Chiang Mai)		
D. bicameratum Lindl.	เอื้องเข็ม Ueang khem (Northern)		
D. bilobulatum Seidenf.	กล้วยใม้ก้างปลา Kluai mai kang pla (General)		
D. binoculare Rchb.f.	เอื้องคำสาย Ueang kham sai (Northern)		
D. brymerianum Rchb.f.	เอื้องคำฝอย Ueang kham foi (Northern)		
D. capillipes Rchb.f.	เอื้องคำกิ่ว Ueang kham kio (Lampang, Phrae)		
D. cariniferum Rchb.f.	เอื้องกาจก Ueang kachok (Chiang Mai)		
D. christyanum Rchb.f.	เอื้องแซะภูกระดึง Ueang sae phu kradueng (Loei)		
D. chrysanthum Lindl.	เอื้องสายมรกต Ueang sai morakot (Bangkok)		
D. chrysotoxum Lindl.	เอื้องคำ Ueang kham (Northern)		
D. compactum Rolfe ex Hackett	เอื้องข้าวตอก Ueang khao tok (Northern)		
D. concinnum Miq.	หางเปีย Hang pia (Narathiwat)		
D. crepidatum Lindl. & Paxton	เอื้องสายน้ำเขียว Ueang sai nam khiao (General)		

D. crocatum Hook.f.	เอื้องนางนวล Ueang nang nuan (Peninsular)			
D. cruentum Rchb.f.	เอื้องนกแก้ว Ueang nok kaeo (Bangkok)			
D. crumenatum Sw.	หวายตะมอย Wai tamoi (Central, Peninsular)			
D. crystallinum Rchb.f.	เอื้องนางฟ่อน Ueang nang fon (Chiang Mai)			
D. cumulatum Lindl.	เอื้องสายสี่ดอก Ueang sai si dok (Northern,			
	Southeastern)			
D. dantaniense Guillaumin	เอื้องเข็ม Ueang khem (Chiang Mai)			
D. densiflorum Lindl.	เอื้องมอนไข่ Ueang mon khai (Northern)			
D. devonianum Paxton	เอื้องเมี่ยง Ueang miang (Chiang Mai)			
D. dickasonii L.O. Williams	เอื้องเลี้ยะ Ueang khia (Chiang Mai)			
<i>D. discolor</i> Lindl. หวายกลัก Wai klak (Bangkok)				
D. dixanthum Rchb.f.	เอื้องเทียน Ueang thian (Northern)			
D. draconis Rchb.f.	เอื้องเงิน Ueang ngoen (Northern)			
D. ellipsophyllum Tang & Wang	เอื้องทอง Ueang thong (General)			
D. exile Schltr.	เอื้องเสี้ยน Ueang sian (General)			
D. falconeri Hook.	เอื้องสายวิสูตร Ueang sai wisut (Bangkok)			
D. farmeri Paxton	เอื้องมัจฉาณุ Ueang mat chanu (Bangkok)			
D. fimbriatum Hook.	เอื้องคำน้อย Ueang kham noi (Chiang Mai)			
D. findlayanum Parish & Rchb.f.	พวงหยก Phuang yok (Bangkok)			
D. formosum Roxb. ex Lindl.	เอื้องเงินหลวง Ueang ngoen luang (Chiang Mai)			

D. friedericksianum Rchb.f.	เอื้องเหลืองจันทบูร Ueang Lueang chantabun			
	(Bangkok)			
D. fuerstenbergianum Schltr.	เอื้องแซะภูกระดึง Ueang sae phukradueng (Loei)			
D. gibsonii Lindl.	เอื้องคำสาย Ueang kham sai (Northern)			
D. grande Hook.f	เอื้องแผงใบใหญ่ Ueang pheang bai yai			
	(Peninsular)			
D. gratiotissimum Rchb.f.	เอื้องกิ่งดำ Ueang king dam (Bangkok)			
D. gregulus Seidenf.	เอื้องมะต่อม Ueang matom (Chiang Mai)			
D. griffithianum Lindl.	เอื้องมัจฉาณุ Ueang matchanu (Bangkok)			
D. harveyanum Rchb.f.	เอื้องคำฝอย Ueang kham foi (Chiang Mai)			
D. hendersonii Hawkes & Heller	หวายตะมอยน้อย Wai tamoi noi (Peninsular)			
D. hercoglossum Rchb.f.	เอื้องดอกมะเขือ Ueang dok ma kuea (Bangkok)			
D. heterocarpum Lindl.	เอื้องสีตาล Ueang si tan (Chiang Mai)			
D. indivisum (Blume) Miq.	ตานเสี้ยนใม้ Tan sian mai (Chumphon)			
var. indivisum				
D. indivisum (Blume)	ก้างปลา Kang pla (General)			
Miq. var. pallidum Seidenf.				
D. infundibulum Lindl.	เอื้องตาเห็น Ueang ta hoen (General)			
D. intricatum Gagnep.	เอื้องชมพู Ueang chom phu (Chanthaburi)			
D. jenkinsii Wall. ex Lindl.	เอื้องผึ้งน้อย Ueang phueng noi (Chiang Mai)			
D. kanburiense Seidenf.	หวายเมืองกาญจน์ Wai muang kan (Kanchanaburi)			

D. leonis (Lindl.) Rchb.f.	เอื้องตะขาบใหญ่ Ueang ta khap yai (General)		
D. lindleyi Steud.	เอื้องผึ้ง Ueang phueng (Northern)		
D. lituiflorum Lindl.	เอื้องสายม่วง Ueang sai muang (Bangkok,		
	Northern)		
D. moschatum (BuchHam.) Sw.	เอื้องจำปา Ueang champa (Northern)		
D. nathanielis Rchb.f.	เกล็ดนิ่ม Klet nim (Chantaburi)		
D. nobile Lindl.	เอื้องเค้ากิ่ว Ueang khao kio (Northern)		
D. ochreatum Lindl.	เอื้องตะขาบ Ueang ta khap (Chiang Mai)		
D. oligophyllum Gagnep.	ข้าวตอกปราจีน Khao tok prachin (General)		
D. pachyglossum	เอื้องขนหมู Ueang khon mu (Mae Hong Son)		
C.S.P.Parish & Rchb.f			
D. pachyphyllum (Kuntze) Bakh.f.	เอื้องน้อย Ueang noi (General)		
D. palpebrae Lindl.	เอื้องมัจฉา Ueang mat cha, เอื้องมัจฉาณุ Ueang mat		
	chanu (Bangkok)		
D. parcum Rchb.f.	เอื้องก้านกิ่ว Ueang kan kio (Bangkok)		
D. parishii Rchb.f.	เอื้องครั้ง Ueang khrang (Northern)		
D. pendulum Roxb.	เอื้องไม้เท้าฤาษี Ueang mai thao ruesi (Bangkok,		
	Chiang Mai)		
D. pensile Ridl.	หวาย Wai (Narathiwat)		
D. porphyrophyllum Guillaumin	เอื้องลิ้น Ueang lin (Lampang)		
D. primulinum Lindl.	เอื้องสายประสาท Ueang sai prasat (Bangkok)		

D. pulchellum Roxb. ex Lindl.	เอื้องคำตาควาย Ueang kham ta khwai (Mae Hong		
	Son)		
D. pychnostachyum Lindl.	เศวตสอดสี Sawet sot si (Chiang Mai)		
D. salaccense (Blume) Lindl.	เอื้องใบใผ่ Ueang bai phai (Chiang Mai)		
D. scabrilingue Lindl.	เอื้องแซะ Ueang sae (Mae Hong Son)		
D. secundum (Blume) Lindl.	เอื้องแปรงสีฟัน Ueang preang si fan (Bangkok)		
D. seidenfadenii Rchb.f.	เอื้องเกี้ยะ Ueang kia (Chiang Mai)		
D. senile Parish & Rchb.f.	เอื้องชะนี่ Ueang chain (Bangkok)		
D. signatum Rchb.f.	เอื้องเค้ากิ่ว Ueang khao kio (Chiang Mai)		
D. stuposum Lindl.	เอื้องสาย Ueang sai (Chiang Mai)		
D. sulcatum Lindl.	เอื้องจำปาน่าน Ueang champa nan (Bangkok)		
D. superbiens Rchb.f.	หวายคิง Wai khing (Bangkok)		
D. sutepense Rolfe ex Downie	เอื้องมะลิ Ueang mali (Chiang Mai)		
D. terminale Parish & Rchb.f	เอื้องแผงโสภา Ueang phaeng sopha (Peninsular)		
D. thyrsiflorum Rchb.f	เอื้องมอนไข่ใบมน Ueang mon khai bai mon		
	(Northern)		
D. tortile Lindl.	เอื้องใม้ติ่ง Ueang mai tueng (Mae Hong Son)		
D. trigonopus Rchb.f.	เอื้องคำเหลี่ยม Ueang kham liam (Chiang Mai)		
D. trinervium Ridl.	เทียนลิง Thian ling (Chumphon)		
D. unicum Seidenf.	เอื้องครั่งแสด Ueang krang saet (General)		
D. uniflorum Griff.	เอื้องทอง Ueang thong (Pattani)		

D. venustum Teijsm. & Binn	ข้าวเหนียวลิง Khao niao ling (Central)		
D. villosulum Lindl.	กล้วยหญ้านา Kluai ya na (Bangkok)		
D. virgineum Rchb.f.	เอื้องเงินวิลาศ Ueang ngoen wilat (Northern)		
D. wardianum Warner	เอื้องมณีใตรรงค์ Ueang mani trai rong (Northern)		
D. wattii (Hook.f.) Rchb.f.	เอื้องแซะ Ueang sae (Northern)		
D. ypsilon Seidenf.	เอื้องแบนปากตัด Ueang baen pak tat (General)		

Dendrobium capillipes Rchb.f. is known in Thai as Ueang kham kio or Ueang kham pok. Its fleshy stems are unbranched and nearly compressed fusiform, 8-15 cm, with many obtuse longitudinal ridges and few internodes. It has 2-4 narrowly oblong leaves near the apex of the stem in the size of $10-12 \times 1-1.5$ cm. The bright yellow flowers are on 2-3 cm pseudobulb, with the lip being much longer than their sepals and petals. The number of flowers are 3-5 with 3 cm sized. Flowering period is between February to April (Vaddhanaphuti, 2005). The plant is widely found in Thailand, and also in northeastern India, Burma, China and Vietnam. In China, *Dendrobium capillipes* stem has been used traditionally as decoction to treat indigestion (Lee, Xiao and Pei, 2008).

Dendrobium secundum (Blume) Lindl. has a local name as Ueang preang si fan. It is found from China, Burma, Indonesia and Thailand. Its fleshy stems are cylindrical, to 100 cm long (usually less); leaves to 10 by 4 cm; inflorescences from the upper nodes only, to about 12 cm long, with many closely placed small flowers all pointing to one side, bright mauve-pink (or rarely white) with orange lip; flowers to 1.8 cm long and 0.6 cm wide; upper sepal to 7 by 4 mm; mentum curved; petals very narrow; lip forming a long spur at the base with the column-foot (Holttum, 1957). Flowering period is between February to April (Vaddhanaphuti, 2005).

In this study we attempted to investigate the chemical constituents of *Dendrobium capillipes*, of which the methanol extract showed cytotoxicity against KB (Oral cavity cancer) cells with an IC_{50} value of 16.67 µg/mL. The chemical

constituents of this plant had not been studied previously. In addition, we re-examined the chemical components of *Dendrobium secundum*, a plant partially studied in an earlier investigation (Sritularak, Duangrak and Likhitwitawuid, 2011). The cytotoxic principles were isolated and identified from both plants. The results from this study should be useful for chemotaxomic study of plants in the genus *Dendrobium*, as well as the development of new anticancer drugs.

The main objectives of this research were:

- 1. Separation and isolation of chemical constituents from *Dendrobium capillipes* and *Dendrobium secundum*.
- 2. Identification of the structures of isolated compounds.
- 3. Study of isolated compounds for cytotoxicity.

Figure 1 Dendrobium capillipes Rchb.f.

Figure 2 Dendrobium secundum (Blume) Lindl.

CHAPTER II

HISTORICAL

1. Chemical constituents of *Dendrobium* species

The phytochemical studies of plants in the genus *Dendrobium* focused mainly on the principles of the stem, which was part used in the Shi-Hu formulation, as well as the whole plant. These studies reported the isolation of various classes of secondary metabolites such as bibenzyls (dihydrostilbenes), phenanthrenes, fluorenones (biphenyls) and sesquiterpenes (Hossain, 2011). Particularly, bibenzyls and phenanthrenes were the most compounds commonly found in plants of this genus (Chen *et al.*, 2008a). The naturally occurring bibenzyls have been reported not only in Orchidaceae, but also in liverworts, a member of bryophyte (non vascular plant) and in species of certain families such as Cannabaceae and Dioscoreaceae. For phenanthrenes, usually occur in family Orchidaceae, Juncaceae, Stemonaceae, Euphorbiaceae, Dioscoreaceae, Ulmaceae and are also found in liverworts (Xiao *et al.*, 2008).

The chemical constituents found in plants of the genus *Dendrobium* are shown in Table 1.

Plant and compound	Category	Plant part	Reference
Dendrobium aduncum			
Aduncin [1]	Sesquiterpene	Whole plant	Gawell and
			Leander, 1976
Dendrobium amoenum			
Amoenin [2]	Sesquiterpene	Whole plant	Majumder, Guha
			and Sen, 1999
Amoenumin [3]	Phenanthrene	Whole plant	Veerraju <i>et al.</i> ,
			1989
Amoenylin [4]	Bibenzyl	Whole plant	Majumder et al.,
			1999

Table 1 Distribution of chemical constituents in the genus Dendrobium

Plant and compound	Category	Plant part	Reference
Amotin [5]	Sesquiterpene	Whole plant	Majumder et al.,
			1999
3,4'-Dihydroxy-5-	Bibenzyl	Whole plant	Majumder et al.,
methoxybibenzyl [6]			1999
Flaccidin (Amoenumin) [3]	Phenanthrene	Whole plant	Veerraju et al.,
			1989
Isoamoenylin [7]	Bibenzyl	Whole plant	Majumder et al.,
			1999
Moscatilin [8]	Bibenzyl	Whole plant	Majumder et al.,
			1999
Dendrobium aphyllum			
Batatasin III [9]	Bibenzyl	Whole plant	Chen et al., 2008a
Coelonin [10]	Phenanthrene	Whole plant	Chen et al., 2008a
Dibutyl phthalate [11]	Benzoic acid ester	Whole plant	Chen et al., 2008a
Diisobutyl phthalate [12]	Benzoic acid ester	Whole plant	Chen et al., 2008a
Flavanthrin [13]	Biphenanthrene	Whole plant	Chen et al., 2008a
Gigantol [14]	Bibenzyl	Whole plant	Chen et al., 2008a
<i>p</i> -Hydroxyphenyl	Phenolic	Whole plant	Chen et al., 2008a
propanoic methyl ester [15]	compound		
Lusianthridin [16]	Phenanthrene	Whole plant	Chen et al., 2008a
Moscatin [17]	Phenanthrene	Whole plant	Chen et al., 2008a
Dendrobium aurantiacum			
var. denneanum			
Chrysotobibenzyl [18]	Bibenzyl	Stem	Yang, Wang and
			Xu, 2006a
Chrysotoxine [19]	Bibenzyl	Stem	Yang <i>et al.</i> , 2006a
Coumarin [20]	Coumarin	Stem	Yang <i>et al.</i> , 2006a

Plant and compound	Category	Plant part	Reference
Crepidatin [21]	Bibenzyl	Whole plant	Liu et al., 2009b
Defuscin [22]	Phenolic	Stem	Yang et al., 2006a
	compound		
Dendroflorin [23]	Fluorenone	Stem	Yang et al., 2006a
Dengibsin [24]	Fluorenone	Stem	Yang et al., 2006a
Gigantol [14]	Bibenzyl	Whole plant	Liu et al., 2009b
Kaempferol [25]	Flavonol	Stem	Yang et al., 2006a
Luteolin [26]	Flavone	Whole plant	Liu et al., 2009b
Moscatilin [8]	Bibenzyl	Stem	Yang et al., 2006a
Moscatin [17]	Phenanthrene	Whole plant	Liu et al., 2009b
Naringenin [27]	Flavanone	Stem	Yang et al., 2006a
<i>n</i> -Octacosyl ferulate [28]	Phenolic	Stem	Yang et al., 2006a
	compound		
Stigmasterol [29]	Steroid	Whole plant	Liu et al., 2009b
Taraxerol [30]	Triterpene	Stem	Yang et al., 2006a
Dendrobium candidum			
Dendrocandin A [31]	Bibenzyl	Stem	Li et al., 2008
Dendrocandin B [32]	Bibenzyl	Stem	Li et al., 2008
Dendrophenol [33]	Bibenzyl	Stem	Li et al., 2008
3,4-Dihydroxy-5,4'-	Bibenzyl	Stem	Li <i>et al.</i> , 2008
dimethoxybibenzyl [34]			
4,4'-Dihydroxy-3,5-	Bibenzyl	Stem	Li <i>et al.</i> , 2008
dimethoxybibenzyl [35]			
Gigantol [14]	Bibenzyl	Stem	Li <i>et al.</i> , 2008
3-O-Methylgigantol [36]	Bibenzyl	Stem	Li et al., 2008

Plant and compound	Category	Plant part	Reference
Dendrobium cariniferum			
Batatasin III [9]	Bibenzyl	Stem	Chen et al., 2008b
Daucosterol [37]	Steroid glycoside	Whole plant	Liu <i>et al.</i> , 2009a
Dendronone [38]	Phenanthrene	Stem	Chen et al., 2008b
Gigantol [14]	Bibenzyl	Stem	Chen et al., 2008b
Stigmasterol [29]	Steroid	Whole plant	Liu <i>et al.</i> , 2009a
3,3',5-Trihydroxybibenzyl	Bibenzyl	Whole plant	Liu <i>et al.</i> , 2009a
[39]			
Dendrobium chrysanthum			
Chrysotobibenzyl [18]	Bibenzyl	Stem	Yang et al., 2006b
Chrysotoxine [19]	Bibenzyl	Stem	Yang et al., 2006b
Crepidatin [21]	Bibenzyl	Stem	Yang et al., 2006b
Dendrochrysanene [40]	Phenanthrene	Stem	Yang et al., 2006b
Dengibsin [24]	Fluorenone	Stem	Yang et al., 2006b
2,5-Dihydroxy-4,9-	Phenanthrene	Stem	Yang et al., 2006b
dimethoxylphenanthrene [41]			
Gigantol [14]	Bibenzyl	Stem	Yang et al., 2006b
Moscatilin [8]	Bibenzyl	Stem	Yang et al., 2006b
Moscatin [17]	Phenanthrene	Stem	Yang et al., 2006b
Dendrobium chryseum			
Chrysotobibenzyl [18]	Bibenzyl	Stem	Ma et al., 1998
Chrysotoxine [19]	Bibenzyl	Stem	Ma et al., 1998
Confusarin [42]	Phenanthrene	Stem	Ma et al., 1998
2,6-Dimethoxy	Benzoquinone	Stem	Ma et al., 1998
benzoquinone [43]			
β-Sitosterol [44]	Steroid	Stem	Ma et al., 1998

Plant and compound	Category	Plant part	Reference
Dendrobium chrysotoxum			
Batatasin III [9]	Bibenzyl	Whole plant	Li <i>et al</i> ., 2009a
Daucosterol [37]	Steroid glycoside	Whole plant	Li <i>et al</i> ., 2009a
Denchrysan B [45]	Fluorenone	Whole plant	Li <i>et al</i> ., 2009a
Dengibsin [24]	Fluorenone	Whole plant	Li <i>et al</i> ., 2009a
Densiflorol B [46]	Phenanthrene	Whole plant	Li <i>et al</i> ., 2009a
3,7-Dihydroxy-2,4-di	Phenanthrene	Whole plant	Li <i>et al</i> ., 2009a
methoxyphenanthrene [47]			
4,9-Dimethoxy	Phenanthrene	Whole plant	Li <i>et al</i> ., 2009a
phenanthrene-2,5-diol [41]			
Gigantol [14]	Bibenzyl	Whole plant	Li <i>et al</i> ., 2009a
Moscatin [17]	Phenanthrene	Whole plant	Li <i>et al</i> ., 2009a
Stigmasterol [29]	Steroid	Whole plant	Li <i>et al</i> ., 2009a
Vanillic acid [48]	Benzoic acid	Whole plant	Li <i>et al</i> ., 2009a
	derivative		
Dendrobium clavatum var.			
auranteacum			
Aliphatic acids [49]	Aliphatic acid	Stem	Chang, Lin and
			Chen, 2001
Aliphatic alcohols [50]	Aliphatic alcohol	Stem	Chang et al., 2001
Alkyl 4'-hydroxy-trans-	Cinnamate	Stem	Chang et al., 2001
cinnamates [51]			
Alkyl <i>trans</i> -ferulates [52]	Cinnamate	Stem	Chang <i>et al.</i> , 2001
Campesterol [53]	Steroid	Stem	Chang <i>et al.</i> , 2001
Coumarin [20]	Coumarin	Stem	Chang <i>et al.</i> , 2001
β-Sitosterol [44]	Steroid	Stem	Chang <i>et al.</i> , 2001
Stigmast-4-en-3-one [54]	Steroid	Stem	Chang <i>et al.</i> , 2001
Stigmasterol [29]	Steroid	Stem	Chang <i>et al.</i> , 2001

Plant and compound	Category	Plant part	Reference
Dendrobium crepidatum			
Crepidatin [21]	Bibenzyl	Whole plant	Majumder and
			Chatterjee, 1989
Dendrobium crystallinum			
Apigenin [55]	Flavone	Stem	Wang et al., 2009
Crystallinin [56]	Sesquiterpene	Stem	Wang et al., 2009
Crystalltone [57]	Phenanthrene	Stem	Wang et al., 2009
Dencryol A [58]	Bisbibenzyl	Stem	Wang et al., 2009
Dencryol B [59]	Bisbibenzyl	Stem	Wang et al., 2009
Dendronobilin B [60]	Sesquiterpene	Stem	Wang et al., 2009
6 ^{'''} -Glucosyl-vitexin [61]	Flavone glycoside	Stem	Wang et al., 2009
3-Hydroxy-2-methoxy-5,6-	Benzoic acid	Stem	Wang et al., 2009
dimethylbenzoic acid [62]	derivative		
Isoviolanthin [63]	Flavone glycoside	Stem	Wang et al., 2009
Palmarumycin JC2 [64]	Naphthalene	Stem	Wang et al., 2009
Syringic acid [65]	Benzoic acid	Stem	Wang et al., 2009
	derivative		
Dendrobium cumulatum			
Cumulatin [66]	Bibenzyl	Whole plant	Majumder and
			Pal, 1993
Dendrobium densiflorum			
Ayapin [67]	Coumarin	Stem	Fan <i>et al.</i> , 2001
Cypripedin [68]	Phenanthrene	Stem	Fan et al., 2001
Dengibsin [24]	Fluorenone	Stem	Fan <i>et al.</i> , 2001
Densiflorol A [69]	Bibenzyl	Stem	Fan <i>et al.</i> , 2001
Densiflorol B [46]	Phenanthrene	Stem	Fan et al., 2001

Plant and compound	Category	Plant part	Reference
4,7-Dihydroxy-2-methoxy-	Phenanthrene	Stem	Fan et al., 2001
9,10-dihydrophenanthrene			
[70]			
2,6-Dihydroxy-1,5,7-tri	Phenanthrene	Stem	Fan et al., 2001
methoxyphenanthrene [71]			
Gigantol [14]	Bibenzyl	Stem	Fan et al., 2001
Homoeriodictyol [72]	Flavanone	Stem	Fan et al., 2001
Moscatilin [8]	Bibenzyl	Stem	Fan et al., 2001
Moscatin [17]	Phenanthrene	Stem	Fan et al., 2001
Naringenin [27]	Flavanone	Stem	Fan et al., 2001
Scoparone [73]	Coumarin	Stem	Fan et al., 2001
Scopoletin [74]	Coumarin	Stem	Fan et al., 2001
1,4,7-Trihydroxy-5-methoxy-	Fluorenone	Stem	Fan et al., 2001
9H-fluoren-9-one [75]			
Tristin [76]	Bibenzyl	Stem	Fan et al., 2001
Dendrobium draconis			
Batatasin III [9]	Bibenzyl	Stem	Sritularak,
			Anuwat and
			Likhitwitayawuid,
			2011a
Gigantol [14]	Bibenzyl	Stem	Sritularak <i>et al.</i> ,
			2011a
Hircinol [77]	Phenanthrene	Stem	Sritularak <i>et al.</i> ,
			2011a
7-Methoxy-9,10-dihydro	Phenanthrene	Stem	Sritularak <i>et al.</i> ,
phenanthrene-2,4,5-triol [78]			2011a
5-Methoxy-7-hydroxy-9,10-	Phenanthrene	Stem	Sritularak <i>et al.</i> ,
dihydro-1,4-			2011a
phenanthrenequinone [79]			

Plant and compound	Category	Plant part	Reference
Dendrobium falconeri			
Dendrofalconerol A [80]	Bisbibenzyl	Stem	Sritularak and
			Likhitwitayawuid,
			2009
Dendrofalconerol B [81]	Bisbibenzyl	Stem	Sritularak and
			Likhitwitayawuid,
			2009
Docosanoyl (E)-ferulate [82]	Phenylpropanoid	Stem	Sritularak and
			Likhitwitayawuid,
			2009
<i>p</i> -Hydroxybenzaldehyde [83]	Phenolic	Stem	Sritularak and
	compound		Likhitwitayawuid,
			2009
<i>p</i> -Hydroxybenzoic acid [84]	Phenolic	Stem	Sritularak and
	compound		Likhitwitayawuid,
			2009
2-(<i>p</i> -Hydroxyphenyl)	Phenylpropanoid	Stem	Sritularak and
ethyl <i>p</i> -coumarate [85]			Likhitwitayawuid,
			2009
Tetracosyl (E)-p-coumarate	Phenylpropanoid	Stem	Sritularak and
[86]			Likhitwitayawuid,
			2009
Tetracosyl (Z)-p-coumarate	Phenylpropanoid	Stem	Sritularak and
[87]			Likhitwitayawuid,
			2009

Plant and compound	Category	Plant part	Reference
Dendrobium fimbriatum			
Defuscin [22]	Phenylpropanoid	Whole plant	Talapatra,
			Bhaumik and
			Talapatra, 1992
Denfigenin [88]	Steroid	Whole plant	Talapatra <i>et al</i> .,
			1992
Diosgenin [89]	Steroid	Whole plant	Talapatra <i>et al</i> .,
			1992
Dendrobium findlayanum			
Crystallinin [56]	Sesquiterpene	Whole plant	Qin et al., 2011
Findlayanin [90]	Sesquiterpene	Whole plant	Qin et al., 2011
Dendrobium fuscescens			
Defuscin [22]	Phenylpropanoid	Whole plant	Talapatra, Das and
			Talapatra, 1989
(-)-Shikimic acid [91]	Aliphatic acid	Whole plant	Talapatra <i>et al</i> .,
			1989
Dendrobium gratiosissimum			
Batatasin III [9]	Bibenzyl	Stem	Zhang et al.,
			2008a
Dengraol A [92]	Bisbibenzyl	Stem	Zhang et al.,
			2008a
Dengraol B [93]	Bisbibenzyl	Stem	Zhang et al.,
			2008a
3,4-Dihydroxy-5,4'-	Bibenzyl	Stem	Zhang <i>et al.</i> ,
dimethoxybibenzyl [34]			2008a
3,4'-Dihydroxy-5-	Bibenzyl	Stem	Zhang et al.,
methoxybibenzyl [6]			2008a

Plant and compound	Category	Plant part	Reference
Gigantol [14]	Bibenzyl	Stem	Zhang et al.,
			2008a
Moscatilin [8]	Bibenzyl	Stem	Zhang et al.,
			2008a
3,5,4'-Trihydroxybibenzyl	Bibenzyl	Stem	Zhang et al.,
[94]			2008a
Tristin [76]	Bibenzyl	Stem	Zhang et al.,
			2008a
Dendrobium huoshanense			
6- C -(α -Arabinopyranosyl)-8-	Flavone glycoside	Aerial part	Chang <i>et al.</i> , 2010
C -[(2- O - α -rhamnopyranosyl)			
-β-galactopyranosyl]apigenin			
[95]			
6- <i>C</i> -(α-Arabinopyranosyl)-8-	Flavone glycoside	Aerial part	Chang <i>et al.</i> , 2010
C -[(2- O - α -rhamnopyranosyl)			
-β-glucopyranosyl]apigenin			
[96]			
Dimethyl malate [97]	Aliphatic acid	Aerial part	Chang <i>et al.</i> , 2010
	ester		
Isopentyl butyrate [98]	Aliphatic acid	Aerial part	Chang et al., 2010
	ester		
Isoschaftoside [99]	Flavone glycoside	Aerial part	Chang <i>et al.</i> , 2010
Malic acid [100]	Aliphatic acid	Aerial part	Chang <i>et al.</i> , 2010
<i>N</i> -Phenylacetamide [101]	Aromatic	Aerial part	Chang <i>et al.</i> , 2010
	compound		

Plant and compound	Category	Plant part	Reference
6- <i>C</i> -[(2- <i>O</i> -α-	Flavone glycoside	Aerial part	Chang <i>et al.</i> , 2010
Rhamnopyranosyl)-β-			
glucopyranosyl]-8-C-(α-			
arabinopyranosyl) apigenin			
[102]			
Salicylic acid [103]	Hydroxybenzoic acid	Aerial part	Chang et al., 2010
Shikimic acid [91]	Aliphatic acid	Aerial part	Chang <i>et al.</i> , 2010
6- <i>C</i> -(β-Xylopyranosyl)-8- <i>C</i> -	Flavone glycoside	Aerial part	Chang <i>et al.</i> , 2010
[(2- <i>O</i> -α-rhamnopyranosyl)-			
β-glucopyranosyl] apigenin			
[104]			
Dendrobium loddigesii			
Batatasin III [9]	Bibenzyl	Whole plant	Ito et al., 2010
Dehydrovomifoliol [105]	Terpenoid	Whole plant	Ito et al., 2010
Gigantol [14]	Bibenzyl	Whole plant	Ito et al., 2010
Hircinol [77]	Phenanthrene	Whole plant	Ito et al., 2010
5-Hydroxy-2,4-dimethoxy	Phenanthrene	Whole plant	Ito et al., 2010
phenanthrene [106]			
Loddigesiinol A [107]	Phenanthrene	Whole plant	Ito et al., 2010
Loddigesiinol B [108]	Phenanthrene	Whole plant	Ito et al., 2010
Loddigesiinol C [109]	Bibenzyl	Whole plant	Ito et al., 2010
Loddigesiinol D [110]	Bibenzyl	Whole plant	Ito et al., 2010
Lusianthridin [16]	Phenanthrene	Whole plant	Ito et al., 2010
(-)-Medioresinol [111]	Lignan	Whole plant	Ito et al., 2010
Moscatilin [8]	Bibenzyl	Whole plant	Chen et al., 1994;
			Ito et al., 2010
Moscatin [17]	Phenanthrene	Whole plant	Chen et al., 1994;
			Ito et al., 2010
(-)-Pinoresinol [112]	Lignan	Whole plant	Ito et al., 2010

Plant and compound	Category	Plant part	Reference
Rotundatin [113]	Phenanthrene	Whole plant	Ito et al., 2010
Sitostenone [114]	Steroid	Whole plant	Ito et al., 2010
β -Sitosterol [44]	Steroid	Whole plant	Ito et al., 2010
Stigmasterol [29]	Steroid	Whole plant	Ito et al., 2010
Dendrobium longicornu			
Aloifol I [115]	Bibenzyl	Stem	Hu et al., 2008a
Batatasin [116]	Bibenzyl	Stem	Hu et al., 2008a
Bis (2-ethylhexyl) phthalate	Benzoic acid ester	Whole plant	Li et al., 2009
[117]			
Dibutyl phthalate [11]	Benzoic acid ester	Whole plant	Li et al., 2009
n-Docosyl trans-ferulate	Phenylpropanoid	Whole plant	Li et al., 2009
[118]			
Episyringaresinol [119]	Lignan	Stem	Hu <i>et al.</i> , 2008a
Episyringaresinol 4"-O-β-D-	Lignan glycoside	Stem	Hu <i>et al.</i> , 2008a
glucopyranoside [120]			
Erythro-1-(4- <i>O</i> -β-D-	Lignan glycoside	Stem	Hu <i>et al.</i> , 2008a
glucopyranosyl-			
3-methoxyphenyl)-2-[4-(3-			
hydroxypropyl)-2,6-			
dimethoxyphenoxy]-1,3-			
propanediol [121]			
Ethylhaematommate [122]	Phenolic	Whole plant	Li et al., 2009
	compound		
Eugenyl <i>O</i> -β-D-	Glycoside	Stem	Hu <i>et al.</i> , 2008a
glucopyranoside [123]			
Ferulaldehyde [124]	Phenylpropanoid	Whole plant	Li et al., 2009

Plant and compound	Category	Plant part	Reference
Gallic acid [125]	Phenolic	Whole plant	Li et al., 2009
	compound		
Gigantol [14]	Bibenzyl	Stem	Hu <i>et al.</i> , 2008a
5-Hydroxy-7-methoxy-	Phenanthrene	Stem	Hu <i>et al.</i> , 2008a
9,10-dihydrophenanthrene-			
1,4-dione (Dendronone) [38]			
4-[2-(3-Hydroxyphenol)-1-	Bibenzyl	Stem	Hu <i>et al.</i> , 2008a
methoxyethyl]-			
2,6-dimethoxyphenol [126]			
Longicornuol A [127]	Bibenzyl	Stem	Hu <i>et al.</i> , 2008a
4-Methoxy-9,10-	Phenanthrene	Stem	Hu <i>et al.</i> , 2008a
dihydrophenanthrene-2,5,7-			
triol [128]			
3-(3-Methoxy,4-	Phenylpropanoid	Stem	Hu <i>et al.</i> , 2008a
hydroxyphenyl)-1-propanol			
[129]			
Methyl β -orsellinate [130]	Phenolic	Stem	Hu <i>et al.</i> , 2008a
	compound		
Moscatilin [8]	Bibenzyl	Stem	Hu <i>et al.</i> , 2008a
Naringenin [27]	Flavanone	Stem	Hu <i>et al.</i> , 2008a
9-β-D-Ribofuranosyl-9H-	Purine nucleotide	Stem	Hu <i>et al.</i> , 2008a
purin-6-amine [131]			
Shikimic acid [91]	Aliphatic acid	Stem	Hu <i>et al.</i> , 2008a
β-Sitosterol [44]	Steroid	Stem	Hu <i>et al.</i> , 2008a
3,3',4-Trihydroxybibenzyl	Bibenzyl	Stem	Hu <i>et al.</i> , 2008a
[132]			
Tristin [76]	Bibenzyl	Stem	Hu <i>et al.</i> , 2008a

Plant and compound	Category	Plant part	Reference
Dendrobium moniliforme			
Acanthoside B [133]	Lignan glycoside	Stem	Zhao et al., 2003
Daucosterol [37]	Steroid glycoside	Stem	Bi, Wang and Xu,
			2004
Denbinobin [134]	Phenanthrene	Stem	Lin et al., 2001
Dendromoniliside A [135]	Sesquiterpene	Stem	Zhao et al., 2003
	glycoside		
Dendromoniliside B [136]	Sesquiterpene	Stem	Zhao et al., 2003
	glycoside		
Dendromoniliside C [137]	Sesquiterpene	Stem	Zhao et al., 2003
	glycoside		
Dendromoniliside D [138]	Sesquiterpene	Stem	Zhao et al., 2003
	glycoside		
Dendromoniliside E [139]	Bibenzyl	Stem	Zhao et al., 2003
	glycoside		
Dendroside A [140]	Sesquiterpene	Stem	Zhao et al., 2003
	glycoside		
Dendroside C [141]	Sesquiterpene	Stem	Zhao et al., 2003
	glycoside		
Dendroside F [142]	Sesquiterpene	Stem	Zhao et al., 2003
	glycoside		
α-Dihydropicrotoxinin [143]	Sesquiterpene	Stem	Bi et al., 2004
3,4-Dihydroxy-5,4'-	Bibenzyl	Stem	Bi et al., 2004
dimethoxybibenzyl [34]			
Moniliformin [144]	Phenanthrene	Stem	Lin et al., 2001
<i>n</i> -Nonacosane [145]	Long chain	Stem	Bi et al., 2004
	hydrocarbon		
<i>n</i> -Octacosyl ferulate [28]	Phenolic	Stem	Bi et al., 2004
	compound		

Plant and compound	Category	Plant part	Reference
β-Sitosterol [44]	Steroid	Stem	Bi et al., 2004
n-Triacontyl p-hydroxy-cis-	Phenolic	Stem	Bi et al., 2004
cinnamate [146]	compound		
Vanilloside [147]	Phenolic	Stem	Zhao et al., 2003
	glycoside		
Dendrobium moscatum			
Moscatilin [8]	Bibenzyl	Whole plant	Majumder and
			Sen, 1987
Dendrobium nobile			
Bulbophyllanthrin [148]	Phenanthrene	Stem	Yang, Sung and
			Kim, 2007
Chrysotobibenzyl [18]	Bibenzyl	Stem	Zhang et al.,
			2007a
Chrysotoxine [19]	Bibenzyl	Stem	Zhang et al.,
			2007a
Coelonin [10]	Phenanthrene	Stem	Yang et al., 2007;
			Hwang et al.,
			2010
Confusarin [42]	Phenanthrene	Stem	Zhang et al.,
			2008b
Crepidatin [21]	Bibenzyl	Stem	Zhang et al.,
			2007a
Denbinobin [134]	Phenanthrene	Stem	Ye and Zhao,
			2002;
			Yang et al., 2007
Dendrobane A [149]	Sesquiterpene	Stem	Zhang et al.,
			2007a

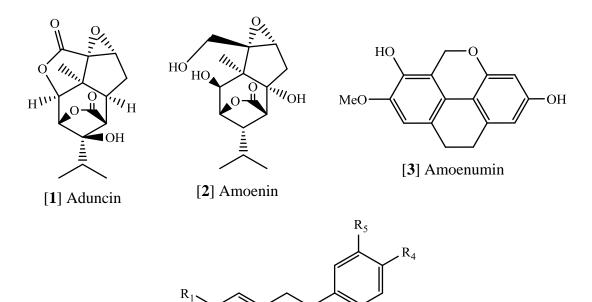
Plant and compound	Category	Plant part	Reference
Dendrobin A [150]	Bibenzyl	Stem	Wang, Zhao and
			Che, 1985; Ye and
			Zhao, 2002
Dendrobine [151]	Sesquiterpene	Stem	Zhang et al.,
	alkaloid		2007a
Dendroflorin [23]	Fluorenone	Stem	Zhang et al.,
			2007b
Dendronobilin A [152]	Sesquiterpene	Stem	Zhang et al.,
			2007b
Dendronobilin B [60]	Sesquiterpene	Stem	Zhang et al.,
			2007b
Dendronobilin C [153]	Sesquiterpene	Stem	Zhang et al.,
			2007b
Dendronobilin D [154]	Sesquiterpene	Stem	Zhang <i>et al.</i> ,
			2007b
Dendronobilin E [155]	Sesquiterpene	Stem	Zhang <i>et al.</i> ,
			2007b
Dendronobilin F [156]	Sesquiterpene	Stem	Zhang <i>et al.</i> ,
			2007b
Dendronobilin G [157]	Sesquiterpene	Stem	Zhang <i>et al.</i> ,
			2007b
Dendronobilin H [158]	Sesquiterpene	Stem	Zhang <i>et al.</i> ,
			2007b
Dendronobilin I [159]	Sesquiterpene	Stem	Zhang <i>et al.</i> ,
			2007b
Dendronobilin J [160]	Sesquiterpene	Stem	Zhang <i>et al.</i> ,
			2007b
Dendronobilin K [161]	Sesquiterpene	Stem	Zhang <i>et al.</i> ,
			2008c

Plant and compound	Category	Plant part	Reference
Dendronobilin L [162]	Sesquiterpene	Stem	Zhang <i>et al.</i> ,
			2008c
Dendronobilin M [163]	Sesquiterpene	Stem	Zhang et al.,
			2008c
Dendronobilin N [164]	Sesquiterpene	Stem	Zhang <i>et al.</i> ,
			2008c
Dendronobiloside A [165]	Sesquiterpene	Stem	Zhao et al., 2001;
	glycoside		Ye and Zhao,
			2002
Dendronobiloside B [166]	Sesquiterpene	Stem	Zhao et al., 2001;
	glycoside		Ye and Zhao,
			2002
Dendronobiloside C [167]	Sesquiterpene	Stem	Ye and Zhao,
	glycoside		2002
Dendronobiloside D [168]	Sesquiterpene	Stem	Ye and Zhao,
	glycoside		2002
Dendronobiloside E [169]	Sesquiterpene	Stem	Ye and Zhao,
	glycoside		2002
Dendroside A [140]	Sesquiterpene	Stem	Zhao <i>et al.</i> , 2001;
	glycoside		Ye and Zhao,
			2002
Dendroside B [170]	Sesquiterpene	Stem	Ye and Zhao,
	glycoside		2002
Dendroside C [141]	Sesquiterpene	Stem	Ye and Zhao,
	glycoside		2002
Dendroside D [171]	Sesquiterpene	Stem	Ye, Qin and Zhao,
	glycoside		2002
Dendroside E [172]	Sesquiterpene	Stem	Ye et al., 2002
	glycoside		
Dendroside F [142]	Sesquiterpene	Stem	Ye et al., 2002
	glycoside		

Plant and compound	Category	Plant part	Reference
Dendroside G [173]	Sesquiterpene	Stem	Ye and Zhao,
	glycoside		2002
4,5-Dihydroxy-3,3'-	Bibenzyl	Stem	Ye and Zhao,
dimethoxybibenzyl			2002
(Dendrobin A) [150]			
4,5-Dihydroxy-3,7-	Phenanthrene	Stem	Ye and Zhao,
dimethoxy-9,10-			2002
dihydrophenanthrene [174]			
3,4'-Dihydroxy-5,5'-di	Bibenzyl	Stem	Hwang et al.,
methoxydihydrostilbene			2010
[175]			
2,5-Dihydroxy-3,4-di	Phenanthrene	Stem	Yang et al., 2007
methoxyphenanthrene [176]			
2,5-Dihydroxy-4,9-di	Phenanthrene	Stem	Zhang et al.,
methoxyphenanthrene (4,9-			2008b
Dimethoxylphenanthrene-			
2,5-diol) [41]			
3,7-Dihydroxy-2,4-di	Phenanthrene	Stem	Zhang et al.,
methoxyphenanthrene [47]			2008b
2,2'-Dihydroxy-3,3',4,4',7,7'-	Biphenanthrene	Stem	Yang et al., 2007
hexamethoxy-9,9',10,10'-			
tetrahydro-1,1'-			
biphenanthrene [177]			
7,12-Dihydroxy-5-	Sesquiterpene	Stem	Shu, Zhang and
hydroxymethyl-11-isopropyl-	glycoside		Guo, 2004
6-methyl-9-oxatricyclo			
[6.2.1.0 ^{2,6}]undecan-10-one-			
15- <i>O</i> -β-D-glucopyranoside			
(Dendromoniliside D) [138]			

Plant and compound	Category	Plant part	Reference
4,5-Dihydroxy-2-methoxy-	Phenanthrene	Stem	Yang et al., 2007
9,10-dihydrophenanthrene			
[178]			
2,8-Dihydroxy-3,4,7-	Phenanthrene	Stem	Yang et al., 2007
trimethoxy-9,10-			
dihydrophenanthrene [179]			
2,8-Dihydroxy-3,4,7-tri	Phenanthrene	Stem	Yang et al., 2007
methoxyphenanthrene [180]			
5,7-Dimethoxy	Phenanthrene	Stem	Hwang <i>et al.</i> ,
phenanthrene-2,6-diol [181]			2010
Ephemeranthol A [182]	Phenanthrene	Stem	Yang et al., 2007;
			Hwang
			et al., 2010
Ephemeranthol C [183]	Phenanthrene	Stem	Hwang <i>et al.</i> ,
			2010
Erianthridin [184]	Phenanthrene	Stem	Yang et al., 2007;
			Hwang <i>et al.</i> ,
			2010
Fimbiatone [185]	Phenanthrene	Stem	Zhang et al.,
			2008b
Fimbriol B [186]	Phenanthrene	Stem	Yang et al., 2007;
			Hwang <i>et al.</i> ,
			2010
Flavanthridin [187]	Phenanthrene	Stem	Hwang <i>et al.</i> ,
			2010
Flavanthrinin [188]	Phenanthrene	Stem	Zhang et al.,
			2008b

Plant and compound	Category	Plant part	Reference
Gigantol [14]	Bibenzyl	Stem	Zhang et al.,
			2007a
Hircinol [77]	Phenanthrene	Stem	Hwang et al.,
			2010
2-Hydroxy-4,7-dimethoxy-	Phenanthrene	Stem	Yang et al., 2007
9,10-dihydrophenanthrene			
[189]			
3-Hydroxy-2-oxodendrobine	Sesquiterpene	Stem	Wang <i>et al.</i> ,1985
[190]	alkaloid		
4-Hydroxy-3,5,3'-	Bibenzyl	Stem	Ye and Zhao,
trimethoxybibenzyl [191]			2002
2-Hydroxy-3,4,7-trimethoxy-	Phenanthrene	Stem	Yang et al., 2007
9,10-dihydrophenanthrene			
[192]			
3-Hydroxy-2,4,7-trimethoxy-	Phenanthrene	Stem	Yang et al., 2007
9,10-dihydrophenanthrene			
[193]			
3-Hydroxy-2,4,7-tri	Phenanthrene	Stem	Yang et al., 2007
methoxyphenanthrene [194]			
Lirioresinol A [195]	Lignan	Stem	Zhang et al.,
			2008b
Lusianthridin [16]	Phenanthrene	Stem	Yang et al., 2007;
			Hwang <i>et al.</i> ,
			2010
Medioresinol [111]	Lignan	Stem	Zhang et al.,
			2008b
Moscatilin [8]	Bibenzyl	Stem	Yang et al., 2007;
			Hwang <i>et al.</i> ,
			2010


Nobilin A [196]BibenzylStemZhang et al., 2006Nobilin B [197]BibenzylStemZhang et al., 2006Nobilin C [198]BibenzylStemZhang et al., 2006Nobilin D [199]BibenzylStemZhang et al., 2007aNobilin E [200]BisbibenzylStemZhang et al., 2007aNobilone [201]BisbibenzylStemZhang et al., 2007aNudol [202]PhenanthreneStemYang et al., 2007Pinoresinol [203]LignanStemZhang et al., 2007Picatol A [204]PhenanthreneStemYang et al., 2007Protocatechuic acid [205]PhenolicStemYe and Zhao, 2002Syringaresinol [206]LignanStemZhang et al., 200710 β , 12, 14-Trihydroxy-SesquiterpeneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-diPhenanthreneStemYang et al., 2007nethoxyphenanthrene [208]PhenanthreneStemYang et al., 2007nethoxyphenanthrene [208]PhenanthreneStemYang et al., 2007Dendrobium ochreatumPhenanthreneStemYang et al., 2007Dandrosterperide [210]Sterraid glucogrideWhole plantBabr and L ander	Plant and compound	Category	Plant part	Reference
Nobilin C [198]BibenzylStemZhang et al., 2006Nobilin D [199]BibenzylStemZhang et al., 2007aNobilin E [200]BisbibenzylStemZhang et al., 2007aNobilone [201]FluorenoneStemZhang et al., 2007aNudol [202]PhenanthreneStemYang et al., 2007aPinoresinol [203]LignanStemZhang et al., 2007aPlicatol A [204]PhenanthreneStemYang et al., 2007 2008bProtocatechuic acid [205]Phenolic compoundStemYang et al., 2007 2002Syringaresinol [206]LignanStemZhang et al., 2007 200210β,12,14-Trihydroxy- alloaromadendrane [207]SesquiterpeneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208] 3,4,8-TrimethoxyPhenanthreneStemYang et al., 2007 2010Dendrobium ochreatumImage: StemYang et al., 2007	Nobilin A [196]	Bibenzyl	Stem	Zhang et al., 2006
Nobilin D [199]BibenzylStemZhang et al., 2007aNobilin E [200]BisbibenzylStemZhang et al., 2007aNobilone [201]FluorenoneStemZhang et al., 2007aNudol [202]PhenanthreneStemYang et al., 2007Pinoresinol [203]LignanStemZhang et al., 2008bPlicatol A [204]PhenanthreneStemYang et al., 2007Protocatechuic acid [205]PhenolicStemYang et al., 2007Syringaresinol [206]LignanStemZhang et al., 2007Syringaresinol [206]LignanStemZhang et al., 2008b10β,12,14-Trihydroxy- alloaromadendrane [207]PhenanthreneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208]PhenanthreneStemYang et al., 2007PhenanthreneStemYang et al., 2007Dendrobium ochreatumImage: StemYang et al., 2007	Nobilin B [197]	Bibenzyl	Stem	Zhang et al., 2006
Nobilin E [200]BisbibenzylStem2007aNobilone [201]FluorenoneStemZhang et al., 2007aNudol [202]PhenanthreneStemYang et al., 2007Pinoresinol [203]LignanStemZhang et al., 2008bPlicatol A [204]PhenanthreneStemYang et al., 2007Protocatechuic acid [205]Phenonlic compoundStemYang et al., 2007Syringaresinol [206]LignanStemYang et al., 200710β,12,14-Trihydroxy- alloaromadendrane [207]SesquiterpeneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208] 3,4,8-TrimethoxyPhenanthreneStemYang et al., 2007Dendrobium ochreatumIIII	Nobilin C [198]	Bibenzyl	Stem	Zhang et al., 2006
Nobilin E [200]BisbibenzylStemZhang et al., 2007aNobilone [201]FluorenoneStemZhang et al., 2007aNudol [202]PhenanthreneStemYang et al., 2007Pinoresinol [203]LignanStemZhang et al., 2008bPlicatol A [204]PhenanthreneStemYang et al., 2007Protocatechuic acid [205]Phenolic compoundStemYang et al., 2007Syringaresinol [206]LignanStemZhang et al., 200210β,12,14-Trihydroxy- alloaromadendrane [207]SesquiterpeneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208] 3,4,8-TrimethoxyPhenanthreneStemYang et al., 2007 2010Dendrobium ochreatumIIIII	Nobilin D [199]	Bibenzyl	Stem	Zhang et al.,
Nobilone [201]FluorenoneStem2007aNudol [202]PhenanthreneStemZhang et al., 2007aNudol [202]PhenanthreneStemYang et al., 2007Pinoresinol [203]LignanStemZhang et al., 2008bPlicatol A [204]PhenanthreneStemYang et al., 2007Protocatechuic acid [205]PhenolicStemYe and Zhao, 2002Syringaresinol [206]LignanStemZhang et al., 2008b10β,12,14-Trihydroxy- alloaromadendrane [207]SesquiterpeneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208]PhenanthreneStemYang et al., 20073,4,8-Trimethoxy phenanthrene-2,5-diol [209]PhenanthreneStemHwang et al., 2010				2007a
Nobilone [201]FluorenoneStemZhang et al., 2007aNudol [202]PhenanthreneStemYang et al., 2007Pinoresinol [203]LignanStemZhang et al., 2008bPlicatol A [204]PhenanthreneStemYang et al., 2007Protocatechuic acid [205]PhenolicStemYe and Zhao, 2002Syringaresinol [206]LignanStemZhang et al., 2008b10β,12,14-Trihydroxy- alloaromadendrane [207]SesquiterpeneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208]PhenanthreneStemYang et al., 20073,4,8-Trimethoxy phenanthrene-2,5-diol [209]PhenanthreneStemHwang et al., 2010	Nobilin E [200]	Bisbibenzyl	Stem	Zhang et al.,
Nudol [202]PhenanthreneStem2007aPinoresinol [203]LignanStemYang et al., 2007Pinoresinol [203]LignanStemZhang et al., 2008bPlicatol A [204]PhenanthreneStemYang et al., 2007Protocatechuic acid [205]PhenolicStemYe and Zhao, 2002Syringaresinol [206]LignanStemZhang et al., 2008b10β,12,14-Trihydroxy- alloaromadendrane [207]SesquiterpeneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208]PhenanthreneStemYang et al., 20073,4,8-Trimethoxy phenanthrene-2,5-diol [209]PhenanthreneStemHwang et al., 2007				2007a
Nudol [202]PhenanthreneStemYang et al., 2007Pinoresinol [203]LignanStemZhang et al., 2008bPlicatol A [204]PhenanthreneStemYang et al., 2007Protocatechuic acid [205]PhenolicStemYe and Zhao, 2002Syringaresinol [206]LignanStemZhang et al., 2002Syringaresinol [206]LignanStemZhang et al., 2008b10β,12,14-Trihydroxy- alloaromadendrane [207]SesquiterpeneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208]PhenanthreneStemYang et al., 20073,4,8-Trimethoxy phenanthrene-2,5-diol [209]PhenanthreneStemHwang et al., 2010	Nobilone [201]	Fluorenone	Stem	Zhang et al.,
Pinoresinol [203]LignanStemZhang et al., 2008bPlicatol A [204]PhenanthreneStemYang et al., 2007Protocatechuic acid [205]Phenolic compoundStemYe and Zhao, 2002Syringaresinol [206]LignanStemZhang et al., 2008b10β,12,14-Trihydroxy- alloaromadendrane [207]Sesquiterpene PhenanthreneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208] 3,4,8-TrimethoxyPhenanthreneStemYang et al., 2007PhenanthreneStemStemYang et al., 2007Dendrobium ochreatumIIII				2007a
Plicatol A [204]PhenanthreneStem2008bProtocatechuic acid [205]Phenolic compoundStemYe and Zhao, 2002Syringaresinol [206]LignanStemZhang et al., 2008b10β,12,14-Trihydroxy- alloaromadendrane [207]Sesquiterpene PhenanthreneStemYe and Zhao, 2008b2,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208] 3,4,8-TrimethoxyPhenanthrene PhenanthreneStemYang et al., 2007 2002Dendrobium ochreatumImage: Compound PhenanthreneStemYang et al., 2007 2002	Nudol [202]	Phenanthrene	Stem	Yang <i>et al.</i> , 2007
Plicatol A [204]PhenanthreneStemYang et al., 2007Protocatechuic acid [205]PhenolicStemYe and Zhao, 2002Syringaresinol [206]LignanStemZhang et al., 2008b10β,12,14-Trihydroxy- alloaromadendrane [207]SesquiterpeneStemYe and Zhao, 2008b2,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208]PhenanthreneStemYang et al., 20073,4,8-Trimethoxy phenanthrene-2,5-diol [209]PhenanthreneStemHwang et al., 2010	Pinoresinol [203]	Lignan	Stem	Zhang et al.,
Protocatechuic acid [205]Phenolic compoundStemYe and Zhao, 2002Syringaresinol [206]LignanStemZhang et al., 2008b10β,12,14-Trihydroxy- alloaromadendrane [207]Sesquiterpene PhenanthreneStemYe and Zhao, 2008b2,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208] 3,4,8-TrimethoxyPhenanthrene PhenanthreneStemYang et al., 2007Dendrobium ochreatumImage: Value of the state of the stat				2008b
Syringaresinol [206]compound2002Syringaresinol [206]LignanStemZhang et al., 2008b10β,12,14-Trihydroxy- alloaromadendrane [207]SesquiterpeneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208] 3,4,8-TrimethoxyPhenanthreneStemYang et al., 2007Phenanthrene phenanthrene -2,5-diol [209]PhenanthreneStemHwang et al., 2010	Plicatol A [204]	Phenanthrene	Stem	Yang <i>et al.</i> , 2007
Syringaresinol [206]LignanStemZhang et al., 2008b10β,12,14-Trihydroxy- alloaromadendrane [207]Sesquiterpene 2002StemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208] 3,4,8-TrimethoxyPhenanthrene PhenanthreneStemYang et al., 20079Phenanthrene 2,5-diol [209]StemStemYang et al., 20070Dendrobium ochreatumImage: state of the state of	Protocatechuic acid [205]	Phenolic	Stem	Ye and Zhao,
10β,12,14-Trihydroxy- alloaromadendrane [207]SesquiterpeneStem2008b Ye and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208] 3,4,8-Trimethoxy phenanthrene-2,5-diol [209]Phenanthrene PhenanthreneStemYang et al., 2007 Hwang et al., 2010Dendrobium ochreatumImage: test of		compound		2002
10β,12,14-Trihydroxy- alloaromadendrane [207]SesquiterpeneStemYe and Zhao, 20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208] 3,4,8-Trimethoxy phenanthrene-2,5-diol [209]PhenanthreneStemYang et al., 2007Dendrobium ochreatumImage: Value of the second secon	Syringaresinol [206]	Lignan	Stem	Zhang et al.,
alloaromadendrane [207]20022,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208]PhenanthreneStemYang et al., 20073,4,8-Trimethoxy phenanthrene-2,5-diol [209]PhenanthreneStemHwang et al., 2010Dendrobium ochreatumImage: Comparison of the state of				2008b
2,3,5-Trihydroxy-4,9-di methoxyphenanthrene [208]PhenanthreneStemYang et al., 20073,4,8-Trimethoxy phenanthrene-2,5-diol [209]PhenanthreneStemHwang et al., 2010Dendrobium ochreatumImage: Comparison of the state of th	10β,12,14-Trihydroxy-	Sesquiterpene	Stem	Ye and Zhao,
methoxyphenanthrene [208] 3,4,8-Trimethoxy phenanthrene-2,5-diol [209]PhenanthreneStemHwang <i>et al.</i> , 2010Dendrobium ochreatumImage: state of the state of th	alloaromadendrane [207]			2002
methoxyphenanthrene [208] 3,4,8-Trimethoxy phenanthrene-2,5-diol [209]PhenanthreneStemHwang <i>et al.</i> , 2010Dendrobium ochreatumImage: state of the state of th				
3,4,8-Trimethoxy phenanthrene-2,5-diol [209]PhenanthreneStemHwang et al., 2010Dendrobium ochreatumImage: state of the stat	2,3,5-Trihydroxy-4,9-di	Phenanthrene	Stem	Yang <i>et al.</i> , 2007
phenanthrene-2,5-diol [209] 2010 Dendrobium ochreatum	methoxyphenanthrene [208]			
Dendrobium ochreatum	3,4,8-Trimethoxy	Phenanthrene	Stem	Hwang et al.,
	phenanthrene-2,5-diol [209]			2010
Dendrosteroside [210] Steroid alvooside Whole plant Rehr and Loandor	Dendrobium ochreatum			
Bendrosterostae [210] Steroid grycostae whole plant Beni and Leander,	Dendrosteroside [210]	Steroid glycoside	Whole plant	Behr and Leander,
1976				1976

Plant and compound	Category	Plant part	Reference
Epi-ochreasteroside [211]	Steroid glycoside	Whole plant	Behr and Leander,
			1976
Ochreasteroside [212]	Steroid glycoside	Whole plant	Behr and Leander,
			1976
Dendrobium plicatile			
Batatasin [116]	Bibenzyl	Stem	Yamaki and
			Honda, 1996
2,2'-Dimethoxy-4,4',7,7'-	Biphenanthrene	Stem	Yamaki and
tetrahydroxy-9,9',10,10'-tetra			Honda, 1996
hydro-1,1'-biphenanthrene			
[213]			
Ephemeranthoquinone [214]	Phenanthrene	Stem	Yamaki and
			Honda, 1996
Epheranthol B [215]	Phenanthrene	Stem	Yamaki and
			Honda, 1996
Erianthridin [184]	Phenanthrene	Stem	Yamaki and
			Honda, 1996
Lusianthridin [16]	Phenanthrene	Stem	Yamaki and
			Honda, 1996
3-O-Methylgigantol [36]	Bibenzyl	Stem	Yamaki and
			Honda, 1996
Plicatol A [204]	Phenanthrene	Stem	Honda and
			Yamaki, 2000
Plicatol B [216]	Phenanthrene	Stem	Honda and
			Yamaki, 2000
Plicatol C [217]	Phenanthrene	Stem	Honda and
			Yamaki, 2000

Plant and compound	Category Plant part		Reference	
Dendrobium polyanthum				
Batatasin [116]	Bibenzyl Stem		Hu et al., 2009	
Corchoionoside C [218]	Sesquiterpene Stem		Hu et al., 2009	
Daucosterol [37]	Steroid glycoside Stem		Hu et al., 2009	
9,10-Dihydromoscatin [219]	Phenanthrene Stem		Hu et al., 2009	
9,10-Dihydrophenanthrene-	Phenanthrene	Phenanthrene Stem		
2,4,7-triol [220]				
Gigantol [14]	Bibenzyl	Stem	Hu et al., 2009	
Moscatilin [8]	Bibenzyl	ibenzyl Stem		
Moscatin [17]	Phenanthrene	Stem	Hu et al., 2009	
β-Sitosterol [44]	Steroid	Stem	Hu et al., 2009	
3,6,9-Trihydroxy-3,4-	Anthracene	Stem	Hu et al., 2009	
dihydroanthracen-1(2H)-one				
[221]				
Dendrobium rotundatum				
Batatasin III [9]	Bibenzyl	Whole plant	Majumder and	
			Pal, 1992	
2,7-Dihydroxy-3,4,6-	Phenanthrene	Whole plant	Majumder and	
trimethoxy-9,10-			Pal, 1992	
dihydrophenanthrene [222]				
2,7-Dihydroxy-3,4,6-tri-	Phenanthrene	Whole plant	Majumder and	
methoxyphenanthrene [223]			Pal, 1992	
Moscatin [17]	Phenanthrene	Whole plant	Majumder and	
			Pal, 1992	
Nudol [202]	Phenanthrene	Whole plant	Majumder and	
		r	Pal, 1992	
Rotundatin [113]	Phenanthrene	Whole plant	Majumder and	
		L L	Pal, 1992	
			, ,	

Plant and compound	Category	Plant part	Reference	
Dendrobium secundum				
Brittonin A [224]	Bibenzyl	Stem	Sritularak et al.,	
			2011b	
Ferulic acid [225]	Phenylpropanoid	Stem	Sritularak et al.,	
			2011b	
Moscatilin [8]	Bibenzyl	Stem	Sritularak et al.,	
			2011b	
Syringaresinol [206]	Lignan	Stem	Sritularak et al.,	
			2011b	
4,5,4'-Trihydroxy-3,3'-	Bibenzyl	Stem	Sritularak et al.,	
dimethoxybibenzyl [226]			2011b	
Dendrobium thyrsiforum				
Chrysophanol [227]	Anthraquinone	Stem	Zhang <i>et al.</i> , 2005	
Daucosterol [37]	Steroid glycoside	Stem	Zhang <i>et al.</i> , 2005	
Denthyrsin [228]	Coumarin	Stem	Zhang <i>et al.</i> , 2005	
Denthyrsinin [229]	Phenanthrene	Stem	Zhang <i>et al.</i> , 2005	
Denthyrsinol [230]	Biphenanthrene	Stem	Zhang et al., 2005	
Denthyrsinone [231]	Biphenanthrene	Stem	Zhang et al., 2005	
Emodin [232]	Anthraquinone	Stem	Zhang <i>et al.</i> , 2005	
Physcion [233]	Anthraquinone	Stem	Zhang et al., 2005	
Scoparone [73]	Coumarin	Stem	Zhang et al., 2005	
β-Sitosterol [44]	Steroid	Stem	Zhang <i>et al.</i> , 2005	

Plant and compound	Category	Category Plant part		
Dendrobium trigonopus				
Gigantol [14]	Bibenzyl	Stem	Hu et al., 2008b	
Hircinol [77]	Bibenzyl	Stem	Hu et al., 2008b	
3-(4-Hydroxy-3-methoxy	Phenylpropanoid	Stem	Hu et al., 2008b	
phenyl)-2-propen-1-ol [234]				
Moscatin [17]	Phenanthrene	Stem	Hu et al., 2008b	
Naringenin [27]	Flavanone	Stem	Hu et al., 2008b	
(-)-Syringaresinol [206]	Lignan	Stem	Hu et al., 2008b	
Trigonopol A [235]	Bibenzyl	Stem	Hu et al., 2008b	
Trigonopol B [236]	Bibenzyl	Stem	Hu et al., 2008b	
Tristin [76]	Bibenzy	Stem	Hu et al., 2008b	

 R_2

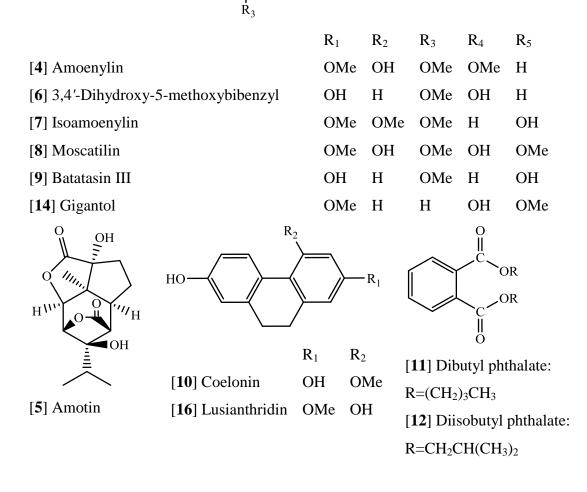


Figure 3 Structures of compounds previously isolated from Dendrobium species

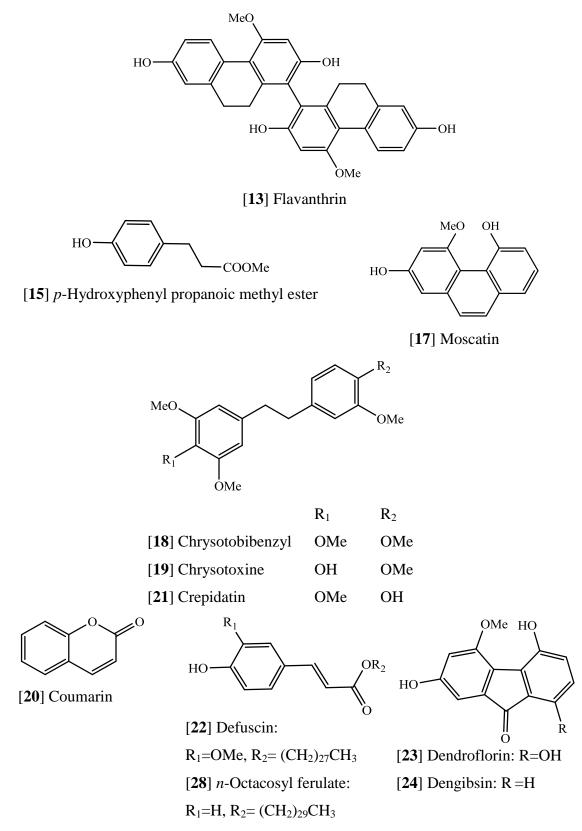
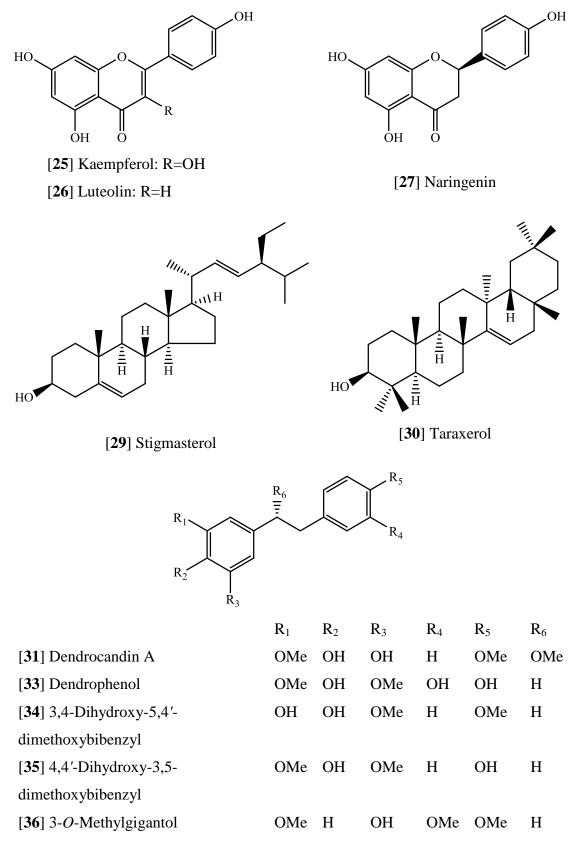



Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

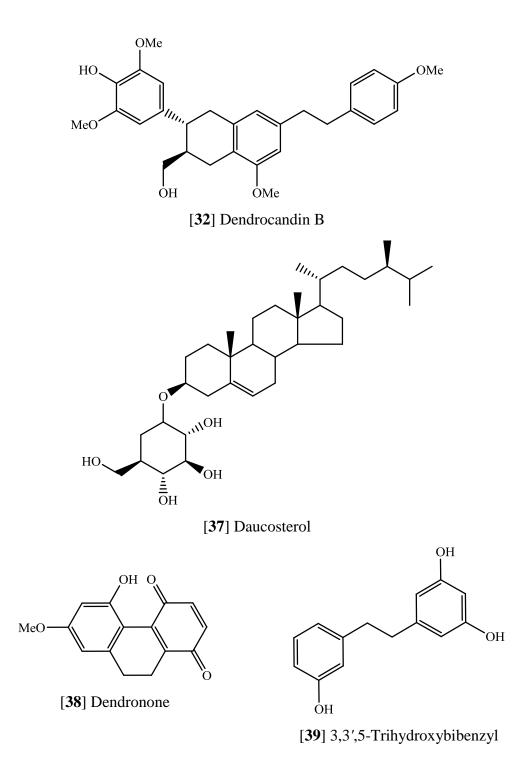


Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

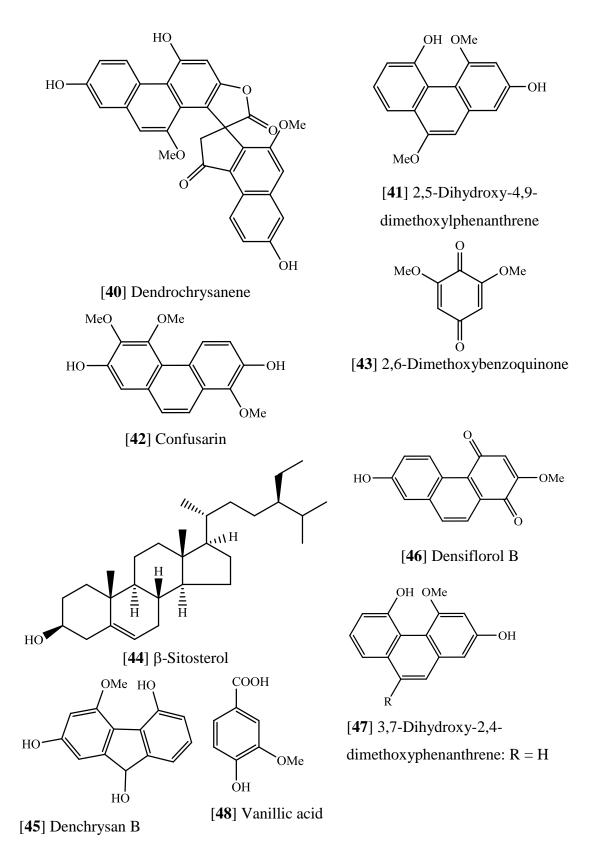


Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

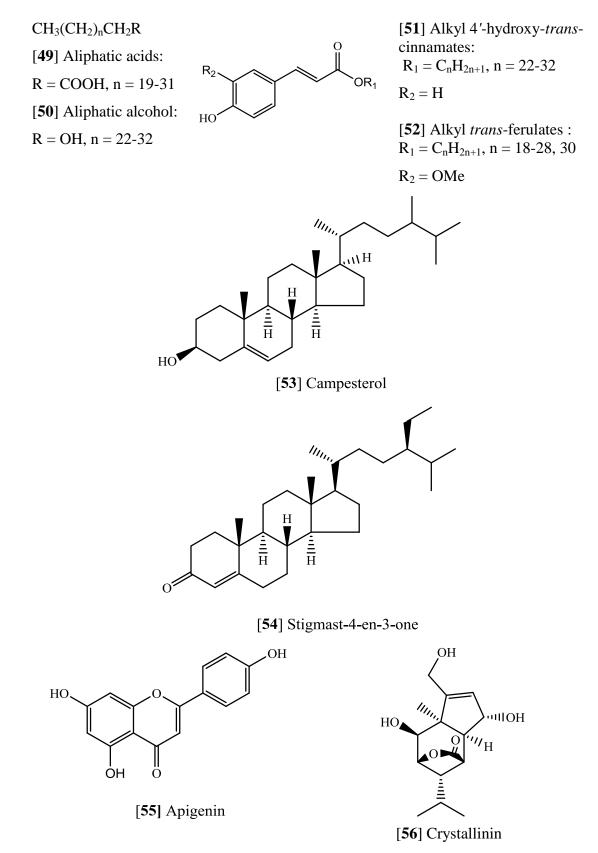


Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

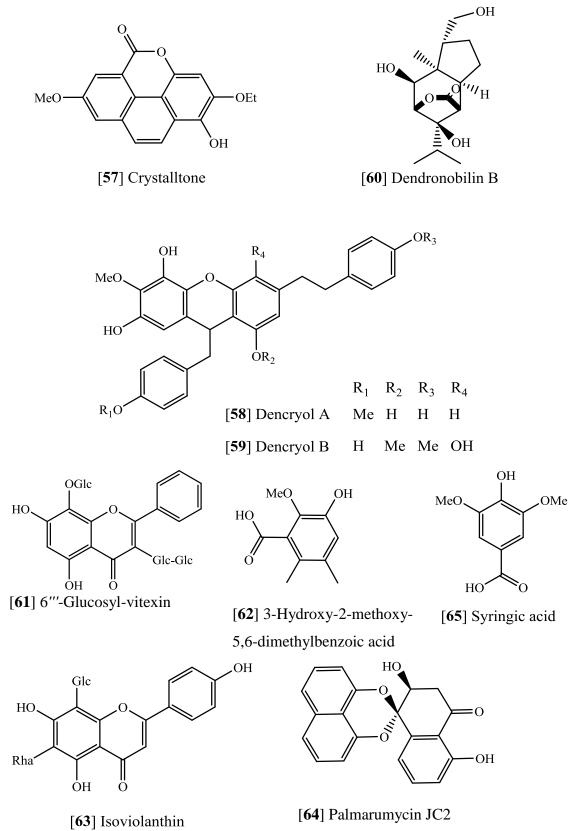
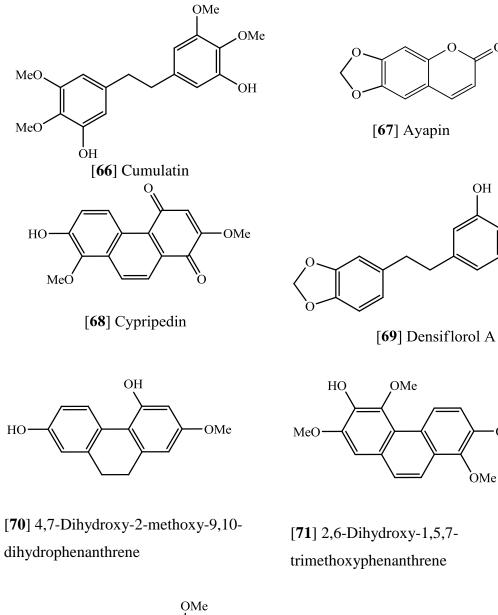
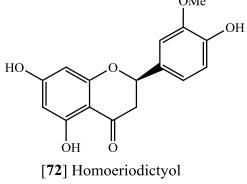
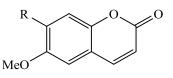





Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

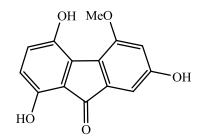
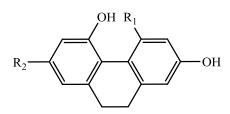
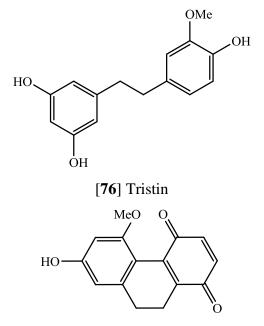

[**73**] Scoparone: R = OMe [74] Scopoletin: R = H

Figure 3 Structures of compounds previously isolated from Dendrobium species (continued)

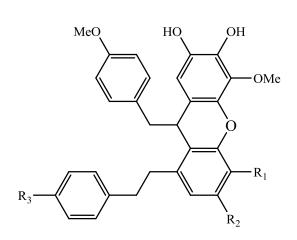
OMe

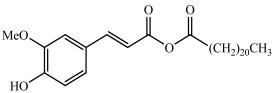

OH

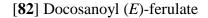
,0



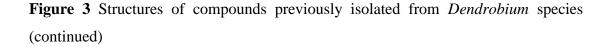
[75]1,4,7-Trihydroxy-5-methoxy-9H-


fluoren-9-one

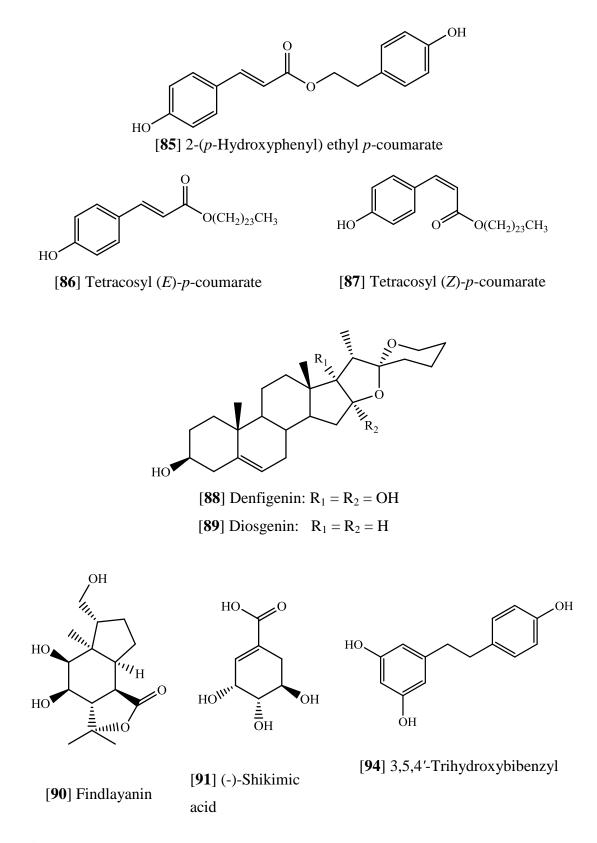
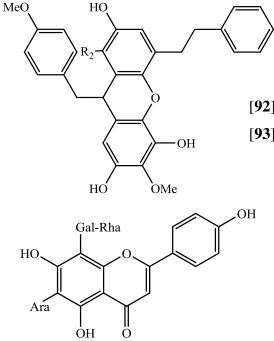

[77] Hircinol: $R_1 = OMe$, $R_2 = H$ [78] 7-Methoxy-9,10-dihydrophenan threne-2,4,5-triol: $R_1 = OH$, $R_2 = OMe$

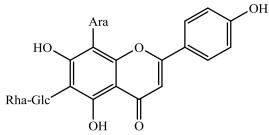


[79] 5-Methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone


[80] Dendrofalconerol A: $R_1 = OH, R_2 = OMe, R_3 = OMe$ [81] Dendrofalconerol B: $R_1 = H, R_2 = OH, R_3 = OH$

[83] *p*-Hydroxybenzaldehyde: R = H[84] *p*-Hydroxybenzoic acid: R = OH

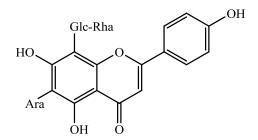




Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

[95] 6-C-(α-Arabinopyranosyl)-8-C-

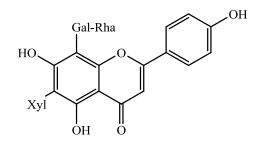
[(2-O-α-rhamnopyranosyl)-

 β -galactopyranosyl]apigenin

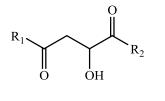

[102] 6-*C*-[(2-*O*-α-Rhamnopyranosyl)-

 β -glucopyranosyl]-8-C-(α -

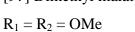
arabinopyranosyl)apigenin


[92] Dengraol A: R₁ = R₂ = H
[93] Dengraol B: R₁ = Me, R₂ = OMe

OR₁


[96] 6-*C*-(α -Arabinopyranosyl)-8-*C*-[(2-*O*- α -rhamnopyranosyl)-

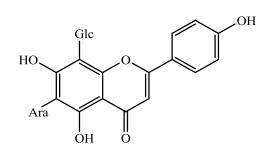
 β -glucopyranosyl]apigenin



[**104**] 6-*C*-(β -Xylopyranosyl)-8-*C*-[(2-*O*- α -rhamnopyranosyl)- β -gluco

pyranosyl]apigenin

[97] Dimethyl malate:



[**100**] Malic acid:

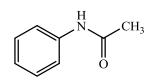
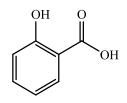
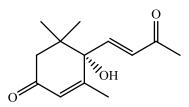
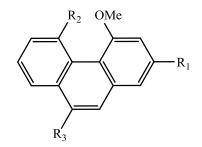

[98] Isopentyl butyrate

Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

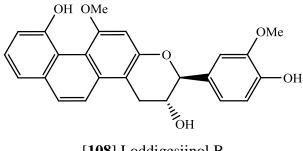

 $R_1 = R_2 = OH$


[99] Isoschaftoside



[**101**] *N*-phenylacetamide

[103] Salicylic acid



[105] Dehydrovomifoliol

[106] 5-Hydroxy-2,4-dimethoxyphenanthrene: $R_1 = OMe, R_2 = OH, R_3 = H$

[107] Loddigesiinol A: $R_1 = OH$, $R_2 = OMe$, $R_3 = OH$

[108] Loddigesiinol B

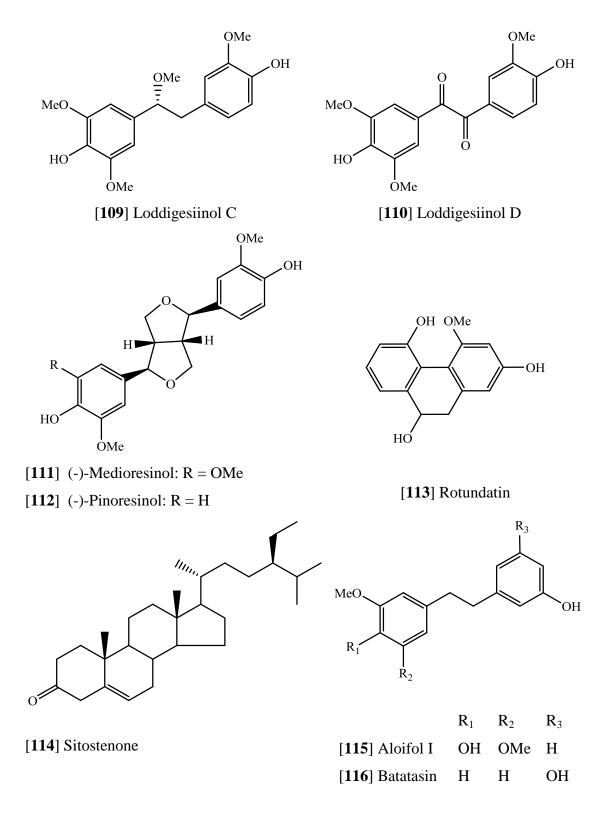
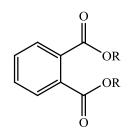
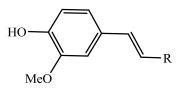
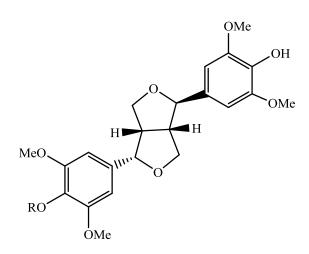
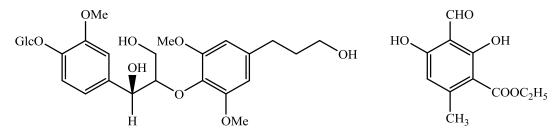




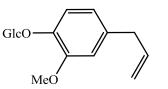
Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

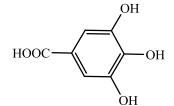


[117] Bis(2-ethylhexyl)phthalate: $R = CH_2CH(C_2H_5)(CH_2)_3CH_3$

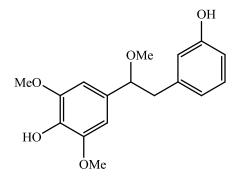

[118] *n*-Docosyl *trans*-ferulate: $R = COOCH_2(CH_2)_{20}CH_3$ [124] Ferulaldehyde: R = CHO

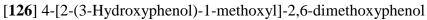
[122] Ethylhaematommate




[**119**] Episyringaresinol: R = H

[120] Episyringaresinol 4"-O- β -D-glucopyranoside: R = β -D-Glucose


[**121**] Erythro-1-(4-*O*-β-D-glucopyranosyl-3-methoxy phenyl)-2-[4-(3-hydroxypropyl)-2,6-dimethoxy phenoxy]-1,3-propanediol



[125] Gallic acid

[**123**] Eugenyl -*O*-β-D-glucopyranoside

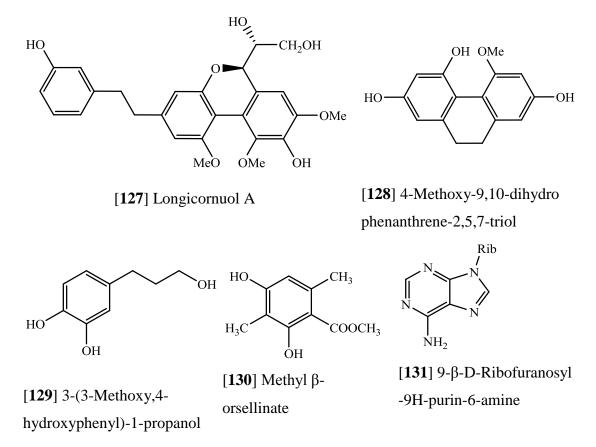
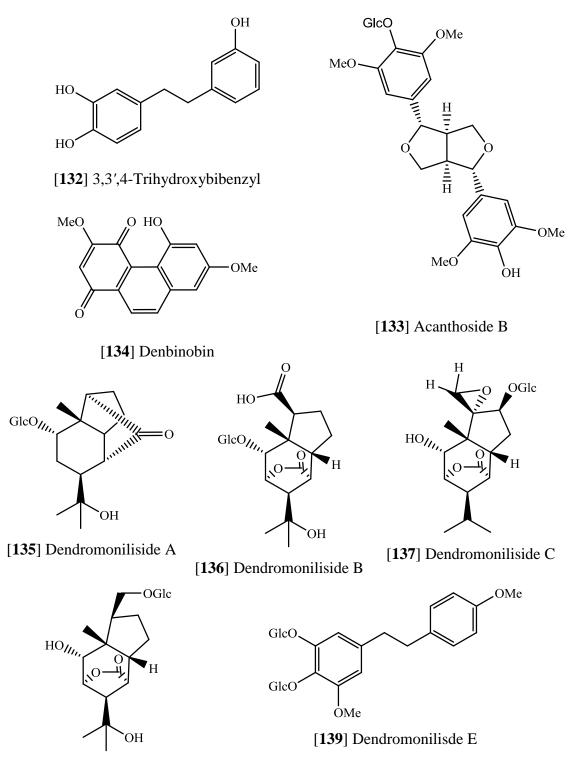
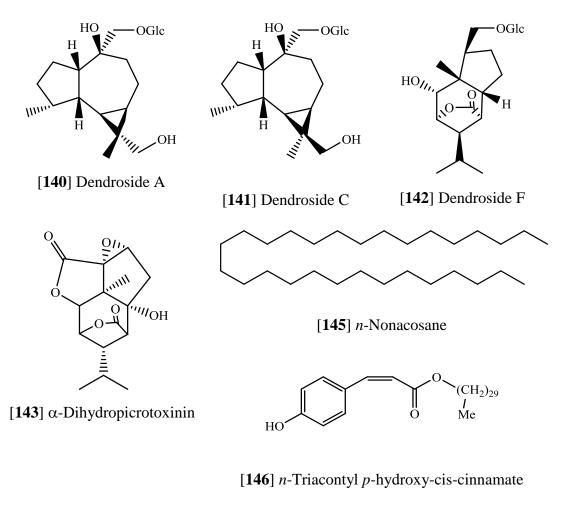




Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

[138] Dendromoniliside D

[149] Dendrobane A

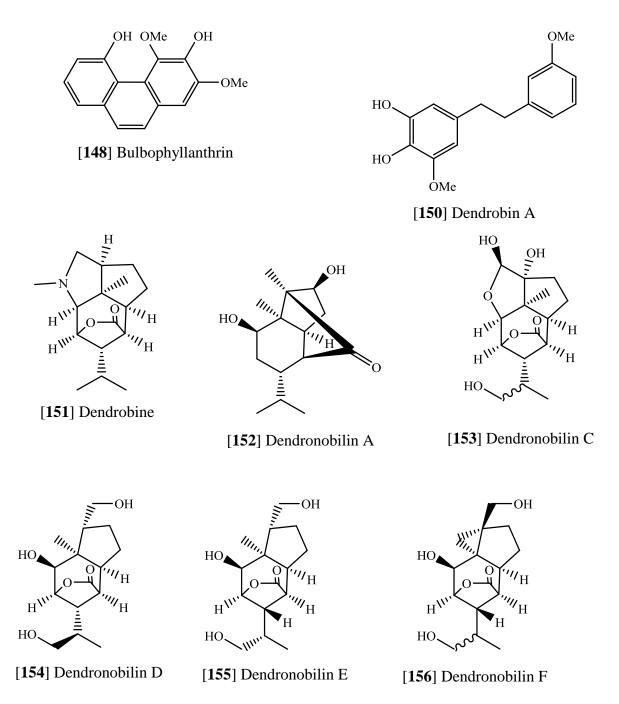


Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

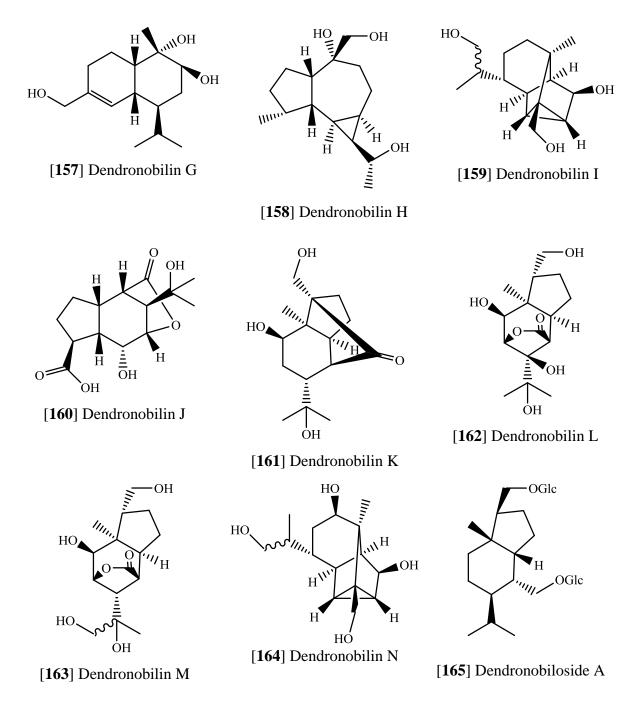


Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

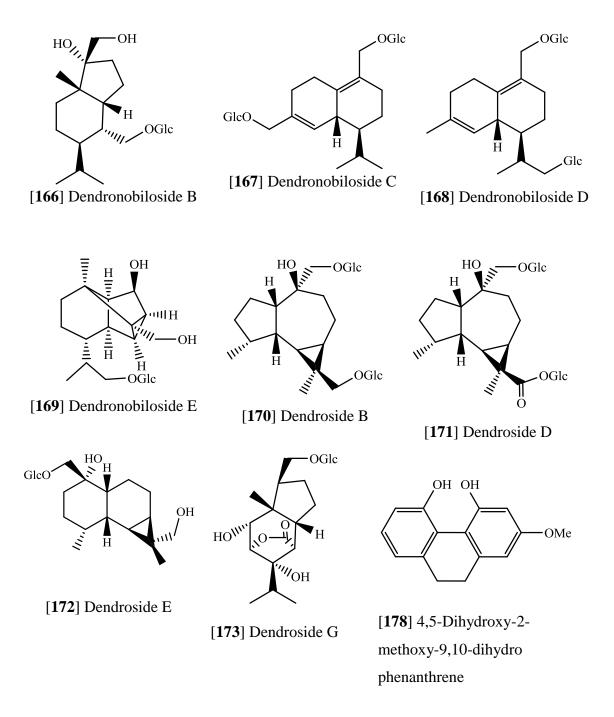
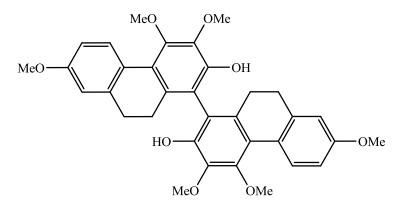
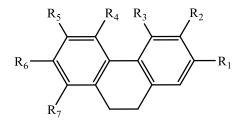
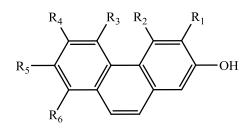
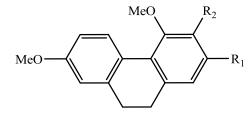
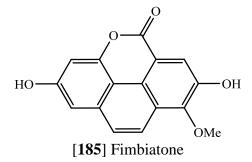
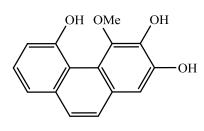




Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

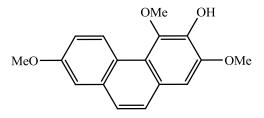

[**177**] 2,2'-Dihydroxy-3,3',4,4',7,7'-hexamethoxy-9,9',10,10'-tetrahydro-1,1'biphenanthrene


	\mathbf{R}_1	\mathbf{R}_2	R_3	\mathbf{R}_4	R_5	R_6	R_7
[174] 4,5-Dihydroxy-3,7-	Н	OMe	OH	OH	Н	OMe	Н
dimethoxy-9,10-							
dihydrophenanthrene							
[179] 2,8-Dihydroxy-3,4,7-	OH	OMe	OMe	Н	Н	OMe	OH
trimethoxy-9,10-							
dihydrophenanthrene							
[182] Ephemeranthol A	OH	Н	Η	OH	OMe	OMe	Н
[183] Ephemeranthol C	OH	OH	OMe	OH	Н	Н	Н
[184] Erianthridin	OH	OMe	OMe	Η	Н	OH	Н
[187] Flavanthridin	OH	Н	Η	OMe	OH	OMe	Н

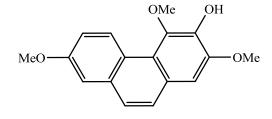

[175] 3,4'-Dihydroxy-5,5'-dimethoxydihydrostilbene

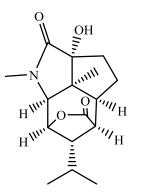


	R_1	R_2	R ₃	R_4	R_5	R_6
[176] 2,5-Dihydroxy-3,4-	OMe	OMe	OH	Н	Н	Η
dimethoxyphenanthrene						
[180] 2,8-Dihydroxy-3,4,7-	OMe	OMe	Н	Н	OMe	OH
trimethoxyphenanthrene						
[181] 5,7-Dimethoxy	Н	Н	OMe	OH	OMe	Η
phenanthrene-2,6-diol						



R1R2[189] 2-Hydroxy-4,7-dimethoxy-9,10-dihydrophenanthreneOHH[192] 2-Hydroxy-3,4,7-trimethoxy-9,10-dihydrophenanthreneOHOMe[193] 3-Hydroxy-2,4,7-trimethoxy-9,10-dihydrophenanthreneOMeOH




[186] Fimbriol B


[188] Flavanthrinin

[**194**] 3-Hydroxy-2,4,7trimethoxyphenanthrene

[190] 3-Hydroxy-2-oxodendrobine

[191] 4-Hydroxy-3,5,3'-trimethoxybibenzyl

Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

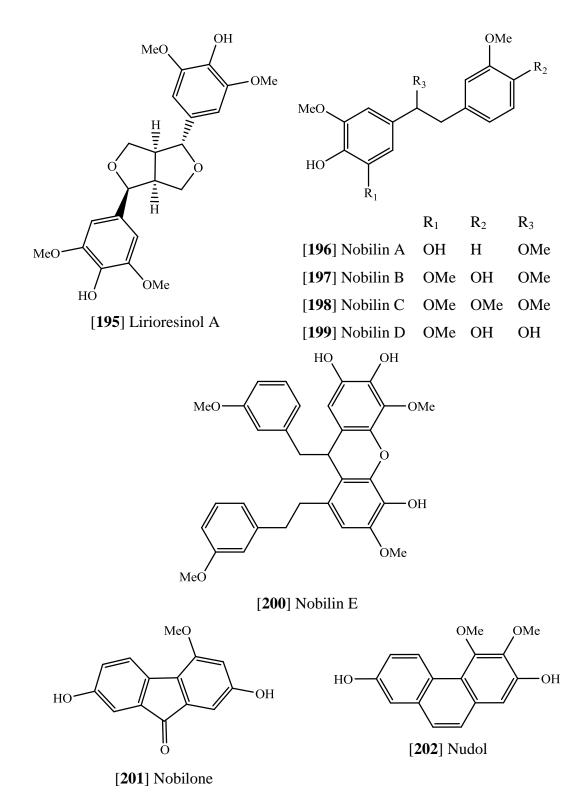
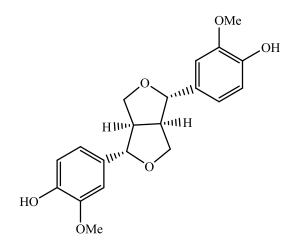
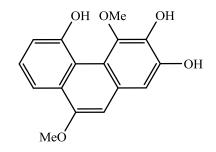
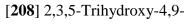
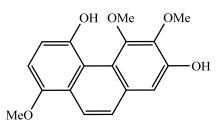
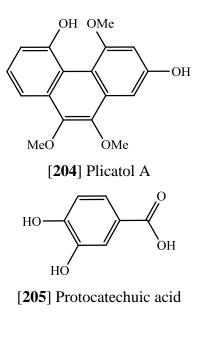
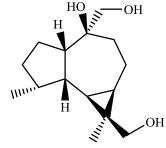





Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)

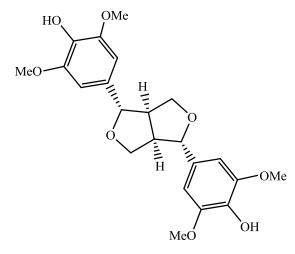


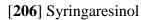
[203] Pinoresinol

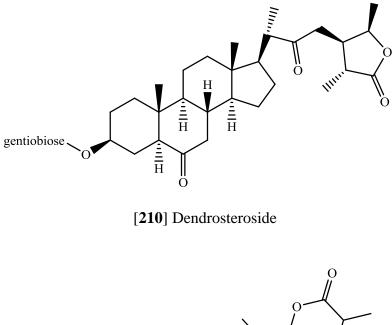


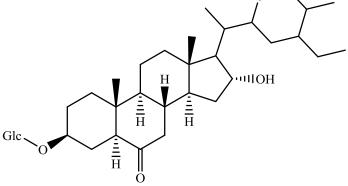


dimethoxyphenanthrene

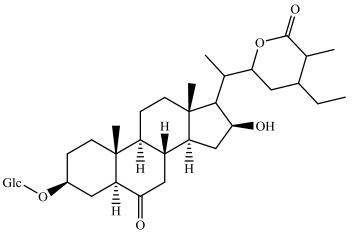


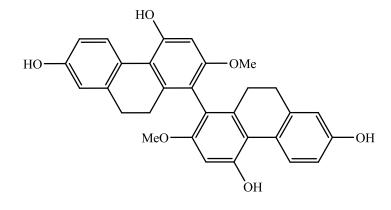

[**209**] 3,4,8-Trimethoxy phenanthrene-2,5-diol

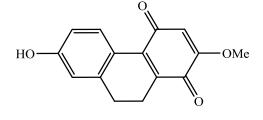


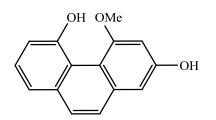


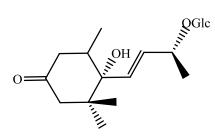
[**207**] 10β,12,14-Trihydroxyalloaromadendrane

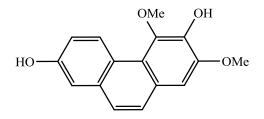


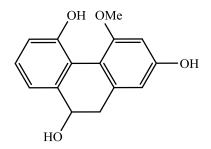


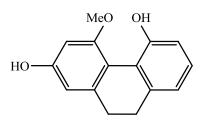

[211] Epi-ochreasteroside

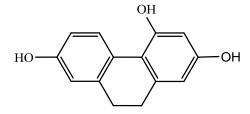

[212] Ochreasteroside

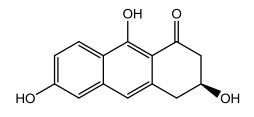

[**213**] 2,2'-Dimethoxy-4,4',7,7'-tetrahydroxy-9,9',10,10'-tetrahydro-1,1'biphenanthrene


[214] Ephemeranthoquinone


[216] Plicatol B

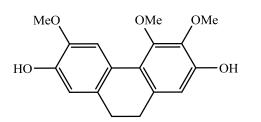

[218] Corchoionoside C

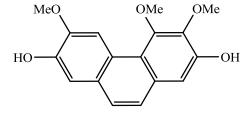

[215] Epheranthol B



[217] Plicatol C

[219] 9,10-Dihydromoscatin



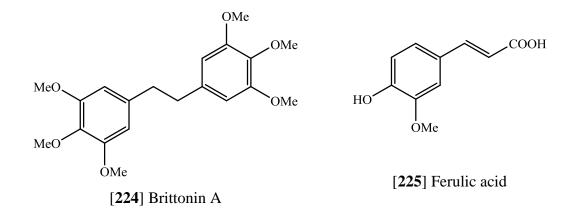
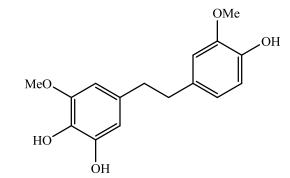
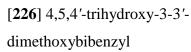
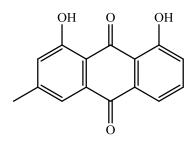
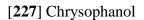

[221] 3,6,9-Trihydroxy-3,4-

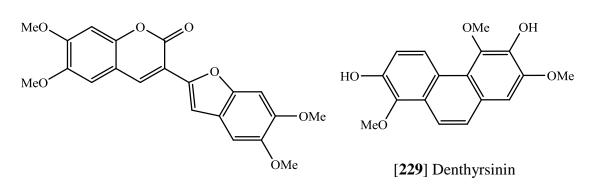
dihydroanthracen-1(2H)-one

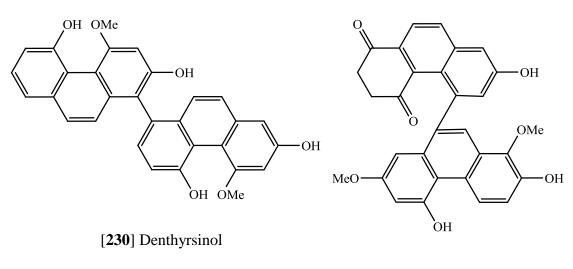
[220] 9,10-Dihydrophenanthrene-2,4,7-triol

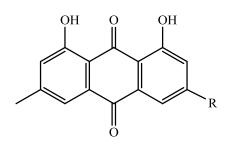
[**222**] 2,7-Dihydroxy-3,4,6-trimethoxy-9,10dihydrophenanthrene

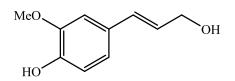
[**223**] 2,7-Dihydroxy-3,4,6trimethoxyphenanthrene

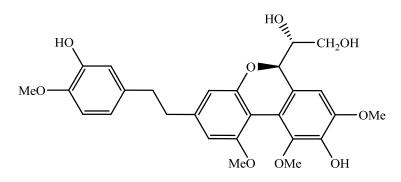

Figure 3 Structures of compounds previously isolated from *Dendrobium* species (continued)



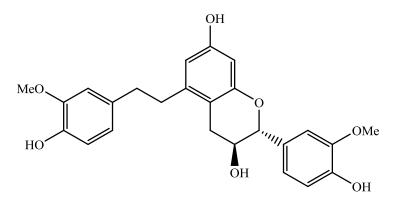



[228] Denthyrsin

[231] Denthyrsinone



[**232**] Emodin: R = OH [**233**] Physcion: R = OMe



[234] 3-(4-Hydroxy-3-methoxyphenyl)-

2-propen-1-ol

[235] Trigonopol A

[236] Trigonopol B

2. Traditional uses and biological activities of *Dendrobium* species.

Several plants in the genus *Dendrobium* have beautiful flowers and are widely cultivated as decorative plants. In China, these orchids are also used in traditional medicine to treat kidney, lung and stomach diseases, fever, red tongue, dry mouth, swelling, hyperglycaemia, atrophic gastritis and diabetes (Hossain, 2011). A well-known formulation, "Shi-Hu" (Herba Dendrobii), consists of dry or fresh stems of several *Dendrobium* species including *D. loddigesii*, *D. fimbriatum*, *D. chrysanthum*, *D. candidum* and *D. nobile*.

Several biological activities have been reported for plants in the genus *Dendrobium*, for example, cytotoxic, antioxidative, antiinflammatory, antiplatelet aggregation and spasmolytic properties.

Examples of cytotoxic compounds from *Dendrobium* plants are coelonin [10] and denbinobin [134] from *D. nobile*, which could inhibit the proliferation of hepatic stellate cell (HSCs-T6) (Yang *et al.*, 2007). Denthyrsin [228] from *D. thyrsiflorum* exhibited cytotoxicity against several cancer cell lines including Hela, K-562, and MCF-7 (Zhang *et al.*, 2005). The bibenzyl moscatilin [8], isolated from several plants of this genus, showed strong cytotoxicity against several cancer cell lines. In addition, this compound was able to induce apoptosis in colorectal cancer cell lines through tubulin depolymerization and DNA damage stress. These results led to the activation of C-Jun NH₂-terminal protein kinase (JNK) and mitochondria-involved intrinsic apoptosis pathway (Chen *et al.*, 2008). Moscatilin also showed anti-angiogenic effect *in vitro* and *in vivo* by inhibiting angiogenic factor signaling pathways (Tsai *et al.*, 2010).

Phenanthrenes and bibenzyls, including gigantol [14], crepidatin [21], moscatin [17], moscatilin [8] and chrysotoxine [19], showed stronger antioxidative activity than BHA, which was used as the positive control, in the ferric thiocyanate assay (Zhang *et al.*, 2007a). Moreover, in the DPPH scavenging and ORAC assays, crepidatin [21], chrysotoxine [19] and moscatilin [8] showed stronger activity than or equivalent to vitamin C (Ono *et al.*, 1995).

In the antiinflammation studies, it was found that moscatin [17], lusianthridin [16], hircinol [77] and coelonin [10] could inhibit the lipopolysaccharides-induced nitric oxide secretion from macrophage cells (RAW 264.7) (Hwang *et al.*, 2010).

Furthermore, denbinobin [134] from *D. moniliforme* showed good inhibitory activity against tumour necrosis factor α (TNF- α) and prostaglandin E2 secretion in the same macrophage cell line and in N9 (murine microglial) cell line (Lin *et al.*, 2001).

The antiplatelet effects of principles from *D. loddigesii* were studied on the aggregation of washed rabbit platelets induced by thrombin, arachidonic acid (AA), collagen, and platelet activating factor (PAF), and the results revealed that moscatilin [8] and moscatin [17] strongly inhibited both AA- and collagen induced platelet aggregations (Chen *et al.*, 1994). Later, the active principles isolated from *D. densiflorum*, including gigantol [14], moscatilin [8], homoeriodictyol [72], scoparone [73] and scopoletin [74], were found to exhibit antiplatelet aggregation activity on rat platelets *in vitro* (Fan *et al.*, 2001).

In the spasmolytic effect study of stilbenoids from *Nidema boothii* (Lindl.) Schltr. (Orchidaceae), bibenzyls, such as gigantol [14] and batatasin III [9] were shown to induce notable concentration-dependent inhibition of spontaneous contractions of the guinea-pig ileum by effect on nitrergic mechanism and inhibiting CaM-mediated processes (Romero *et al.*, 2007).

CHAPTER III

EXPERIMENTAL

1. Source of plant materials

The whole plants of *Dendrobium capillipes* Rchb.f. and *Dendrobium secundum* (Blume) Lindl. (Family Orchidaceae) were purchased from Jatujak market. Botanical identification was done by Associate Professor Thatree Phadungcharoen through comparison of the specimens with authentic samples (BKF No. 114946 and 110498 for *D. capillipes* and *D. secundum*, respectively) at the Department of National Park, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment. Voucher specimens (DC-082553 and DS/BS-092552) have been deposited at Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

2. General techniques

2.1 Analytical thin-layer chromatography (TLC)

Technique	:	One dimension ascending
Absorbent	:	Silica gel 60 F ₂₅₄ (E. Merck) precoated plate
Layer thickness	:	0.2 mm
Distance	:	6.5 cm
Temperature	:	Laboratory temperature (30-35°C)
Detection	:	1. Ultraviolet light at wavelengths of 254 and 365 nm
		2. Spraying with 0.5% anisaldehyde reagent (0.5 mL
		anisaldehyde, 10 mL glacial acetic acid, 85 mL
		methanol, 5 mL conc sulfuric acid) and heating at
		105 °C for 10 min.

2.2 Column Chromatography

2.2.1 Vacuum liquid chromatography (VLC)

Adsorbent	:	Silica gel 60 (No. 7734) particle size 0.063-0.200 mm
		(E. Merck)
Packing method	:	Dry packing
Sample loading	:	The sample was dissolved in a small amount of
		organic solvent, mixed with a small quantity of the
		adsorbent, triturated, dried and then gradually placed on
		top of the column.
Detection	:	Each fraction was determined by TLC under UV light
		at the wavelengths of 254 and 365 nm.

2.2.2 Flash column chromatography (FCC)

Adsorbent	:	Silica gel 60 (No. 9385) particle size 0.040-0.063 mm
		(E. Merck)
Packing method	:	Wet packing
Sample loading	:	The sample was dissolved in a small amount of
		the organic solvent, mixed with a small quantity of the
		adsorbent, triturated, dried and then gradually
		distributed on top of the column.
Detection	:	Fractions were examined in the same way as
		described in section 2.2.1

2.2.3 Gel filtration chromatography

Adsorbent	:	Sephadex LH-20 (Pharmacia)
Packing method	:	Suitable organic solvent was used as the eluent.
		Gel filter was suspended in the eluent, left standing
		about 24 hours prior to use and then poured into the
		column and allowed to set tightly.
Sample loading	:	The sample was dissolved in a small amount of
		the eluent and then gradually distributed on top of the
		column.

Detection	:	Fractions were determined in the same way as
		described in section 2.2.1

2.2.4 Ion exchange chromatography

Adsorbent	:	Diaion HP20SS (Mitsubishi Chemical Co.)
Packing method	:	The resin was suspended in methanol, then methanol
		was replaced with distilled water. The mixture was
		stirred and then allowed to stand for 10-15 min to give
		resin slurry. A small amount of deionized water was
		added to an empty column and the resin slurry was
		slowly poured into the column.
Sample loading	:	The sample was dissolved in a small amount of the
		eluent and then gradually distributed on top of the
		column.
Detection	:	Fractions were examined in the same way as
		described in section 2.2.1

2.3 Spectroscopy

2.3.1 Mass spectra

Mass spectra were recorded either on a Bruker microTOF or Micromass LCT mass spectrometer (National Center for Genetic Engineering and Biotechnology).

2.3.2 Ultraviolet (UV) absorption spectra

UV (in methanol) spectra were obtained on a Shimadzu UV-160A UV/VIS spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.3.3 Infrared (IR) spectra

IR spectra were obtained on a Perkin-Elmer FT-IR 1760X spectrophotometer (Scientific and Technology Research Equipment Center, Chulalongkorn University).

2.3.4 Proton and carbon-13 nuclear magnetic resonance (¹H and ¹³C-NMR) spectra

¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were obtained with a Bruker Avance DPX-300 FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University).

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were obtained on a JEOL JMN-A 500 NMR spectrometer (500 MHz) (Scientific and Technology Research Equipment Center, Chulalongkorn University).

Deuterated solvents for NMR spectra were used, including deuterated chloroform (CDCl₃), deuterated methanol (CD₃OD), deuterated dimethyl sulfoxide (DMSO- d_6). Chemical shifts were reported in ppm scale using the chemical shift of the solvent as the reference signal.

2.4 Physical property

2.4.1 Optical rotations

Optical rotations were measured on a Perkin Elmer Polarimeter 341 (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.5 Solvents

All organic solvents employed throughout this work were of commercial grade and were redistilled prior to use.

3. Extraction and isolation

3.1 Dendrobium capillipes

3.1.1 Extraction

The dried whole plants (1.7 kg) were chopped, powdered and then macerated with methanol ($3\times5L$). The methanol extract was concentrated under vacuum to give 236 g of a crude extract.

3.1.2 Separation of methanol extract

Crude extract (236 g) was subsequently separated by vacuum liquid chromatography (VLC). The procedure was performed as described in section 2.2.1. Silica gel (No.7734, 700 g) was used as the stationary phase and a step gradient of *n*-hexane-EtOAc (100:0 to 0:100) and CH₂Cl₂-MeOH (19:1 to 0:100) as the mobile phase. The eluates, about 500 mL per fraction, were collected and examined by TLC (silica gel, *n*-hexane-EtOAc = 6:4) to yield forty-four fractions. Fractions with similar chromatographic patterns were combined to give seven fractions, including fractions 1 (329 mg), 2 (13.0 g), 3 (8.2 g), 4 (2.6 g), 5 (4.7 g), 6 (40.7 g), and 7 (81.0 g).

3.1.2.1 Isolation of compound DC1 (Chrysotobibenzyl)

Fraction 4 (2.6 g) was further separated by VLC on silica gel (No. 7734) with gradient elution of *n*-hexane-EtOAc (100:0 to 0:100). Sixty-one fractions were obtained and combined according to the similarity of their TLC patterns (silica gel, *n*-hexane-EtOAc = 8:2) to give thirteen fractions: 4A (86 mg), 4B (51 mg), 4C (15 mg), 4D (7 mg), 4E (19 mg), 4F (42 mg), 4G (8 mg), 4H (48 mg), 4I (171 mg), 4J (576 mg), 4K (601 mg), 4L (97 mg), and 4M (1.4 g).

Fraction 4J (576 mg) was separated by FCC using silica gel (No. 9385) as the stationary phase with isocratic elution (pet.ether-acetone = 4:1). Fractions with similar TLC patterns (silica gel, pet.ether-acetone = 4:1) were combined to yield five fractions: 4J1 (18 mg), 4J2 (95 mg), 4J3 (77 mg), 4J4 (246 mg), and 4J5 (18 mg).

Fraction 4J3 (77 mg) was purified on a Sephadex LH-20 column, eluted with acetone, to give compound DC1 as a yellowish powder (47 mg, R_f 0.4, silica gel, pet. ether-acetone = 7:3). It was identified as chrysotobibenzyl [**18**].

3.1.2.2 Isolation of compound DC2 (Crepidatin)

Fraction 4J4 (246 mg) was purified on a Sephadex LH-20 column, eluted with CH_2Cl_2 -MeOH (1:1), to give compound DC2 as a brownish powder (209 mg, $R_f 0.22$, silica gel, pet. ether-acetone = 7:3). It was identified as crepidatin [**21**].

3.1.2.3 Isolation of compound DC3 (Gigantol)

Fraction 4L (97 mg) was purified by FCC on silica gel (No. 9385) with isocratic elution (CH₂Cl₂-acetone = 49:1) to give compound DC3 as a dark brown amorphous solid (34 mg, R_f 0.16, silica gel, pet. ether-acetone = 7:3). It was identified as gigantol [14].

3.1.2.4 Isolation of compounds DC4 (Chrysotoxine) and DC5 (Moscatilin)

Fraction 5 (4.7 g) was separated by VLC on silica gel (No. 7734) with gradient elution [*n*-hexane-EtOAc (100:0 to 0:100) and then CH_2Cl_2 -MeOH (100:0 to 9:1)]. After combination of the fractions with similar TLC patterns, eleven fractions were obtained: 5A (4 mg), 5B (56 mg), 5C (672 mg), 5D (188 mg), 5E (35 mg), 5F (111 mg), 5G (972 mg), 5H (522 mg), 5I (897 mg), 5J (224 mg) and 5K (976 mg)

Fraction 5I (897 mg) was separated by FCC using silica gel (No. 9385) as the stationary phase with gradient elution (CH_2Cl_2 -acetone = 49:1 to 17:3) to yield nine fractions: 5I1 (84 mg), 5I2 (283 mg), 5I3 (44 mg), 5I4 (109 mg), 5I5 (17 mg), 5I6 (20 mg), 5I7 (59 mg), 5I8 (21 mg), and 5I9 (201 mg).

Fraction 5I2 (283 mg) was purified on a Sephadex LH-20 column, eluted with acetone, to give compound DC4 as a yellowish powder (122 mg, $R_f 0.24$, silica gel, pet. ether-acetone = 7:3). It was identified as chrysotoxine [**19**]. The same fraction also gave compound DC5 as pale yellow needle crytals (117 mg, $R_f 0.14$, silica gel, pet. ether-acetone = 7:3). It was identified as moscatilin [**8**].

3.1.2.5 Isolation of compound DC6 (Kaempferol-3-*O*-α-Lrhamnopyranosyl (1→2)-β-D-xylopyranoside, Lysimachiin)

Fraction 7 (50 g) was divided into two partions, and each partion was then separated on a Diaion HP20SS column with gradient elution [MeOH-H₂O (0:100 to 100:0) and then EtOAc-MeOH (0:100 to 100:0)] to give eleven fractions, including 7A (19.5 g), 7B (8.5 g), 7C (11.2 g), 7D (246 mg), 7E (1.0 g), 7F (325 mg), 7G (167 mg), 7H (247 mg), 7I (289 mg), 7J (212 mg), and 7K (3.2 g).

Fraction 7I (289 mg) was separated on a Sephadex LH-20 column (MeOH) to yield three fractions (7I1-7I3): 7I1 (150 mg), 7I2 (67 mg), and 7I3 (67 mg). Fraction 7I2 (67 mg) was purified by FCC (silica gel No.9385, EtOAc-MeOH- $H_2O = 96:3:1$) to give compound DC6 as a yellowish amorphous solid (47 mg, R_f 0.16, silica gel, EtOAc-MeOH- $H_2O = 18:1:1$). It was identified as kaempferol-3-*O*-α-L-rhamnopyranosyl (1→2)-β-D-xylopyranoside or lysimachiin [**238**].

3.1.2.6 Isolation of compound DC7 (Kaempferol-3-O- α -Lrhamnopyranosyl (1 \rightarrow 2)- β -D-glucopyranoside)

Fraction 7J (212 mg) was further separated on a Sephadex LH-20 column (MeOH) to yield six fractions: 7J1 (25 mg), 7J2 (19 mg), 7J3 (46 mg), 7J4 (24 mg), 7J5 (82 mg), and 7J6 (16 mg).

Fraction 7J4 (24 mg) was purified by FCC (silica gel No. 9385, EtOAc-MeOH-H₂O = 37:2:1) to give compound DC7 as a yellow powder (9 mg, R_f 0.12, silica gel, EtOAc-MeOH-H₂O = 18:1:1). It was identified as kaempferol-3-*O*-α-L-rhamnopyranosyl (1 \rightarrow 2)-β-D-glucopyranoside) [**239**].

3.1.2.7 Isolation of compound DC8 (Quercetin-3-O- α -Lrhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside)

Fraction 7J6 (16 mg) was further purified by FCC (silica gel No.9385, EtOAc-MeOH-H₂O = 94:3:3) to give compound DC8 as a greenish yellow amorphous solid (4 mg, R_f 0.10, silica gel, EtOAc-MeOH-H₂O = 18:1:1). It was characterized as a new compound, named quercetin-3-O-α-L-rhamnopyranosyl (1→2)-β-D-xylopyranoside) [**240**].

3.2 Dendrobium secundum

A previous study reported four known compounds and one new compound from *D. secundum* (Sritularak *et al.*, 2011b). In this study, we conducted further investigation on unstudied fractions from this plant.

3.2.1 Extraction

The dried and powdered whole plants (1.6 kg) were macerated with MeOH (3×10 L). The MeOH extract was concentrated under vacuum to give a crude extract (206 g).

3.2.2 Separation of methanol extract

The methanol extract (206 g) was separated by VLC [silica gel, gradient of *n*-hexane-EtOAc (100:0 to 0:100) and then CH₂Cl₂-MeOH (19:1 to 0:100)]. The eluates were collected 500 mL per fraction and examined by TLC (silica gel, *n*-hexane-EtOAc = 7:3) to yield forty-four fractions. Fractions with similar TLC patterns were combined to yield eight fractions: A (176 mg), B (5.6 g), C (3.6 g), D (4.5 g), E (1.6 g), F (2.3 g), G (16.8 g), H (73.7 g).

3.2.2.1 Isolation of compound DS1 (5-Hydroxy-3,4,3',4',5'pentamethoxybibenzyl)

Fraction F (2.3 g) was subjected to FCC on silica gel [*n*-hexane-EtOAc gradient (4:1 to 0:100)]. After the combination of fractions with similar TLC patterns, eleven fractions were obtained: F1 (22 mg), F2 (244 mg), F3 (230 mg), F4 (208 mg), F5 (381 mg), F6 (118 mg), F7 (238 mg), F8 (298 mg), F9 (41 mg), F10 (146 mg), and F11 (39 mg).

Fraction F5 (381 mg) was further separated on a Sephadex LH-20 column (CH₂Cl₂-MeOH = 1:1) to give five fractions: F5a (6 mg), F5b (9 mg), F5c (35 mg), F5d (313 mg), and F5e (23 mg). Fraction F5d (313 mg) was further subjected to repeated FCC over silica gel (CH₂Cl₂-acetone = 49:1) to give compound DS1 as a white powder (61.0 mg, R_f 0.6, silica gel, CH₂Cl₂-acetone = 9:1). It was characterized as a new compound named 5-hydroxy-3,4,3',4',5'-pentamethoxybibenzyl [**241**].

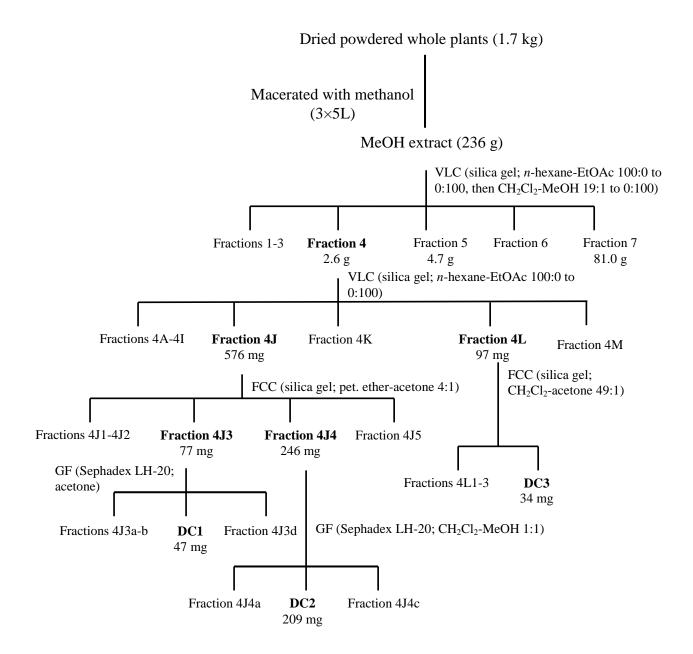
3.2.2.2 Isolation of compound DS2 (Kaempferol-3,7-*O*-di-α-Lrhamnopyranoside)

Fraction H (30.0 g) was separated on a Diaion HP20SS column [MeOH-H₂O (0:100 to 100:0)] and then EtOAc-MeOH (0:100 to 100:0)] to give thirteen fractions: H1 (2.0 g), H2 (400 mg), H3 (147 mg), H4 (625 mg), H5 (382 mg), H6 (191 mg), H7 (469 mg), H8 (355 mg), H9 (124 mg), H10 (2.3 g), H11 (452 mg), H12 (167 mg), and H13 (266 mg).

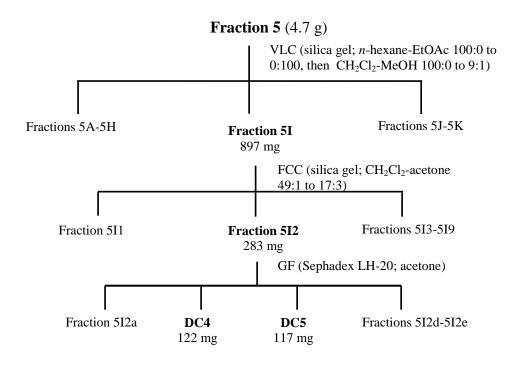
Fraction H7 (469 mg) was then subjected to FCC over silica gel (EtOAc-MeOH-H₂O = 48:1:1) to give ten fractions: H7a (5 mg), H7b (16 mg), H7c (8 mg), H7d (3 mg), H7e (33 mg), H7f (39 mg), H7g (21 mg), H7h (17 mg), H7i (77 mg), and H7j (250 mg).

Fraction H7e (33 mg) was purified on a Sephadex LH-20 column (MeOH) to afford compound DS2 as a yellow powder (8 mg, $R_f 0.20$, silica gel, EtOAc-MeOH-H₂O = 18:1:1). It was identified as kaempferol-3,7-*O*-di- α -L-rhamnopyranoside [**242**].

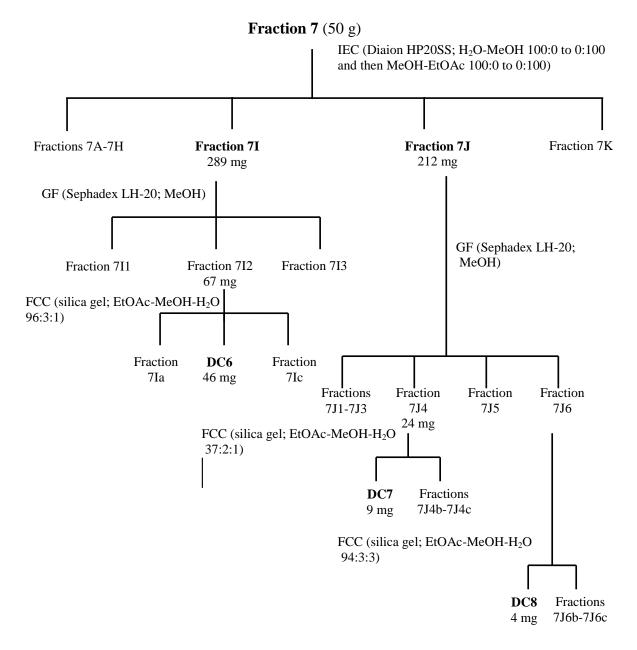
3.2.2.3 Isolation of compound DS3 (Quercetin-3-*O*-α-Lrhamnopyranoside)

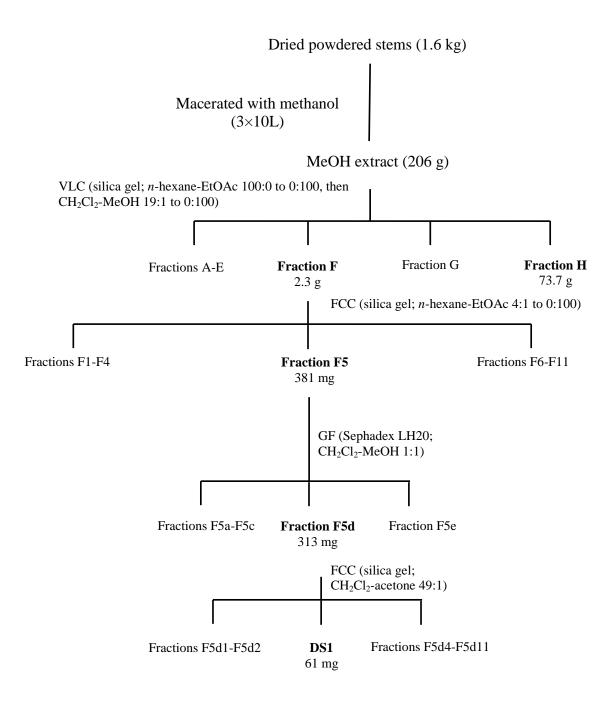

Fraction H7f (39 mg) was purified by FCC (silica gel; CH_2Cl_2 -acetone = 4:1) to give three fractions: H7f1 (18 mg), H7f2 (14 mg), and H7f3 (4 mg).

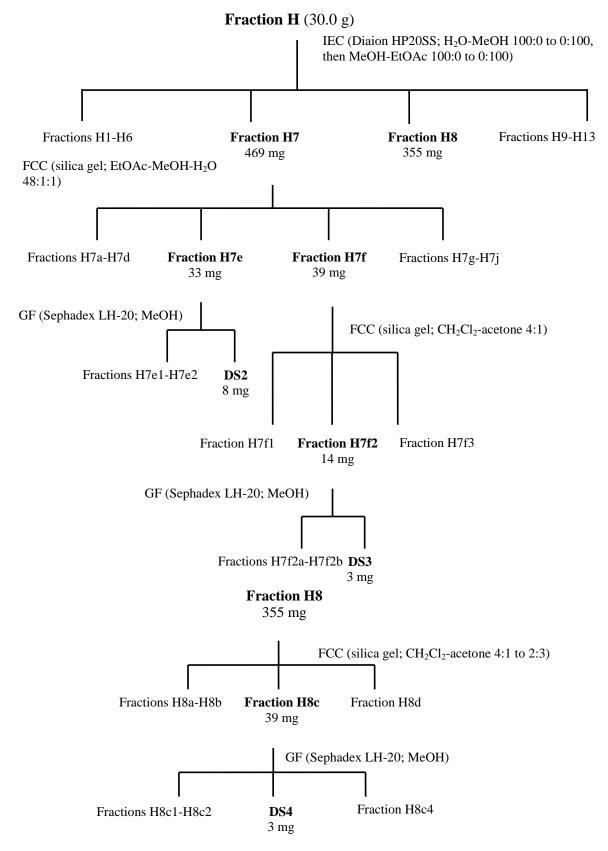
Fraction H7f2 (14 mg) was further purified on a Sephadex LH-20 column (MeOH) to give compound DS3 as a greenish amorphous solid (3 mg, R_f 0.29, silica gel, EtOAc-MeOH-H₂O = 18:1:1). It was identified as quercetin-3-*O*- α -L-rhamnopyranoside [**243**].


3.2.2.4 Isolation of compound DS4 (Kaempferol-3-*O*-α-Lrhamnopyranoside)

Fraction H8 (355 mg) was subjected to FCC over silica gel (CH_2Cl_2 -acetone = 4:1 to 2:3) to give four fractions: H8a (4 mg), H8b (31 mg), H8c (39 mg), and H8d (251 mg).


Fraction H8c (39 mg) was purified on a Sephadex LH-20 column (MeOH) to yield compound DS4 as a greenish amorphous solid (3 mg, $R_f 0.38$, silica gel, EtOAc-MeOH-H₂O = 18:1:1). It was identified as kaempferol-3-*O*- α -L-rhamnopyranoside [**244**].


Scheme 1 Separation of the MeOH extract of Dendrobium capillipes


Scheme 1 Separation of the MeOH extract of *Dendrobium capillipes* (continued)

Scheme 1 Separation of the MeOH extract of *Dendrobium capillipes* (continued)

Scheme 2 Separation of the MeOH extract of Dendrobium secundum

Scheme 2 Separation of the MeOH extract of *Dendrobium secundum* (continued)

4. Acid hydrolysis of compound DC8

Compound DC8 (3 mg) was dissolved in 2N HCl (2 mL) and refluxed at 100 °C for 3h. After removal of the solvent, the hydrolysate was redissolved in H₂O (10 mL) and extracted with EtOAc (3×10 mL). The residue obtained from the aqueous layer after evaporation of the solvent was redissolved in methanol to give a sample solution. This sample and standards of the sugars L-arabinose, D-xylose and L-rhamnose were examined on a normal phase TLC plate, with CHCl₃-MeOH-H₂O (5:4:1) as the mobile phase. To visualize the spots, the TLC plate was sprayed with 0.5% anisaldehyde solution, followed by heating at 100° for 2 min.

5. Physical and spectral data of isolated compounds

5.1 Compound DC1 (Chrysotobibenzyl)

Compound DC1 was obtained as a yellowish powder, soluble in CH_2Cl_2 (47 mg, 2.8×10^{-3} % based on dried weight of whole plants).

ESI-MS	: $[M+H]^+$ ion at <i>m/z</i> 332.87; Figure 5
FT-IR	: v _{max} cm ⁻¹ : 1589, 1510, 1463, 1232, 1128; Figure 6
UV	: λ_{max} nm (log ϵ), in methanol: 214 (4.41), 280 (3.51); Figure 7
¹ H NMR	: δ ppm, 300 MHz, in CDCl ₃ ; see Table 2, Figure 8
¹³ C NMR	: δ ppm, 75 MHz, in CDCl ₃ ; see Table 2, Figure 9

5.2 Compound DC2 (Crepidatin)

Compound DC2 was obtained as a brownish powder, soluble in CH_2Cl_2 (209 mg, 1.2×10^{-2} % based on dried weight of whole plants).

ESI-MS	: $[M+H]^+$ ion at m/z 318.86; Figure 10
FT-IR	: v _{max} cm ⁻¹ : 3358, 1592, 1513, 1466, 1242, 1124; Figure 11
UV	: λ_{max} nm (log ε), in methanol: 214 (4.25), 276 (3.30); Figure 12
¹ H NMR	: δ ppm, 300 MHz, in CDCl ₃ ; see Table 3, Figure 13
¹³ C NMR	: δ ppm, 75 MHz, in CDCl ₃ ; see Table 3, Figure 14

5.3 Compound DC3 (Gigantol)

Compound DC3 was obtained as a dark brown amorphous solid, soluble in CH_2Cl_2 (34 mg, 2.0×10^{-3} % based on dried weight of whole plants).

ESI-MS	: $[M+H]^+$ ion at m/z 274.88; Figure 15
FT-IR	: v _{max} cm ⁻¹ : 3412, 1613, 1598, 1515, 1461, 1272, 1150; Figure 16
UV	: λ_{max} nm (log ε), in methanol: 210 (4.24), 281 (3.46); Figure 17
¹ H NMR	: δ ppm, 300 MHz, in CDCl ₃ ; see Table 4, Figure 18
¹³ C NMR	: δ ppm, 75 MHz, in CDCl ₃ ; see Table 4, Figure 19

5.4 Compound DC4 (Chrysotoxine)

Compound DC4 was obtained as a yellowish powder, soluble in CH_2Cl_2 (122 mg, 7.2×10^{-3} % based on dried weight of whole plants).

ESI-MS	: $[M+H]^+$ ion at m/z 318.85; Figure 20
FT-IR	: v _{max} cm ⁻¹ : 3462, 1608, 1515, 1461, 1236, 1111; Figure 21
UV	: λ_{max} nm (log ε), in methanol: 213 (4.14), 279 (3.22); Figure 22
¹ H NMR	: δ ppm, 300 MHz, in CDCl ₃ ; see Table 5, Figure 23
¹³ C NMR	: δ ppm, 75 MHz, in CDCl ₃ ; see Table 5, Figure 24

5.5 Compound DC5 (Moscatilin)

Compound DC5 was obtained as a pale yellow needle crystals, soluble in CH_2Cl_2 (117 mg, 6.9×10^{-3} % based on dried weight of whole plants).

ESI-MS	: $[M+H]^+$ ion at m/z 304.86; Figure 25
--------	--

- **FT-IR** : v_{max} cm⁻¹: 3429, 1613, 1516, 1468, 1217, 1114; Figure 26
- **UV** : λ_{max} nm (log ε), in methanol: 215 (4.42), 282 (3.66); Figure 27
- ¹**H NMR** : δ ppm, 300 MHz, in CDCl₃; see Table 6, Figure 28
- ¹³C NMR : δ ppm, 75 MHz, in CDCl₃; see Table 6, Figure 29

5.6 Compound DC6 (Kaempferol-3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside, Lysimachiin)

Compound DC6 was obtained as a yellowish amorphous solid soluble in MeOH (47 mg, 5.4×10^{-4} % based on dried weight of whole plants).

ESI-MS	: $[M+H]^+$ ion at m/z 565.16; Figure 30	
FT-IR	: v_{max} cm ⁻¹ : 3399, 1658, 1609, 1507, 1449, 1205, 1178; Figure 31	
UV	: λ_{max} nm (log ε), in methanol: 215 (4.18), 267 (4.19), 346 (4.11);	
	Figure 32	
¹ H NMR	: δ ppm, 300 MHz, in DMSO- d_6 ; see Table 8, Figure 33	
¹³ C NMR	: δ ppm, 75 MHz, DMSO- d_6 ; see Table 8, Figure 34	
$\left[\alpha\right]^{20}{}_{\mathrm{D}}$: - 123.7° (c 0.000477, MeOH)	

5.7 Compound DC7 (Kaempferol-3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-glucopyranoside)

Compound DC7 was obtained as a yellow powder, soluble in MeOH (9 mg, 2.5×10^{-4} % based on dried weight of whole plants).

ESI-MS	: $[M+H]^+$ ion at m/z 595.18; Figure 35
FT-IR	: v_{max} cm ⁻¹ : 3428, 1656, 1610, 1507, 1450, 1209, 1177; Figure 36
UV	: λ_{max} nm (log ε), in methanol: 215 (4.12), 266 (4.11), 346 (4.03);
	Figure 37
¹ H NMR	: δ ppm, 300 MHz, in CD ₃ OD; see Table 9, Figure 38
¹³ C NMR	: δ ppm, 75 MHz, in CD ₃ OD; see Table 9, Figure 39
$\left[\alpha\right]_{D}^{20}$: - 112.7° (c 0.000142, MeOH)

5.8 Compound DC8 (Quercetin-3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside)

Compound DC8 was obtained as a greenish yellow amorphous solid, soluble in MeOH (4 mg, 2.7×10^{-3} % based on dried weight of whole plants).

HR-ESI-MS	: [M+Na] ⁺	ion a	t <i>m/z</i> ,	603.1388	(calcd.	for	$C_{26}H_{28}O_{15}Na$	603.1326);
	Figure 40							

FT-IR	: v_{max} cm ⁻¹ : 3349, 1660, 1607, 1504, 1446, 1200, 1125; Figure 41	
UV	: λ_{max} nm (log ε), in methanol: 215 (4.30), 256 (4.27), 346 (4.17);	
	Figure 42	
¹ H NMR	: δ ppm, 500 MHz, in DMSO- d_6 ; see Table 10, Figure 43	
¹³ C NMR	: δ ppm, 125 MHz, in DMSO- d_6 ; see Table 10, Figure 44	
$\left[\alpha\right]^{20}{}_{\mathrm{D}}$: - 67.6° (c 0.000370, MeOH)	

5.9 Compound DS1 (5-Hydroxy-3,4,3',4',5'-pentamethoxybibenzyl)

Compound DS1 was obtained as a white powder, soluble in CH_2Cl_2 (61 mg, 3.8×10^{-3} % based on dried weight of whole plants).

HR-ESI-MS : $[M+Na]^+$ ion at m/z 371.1469 (calcd. for $C_{19}H_{24}O_6Na$ 371.1471); Figure 47

FT-IR	: v _{max} cm ⁻¹ : 3416, 1591, 1461, 1349, 1238; Figure 4	18
-------	--	----

- **UV** : $λ_{max}$ nm (log ε), in methanol: 215 (4.46), 266 (3.19); Figure 49
- ¹**H NMR** : δ ppm, 300 MHz, in CDCl₃; see Table 11, Figure 50
- ¹³C NMR : δ ppm, 75 MHz, in CDCl₃; see Table 11, Figure 51

5.10 Compound DS2 (Kaempferol-3,7-*O*-di-α-L-rhamnopyranoside)

Compound DS2 was obtained as a yellow powder, soluble in MeOH (8 mg, 5.0×10^{-4} % based on dried weight of whole plants).

ESI-MS	: $[M+H]^+$ ion at <i>m</i> / <i>z</i> 579.16; Figure 53
FT-IR	: v_{max} cm ⁻¹ : 3400, 1659, 1604, 1513, 1448, 1208, 1178; Figure 54
UV	: λ_{max} nm (log ε), in methanol: 222 (4.02), 266 (4.09), 345 (3.96);
	Figure 55
¹ H NMR	: δ ppm, 300 MHz, in CD ₃ OD; see Table 12, Figure 56
¹³ C NMR	: δ ppm, 75 MHz, in CD ₃ OD; see Table 12, Figure 57
$\left[\alpha\right]^{20}{}_{\mathrm{D}}$: - 100° (c 0.000271, MeOH)

5.11 Compound DS3 (Quercetin-3-*O*-α-L-rhamnopyranoside)

Compound DS3 was obtained as a greenish amorphous solid, soluble in MeOH (3 mg, 1.9×10^{-4} % based on dried weight of whole plants).

- **ESI-MS** : $[M+H]^+$ ion at m/z 449.10; Figure 58
- **FT-IR** : v_{max} cm⁻¹: 3270, 1657, 1602, 1510, 1446, 1200, 1170; Figure 59
- UV : λ_{max} nm (log ε), in methanol: 222 (4.15), 256 (4.21), 349 (4.08); Figure 60
- ¹**H NMR** : δ ppm, 300 MHz, in CD₃OD; see Table 13, Figure 61
- ¹³C NMR : δ ppm, 75 MHz, in CD₃OD; see Table 13, Figure 62
- $[\alpha]^{20}_{D}$: 107.8° (c 0.000552, MeOH)

5.12 Compound DS4 (Kaempferol-3-*O*-α-L-rhamnopyranoside)

Compound DS4 was obtained as a greenish amorphous solid, soluble in MeOH (3 mg, 1.9×10^{-4} % based on dried weight of whole plants).

ESI-MS	: $[M+H]^+$ ion at m/z 433.12; Figure 63
FT-IR	: v_{max} cm ⁻¹ : 3334, 1656, 1609, 1510, 1454, 1209, 1176; Figure 64
UV	: λ_{max} nm (log ε), in methanol: 224 (4.10), 266 (4.12), 345 (3.95);
	Figure 65
¹ H NMR	: δ ppm, 300 MHz, in DMSO- d_6 ; see Table 14, Figure 66
¹³ C NMR	: δ ppm, 75 MHz, in DMSO- d_6 ; see Table 14, Figure 67
$\left[\alpha\right]^{20}{}_{\mathrm{D}}$: - 88.2° (c 0.000171, MeOH)

6. Determination of cytotoxicity

The cytotoxicity evaluations in this study were done by the Bioassay Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC).

6.1 Cancer cell growth inhibition

The cytotoxicity assay against three cancerous human-cell lines, including KB (oral epidermal carcinoma), NCI-H187 (lung cancer) cells and MCF-7 (breast cancer) cells. The test was performed using resazurin microplate assay method (REMA) (Brien *et al.*, 2000), with ellipticine, doxorubicin and tamoxifen as positive controls, whereas 0.5% DMSO was used as negative control. The samples were diluted to 50 μ g/mL for maximum final test concentration. The protocols are as follows:

1. Cells at a logarithmic growth phase were harvested and diluted to 7×10^4 cells/mL for KB and 9×10^4 cells/mL for MCF-7 and NCI-H187 cell lines in fresh medium.

2. Successively, 5 μ L of test sample diluted in 5% DMSO, and 45 μ L of cell suspension were added to 384-well plates, incubated at 37°C in 5% CO₂ incubator.

3. After incubation period (3 days for KB and MCF-7, and 5 days for NCI-H187), 12.5 μ L of 62.5 μ g/mL resazurin solution was added to each well, and the plate were then incubated at 37°C for 4 hours.

4. Fluorescence signal was measured using SpectraMax M5 multi-detection microplate reader (Molecular Devices, USA) at the excitation and emission wavelengths of 530 nm and 590 nm, respectively. Percent inhibition of cell growth was calculated using the following equation:

% Inhibition =
$$[1-(FU_T/FU_C) \times 100]$$

whereas, FU_T and FU_C are the mean fluorescent unit from treated and untreated conditions, respectively. Dose response curves were plotted from 6 concentrations of 2-fold serially diluted test compounds and the sample concentrations that inhibit cell growth by 50% (IC₅₀) can be derived using the SOFTMax Pro software (Molecular Devices, USA).

The criteria of interpretation are shown below:

Inactive = % inhibition < 50

Active (reported as IC_{50} value) = % inhibition ≥ 50

6.2 Cytotoxic against primate cell line

The cytotoxicity assay against normal cell (Vero cell) was evaluated using Green fluorescence protein (GFP) based assay. The drug, ellipticine, and 0.5% DMSO were used as positive and negative controls, respectively. The samples were diluted to $50 \ \Box \mu g/mL$ for maximum final test concentration. The protocols are as follows:

1. The GFP-expressing Vero cell line was generated in-house by stably transfecting the African green monkey cell line (Vero, ATCC CCL-81), with pEGFP-N1 plasmid (Clontech). The cell line was maintained in minimal essential medium supplemented with 10% heat-activated fetal bovine serum, 2 mM L- glutamine, 1 mM sodium pyruvate, at 37 °C in a humidified incubator with 5% CO₂.

2. The assay was carried out by adding 45 mL of cell suspension at 3.3×10^4 cells/mL to each well plates containing 5 µL of test compounds previously diluted in 0.5% DMSO, and then incubating for 4 days at 37 °C incubator with 5% CO₂.

3. Fluorescence signal was measured by using SpectraMax M5 microplate reader (Molecular Devices, USA) in the bottom reading mode with excitation and emission wavelengths of 485 nm and 535 nm. Fluorescence signal at day 4 was

subtracted with background fluorescence at day 0. The percentage of cytotoxic was calculated using the following equation, where FU_T and FU_C represent the fluorescence units of cells treated with test compound and untreated cells, respectively.

% cytotoxicity =
$$[1-(FU_T/FU_C) \times 100]$$

 IC_{50} values are derived from dose-response curves, using 6 concentrations of 2-fold serially diluted samples, by the SOFTMax Pro software (Molecular Devices, USA).

The criteria of interpretation are shown below:

Non-cytotoxic = % cell growth > 50

Cytotoxic (IC₅₀ included) = % cell growth \leq 50

CHAPTER IV

RESULTS AND DISCUSSION

In this study, the dried and powdered whole plants of *Dendrobium capillipes* (1.7 kg) was macerated with methanol to give a crude extract which showed a positive result for inhibiting KB cancer cells with an IC₅₀ value of 16.67 μ g/mL. The extract was separated by vacuum liquid chromatography to yield seven fractions. Fractions 4 and 5 showed cytotoxicity against KB cell line (74.86 and 74.93% inhibition at 50 μ g/mL, respectively), and were chromatographed to give five pure compounds [**DC1**-**DC5**]. An inactive fraction, Fraction 7, was also separated to give three pure compounds [**DC6-DC8**]. In addition, chemical re-examination of *D. secundum* led to the isolation of four polyphenolic compounds [**DS1-DS4**]. The structures of these compounds were characterized by spectroscopic means, including UV, IR, NMR and MS. In addition, they were evaluated for their cytotoxicity against three types of cancer cells.

1. Structure characterization of isolated compounds

1.1 Structure determination of compound DC1

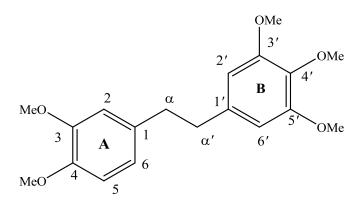
Compound DC1 was obtained as a yellowish powder. The ESI mass spectrum (Figure 5) showed a pseudomolecular ion $[M+H]^+$ at m/z 332.87, suggesting the molecular formula $C_{19}H_{24}O_5$. The IR spectrum (Figure 6) showed absorption peaks at 1589, 1510, 1463, 1232, 1128 cm⁻¹, indicating the presence of the aromatic rings and C-O stretching of ether functionality. The UV spectrum (Figure 7) of this compound showed maximal absorptions at 214 and 280 nm, characteristic of bibenzyl skeleton (Zhang *et al.*, 2008a).

The NMR data (Figures 8 and 9, and Table 2) showed a characteristic proton signal for a bibenzyl structure at $\delta_{\rm H} 2.82$ (4H, br s, α, α') which could be correlated to the carbon signals at $\delta_{\rm C}$ 37.5 and 38.5. Moreover, the ¹H NMR spectrum showed four signals (5H) in the aromatic region at $\delta_{\rm H} 6.77$ (1H, d, J = 8.4 Hz, H-5), 6.69 (1H, br d, J = 8.4 Hz, H-6), 6.64 (1H, br s, H-2) and 6.34 (2H, s, H-2' and H-6'). These spectral

properties indicated the presence of five substituents on the two aromatic rings, with one ring symmetrically substituted.

There were five methoxyl groups which appeared as singlets at $\delta_{\rm H}$ 3.79, 3.81 and 3.83 (15H, 3,4,3',4',5'-OMe) in the ¹H NMR spectrum. The structure was confirmed by the ¹³C NMR spectrum (Figure 9) which exhibited sixteen peaks, including ten peaks for twelve aromatic carbons, two peaks for two methylene carbons and four peaks for five methoxyl groups. The four peaks representing five methoxyl groups resonated at $\delta_{\rm C}$ 55.7, 55.8, 55.9 and 60.7 ppm. It should be noted that the 4'-OMe carbon had the highest chemical shift when compared with the other methoxyl groups in the molecule. This signal is the characteristic peak when ring B has two identical substituents (methoxyl or hydroxyl group) on the *o*-positions of the 4'-OMe group.

By comparing the ¹H NMR, ¹³C NMR, UV, IR and molecular formula of this compound with previously published data (Bi *et al.*, 2001; Li *et al.*, 2011), compound DC1 was identified as chrysotobibenzyl [**18**].


Chrysotobibenzyl was also named aloifol II dimethyl ether and amoenylinin, found in several plants in genus *Dendrobium*, including *D. aurantiacum* var. *denneanum*, *D. chrysanthum*, *D. chryseum*, *D. chrysotoxum*, *D. fimbriatum* and *D. nobile* (Ma *et al.*, 1998; Yang *et al.*, 2006a; Yang *et al.*, 2006b; Bi *et al.*, 2001; Li *et al.*, 2011).

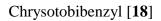

Position	Compound DC1		Chrysotobibenzyl ^a		
	δ _H (mult., <i>J</i> in Hz)	δ _C	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	
1	-	134.2	-	134.3	
2	6.64 (br s)	112.0	6.66 (d , 1.85)	112.0	
3	-	148.7	-	148.8	
4	-	147.3	-	147.4	
5	6.77 (d, 8.4)	111.3	6.80 (d, 8.4)	111.3	
6	6.69 (br d, 8.4)	120.3	6.72 (dd, 8.4, 1.85)	120.4	
α	2.82 (br s)	37.5*	2.85 s	37.6*	
α΄	2.82 (br s)	38.5*	2.85 s	38.5*	
1′	-	137.4	-	137.5	
2'	6.34 s	105.5	6.37 s	105.6	
3'	-	153.0	-	153.1	
4'	-	136.2	-	136.3	
5'	-	153.0	-	153.1	
6′	6.34 s	105.5	6.37 s	105.6	
3-OMe	3.81 s	55.7	3.84 s	55.8	
4-OMe	3.83 s	55.8	3.86 s	56.0	
3',5'-OMe	3.79 s	55.9	3.82 s	56.1	
4'-OMe	3.79 s	60.7	3.82 s	60.8	

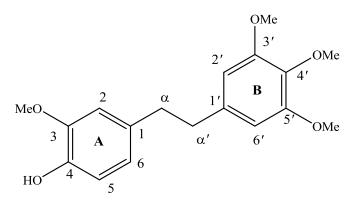
Table 2 NMR spectral data of compound DC1 (in CDCl₃) and chrysotobibenzyl (in CDCl₃)

*Values are exchangeable within vertical column.

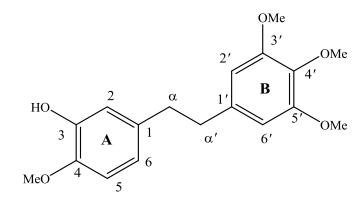
^{a 1}H NMR data from Li *et al.*, 2011. ¹³C NMR data from Bi *et al.*, 2001.

1.2 Structure determination of compound DC2

Compound DC2 was obtained as a brownish powder. Its ESI mass spectrum (Figure 10) showed a pseudomolecular ion $[M+H]^+$ at m/z 318.86, suggesting the molecular formula $C_{18}H_{22}O_5$.


The IR spectrum (Figure 11) showed absorption bands at 3358 cm⁻¹ for hydroxyl group, at 1592, 1513, 1466 cm⁻¹ for aromatic ring and at 1242, 1124 cm⁻¹ for C-O stretching of ether group. Its UV spectrum (Figure 12) was similar to that of compound DC1, showing absorption maxima at λ_{max} 214 and 276 nm. The ¹H NMR data showed a characteristic bibenzyl signal of two adjacent methylene protons at δ_{H} 2.79 (4H, br s, α, α'), and ¹³C NMR data revealed the presence of methylene carbons at δ_{C} 38.0 and 39.0.

Furthermore, the ¹H NMR spectrum (Figure 13) showed signals for five aromatic protons at $\delta_{\rm H}$ 6.80 (1H, d, J = 8.1 Hz, H-5), 6.66 (1H, br d, J = 8.1 Hz, H-6), 6.58 (1H, d, J = 0.9 Hz, H-2) and 6.33 (2H, s, H-2' and H-6'). These spectral data indicated the presence of five substituents on the two aromatic rings, with symmetrical substitution on one ring. The ¹H NMR spectrum also disclosed the presence of four methoxyl groups as singlets at $\delta_{\rm H}$ 3.72 (3H), 3.75 (6H) and 3.79 (3H) and a hydroxyl proton signal at $\delta_{\rm H}$ 5.95 (1H, br s, 4-OH).


The ¹³C NMR spectrum (Figure 14) exhibited three peaks for four methoxyl groups at δ_C 56.2, 56.5 and 61.2 ppm. It also showed a characteristic peak of 4'-OMe as found in DC1. Close examination of the ¹H and ¹³C NMR data indicated that the B ring of DC2 was identical to that of DC1.

From the above data and through comparison with previously reported data (Ono *et al.*, 1995), DC2 was identified as crepidatin [**21**]. In addition, the probability of DC2 as erianin, the isomer of crepidatin, was rejected after comparison with the NMR data of bibenzyls that had the identical structure of A ring, including gigantol, moscatilin and tristin, and previously reported values of erianin (Li *et al.*, 2011).

Crepidatin was firstly isolated and reported as a bibenzyl derivative from the orchid *D. crepidatum*. Moreover, it was also found in several *Dendrobium* species, including *D. aurantiacum* var. *denneanum*, *D. chrysanthum* and *D. nobile* (Yang *et al.*, 2006b; Zhang *et al.*, 2007a; Lui *et al.*, 2009a).

Crepidatin [21]

Erianin [237]

Position	Compound I	DC2	Crepidatin ^a		Erianin ^b	
	δ _H (mult., <i>J</i> in Hz)	δ_{C}	δ _H (mult., <i>J</i> in Hz)	δ_{C}	δ _H (mult., J in Hz)	δ _C
1	_	133.9	-	133.5	-	136.5
2	6.58 (d, 0.9)	111.9	6.6 (d, 1.9)	111.2	6.81 (d , 2.0)	110.7
3	-	146.9	-	146.3	-	145.6
4	-	144.4	-	143.8	-	144.9
5	6.80 (d, 8.1)	114.8	6.84 (d, 8)	114.2	6.76 (d, 8.4)	114.8
6	6.66 (br d, 8.1)	121.4	6.69 (dd, 8, 1.9)	121.0	6.64 (dd, 8.4, 2.0)	119.8
α	2.79 (br s)	39.0*	2.82 (s)	38.6*	2.82 s	37.3*
α΄	2.79 (br s)	38.0*	2.82 (s)	37.7*	2.82 s	38.4*
1′	-	138.0	-	137.6	-	135.1
2'	6.33 (s)	106.1	6.36 (s)	105.5	6.38 s	105.7
3'	-	153.4	-	153.0	-	153.1
4'	-	136.7	-	136.2	-	137.4
5'	-	153.4	-	153.0	-	153.1
6'	6.33 (s)	106.1	6.36 (s)	105.5	6.38 s	105.7
3-OMe	3.72 (s)	56.2	3.81 (s)	55.9	3.87 s	-
4-OMe	-	-		-		56.1
4'-OMe	3.79 (s)	61.2	3.83 (s)	60.8	3.83 s	60.8
3', 5'						
-OMe	3.75 (s)	56.5		56.0	3.83 s	56.1
4-OH	5.95 (s)		5.47 (s)		-	

Table 3 NMR spectral data of compound DC2 (in CDCl₃), crepidatin (in CDCl₃) and erianin (in CDCl₃)

^{*}Values in the same column are interchangeable.

^a Ono *et al.*, 1995.; ^b Li *et al.*, 2011.

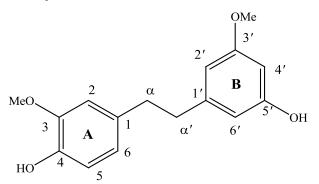
1.3 Structure determination of compound DC3

Compound DC3 was obtained as a dark brown amorphous solid. The ESI mass spectrum (Figure 15) showed a quasimolecular ion $[M+H]^+$ at m/z 274.88, suggesting the molecular formula C₁₆H₁₈O₄. The IR spectrum (Figure 16) showed absorption bands for hydroxyl (3412 cm⁻¹), aromatic (1613, 1598, 1515, 1461 cm⁻¹) and C-O of ether (1272, 1150 cm⁻¹) functionalities. Its UV spectrum (Figure 17) showed absorption maxima at 210 and 281 nm.

The ¹H NMR spectrum (Figure 18 and Table 4) showed a characteristic proton signal for a bibenzyl skeleton at $\delta_{\rm H}$ 2.78 which could be correlated to two methylene carbons at $\delta_{\rm C}$ 37.1 and 38.2 ppm in the ¹³C NMR spectrum. Moreover, the ¹H NMR data revealed signals for six aromatic protons at $\delta_{\rm H}$ 6.82 (1H, d, J = 8.0 Hz, H-5), 6.66 (1H, br d, J = 8.0 Hz, H-6), 6.61 (1H, br s, H-2), and 6.24 (2H, s, H-2' and H-6'), 6.30 (1H, s, H-4'). The ¹H NMR spectrum also exhibited the presence of two methoxyl groups at $\delta_{\rm H}$ 3.73 (3H) and 3.81 (3H) and revealed two hydroxyl proton signals at $\delta_{\rm H}$ 5.54 and 5.95 (2H, br s each, 4- and 5'-OH).

The ¹³C NMR and DEPT spectra (Figure 19 and Table 4) exhibited sixteen carbon signals, including six aromatic quaternary carbon signals, which supported the presence of four substituents on the bibenzyl skeleton. Six methine carbon signals, two methylene carbon signals and two methyl carbon signals were also observed.

Based on the above spectral evidence and through comparison with previously reported data (Juneja, Sharma and Tandon, 1985; Ono *et al.*, 1995), DC3 was identified as gigantol [**14**].


Gigantol was isolated and reported firstly in 1985 from the orchid *Cymbidium* giganteum (Juneja et al., 1985). Besides, this compound was also found in several genera of the Orchidaceae family such as *C. aloifolium* (Juneja et al., 1987), *Epidendrum rigidum, Scaphyglottis livida* (Hossain, 2011), *Nidema boothii* (Romero et al., 2007) and *Dendrobium* species, including *D. aphyllum, D. aurantiacum* var. denneanum, *D. candidum, D. cariniferum, D. chrysanthum, D. chrysotoxum, D. densiflorum, D. draconis, D. gratiotissimum, D. loddigesii, D. longicornu, D. nobile, D. polyanthum* and *D. trigonopus.* (Fan et al., 2001; Yang et al., 2006b; Zhang et al., 2007a; Chen et al., 2008a; Chen et al., 2008b; Hu et al., 2008a; Hu et al., 2009a; Lui et al., 2009a; Ito et al., 2010; Sritularak et al., 2001a).

Position	Compound DC	3	Gigantol ^a		
	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	
1	-	133.7	-	133.7	
2	6.61 (br s)	111.2	6.65 (d, 2)	111.2	
3	-	146.3	-	146.3	
4	-	143.6	-	143.7	
5	6.82 (d, 8.0)	114.2	6.81 (d, 9)	114.2	
6	6.66 (br d, 8.0)	121.0	6.77 (dd, 9, 2)	121.0	
α	2.78 (br s)	37.1*	2.83	37.2*	
α΄	2.78 (br s)	38.2*	2.83	38.2*	
1′	-	144.5	-	144.5	
2'	6.24 (s)	108.1	6.29 (br s)	108.1	
3'	-	156.7	-	156.6	
4'	6.30 (s)	99.1	6.29 (br s)	99.1	
5'		160.7	-	160.8	
6'	6.24 (s)	106.7	6.29 (br s)	106.8	
3, 3'-OMe	3.81	55.2	3.85	55.3	
	3.73	55.8	3.77	55.9	
4, 5′-OH	5.54, 5.59		5.57		

Table 4 NMR spectral data of compound DC3 (in CDCl₃) and gigantol (in CDCl₃)

*Values are interchangeable within vertical column.

^{a 1}H NMR data from Juneja *et al*, 1985. ¹³C NMR data from Ono *et al.*, 1995.

Gigantol [14]

1.4 Structure determination of compound DC4

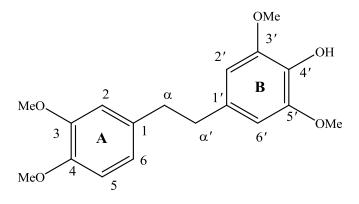
Compound DC4 was obtained as a yellowish powder. The ESI mass spectrum (Figure 20) showed a pseudomolecular ion $[M+H]^+$ at m/z 318.85, suggesting the molecular formula $C_{18}H_{22}O_5$ and indicating that DC4 was a structural isomer of DC2

The IR spectrum (Figure 21) showed absorption bands at 3462 (hydroxyl), at 1608, 1515, 1461 (aromatic) and at 1236, 1111 (C-O) cm⁻¹. Its UV spectrum (Figure 22) exhibited characteristic absorptions for a bibenzyl skeleton at λ_{max} 213 and 279 nm. The ¹H NMR data (Figure 23 and Table 5) also displayed a characteristic signal for a bibenzyl at $\delta_{\rm H}$ 2.79 (4H, br s, α, α') and ¹³C NMR data (Figure 24 and Table 5) revealed signals for methylene carbons at $\delta_{\rm C}$ 37.4 and 37.9.

The ¹H NMR spectrum (Figure 23 and Table 5) also exhibited signals for five aromatic protons with splitting patterns similar to those of DC1 and DC2, including $\delta_{\rm H}$ 6.75 (1H, d, *J* = 8.1 Hz, H-5), 6.66 (1H, br d, *J* = 8.1 Hz, H-6), 6.63 (1H, br s, H-2) and 6.33 (2H, s, H-2' and H-6'). These spectral data indicated the presence of five substituents on the two aromatic rings, with one ring symmetrically substituted. The ¹H NMR spectrum also showed the presence of four methoxyl groups as a singlet at $\delta_{\rm H}$ 3.79 (12H), and a hydroxyl proton at $\delta_{\rm H}$ 5.45 (1H, br s, 4'-OH).

The structure of DC4 was further studied for ¹³C NMR properties (Figure 24 and Table 5), which exhibited fifteen carbon peaks, comprising ten peaks for twelve aromatic carbons, three peaks for four methoxyl groups and two peaks for methylene carbons. The four methoxyl carbons resonated at δ_C 55.5, 55.8 and 56.0. Comparison of the ¹³C NMR data of DC4 with those of DC2, indicated that the hydroxyl group should be at 4'-position.

From the above data and through comparison with previously reported data (Ono *et al.*, 1995), DC4 was identified as chrysotoxine [**19**].


A recent study reported that chrysotoxine or chrysotoxin showed neuroprotective activity, and was suggested as a drug candidate for the further evaluation for the treatment of Parkinson's disease. (Song *et al*, 2010). This compound was also found in several *Dendrobium* species, including *D. aurantiacum* var. *denneanum*, *D. chrysanthum*, *D. chryseum* and *D. nobile* (Ma *et al.*, 1998; Yang *et al.*, 2006a; Yang *et al.*, 2006b; Zhang *et al.*, 2007a).

	Compound DO	C4	Chrysotoxine ^a		
Position					
	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ_{C}	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ_{C}	
1	-	134.1	-	134.3	
2	6.63 (br s)	111.8	6.66 (d, 1.8)	111.9	
3	-	147.0	-	147.2	
4	-	148.5	-	148.7	
5	6.75 (d, 8.1)	111.1	6.79 (d, 8.1)	111.2	
6	6.66 (br d, 8.1)	120.1	6.70 (dd, 8.1, 1.8)	120.4	
α	2.79 (br s)	37.9*	2.83 (s)	38.3*	
α'	2.79 (br s)	37.4*	2.83 (s)	37.8*	
1'	-	132.5	-	132.8	
2'	6.33 (s)	105.0	6.36 (s)	105.2	
3'	-	146.6	-	146.8	
4'	-	132.7	-	132.8	
5'	-	146.6	-	146.8	
6'	6.33 (s)	105.0	6.36 (s)	105.2	
3-OMe	3.79 (s)	56.0**	3.84 (s), 3.85 (s)	55.9**	
4-OMe	-	55.5**	-	55.8**	
3',5'-OMe	-	55.8	-	56.2	
4'-OH	5.45 (br s)		5.40 (br s)		

Table 5 NMR spectral data of compound DC4 (in $CDCl_3$) and chrysotoxine (in $CDCl_3$)

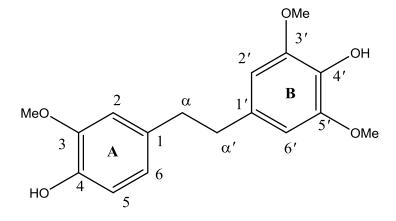
*,** Value in the same column are interchangeable.

^a Ono *et al.*, 1995.

Chrysotoxine [19]

1.5 Structure determination of compound DC5

Compound DC5 was obtained as pale yellow needle crystals. The ESI mass spectrum (Figure 25) showed a pseudomolecular ion $[M+H]^+$ at m/z 304.86, suggesting the molecular formula $C_{17}H_{20}O_5$.


The IR spectrum (Figure 26) showed absorption bands at 3429 (hydroxyl), 1613, 1516 (aromatic) and at 1217, 1114 (C-O) cm⁻¹. The UV spectrum (Figure 27) exhibited the absorption peaks at λ_{max} 213 and 279 nm, which were similar to those of DC1, DC2, DC3 and DC4.

By comparing the NMR data of DC5 with DC1-DC4, it was found that the splitting patterns of aromatic protons of compound DC5 were similar to those of DC1, DC2 and DC4. The ¹H NMR spectrum (Figure 28 and Table 6) showed four signals for five aromatic protons at $\delta_{\rm H}$ 6.82 (1H, d, J = 8.1 Hz, H-5), 6.66 (1H, dd, J = 8.1, 1.2 Hz, H-6), 6.60 (1H, br s, H-2) and 6.34 (2H, s, H-2' and H-6'). These spectral data indicated the presence of five substituents on the two aromatic rings, with one ring symmetrically substituted. Moreover, the ¹H NMR spectrum showed the presence of three methoxyl groups coincidentally appearing as a singlet at $\delta_{\rm H}$ 3.82 (9H).

The ¹³C NMR spectrum (Figure 29 and Table 6) showed only two signals for three methoxyl groups at δ_C 55.8 and 56.2, indicated that two methoxyl groups were symmetrically substituted on one aromatic ring. By comparing ¹³C NMR data of DC5 with those of DC1 and DC4, it was found that compound DC5 also lacked the characteristic peak for 4'-OMe, suggesting that the B ring of DC5 was similar to that of DC4 and A ring was similar to that of DC2.

Through comparison of its ¹H, ¹³C NMR, MS, IR and UV data with reported values (Majumder and Sen, 1987), DC5 was identified as moscatilin [**8**].

Moscatilin was a bibenzyl derivative originally isolated from *D. moscatum*. This compound was found not only in *D. moscatum*, but also in *D. amoenum*, *D. aurantiacum* var. *denneanum*, *D. chrysanthum*, *D. densiflorum*, *D. gratiotissimum*, *D. loddigesii*, *D. longicornu* and *D. secundum* (Majumder and Sen 1987; Majumder *et al.*, 1999; Fan *et al.*, 2001; Yang *et al.*, 2006a; Yang *et al.*, 2006b; Hu *et al.*, 2008a; Zhang *et al.*, 2008a; Ito *et al.*, 2010).

Moscatilin [8]

Position	Compound De	C5	Moscatilin	ì
	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ_{C}	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ_{C}
1	-	132.8	-	132.8
2	6.60 (br s)	111.2	6.60 (d, 2)	111.2
3	-	146.2	-	146.1
4	-	143.7	-	143.7
5	6.82 (d, 8.1)	114.1	6.77(d, 8)	114.1
6	6.66 (dd, 8.1, 1.2)	121.0	6.74 (dd, 8, 2)	121.0
α	2.80 (br s)	38.4*	2.79 (s)	38.8*
α΄	2.80 (br s)	37.8*	2.79 (s)	37.8*
1'	-	132.9	-	132.8
2'	6.34 (s)	105.2	6.30 (s)	105.2
3'	-	146.8	-	146.8
4'	-	133.6	-	133.5
5'	-	146.8	-	146.8
6'	6.34 (s)	105.2	6.30 (s)	105.2
3-OMe	3.82 (s)	55.8	3.81 (s)	55.8
3', 5'-OMe	3.82 (s)	56.2	3.81 (s)	56.2
4,4'-OH	-		5.30, 5.39	

Table 6 NMR spectral data of compound DC5 (in CDCl₃) and moscatilin (in CDCl₃)

* Values in the same column are interchangeable.

^a Majumder and Sen, 1987.

1.6 Structure determination of compound DC6

Compound DC6 was obtained as a yellowish amorphous solid. The ESI mass spectrum (Figure 30) showed a pseudomolecular ion $[M+H]^+$ at m/z 565.16, suggesting the molecular formula $C_{26}H_{28}O_{14}$.

The IR spectrum (Figure 31) showed absorption bands at 3399 (hydroxyl), 1658 (conjugated carbonyl), 1609, 1570 (aromatic) and 1205, 1178 (C-O) cm⁻¹. The UV spectrum showed absorption maxima at 215, 267 and 346 nm, characteristic of flavonoids (Figure 32). The presence of a conjugated carbonyl carbon was indicated by the ¹³C NMR resonance at δ 177.3 (Figure 34).

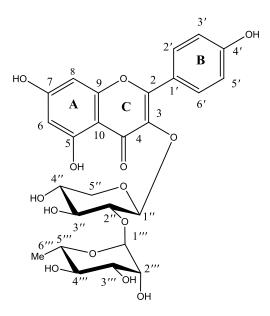
The ¹H NMR spectrum (Figure 33 and Table 8) of DC6 exhibited signals for A ring protons [H-6 at $\delta_{\rm H}$ 6.19 (1H, d, J = 1.5 Hz) and H-8 at $\delta_{\rm H}$ 6.43 (1H, d, J = 1.5 Hz)] and B ring protons [H-2' and H-6' at $\delta_{\rm H}$ 8.03 (2H, d, J = 8.7 Hz), and H-3' and H-5' at 6.90 (2H, d, J = 8.7 Hz)]. The ¹³C NMR spectrum of DC6 showed signals for A ring carbons at $\delta_{\rm C}$ 161.3 (C-5), 98.9 (C-6), 164.6 (C-7), 93.8 (C-8), 156.4 (C-9), and 103.9 (C-10), B ring carbons at $\delta_{\rm C}$ 120.8 (C-1'), 130.7 (C-2' and C-6'), 115.4 (C-3' and C-5'), and 160.2 (C-4'), and C ring carbons at $\delta_{\rm C}$ 156.1 (C-2), 132.8 (C-3), and 177.3 (C-4 carbonyl). Moreover, the ¹H NMR spectrum showed a chealated proton resonance at $\delta_{\rm H}$ 12.59, which supported the presence of a hydroxyl group at C-5. Therefore, the aglycone of DC6 was identified as kaempferol (Itoh *et al.*, 2009).

Two anomeric protons of sugar units were observed at $\delta_{\rm H}$ 5.09 (1H, br s, Rhamnose 1''') and 5.53 (1H, d, J = 7.2, Xylose 1''). In addition, the ¹H NMR spectrum displayed a proton signal at $\delta_{\rm H}$ 0.89 (3H, d, J = 6.3 Hz, Rhamnose 6'''), belonging to the methyl protons of rhamnose.

The ¹³C NMR and DEPT spectra (Figure 34 and Table 8) displayed twentyfour signals for twenty-six carbons, comprising one methyl, one methylene, thirteen methines and nine quaternary carbons. By comparing the ¹³C NMR data with previously published values (Table 7) it was found that the two sugar units were β -Dxylopyranose and α -L-rhamnopyranose. The β -anomeric configuration for the xylose unit was determined from its large ³*J*_{H1, H2} coupling constant (7.2 Hz). The anomeric proton of α -L-rhamnopyranose was linked to C-2" of β -D- xylopyranose because the ¹³C chemical shift at C-2" of β -D- xylopyranose was shifted downfield about 2 ppm. Through comparison of its ¹H, ¹³C NMR, MS, IR and UV data with reported values (Cui *et al.*, 2003), DC6 was identified as kaempferol-3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside or lysimachiin [**238**]. It should be noted that this study is the second report of lysimachiin, a flavonol glycoside firstly found in *Lysimachia christinae* Hance. (Primalaceae).

Sugar	C-1	C-2	C-3	C-4	C-5	C-6
Glycopyranoses						
β-D-Glc	96.8	75.2	76.7	70.7	76.7	61.8
α-D-Glc	93.0	72.4	73.7	70.7	72.3	61.8
β-L-Rha	94.4	72.2	73.8	72.8	72.8	17.6
α-L-Rha	94.8	71.8	71.0	73.2	69.1	17.7
β-D-Xyl	97.5	75.1	76.8	70.2	66.1	-
α-D-Xyl	93.1	72.5	73.9	70.4	61.9	-
Methyl glycopyranosides						
β-D-Glc	104.0	74.1	76.8	70.6	76.8	61.8
α-D-Glc	100.0	72.2	74.1	70.6	72.5	61.6
β-L-Rha	102.4	71.8	74.1	73.4	73.4	17.9
α-L-Rha	102.1	71.2	71.5	73.3	69.5	17.9

Table 7¹³C NMR data for glycopyranoses and methyl glycopyranosides^a


^a Agrawal, 1992.

		Kaempferol-3- <i>O</i> -α-L- rhamnopyranosyl (1→ xylopyranoside or lysir		
 δ _H (mult., <i>J</i> in Hz)	δ _C	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	

Table 8 NMR spectral data of compound DC6 (in DMSO- d_6) and kaempferol-3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside or lysimachiin (in DMSO- d_6)

	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C
2	-	156.1	-	156.2
3	-	132.8	-	132.8
4	-	177.3	-	177.3
5	-	161.3	-	161.3
6	6.19 (d, 1.5)	98.9	6.20 (d, 2.0)	98.9
7	-	164.6	-	164.3
8	6.43 (d, 1.5)	93.8	6.43 (d, 2.0)	93.8
9	-	156.4	-	156.4
10	-	103.9	-	104.0
1′	-	120.8	-	120.8
2'	8.03 (d, 8.7)	130.7	8.05 (d, 8.8)	130.8
3'	6.90 (d, 8.7)	115.4	6.09 (d, 8.8)	115.4
4'	-	160.2	-	160.2
5'	6.90 (d, 8.7)	115.4	6.09 (d, 8.8)	115.4
6′	8.03 (d, 8.7)	130.7	8.05 (d, 8.8)	130.8
Xyl 1″	5.53 (d, 7.2)	99.5	5.52 (d, 7.6)	99.5
Xyl 2''	3.48 (m)	77.3	3.47 (m)	77.3
Xyl 3''	3.34 (m)	76.8	3.33 (m)	76.8
Xyl 4''	3.48 (m)	70.7	3.49 (m)	70.7
Xyl 5''-H _a	2.97 (m)	66.0	2.97 (m)	66.0
Xyl 5''-H _b	3.61 (m)		3.58 (m)	
Rha 1'''	5.09 (brs)	100.8	5.08 (s)	100.8
Rha 2'''	3.34 (m)	69.8	3.33 (m)	69.8
Rha 3'''	3.79 (m)	70.7	3.77 (m)	70.7
Rha 4'''	3.17 (m)	72.0	3.16 (m)	72.0
Rha 5'''	3.79 (m)	68.5	3.77 (m)	68.5
Rha 6'''	0.89 (d, 6.3)	17.5	0.88 (d, 6.0)	17.5

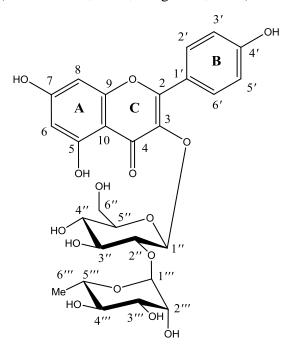
^a Cui *et al.*, 2003.

Kaempferol-3-*O*- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside [**238**]

1.7 Structure determination of compound DC7

Compound DC7 was obtained as a yellow powder. The ESI mass spectrum (Figure 35) showed a pseudomolecular ion $[M+H]^+$ at m/z 595.18, suggesting the molecular formula $C_{27}H_{30}O_{15}$.

The IR spectrum (Figure 36) was similar to that of compound DC6, exhibiting absorption bands for hydroxyl groups at 3428 cm⁻¹, for a conjugated carbonyl group at 1656 cm⁻¹, for aromatic rings at 1610, 1507, 1450 cm⁻¹ and for C-O stretching at 1209, 1177 cm⁻¹. The UV spectrum (Figure 37) exhibited absorption peaks at λ_{max} 215, 256 and 346 nm, which were similar to those of DC6.


The ¹H and ¹³C NMR (Figures 38 and 39, and Table 9) data of DC7 apparently displayed patterns similar to those of DC6, but the ¹³C NMR spectrum of DC7 had one more carbon signal in sugar region. Its ¹H NMR spectra exhibited the presence of six aromatic protons at δ 6.15 (1H, d, J = 1.5 Hz, H-6), 6.34 (1H, d, J = 1.5 Hz, H-8), 6.86 (2H, d, J = 8.7 Hz, H-3' and H-5') and 8.01 (2H, d, J = 8.7 Hz, H-2' and H-6'). These spectral data suggested that DC6 should have kaempferol as the aglycone.

Two anomeric proton signals were observed at $\delta_{\rm H}$ 5.20 (1H, br s, Rha 1''') and 5.70 (1H, d, J = 7.2, Glc 1''), indicating the presence of two sugar units in the structure. The methyl doublet at $\delta_{\rm H}$ 0.93 (3H, J = 6.3 Hz, Rha 6''') was characteristic of rhamnose.

The ¹³C NMR and DEPT spectra (Figure 39) exhibited twenty-five signals for twenty-seven carbons, including one methyl, one methylene, fourteen methines and nine quaternary carbons. By comparing its ¹³C NMR data with previously published values (Table 7), the sugar unit connected through *O*-glycosidic linkage to C-3 of the kaempferol aglycone was identified as β -D-glucose (³*J*_{H1, H2} = 7.2 Hz). Rhamnose was connected to C-2 of glucose unit, as indicated by the downfield shift of about 5 ppm of the C-2" signal of the glucose.

Through comparison of its ¹H, ¹³C NMR, MS, IR and UV data with reported values (Wu *et al.*, 2009), DC7 was identified as kaempferol-3-*O*- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-glucopyranoside [**239**].

This compound was also called kaempferol $3-O-\beta$ -neohesperidoside, previously isolated from *Cyathea phalerata* (Cyatheaceae) and *Acer mandshuricum* (Aceraceae). It showed an insulin-like activity and significantly increased the function of osteoblastic cells (Zanatta *et al.*, 2008; Ding *et al.*, 2010).

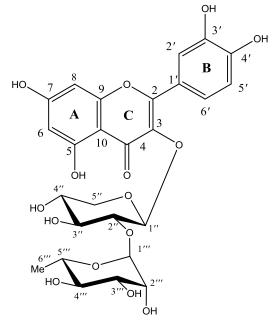
Kaempferol-3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-glucopyranoside [239]

Position	Compound DC	27	Kaempferol-3- <i>O</i> -α-L- rhamnopyranosyl (1→2)-β-I glucopyranoside ^a		
	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	
2	-	158.4	-	158.2	
3	-	134.4	-	134.4	
4	-	179.4	-	179.2	
5	-	163.2	-	163.0	
6	6.15 (d, 1.5)	99.7	5.97 (br s)	99.8	
7	-	165.7	-	165.6	
8	6.34 (d, 1.5)	94.6	6.08 (br s)	94.7	
9	-	158.5	-	158.5	
10	-	106.0	-	105.8	
1′	-	123.1	-	123.1	
2'	8.01 (d, 8.7)	132.1	7.98 (d, 8.4)	132.1	
3'	6.86 (d, 8.7)	116.1	6.80 (d, 8.4)	116.1	
4'	-	161.3	-	161.1	
5'	6.86 (d, 8.7)	116.1	6.80 (d, 8.4)	116.1	
6′	8.01 (d, 8.7)	132.1	7.98 (d, 8.4)	132.1	
Glc 1"	5.70 (d, 7.2)	100.3	5.62 (d, 7.8)	100.3	
Glc 2"	3.53 (m)	80.1	3.53 (m)	79.8	
Glc 3''	3.58 (t, 8.3)	78.9	3.64 (t, 9)	78.8	
Glc 4"	3.53 (m)	71.9	3.53 (m)	71.7	
Glc 5"	3.22 (m)	78.3	3.19 (br dd, 9, 6)	78.0	
Glc 6"-H _a	3.70 (m)	62.6	3.70 (br d, 12)	62.6	
Glc 6"-H _b	3.47 (m)		3.52 (br d, 12)		
Rha 1'''	5.20 (br s)	102.6	5.24 (br s)	102.5	
Rha 2'''	4.00 (m)	72.4	4.00 (m)	72.3	
Rha 3'''	3.75 (dd, 9.6, 3.3)	72.3	3.82 (m)	72.2	
Rha 4'''	3.29 (m)	74.1	3.32 (m)	74.0	
Rha 5'''	4.00 (m)	69.9	4.09 (m)	69.9	
Rha 6'''	0.93 (d, 6.3)	17.5	1.02 (d, 6.6)	17.6	

Table 9 NMR spectral data of compound DC7 (in CD₃OD) and kaempferol-3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-glucopyranoside (in CD₃OD)

^a Wu *et al.*, 2009.

1.8 Structure elucidation of compound DC8


Compound DC8 was obtained as a greenish yellow amorphous solid. The positive HR-ESITOF mass spectrum (Figure 40) exhibited an $[M+Na]^+$ ion at m/z 603.1388 (calcd. 603.1326), suggesting the molecular formula $C_{26}H_{28}O_{15}$. The UV spectrum (Figure 42) showed three absorption maxima of flavonoids at 215, 256 and 346 nm, as found in DC6 and DC7. The IR spectrum (Figure 41) demonstrated peaks at 3349 (hydroxyl), 1660 (keto-carbonyl) and 1025-1303 (C-O) cm⁻¹.

The NMR spectra of compounds DC6 and DC8 shared some similarity. From ¹³C NMR data, it could be assumed that compound DC8 had the same sugar units as DC6, but it had a different aglycone. To prove our assumption, we used 2D-NMR techniques, including HSQC (Figures 45a-45e) and HMBC (Figures 46a-46e) to analyse the structure of DC8, and the data are shown in Table 10. The ¹H NMR spectrum displayed characteristic signals for quercetin moiety at $\delta_{\rm H}$ 6.18 (1H, d, J =2.0 Hz, H-6), 6.39 (1H, d, J = 2.0 Hz, H-8), 7.53 (1H, d, J= 2.0 Hz, H-2'), 6.84 (1H, d, J = 8.5 Hz, H-5') and 7.57 (1H, dd, J = 8.5, 2.0 Hz, H-6'). This was supported by the 13 C NMR signals for the A ring at $\delta_{\rm C}$ 161.2 (C-5), 98.7 (C-6), 164.3 (C-7), 93.5 (C-8), 156.2 (C-9) and 103.8 (C-10), and for the B ring at $\delta_{\rm C}$ 120.9 (C-1'), 115.9 (C-2'), 145.0 (C-3'), 148.6 (C-4'), 115.2 (C-5') and 121.5 (C-6'). The ¹³C NMR spectrum showed seven oxygenated carbon signals at $\delta_{\rm C}$ 164.3 (C-7), 161.2 (C-5), 156.2 (C-9), 156.0 (C-2), 148.6 (C-4'), 145.0 (C-3') and 132.8 (C-3) ppm. The carbon signals for C-2, C-5, C-7, C-9, C-3' and C-4' were assigned by HMBC data, leaving the resonance at δ 132.8 to be assigned to C-3. Furthermore, the ¹H NMR spectrum showed two anomeric protons at $\delta_{\rm H}$ 5.51 (1H, d, J = 7.5 Hz) and 5.08 (1H, br s) which were correlated to the carbon signals at δ_C 99.4 and 100.6 in the HSQC spectrum, respectively.

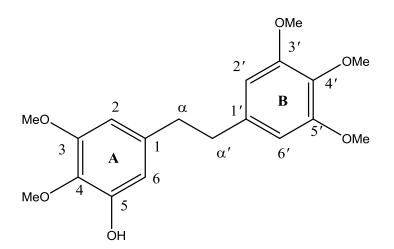
These NMR data suggested the presence of two sugar units in the structure, and they were identified as β -xylopyranose and α -rhamnopyranose by comparison of their NMR data with previously reported values (Table 7). The carbon signals at C-2" and C-3" of β -xylose appeared at nearly the same position, but the latter carbon could be distinguished by the HMBC correlation from the attached H-3" (δ_H 3.32) of xylose to C-5" (δ_C 66.0) of xylose. The HMBC spectrum showed cross peaks between C-3 (δ_C 132.8) of the quercetin aglycone and H-1" (δ_H 5.51) of xylose; C-2" (δ_C 76.9) of xylose and H-1"'' (δ_H 5.08) of rhamnose; C-1"'' (δ_C 100.6) of rhamnose and H-2" ($\delta_{\rm H}$ 3.54) of xylose. Therefore, the β-xylopyranose unit should be attached at C-3 of quercetin, and the α-rhamnopyranose unit was connected to the C-2 position of the β-xylopyranose unit. The downfield shift (about 2 ppm) of this position also supported that α-rhamnopyranose unit was attached to C-2" of β-xylopyranose. In addition, acid hydrolysis of compound DC8 yielded D-xylose and L-rhamnose, as shown in Figure 4. It was concluded that compound DC8 was quercetin-3-*O*-α-Lrhamnopyranosyl-(1→2)-β-D-xylopyranoside [**240**]. This structure was unknown prior to this study.

Figure 4 Acid hydrolysis of compound DC8 [TLC conditions: silica gel 60 F_{254} plate (Merck) [using CHCl₃-MeOH-H₂O (5:4:1)]; Lane 1: R_f 0.44 (L-arabinose), Lane 2: R_f 0.38 (D-xylose), Lane 3: Hydrolysate from aqueous layer, Lane 4: R_f 0.58 (L-rhamnose)]

Quercetin-3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside [240]

Position	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	HMBC (correlation with ¹ H)
2		156.0	H-2', H-6'
3		132.8	H-1"
4		177.1	-
5		161.2	H-6*
6	6.18 (d, 2.0)	98.7	H-8
7		164.3	H-6*, H-8*
8	6.39 (d, 2.0)	93.5	H-6
9		156.2	H-8*
10		103.8	H-6, 8
1'		120.9	H-5′
2'	7.53 (d, 2.0)	115.9	H-6'
3'		145.0	H-2', H-5'
4'		148.6	H-2', H-5'*, H-6'
5'	6.84 (d, 8.5)	115.2	-
6'	7.57 (dd, 8.5, 2.0)	121.5	H-2'
Xyl 1″	5.51 (d, 7.5)	99.4	H-2"*, H-5"
Xyl 2''	3.54 (t, 8.0)	76.9	H-1'''
Xyl 3″	3.32	76.8	H-2"*, H-4"*, H-5"
Xyl 4''	3.34	69.6	H-3"*, H-5"*
Xyl 5''	2.95 (m), 3.59 (dd, 11.0, 4.0)	66.0	H-1", H-3"
Rha 1'''	5.08 (br s)	100.6	H-2"
Rha 2'''	3.48 (dd, 9.0, 3.0)	70.5	H-1""*, H-3""*, H-4""
Rha 3'''	3.73	70.6	H-1''', H-4'''*
Rha 4'''	3.15 (m)	71.8	H-2''', H-3'''*
Rha 5'''	3.78 (m)	68.3	H-1''', H-4'''*
Rha 6'''	0.87 (d, 6.5)	17.4	H-4''', H-5'''*

Table 10 ¹H (500 MHz) and ¹³C (125 MHz) NMR spectral data of compound DC8 (in DMSO- d_6)


* Two-bond coupling.

1.9 Structure elucidation of compound DS1

Compound DS1 was obtained as a white powder, and had the molecular formula of $C_{19}H_{24}O_6$, as indicated by an $[M+Na]^+$ ion at m/z 371.1469 (calcd. for C₁₉H₂₄O₆Na 371.1471) in the HRESI mass spectrum (Figure 47). The UV spectrum (Figure 49) showed typical benzenoid absorptions at 215 and 266 nm, similar to those of bibenzyl derivatives (DC1-DC5). The IR spectrum (Figure 48) exhibited peaks at 3416 (hydroxyl), 1591 and 1461 (aromatic ring), and 1333, 1349, 1238 (ether) cm⁻¹. The ¹H NMR spectrum (Figure 50 and Table 11) showed resonances for two pairs of benzylic protons at δ 2.80 (4H, br s, \Box H₂- α and H₂- α '), five methoxy groups at δ 3.79 (3H, s), 3.80 (3H, s), 3.81 (6H, s) and 3.84 (3H, s) and four aromatic protons at δ 6.21 (1H, s, H-2) and 6.46 (1H, s, H-6) and 6.35 (2H, s, H-2' and H-6'). From these ¹H NMR data, it could be inferred that DS1 was a hexa-oxygenated bibenzyl containing a hydroxy and five methoxy substituents. The ¹³C NMR resonances (Figure 51 and Table 11) at δ 153.0 (C-3' and C-5') and 136.3 (C-4') suggested that ring B of DS1 was tri-methoxylated at *m*- and *p*-positions to the ethane bridge, similar to that of brittonin A [224] (Sritularak et al., 2011b). Thus, two methoxy groups and a hydroxyl group remained to be placed on ring A. The structure of ring A was unsymmetrical, as evidenced by the different chemical shifts of the aromatic protons at δ 6.21 (1H, s, H-2) and 6.46 (1H, s, H-6). Therefore, the two methoxy groups should be adjacent and located at *m*- and *p*-positions of the ethane bridge, leaving the hydroxy group to be placed at the other *m*-position of ethane bridge. The proposed structure of DS1, was confirmed by the NOESY correlations observed between 5-OH and 4-OMe, and between H-2 and 3-OMe protons (Figures 52a and 52b). Thus, the structure of DS1 determined as а new bibenzyl, namely, 5-hydroxy-3,4,3',4',5'was pentamethoxybibenzyl [241].

Position	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C
1		137.8
2	6.21 (s)	107.9
3		149.1
4		133.7
5		152.0
6	6.46 (s)	104.5
α	2.80 (br s)	38.1
α΄	2.80 (br s)	38.1
1′		137.3
2'	6.35 (s)	105.5
3'		153.0
4'		136.3
5'		153.0
6'	6.35 (s)	105.5
5-OH	5.76 (s)	-
3-OMe	3.79 (s)	55.7
4-OMe	3.84 (s)	60.8
3',5'-OMe	3.81 (s)	56.0
4'-OMe	3.80 (s)	60.8

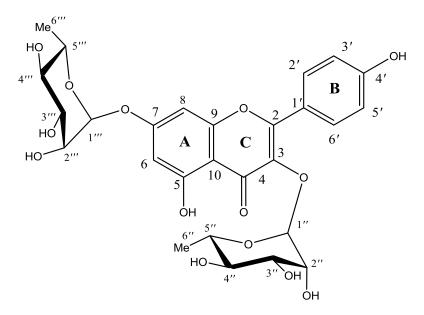
Table 11 $^1\mathrm{H}$ (300 MHz) and $^{13}\mathrm{C}$ (75 MHz) NMR spectral data of compound DS1 (in CDCl_3)

5-Hydroxy-3,4,3',4',5'-pentamethoxybibenzyl [241]

1.10 Structure determination of compound DS2

Compound DS2 was obtained as a yellow powder. The ESI mass spectrum (Figure 53) showed a pseudomolecular ion $[M+H]^+$ at m/z 579.16, suggesting the molecular formula $C_{27}H_{29}O_{14}$. Its UV spectrum (Figure 55) showed maximal absorptions at 222, 266 and 345 nm, which were similar to those of DC6-DC8, indicating a flavonoid structure. The IR spectrum (Figure 54) exhibited absorption bands due to hydroxyl (3400 cm⁻¹), carbonyl (1659 cm⁻¹), aromatic (1604, 1513, 1448 cm⁻¹) and C-O ether (1208, 1178 cm⁻¹) functionalities.

The ¹H NMR spectrum (Figure 56) showed the presence of four signals for six aromatic protons. Four aromatic protons resonated at $\delta_{\rm H}$ 6.92 (2H, d, J = 8.7 Hz, H-3' and H-5') and 7.77 (2H, d, J = 8.7 Hz, H-2' and H-6'), representing an AA'BB' system of the B ring. Two aromatic protons resonating at $\delta_{\rm H}$ 6.44 (1H, br s) and 6.70 (1H, br s,) were assigned to H-6 and H-8 protons, respectively. The spectral data indicated that DS2 had kaempferol as the aglycone, similar to DC6 and DC7. In addition, two anomeric proton signals were observed at $\delta_{\rm H}$ 5.38 (1H, br s, Rha 1'') and 5.54 (1H, br s, Rha 1'''), indicating the presence of two sugar units. The ¹H NMR spectrum also showed the characteristic methyl doublets for rhamnose at $\delta_{\rm H}$ 0.91 (J = 4.8 Hz, Rha 6'') and 1.24 (J = 6.3 Hz, Rha 6'''). It was then confirmed by comparing the ¹³C NMR data (Figure 57 and Table 12) with previously published values (Table 7).

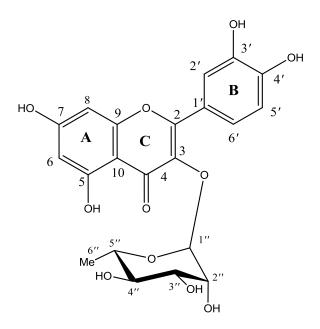

From the above data and through comparison with previously reported data (Toker *et al.*, 2004), DS2 was identified as kaempferol-3,7-*O*-di- α -L-rhamnopyranoside [**242**].

This compound was also known as kaempferitrin, found in several plants such as *Lotus corniculatus* (Fabaceae), and exhibited antimicrobial activity comparable to several antibiotics against Gram positive and Gram negative bacteria (Abdel-Ghani *et al.*, 2001). It was also found in *Bauhinia forficate* (Leguminosae), and was reported to have a significant hypoglycemic effect in diabetic rat and showed antioxidative property comparable to those of quercetin (De Sousa *et al.*, 2004).

	Compound DS2	•	Kaempferol-3,7- <i>O</i> -di-α-L- rhamnopyranoside ^a		
Position					
	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ_{C}	
2	-	159.8	-	159.8	
3	-	136.5	-	136.5	
4	-	179.8	-	179.8	
5	-	163.0	-	163.0	
6	6.44 (br s)	99.9	6.46 (d, 2.4)	99.9	
7	-	163.6	-	163.6	
8	6.70 (br s)	95.6	6.71 (d, 2.4)	95.6	
9	-	158.1	-	158.1	
10	-	107.6	-	107.6	
1′	-	122.4	-	122.4	
2'	7.77 (d, 8.7)	132.0	7.78 (d, 9.2)	132.0	
3'	6.92 (d, 8.7)	116.6	6.93 (d, 9.2)	116.6	
4'	-	161.8	-	161.8	
5'	6.92 (d, 8.7)	116.6	6.93 (d, 9.2)	116.7	
6'	7.77 (d, 8.7)	132.0	7.78 (d, 9.2)	132.0	
Rha 1"	5.38 (br s)	103.5	5.40 (d, 1.8)	103.8	
Rha 2''	4.20 (br s)	71.9	4.22 (dd, 3.3, 1.8)	71.9	
Rha 3"	3.69 (m)	72.1	3.71 (dd, 9.0, 3.1)	72.2	
Rha 4''	3.29-3.33 (m)	73.2	3.33-3.34 (m)	73.2	
Rha 5″	3.29-3.33 (m)	72.2	3.33-3.36 (m)	72.1	
Rha 6''	0.91 (d, 4.8)	17.7	0.93 (d, 5.6)	17.8	
Rha 1'''	5.54 (br s)	100.6	5.55 (d, 1.7)	100.0	
Rha 2'''	4.00 (br s)	71.7	4.02 (dd, 4.1, 1.8)	71.7	
Rha 3'''	3.81 (dd, 9.3, 3.0)	72.1	3.83 (dd, 9.5, 3.1)	72.2	
Rha 4'''	3.46 (t, 9.3)	73.6	3.46-3.50 (t, 9.8, 9.2)	73.6	
Rha 5'''	3.59 (m)	71.3	3.59-3.62 (m)	71.3	
Rha 6'''	1.24 (d, 6.3)	18.1	1.26 (d, 6.1)	18.0	

Table 12 NMR spectral data of compound DS2 (in CD₃OD) and kaempferol-3,7-*O*-di- α -L-rhamnopyranoside (in CD₃OD)

^a Toker *et al.*, 2004.


Kaempferol-3,7-*O*-di-α-L-rhamnopyranoside [242]

1.11 Structure determination of compound DS3

Compound DS3 was obtained as a greenish amorphous solid. The IR spectrum (Figure 59) showed absorption peaks at 3270 (hydroxyl), 1657 (conjugated carbonyl), 1602, 1510 and 1446 (aromatic), and 1200, 1170 (C-O) cm⁻¹. Its ESI mass spectrum (Figure 58) exhibited a protonated molecular ion peak at m/z 449.10 [M+H]⁺, providing the formula $C_{21}H_{20}O_{11}$. Absorption bands were observed at λ_{max} 222, 256 and 349 nm in its UV spectrum (Figure 60), indicating the flavonoid as basic skeleton. The ¹H NMR spectrum (Figure 61 and Table 13) showed the presence of a quercetin aglycone as identified by ABM splitting patterns on the B ring, including signals at $\delta_{\rm H}$ 6.83 (1H, d, J = 8.4 Hz, H-5'), 7.21 (1H, d, J = 1.8 Hz, H-2') and 7.25 (1H, m, H-6'), and two aromatic protons of the A ring at $\delta_{\rm H}$ 6.12 (1H, d, J = 1.5 Hz, H-6) and 6.29 (1H, br s, H-8), which were similar to those of DC8. The presence of the rhamnosyl unit was indicated by a characteristic methyl doublet at $\delta_{\rm H}$ 0.86 (3H, J = 6.0 Hz, Rha 6'') and a broad singlet of anomeric proton at $\delta_{\rm H}$ 5.27. The 13 C NMR and DEPT spectra (Figure 62 and Table 13) showed twenty-one signals, comprising one methyl, ten methines and ten quaternary carbons, corresponding to quercetin aglycone (15C) and rhamnosyl unit (6C).

Based on the above spectral evidence and through comparison with previously reported data (Olszewska and Wolbis, 2002), DS3 was identified as quercetin-3-O- α -L-rhamnopyranoside [**243**].

Quercetin-3-O- α -L-rhamnoside or quercitrin is the most common flavonol glycoside in the nature with several biological activities, including antidiarrhoeic (Galvez *et al.*, 1993), sedative (Kang *et al.*, 2000), antifungal (Lu *et al.*, 2002) and anti-inflammatory (Manga *et al.*, 2004) activities.

Quercetin-3-*O*-α-L-rhamnopyranoside [243]

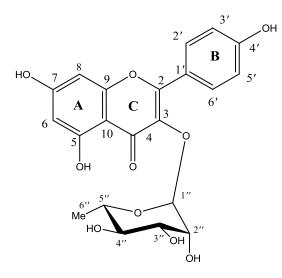
Position	Compound DS3		Quercetin-3- <i>O</i> -α-L- rhamnopyranoside ^a		
	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	
2	-	158.5	-	156.4	
3	-	136.3	-	134.2	
4	-	179.7	-	177.8	
5	-	163.2	-	161.3	
6	6.12 (d, 1.5)	99.8	6.20 (d, 1.8)	98.7	
7	-	165.9	-	164.1	
8	6.29 (br s)	94.7	6.39 (d, 1.8)	93.6	
9	-	159.3	-	157.3	
10	-	105.9	-	104.0	
1′	-	123.0	-	120.7	
2'	7.21 (d, 1.8)	116.4	7.29 (d, 1.9)	115.4	
3'	-	146.4	-	145.2	
4'	-	149.8	-	148.4	
5'	6.83 (d, 8.4)	117.0	6.86 (d, 8.2)	115.6	
6'	7.25 (m)	122.9	7.25 (dd, 8.2, 1.9)	121.1	
Rha 1''	5.27 (br s)	103.6	5.25 (br s)	101.8	
Rha 2''	4.12 (d, 1.2)	72.0	3.97 (br s)	70.3	
Rha 3″	3.67 (dd, 9.3, 3.0)	72.2	3.50 (dd, 9.1, 3.0)	70.6	
Rha 4''	3.22-3.30 (m)	73.3	3.12-3.17 (m)	71.2	
Rha 5″	3.34 (m)	71.9	3.21 (dd, 9.5, 6.1)	70.0	
Rha 6''	0.86 (d, 6.0)	17.6	0.81 (d, 6.1)	17.8	

Table 13 NMR spectral data of compound DS3 (in CD₃OD) and quercetin-3-O- α -L-rhamnopyranoside (in DMSO- d_6)

^a Olszewska and Wolbis, 2002.

1.12 Structure determination of compound DS4

Compound DS4 was obtained as a greenish amorphous solid. The ESI mass spectrum (Figure 63) showed a pseudomolecular ion $[M+H]^+$ at m/z 433.12, suggesting the molecular formula $C_{21}H_{20}O_{10}$. The IR spectrum (Figure 64) showed absorption bands at 3334 (hydroxyl), 1656 (conjugated carbonyl), 1609, 1510 and 1454 (aromatic) and 1209, 1176 (C-O) cm⁻¹. The UV spectrum showed absorptions at 224, 266 and 345 nm (Figure 65). By comparing the ¹H and ¹³C NMR spectra (Figures 66 and 67, and Table 14) of DS4 with those of DS3, it was found that DS4 had the same sugar unit as DS3 but it had a different aglycone. The ¹H NMR spectrum displayed four signals for six aromatic protons, including δ 6.18 (1H, br s, H-6), 6.37 (1H, br s, H-8), 7.74 (2H, d, J = 8.1 Hz, H-2' and H-6') and 6.90 (2H, d, J =8.1 Hz, H-3' and H-5'). In addition, the ¹H NMR spectrum displayed a chealated proton resonance at $\delta_{\rm H}$ 12.61, which supported the presence of a hydroxyl group at C-5. It could be inferred that the aglycone part of DS4 was kaempferol, similar to those of compounds DC6, DC7 and DS2. Moreover, the presence of the rhamnosyl unit, as found in DS3, was supported by a characteristic methyl doublet at $\delta_{\rm H}$ 0.78 (3H, J =4.8 Hz, Rha 6") and a broad singlet corresponding to the anomeric proton at $\delta_{\rm H}$ 5.28.


From the above data and through comparison with previously reported data (Bilia *et al*, 1996), DS4 was identified as kaempferol-3-O- α -L-rhamnopyranoside [244].

Kaempferol-3-O- α -L-rhamnopyranoside was also named afzelin. In previous studies, this compound was isolated from the leaves of *Erythroxylum laurifolium* (Erythroxylaceae), and showed interesting angiotensin converting enzyme (ACE) inhibitory activity (Hansen *et al.*, 1996), and was also found in the antiviral fractions of *Persea Americana* (Lauraceae) leaf (Almeida *et al.*, 1998).

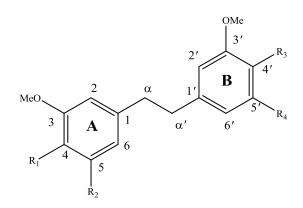
Position	Compound DS4		Kaempferol-3- <i>O</i> -α-L- rhamnopyranoside ^a		
	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ _C	
2	-	157.1	-	158.7	
3	-	134.2	-	133.9	
4	-	177.7	-	179.1	
5	-	162.0	-	162.2	
6	6.18 (br s)	98.9	5.98 (d, 2.2)	99.8	
7	-	165.0	-	165.3	
8	6.37 (br s)	93.9	6.28 (d, 2.2)	94.5	
9	-	156.6	-	158.3	
10	-	101.8	-	104.2	
1′	-	120.6	-	122.5	
2'	7.74 (d, 8.1)	130.6	7.35 (d, 8.7)	132.2	
3'	6.90 (d, 8.1)	115.4	6.83 (d, 8.7)	116.0	
4'	-	160.1	-	159.4	
5'	6.90 (d, 8.1)	115.4	6.83 (d, 8.7)	116.0	
6'	7.74 (d, 8.1)	130.6	7.35 (d, 8.74)	132.2	
Rha 1"	5.28 (br s)	101.8	5.43 (d, 2.1)	102.5	
Rha 2''	3.08-3.97 (m)	70.4	3.20-4.42 (m)	71.7	
Rha 3″	3.08-3.97 (m)	70.6	3.20-4.42 (m)	72.3	
Rha 4''	3.08-3.97 (m)	71.2	3.20-4.42 (m)	73.2	
Rha 5″	3.08-3.97 (m)	70.1	3.20-4.42 (m)	71.4	
Rha 6''	0.78 (d, 4.8)	17.5	0.89 (d, 6.4)	17.5	

Table 14 NMR spectral data of compound DS4 (in DMSO- d_6) and kaempferol-3-O- α -L-rhamnopyranoside (in CD₃OD)

^a Bilia *et al.*, 1996.

Kaempferol-3-O-α-L-rhamnopyranoside [244]

2. Cytotoxic activity


Evaluation for cytotoxicity was done on the compounds isolated in sufficient quantity. Cytotoxicity assays against three human cancer cell lines including KB (oral human epidermal carcinoma), NCI-H187 (human lung cancer) cells and MCF-7 (breast cancer) cells, and normal cells (Vero cells) were provided by the bioassay laboratory of National Center for Genetic Engineering and Biotechnology (BIOTEC). The results are summarized in Table 15.

Compound	KB	NCI-H187	MCF-7	Vero cell
Chrysotobibenzyl [DC1]	132.4	123.7	Inactive ^a	0.06
Crepidatin [DC2]	14.4	13.7	inactive	0.08
Gigantol [DC3]	61.9	71.6	67.8	0.10
Chrysotoxine [DC4]	60.5	65.6	inactive	Non- cytotoxic ^b
Moscatilin [DC5]	2.2	10.5	inactive	0.04
Kaempferol-3-O-α-L-	inactive	inactive	inactive	Non-
rhamnopyranosyl $(1\rightarrow 2)$ - β -D- xylopyranoside [DC6]				cytotoxic
Kaempferol-3- O - α -L- rhamnopyranosyl (1 \rightarrow 2)- β -D- glucopyranoside [DC7]	inactive	inactive	inactive	Non- cytotoxic
5-Hydroxy-3,4,3',4',5'- pentamethoxybibenzyl [DS1]	inactive	87.8	inactive	0.12
Brittonin A	inactive	inactive	inactive	Non- cytotoxic
4,5,4'-Trihydroxy-3,3'-	48.3	63.8	62.6	Non-
dimethoxybibenzyl				cytotoxic
Ellipticine	1.8	1.4	-	0.006
Doxorubicin	0.6	0.08	11.2	-
Tamoxifen	-	-	14.0	-

Table 15 IC_{50} Values ($\mu M)$ for cytotoxicity of isolated compounds and positive controls.

 $^{a}Less$ than 50% inhibition at concentration of 50 $\mu g/mL.$

 bMore than 50% cell growth at concentration of 50 $\mu g/mL.$

	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	\mathbf{R}_4
Chrysotobibenzyl [DC1]	OMe	Η	OMe	OMe
Crepidatin [DC2]	OH	Η	OMe	OMe
Gigantol [DC3]	Н	OH	OH	Н
Chrysotoxine [DC4]	OMe	Η	OH	OMe
Moscatilin [DC5]	OH	Η	OH	OMe
5-Hydroxy-3,4,3',4',5'-pentamethoxybibenzyl	OMe	OH	OMe	OMe
[DS1]				
Brittonin A	OMe	OMe	OMe	OMe
4,5,4'-Trihydroxy-3,3'-dimethoxybibenzyl	OH	OH	OH	Н

The compounds studied for their cytotoxicity include five bibenzyls [DC1-DC5] and two flavonol glycosides [DC6-DC7] from *D. capillipes*, and three bibenzyls [DS1, brittonin A and 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl] from *D. secundum*. Brittonin A and 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl, isolated and reported previously (Sritularak *et al.*, 2011b), were included in this study for evaluation structure activity relation (SAR) of bibenzyls and their cytotoxicity.

In this study, all bibenzyls, except brittonin A, exhibited inhibitory activity against cancer cell lines tested. The flavonol glycosides, which were isolated from the inactive fraction, were devoid of cytotoxicity as expected. It was found that DC5 (moscatilin) was the most potent compound, inhibiting both KB (oral human epidermal carcinoma) and NCI-H187 (human lung cancer) cells with IC₅₀ of 2.2 and 10.5 μ M, respectively. However, the compound was not active against MCF-7 (breast cancer) cells. DC3 (gigantol) and 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl showed weak cytotoxicity against all three cancer cell lines. In addition, DC4

(chrysotoxine), brittonin A and 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl showed non-cytotoxicity against Vero cell.

It appeared that both the number and position of hydroxyl and methoxyl groups on the aromatic rings played an important role on the cytotoxic activity of bibenzyls. It seemed that the presence of 4-OH group might be important for the activity, and substituting this group with a methoxy group decreased the activity significantly. In moscatilin (DC5), where optimal activity was obtained, the bibenzyl is penta-oxygenated, with two OH groups placed at the 4- or 4'-position and three OMe groups at either the 3-/3'- or 5-/5'-positions of the aromatic rings. Any deviation from this structural arrangement seems to result in the decrease of activity.

CHAPTER V

CONCLUSION

In this study, eight compounds were isolated from Dendrobium capillipes and four compounds were obtained from Dendrobium secundum. Five of them were known bibenzyls, including chrystobibenzyl [18], crepidatin [21], gigantol [14], chrysotoxine [19], moscatilin [8], in addition to five known flavonol glycosides, comprising kaempferol-3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside [238], kaempferol-3-O- α -L-rhamnopyranosyl $(1\rightarrow 2)$ - β -D-glucopyranoside [239], [242], kaempferol-3,7-*O*-di-α-L-rhamnopyranoside quercetin-3-O-a-L-rhamnopyranoside [243] and kaempferol- $3O-\alpha$ -L-rhamnopyranoside [244]. A new flavonol glycoside named quercetin-3-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranoside [240] and a new bibenzyl, namely, 5-hydroxy-3,4,3',4',5'-pentamethoxybibenzyl [241] were characterized in this study. The present results agree with previously published data in that bibenzyls were most commonly found in plants of this genus (Chen et al., 2008a). Flavonoid glycosides were also reported in Dendrobium plants (Wang et al., 2009; Chang et al., 2010). The bibenzyls showed cytotoxicity against various types of cancer cells. It could be proposed that both the number and the position of the OH and OMe groups on the aromatic rings were critical for these bibenzyls to exert their cytotoxicity.

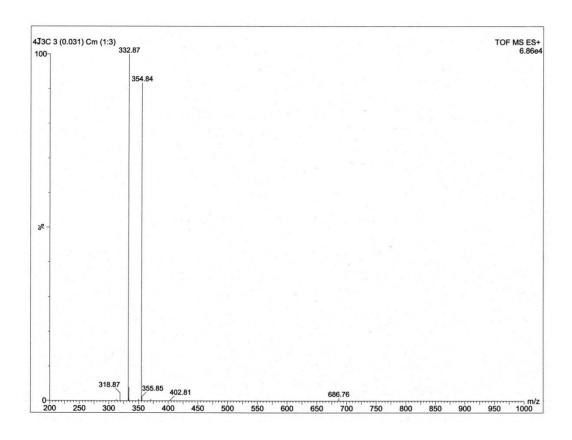
REFERENCES

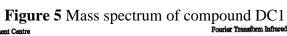
- Abdel-Ghani, A.E., Hafez, S.S., Aziz, E. M.A., and El-Shazly, A.M. 2001.
 Phytochemical and biological studies of *Lotus corniculatus* var. *tenuifolius* growing in Egypt. <u>Alexandria Journal of Pharmaceutical Sciences</u> 15: 103-108.
- Agrawal, P.K., 1992. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. <u>Phytochemistry</u> 31: 3307-3330.
- Behr, D., and Leander, K. 1976. Three steroid glycosides of the stigmastane type from *Dendrobium ochreatum*. <u>Phytochemistry</u> 15: 1403-1406.
- Bilia, A.R., Ciampi, L., Mendez, J., and Morelli, I. 1996. Phytochemical investigations of *Licania* genus flavonoids from *Licania pyrifolia*. <u>Pharmaceutica Acta Helvetiae</u> 71: 199-204.
- Bi, Z.M., Wang, Z.T., and Xu, L.S. 2004. Chemical constituents of *Dendrobium* moniliforme. <u>Acta Botanica Sinica</u> 46: 124-126.
- Bi, Z.M., Yang, Y.S., Wang, Z.T., Gong, Y.Q., He, J.X., and Tani, T. 2001. Chemical constituents of *Dendrobium fimbriatum* Hook. (I). Journal of China <u>Pharmaceutical University</u> 32: 200-202.
- Brien, J.O., Wilson, I., Orton, T., and Pognan, F. 2000. Investigation of the alamar blue (resazulin) fluorescent dye for the assessment of mammalian cell cytotoxicity. <u>European Journal of Biochemistry</u> 267: 5421-5426.
- Bureau of Policy and Strategy, Ministry of Public Health. Ten-first deaths 2009 [Online]. Available from: http://bps.ops.moph.go.th/index.php? mod=bps& doc=5. [Accessed July 8, 2011].
- Chang, S.J., Lin, T.H., and Chen, C.C. 2001. Constituents from the stems of *Dendrobium clavatum* var. *aurantiacum*. Journal of Chinese Medicine 12: 211-218.
- Chang, C.C., Ku, A.F., Tseng, Y.Y., Yang, W.B., Fang, J.M., and Wong, C.H. 2010.
 6,8-Di-C-glycosyl flavonoids from *Dendrobium huoshanense*. Journal of <u>Natural Products</u> 73: 229-232.

- Chen, Y., Li, J., Wang, L., and Liu, Y. 2008a. Aromatic compounds from *Dendrobium aphyllum*. Biochemical Systematics and Ecology 36: 458-460.
- Chen, C.C., Wu, L.G., Ko, F.N., and Teng, C.M. 1994. Antiplatelet aggregation principles of *Dendrobium loddigesii*. Journal of Natural Products 57: 1271-1274.
- Chen, Y., Lui, Y., Jiang, J., Zhang, Y., and Yin, B. 2008b. Dendronone, a new phenanthrenequinone from *Dendrobium cariniferum*. Food Chemistry 111: 11-12.
- Chen, T.H., *et al.* 2008c. Moscatilin induces apoptosis in human colorectal cancer cells: a crucial role of c-Jun NH₂-terminal protein kinase activation caused by tubulin depolymerization and DNA damage. <u>Clinical Cancer Research</u> 14: 4250-4257.
- Cui, D.B., Wang, S.Q., and Yan, M.M. 2003. Isolation and structure identification of flavonol glycoside from *Lysimachia christinae* Hance. <u>Acta Pharmaceutica</u> Sinica 38: 196-198.
- De Sousa, E., *et al.* 2004. Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(α)-dirhamnoside from *Bauhinia forficata* leaves. Journal of <u>Natural Products</u> 67: 829-832.
- Ding, Y., Liang, C., Nguyen, H.T., Choi, E.M., Kim, J.A., and Kim, Y.H. 2010. Chemical constituents from *Acer mandshuricum* and their effects on the function of osteoblastic MC3T3-E1 cells. <u>Bulletin of the Korean Chemical</u> Society 31: 929-933.
- Eldahshan, O.A. 2011. Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt. <u>Current Research: Journal of Biological Sciences 3</u>: 52-55.
- Fan, C., Wang, W., Wang, Y., Qin, G., and Zhao, W. 2001. Chemical constituents from *Dendrobium densiflorum*. Phytochemistry 57: 1255-1258.
- Gálvez, J., Crespo, M.E., Jiménez, J., Suárez, A., and Zarzuelo, A. 1993. Antidiarrhoeic activity of quercitrin in mice and rats. Journal of Pharmacy and Pharmacology 45: 157–159.

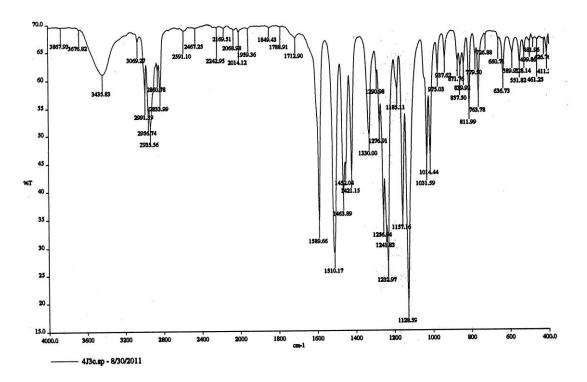
- Gawell, L., and Leander, K. 1976. The constitution of aduncin, a sesquiterpene related to picrotoxinin, found in *Dendrobium aduncum*. <u>Phytochemistry</u> 15: 1991-1992.
- Guanghua, Z., Zhanhe, J., Wood, J.J., and Wood, H.P. 2009. *Dendrobium* Swartz. <u>Flora of China</u> 25: 367.
- Ho, C.K., and Chen, C.C. 2003. Moscatilin from the orchid *Dendrobium loddigesii* is a potential anticancer agent. <u>Cancer Investigation</u> 21: 729-736.
- Holttum, R.E. 1957. Orchids of Malaya. <u>Flora of Malaya Volume I second edition</u>. Singapore: Authority government printing office.
- Honda, C., and Yamaki, M. 2000. Phenanthrenes from *Dendrobium plicatile*. <u>Phytochemistry</u> 53: 987-990.
- Hossain, M.M. 2011. Therapeutic orchids: traditional uses and recent advances-an overview. <u>Fitoterapia</u> 82: 102-140.
- Hu, J.M., Zhao, Y.X., Miao, Z.H., and Zhou, J. 2009. Chemical components of *Dendrobium polyanthum*. <u>Bulletin of the Korean Chemical Society</u> 30: 2098-2100.
- Hu, J.M., Chen, J.J., Yu, H., Zhao, Y.X, and Zhou, J. 2008a. Five new compounds from *Dendrobium longicornu*. <u>Planta Medica</u> 74: 535-539.
- Hu, J.M., Chen, J.J., Yu, H., Zhao, Y.X., and Zhou, J. 2008b. Two novel bibenzyls from *Dendrobium trigonopus*. Journal of Asian Natural Products Research 10: 647-651.
- Hwang, J.S., et al. 2010. Phenanthrenes from Dendrobium nobile and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. <u>Bioorganic & Medicinal Chemistry Letters</u> 20: 3785-3787.
- Ito, M., *et al.* 2010. New phenanthrenes and stilbenes from *Dendrobium loddigesii*. <u>Chemical & Pharmaceutical Bulletin</u> 58: 628-633.
- Itoh, T., et al. 2009. Inhibitory effects of flavonoids isolated from Fragaria ananassa Duch on IgE-mediated degranulation in rat basophilic leukemia RBL-2H3. <u>Bioorganic & Medicinal Chemistry</u> 17: 5374–5379.
- Juneja, R.K., Sharma, S.C., and Tandon, J.S. 1985. A substituted 1, 2-diarylethane from *Cybidium giganteum*. <u>Phytochemistry</u> 24: 321-324.

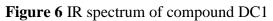
- Juneja, R.K., Sharma, S.C., and Tandon, J.S. 1987. Two substituted bibenzyl and a dihydrophenanthrene from *Cybidium aloifolium*. <u>Phytochemistry</u> 26: 1123-1125.
- Kang, T.H., Jeong, S.J., Kim, N.Y., Higuchi, R., and Kim, Y.C. 2000. Sedative activity of two flavonol glycosides isolated from the flowers of *Albizzia julibrissin* Durazz. Journal of Ethnopharmacology 71: 321-323.
- Kim, J., and Park, E. J. 2002. Cytotoxic anticancer candidates from natural resources. Current Medicinal Chemistry-Anti-Cancer Agents 2: 485-537.
- Lee, S., Xiao C., and Pei, S. 2008. Ethnobotanical survey of medicinal plants at periodic markets of Honghe prefecture in Yunnan province, SW China. <u>Journal of Ethnopharmacology</u> 117: 362-377.
- Li, Y.P., Qing, C., Fang, T.T., Liu, Y., and Chen, Y.G. 2009a. Chemical constituents of *Dendrobium chrysotoxum*. <u>Chemistry of Natural Compounds</u> 45: 414-416.
- Li, Y., Wang, C.L., Guo, S.X., Yang, J.S., and Xiao, P.G. 2008. Two new compounds from *Dendrobium candidum*. <u>Chemical & Pharmaceutical Bulletin</u> 56: 1477-1479.
- Li, J.T., Yin, B.L., Liu, Y., Wang, L.Q., and Chen, Y.G. 2009b. Mono-aromatic constituents of *Dendrobium longicornu*. <u>Chemistry of Natural Compounds</u> 45: 234-236.
- Li, S., et al. 2011. Elution–extrusion counter-current chromatography separation of five bioactive compounds from *Dendrobium chrysotoxum* Lindl. Journal of <u>Chromatography A</u> 1218: 3124-3128.
- Lin, T.H., Chang, H.J., Chen, C.C., Wang, J.P., and Tsao, L.T. 2001. Two phenanthraquinones from *Dendrobium moniliforme*. <u>Journal of Natural</u> <u>Products</u> 64: 1084-1086.
- Liu, Y., Jiang, J.H., Yin, B.L., and Chen, Y.G. 2009a. Chemical constituents of *Dendrobium cariniferum*. Chemistry of Natural Compounds 45: 237-238.
- Liu, Y., Jiang, J.H., Zhang, Y., and Chen, Y.G. 2009b. Chemical constituents of Dendrobium aurantiacum var. denneanum. <u>Chemistry of Natural Compounds</u> 45: 525-527


- Lu, Y.H., Zhang, Z., Shi, G.X., Meng, J.C., Tan, R.X. 2002. A new antifungal flavonol glycoside from *Hypericum perforatum*. <u>Acta Botanica Sinica</u> 44: 743-745.
- Ma, G.X., Wang, T.S., Yin, L., Pan, Y., Xu, G.J., and Xu, L.S. 1998. Studies on chemical constituents of *Dendrobium chryseum*. <u>Journal of Chinese</u> <u>Pharmaceutical Sciences</u> 7: 52-54.
- Majumder, P.L., and Chatterjee, S. 1989. Crepidatin, a bibenzyl derivative from the orchid *Dendrobium crepidatum*. <u>Phytochemistry</u> 28: 1986-1988.
- Majumder, P.L., and Pal, S. 1992. Rotundatin, a new 9,10-dihydrophenanthrene derivative from *Dendrobium rotundatum*. <u>Phytochemistry</u> 31: 3225-3228.
- Majumder, P.L., and Pal, S. 1993. Cumulatin and tristin, two bibenzyl derivatives from the orchids *Dendrobium cumulatum* and *Bulbophyllum triste*. <u>Phytochemistry</u> 32: 1561-1565.
- Majumder, P.L., and Sen, R.C. 1987. Moscatilin, a bibenzyl derivative from the orchid *Dendrobium moscatum*. Phytochemistry 26: 2121-2124.
- Majumder, P.L., Guha, S., and Sen, S. 1999. Bibenzyl derivatives from the orchid *Dendrobium amoenum*. <u>Phytochemistry</u> 52: 1365-1369.
- Manga, H.M., Brkic, D., Marie, D.E.P., and Quetin-Leclercq, J. 2004. In vivo antiinflammatory activity of *Alchornea cordifolia* (Schumach. & Thonn.) Müll. Arg. (Euphorbiaceae). Journal of Ethnopharmacology 92: 209-214.
- Olszewska, M., and Wolbis, M. 2002. Further flavonoids from the flowers of *Prunus spinosa* L. <u>Acta Poloniae Pharmaceutica</u> 59: 133-137.
- Ono, M., Ito, Y., Masuoka, C., Koga, H., and Nohara, T. 1995. Antioxidative constituents from Dendrobii Herba (Stems of *Dendrobium* spp.). <u>Food Science</u> <u>Technology International</u> 2: 115-120.
- Qin, X.D., Qu, Y., Ning, L., Liu, J.K., and Fan, S.K. 2011. A new picrotoxane-type sesquiterpene from *Dendrobium findlayanum*. <u>Journal of Asian Natural</u> <u>Products Research</u> 13: 1047-1050.
- Romero, Y.H., Rojas, J.I., Castillo, R., Rojas, A., and Mata, R. 2007. Spasmolytic effects, mode of action, and structure-activity relationships of stilbenoids from *Nidema boothii*. Journal of Natural Products 67: 160-167.


- Royal Forest Department, The Forest Herbarium. 2001. <u>Thai plant names Tem</u> <u>Smitinand revised edition</u>. Bangkok: Prachachon.
- Seidenfaden, G. 1985. <u>Orchid genera in Thailand XII. *Dendrobium* Sw</u>. Copenhagen: Opera Botanica 83.
- Shu, Y., Zhang, D.M., and Guo, S. X. 2004. A new sesquiterpene glycoside from *Dendrobium nobile* Lindl. Journal of Asian Natural Products Research 6: 311-314.
- Song, J.X., et al. 2010. Chrysotoxine, a novel bibenzyl compound, inhibits 6hydroxydopamine induced apoptosis in SH-SY5Y cells via mitochondria protection and NF-kB modulation. <u>Neurochemistry International</u> 57: 676–689.
- Sritularak, B., and Likhitwitayawuid, K. 2009. New bisbibenzyls from *Dendrobium falconeri*. <u>Helvetica Chimica Acta</u> 92: 740-744.
- Sritularak, B., Anuwat, M., and Likhitwitayawuid, K. 2011a. A new phenanthrenequinone from *Dendrobium draconis*. Journal of Asian Natural <u>Products Research</u> 13: 251-255.
- Sritularak, B., Duangrak, N., and Likhitwitayawuid, K. 2011b. A new bibenzyl from *Dendrobium secundum*. <u>Zeitschrift für Naturforschung C</u> 66 : 205-208.
- Talapatra, B., Das, A.K., and Talapatra, S.K. 1989. Defuscin, a new phenolic ester from *Dendrobium fuscescens*: conformation of shikimic acid. <u>Phytochemistry</u> 28: 290-292.
- Talapatra, S.K., Bhaumik, A., and Talapatra, B. 1992. Denfigenin, a diosgenin derivative from *Dendrobium fimbriatum*. Phytochemistry 31: 2431-2434.
- Toker, G., Memişoğlu, M., Yeşilada, E., and Aslan, M. 2004. Main flavonoids of *Tilia argentea* DESF. ex DC. leaves. <u>Turkish Journal of Chemistry</u> 28: 745-749.
- Tsai, A.C., et al. 2010. Moscatilin, a bibenzyl derivative from the india orchid Dendrobium loddigesii, suppresses tumor angiogenesis and growth in vitro and in vivo. <u>Cancer Letters</u> 292: 163-170.
- Vaddhanaphuti, N. 2005. <u>A field guide to the wild orchids of Thailand, fourth edition</u>. Bangkok: O.S. Printing House.

- Veerraju, P., Rao, N.S.P., Rao, L.J., Rao, K.V.J., and Rao, P.R.M. 1989. Amoenumin, a 9,10-dihydro-5H-phenanthro-(4,5-b,c,d)-pyran from *Dendrobium amoenum*. <u>Phytochemistry</u> 28: 950-951.
- Wang, L., Zhang, C.F., Wang, Z.T., Zhang, M., and Xu, L.S. 2009. Five new compounds from *Dendrobium crystallinum*. Journal of Asian Natural Products <u>Research</u> 11: 903-911.
- Wang, H., Zhao, T., and Che, C.T. 1985. Dendrobine and 3-hydroxy-2-oxodendrobine from *Dendrobium nobile*. Journal of Natural Products 48: 796-801.
- Wu, H., Dushenkov, S., Ho, C.T., and Sang, S. 2009. Novel acetylated flavonoid glycosides from the leaves of *Allium ursinum*. Food Chemistry 115: 592-595.
- Xiao K., Zhang H.J., Xuan L.J., Zhang J., Xu Y.M., and Bai D.L. 2008. Stilbenoids: Chemistry and Bioactivities. <u>Studies in Natural Products Chemistry</u> 34:453-646.
- Yamaki, M., and Honda, C. 1996. The stilbenoids from *Dendrobium plicatile*. <u>Phytochemistry</u> 43: 207-208.
- Yang, H., Sung, S.H., and Kim, Y.C. 2007. Antifibrotic phenanthrenes of Dendrobium nobile stems. Journal of Natural Products 70: 1925-1929.
- Yang, Y., Wang, Z., and Xu, L. 2006a. Phenols and a triterpene from *Dendrobium aurantiacum* var. *denneanum* (Orchidaceae). <u>Biochemical Systematics and Ecology</u> 34: 658-660.
- Yang, L., et al. 2006b. A new phenanthrene with a spirolactone from Dendrobium chrysanthum and its anti-inflammatory activities. <u>Bioorganic & Medicinal</u> <u>Chemistry</u> 14: 3496-3501.
- Ye, Q., and Zhao, W. 2002. Immunomodulatory sesquiterpene glycosides from Dendrobium nobile. <u>Phytochemistry</u> 61: 885-890.
- Ye, Q., Qin, G., and Zhao, W. 2002. New alloaromadendrane, cadinene and cyclocopacamphane type sesquiterpene derivatives and bibenzyl from *Dendrobium nobile*. Planta Medica 68: 723-729.
- Zanatta, L., *et al.* 2008. Insulinomimetic effect of kaempferol 3-neohesperidoside on the rat soleus muscle Journal of Natural Products 71: 532–535.
- Zhang. C.F., 2008a. Chemical constituents from *Dendrobium gratiosissimum* and their cytotoxic activities. <u>Indian Journal of Chemistry</u> 47B: 952-956.


- Zhang, X., Gao, H., Wang, N.L., and Yao, X.S. 2006. Three new bibenzyl derivatives from *Dendrobium nobile*. Journal of Asian Natural Products Research 8: 113-118.
- Zhang, X., Xu, J.K., Wang, N.L., Kurihara, H., and Yao, X.S. 2008b. Antioxidant phenanthrenes and lignans from *Dendrobium nobile*. <u>Journal of Chinese</u> Pharmaceutical Sciences 17: 314-318.
- Zhang, G.N., et al. 2005. Bi-bicyclic and bitricyclic compounds from *Dendrobium* thyrsiflorum. Phytochemistry 66: 1113-1120.
- Zhang, X., *et al.* 2007a. Bioactive bibenzyl derivatives and fluorenones from *Dendrobium nobile*. Journal of Natural Products 70: 24-28.
- Zhang, X., et al. 2007b. Sesquiterpenes from *Dendrobium nobile*. <u>Zhongcaoyao</u> 38: 1771-1774.
- Zhang, X., et al. 2008c. Copacamphane, picrotoxane, and cyclocopacamphane sesquiterpenes from *Dendrobium nobile*. <u>Chemical & Pharmaceutical Bulletin</u> 56: 854-857.
- Zhao, W., *et al.* 2001. Three new sesquiterpene glycosides from *Dendrobium nobile* with immunomodulatory activity. Journal of Natural Products 64: 1196-1200.
- Zhao, C., et al. 2003. Copacamphane, picrotoxane, and alloaromadendrane sesquiterpene glycosides and phenolic glycosides from *Dendrobium* moniliforme. Journal of Natural Products 66: 1140-1143.


APPENDIX

Scientific and Technological Research Equipment Centre Fourier Transform Infrared Spectrometer, PerkinElmer (Spectrum One Chulalongtorn University

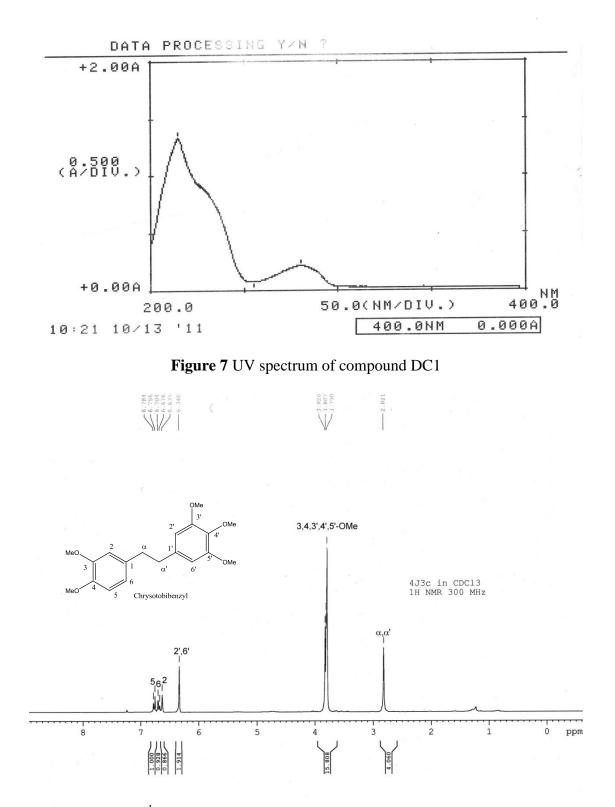


Figure 8¹H-NMR (300 MHz) spectrum of compound DC1 (CDCl₃)

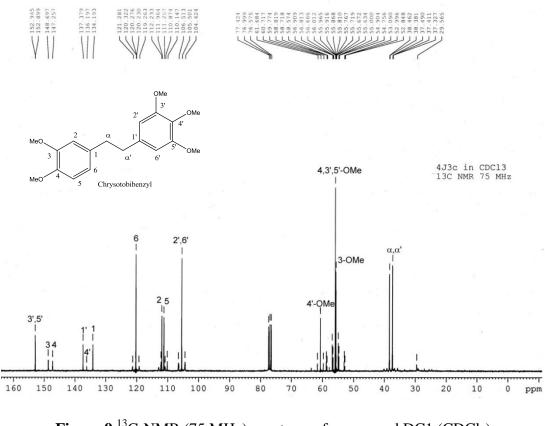


Figure 9¹³C-NMR (75 MHz) spectrum of compound DC1 (CDCl₃)

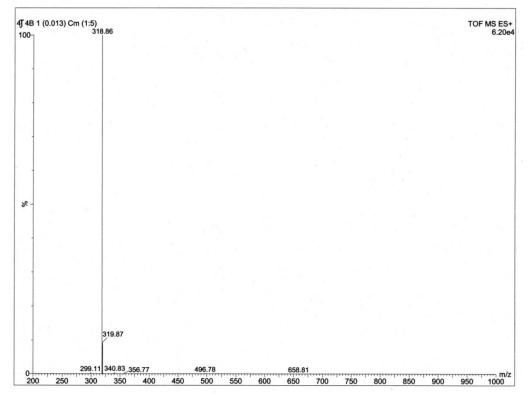
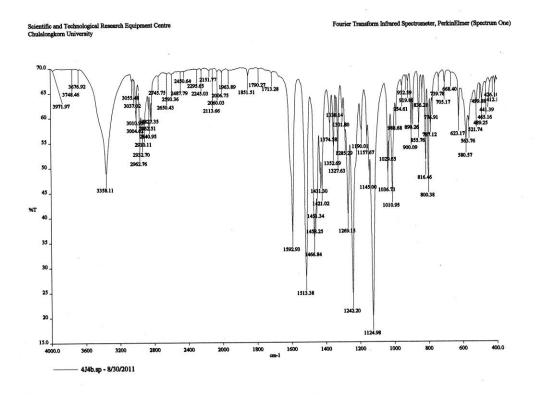
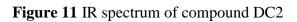




Figure 10 Mass spectrum of compound DC2

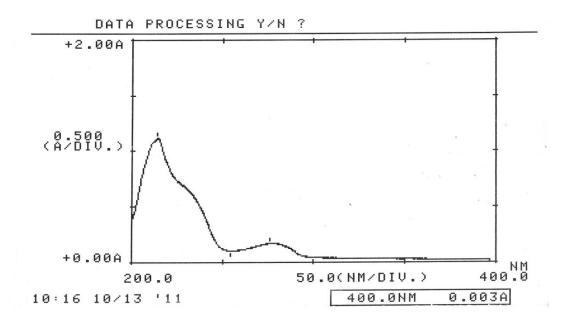


Figure 12 UV spectrum of compound DC2

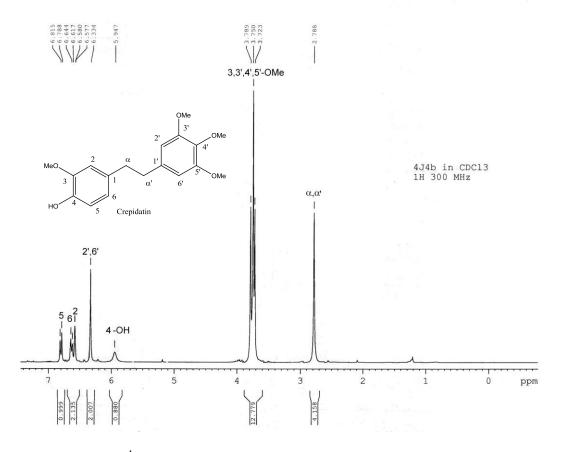


Figure 13 ¹H-NMR (300 MHz) spectrum of compound DC2 (CDCl₃)

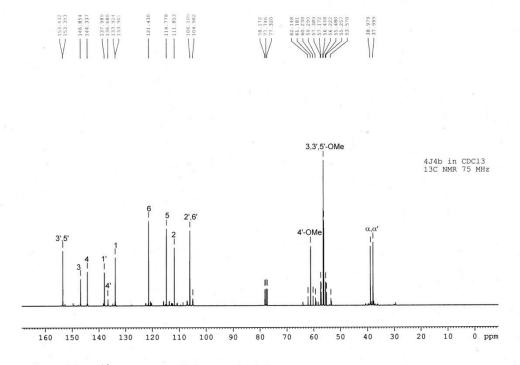


Figure 14 ¹³C-NMR (75 MHz) spectrum of compound DC2 (CDCl₃)

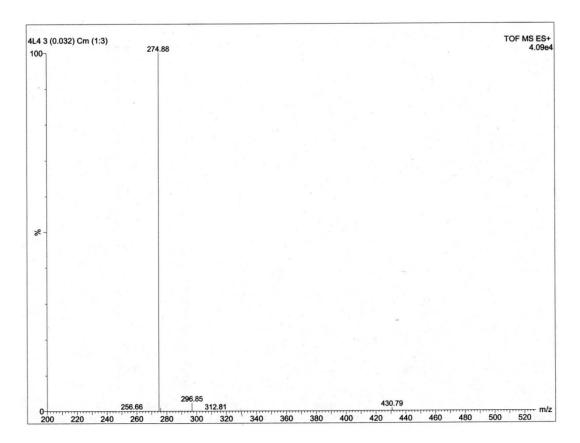
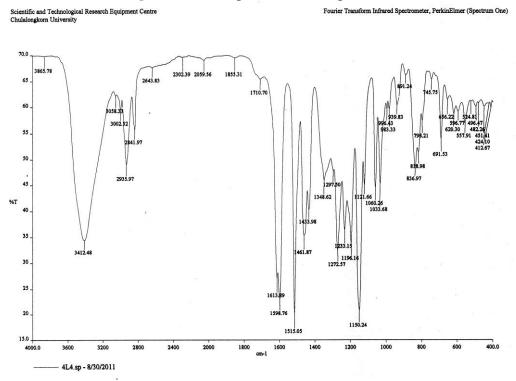
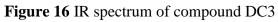




Figure 15 Mass spectrum of compound DC3

140

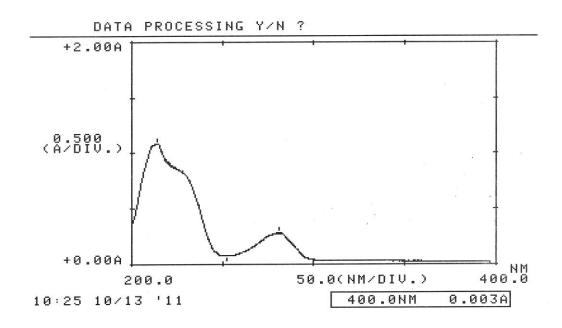


Figure 17 UV spectrum of compound DC3

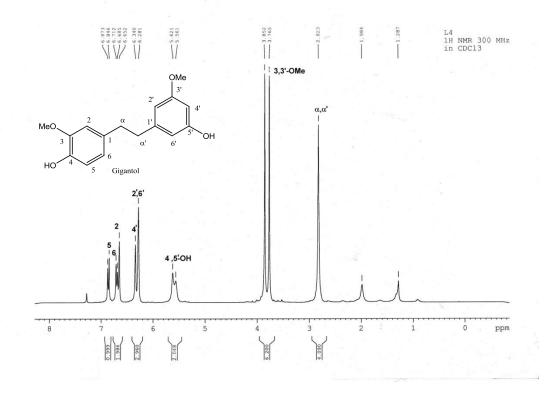


Figure 18¹H-NMR (300 MHz) spectrum of compound DC3 (CDCl₃)

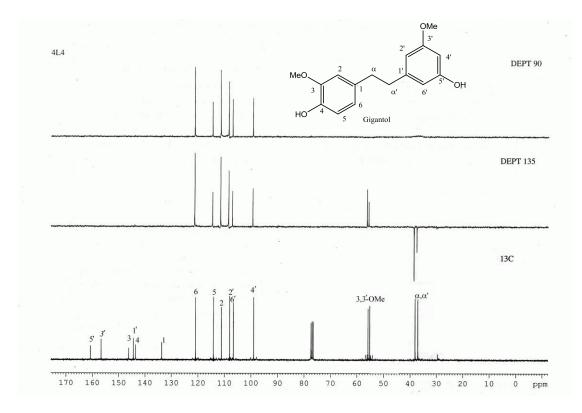


Figure 19 ¹³C-NMR (75 MHz) and DEPT spectra of compound DC3 (CDCl₃)

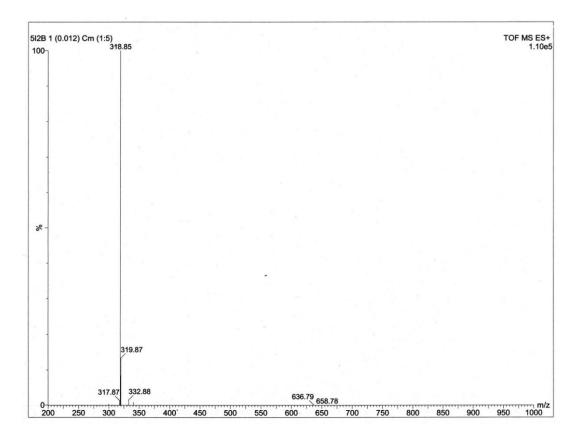


Figure 20 Mass spectrum of compound DC4

Scientific and Technological Research Equipment Centre Chulalongkorn University 70.0 2281.28 2317.79148.33 95 3853 41 3833.63 3671.5 3745.20 1939.99 1814.87 85 1852.07 1711.49 3124.72 3070.38 65 2479.95 2053.85 2592.18 2340.22 60 . 3012 55 632.11 50 . 8.40 1.13 2935 37 45 . %T 40 133 1608.85 3462.96 35 1027.60

30 .

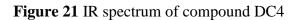
25 .

20

15.0

4000.0

3600


3200

512b.sp - 8/30/2011

2800

2400

2000

cm-1

1800

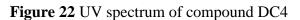
1515.56

1400

1600

1205. 1236.31

1200


1111.56

1000

800

600

143

400.0

Fourier Transform Infrared Spectrometer, PerkinElmer (Spectrum One)

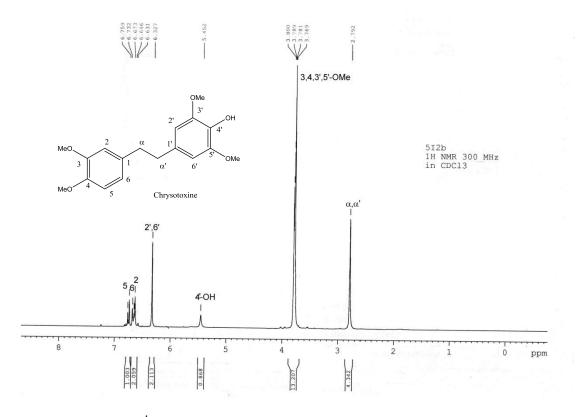


Figure 23 ¹H-NMR (300 MHz) spectrum of compound DC4 (CDCl₃)

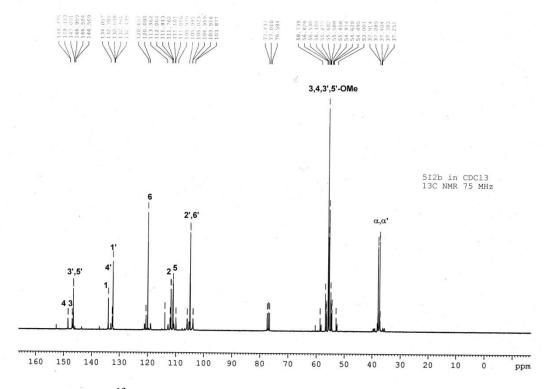


Figure 24 ¹³C-NMR (75 MHz) spectrum of compound DC4 (CDCl₃)

144

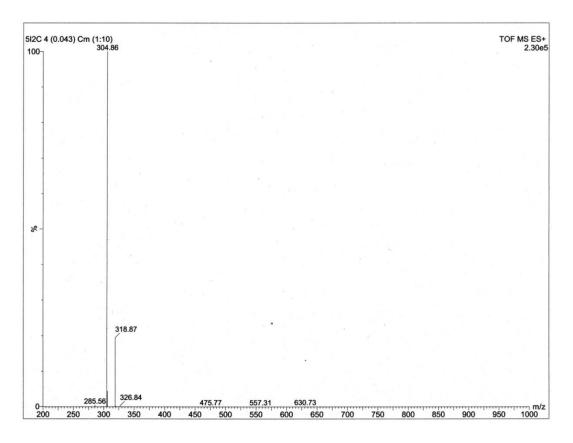
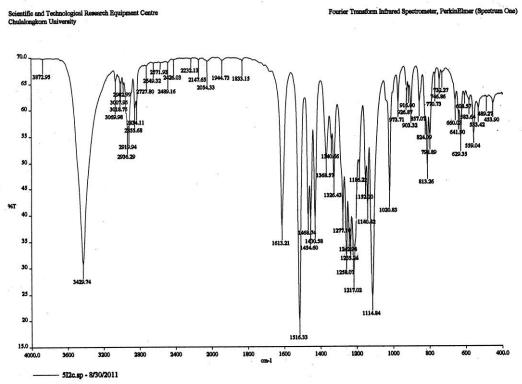
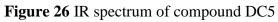




Figure 25 Mass spectrum of compound DC5

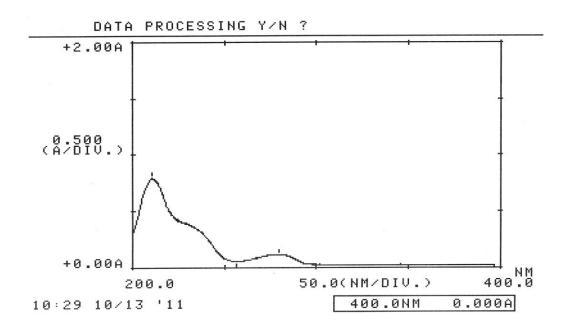


Figure 27 UV spectrum of compound DC5

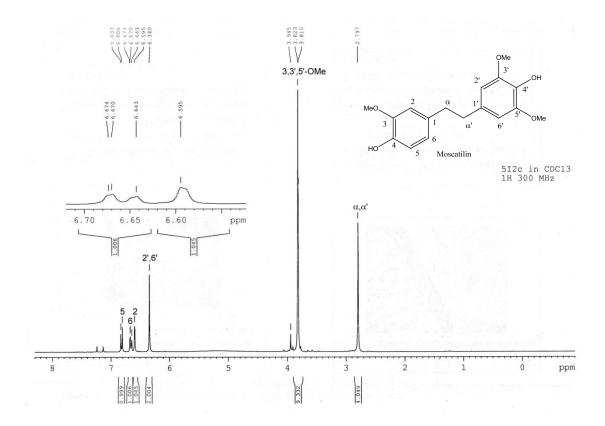


Figure 28 ¹H-NMR (300 MHz) spectrum of compound DC5 (CDCl₃)

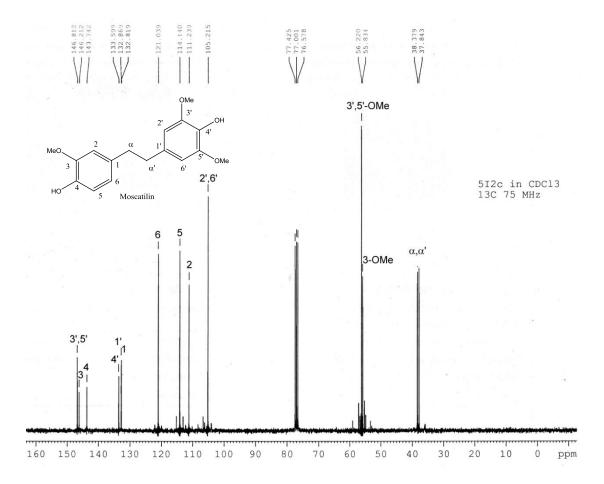


Figure 29 ¹³C-NMR (75 MHz) spectrum of compound DC5 (CDCl₃)

High resolution report

		Acquisition Date	8/8/2011 1:20:48 PM	
Analysis Name Method Sample Name	D:\Data\customer\7K12B.d NaFormate_pos_infusion .m 7K12B	Operator Instrument	Sutichai micrOTOF	Ext: 3560 Bruker

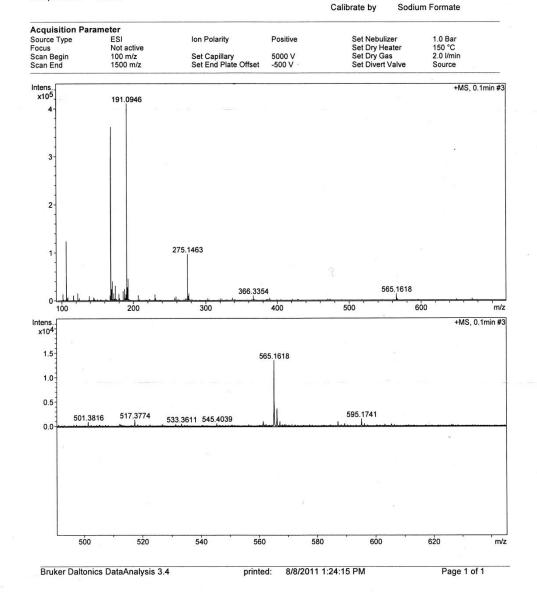
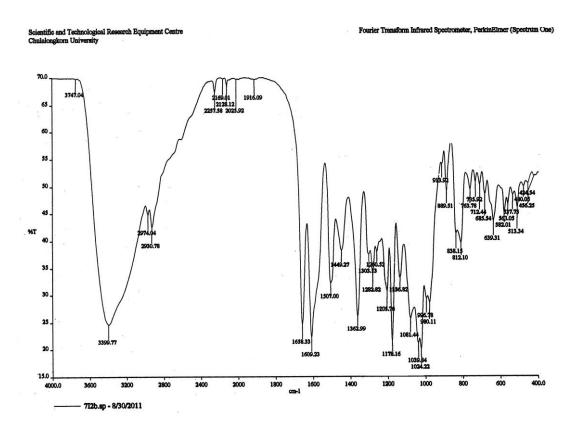
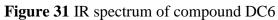




Figure 30 Mass spectrum of compound DC6

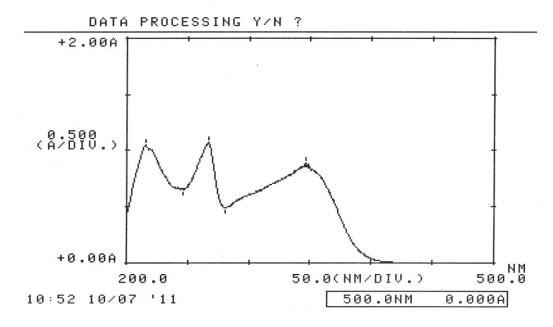
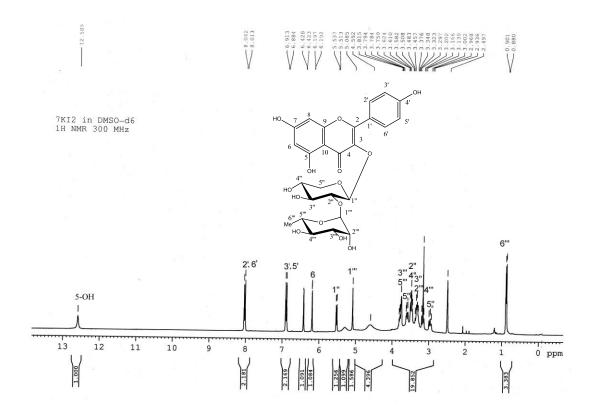



Figure 32 UV spectrum of compound DC6

Figure 33 ¹H-NMR (300 MHz) spectrum of compound DC6 (DMSO- d_6)

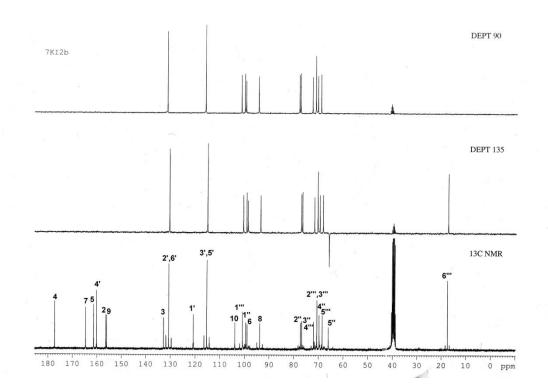


Figure 34 ¹³C-NMR (75 MHz) and DEPT spectra of compound DC6 (DMSO-*d*₆)

High resolution report

		Acquisition Date	8/8/2011 1:19:47 PM	
Analysis Name	D:\Data\customer\7J4B.d	Operator	Sutichai	Ext: 3560
Method	NaFormate_pos_infusion .m	Instrument	micrOTOF	Bruker
Sample Name	7J4B	Calibrate by	Sodium Form	nate

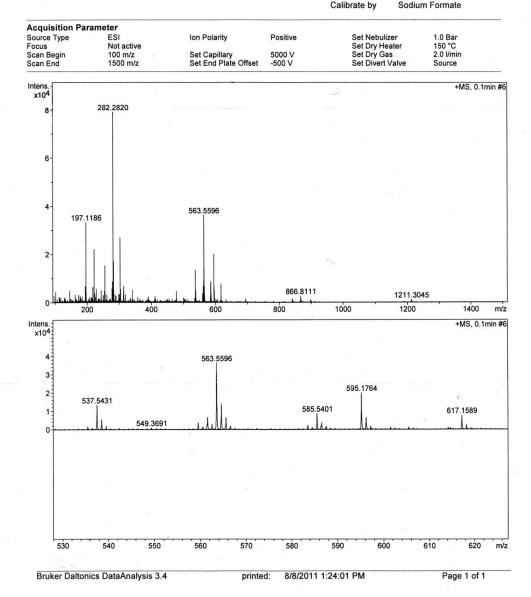
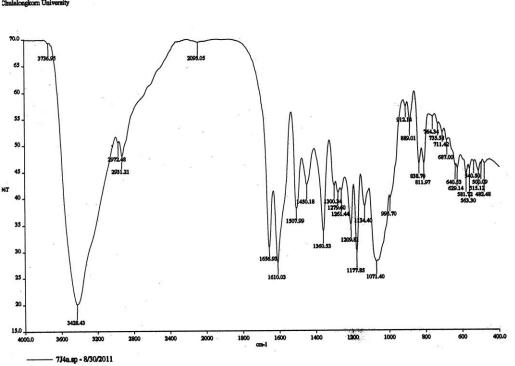
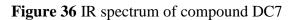




Figure 35 Mass spectrum of compound DC7

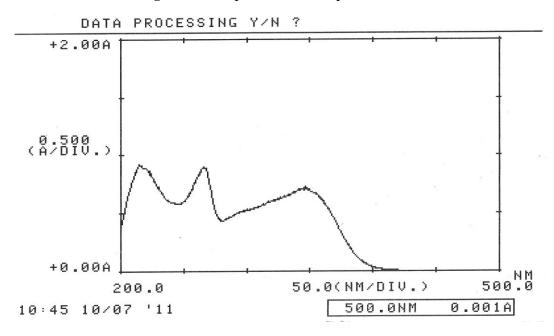


Figure 37 UV spectrum of compound DC7

er (St

m One)

Figure 38 ¹H-NMR (300 MHz) spectrum of compound DC7 (CD₃OD)

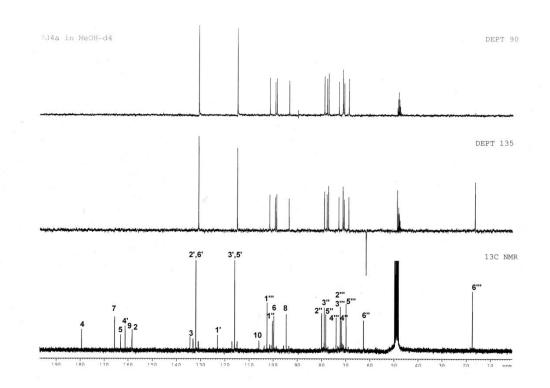
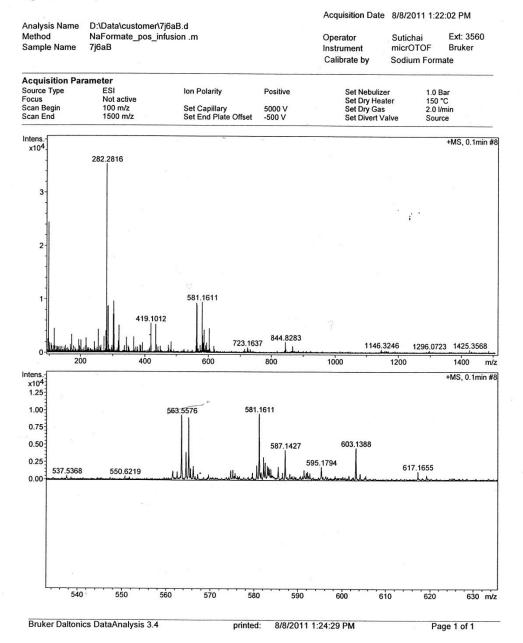
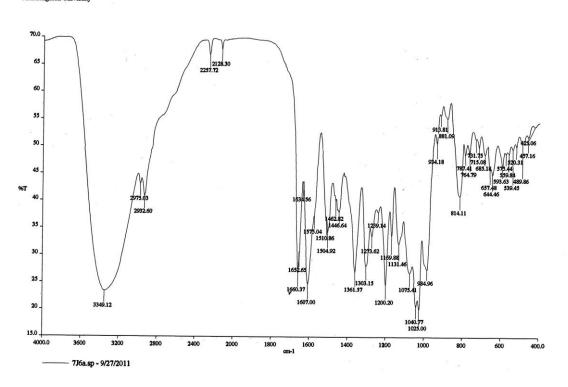
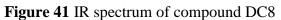



Figure 39 ¹³C-NMR (75 MHz) and DEPT spectra of compound DC7 (CD₃OD)

High resolution report




Figure 40 Mass spectrum of compound DC8

154

Scientific and Technological Research Equipment Centre Chulalongkorn University

Fourier Transform Infrared Spectrometer, PerkinElmer (Spectrum One)



Figure 42 UV spectrum of compound DC8

Figure 43 ¹H-NMR (500 MHz) spectrum of compound DC8 (DMSO-*d*₆)

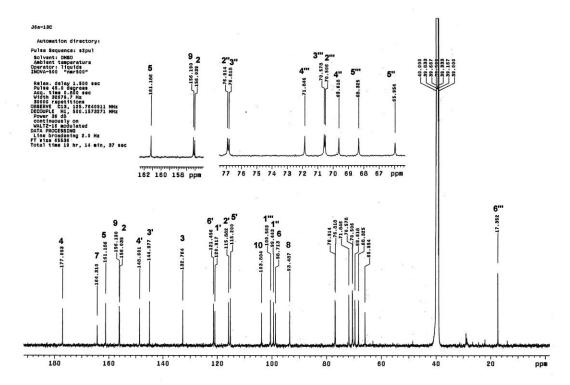


Figure 44 ¹³C-NMR (125 MHz) spectrum of compound DC8 (DMSO-*d*₆)

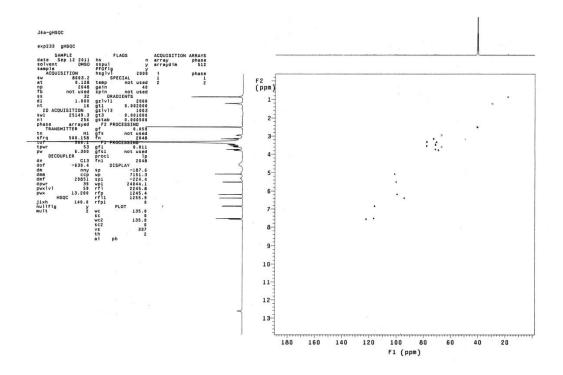


Figure 45a HSQC spectrum of compound DC8 (DMSO-*d*₆)

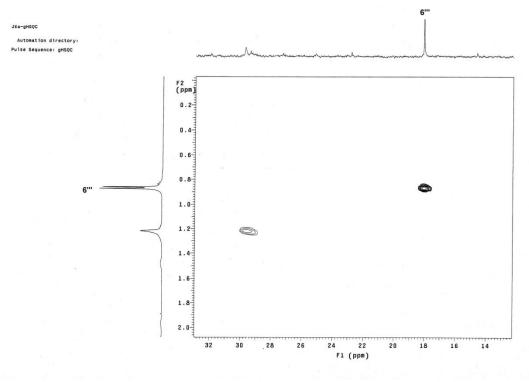


Figure 45b HSQC spectrum of compound DC8 (DMSO- d_6) ($\delta_{\rm H}$ 0.2-2.0, $\delta_{\rm C}$ 12-32 ppm)

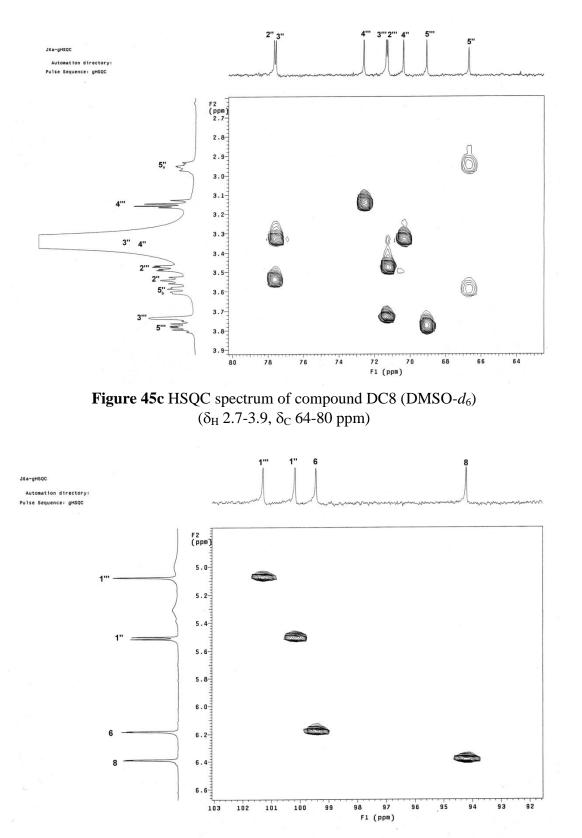


Figure 45d HSQC spectrum of compound DC8 (DMSO- d_6) (δ_H 5.0-6.6, δ_C 92-103 ppm)

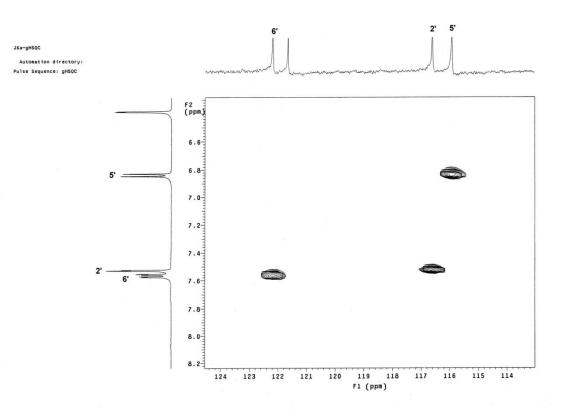


Figure 45e HSQC spectrum of compound DC8 (DMSO- d_6) ($\delta_{\rm H}$ 6.4-8.2, $\delta_{\rm C}$ 114-124 ppm)

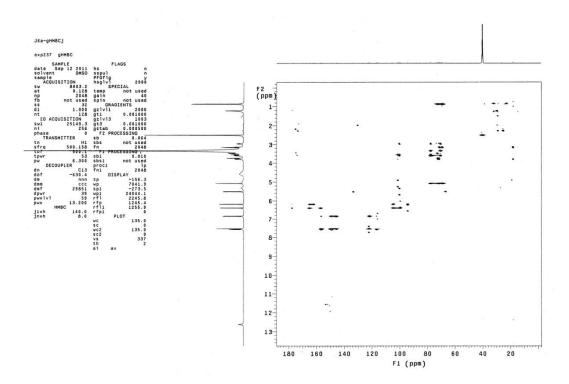


Figure 46a HMBC spectrum of compound DC8 (DMSO-d₆)

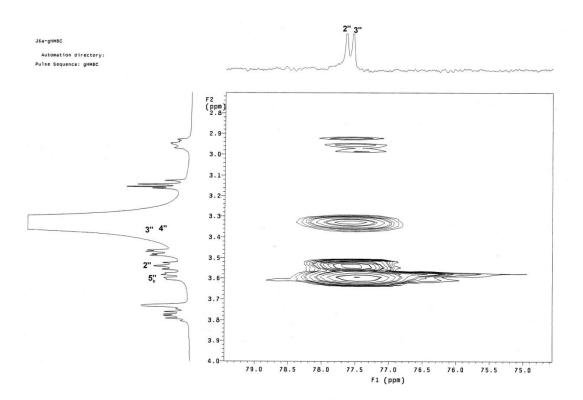


Figure 46b HMBC spectrum of compound DC8 (DMSO- d_6) (δ_H 2.8-4.0, δ_C 75-79 ppm)

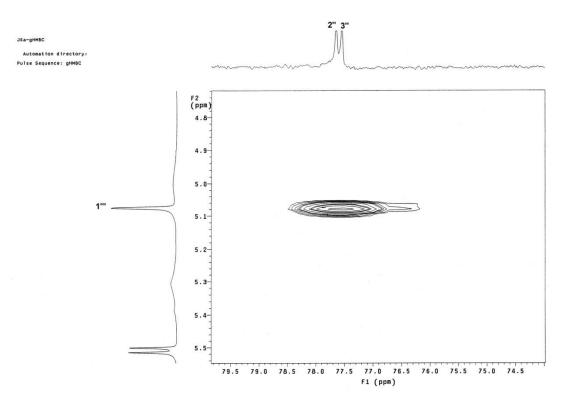


Figure 46c HMBC spectrum of compound DC8 (DMSO- d_6) ($\delta_{\rm H}$ 4.8-5.5, $\delta_{\rm C}$ 74.5-79.5 ppm)

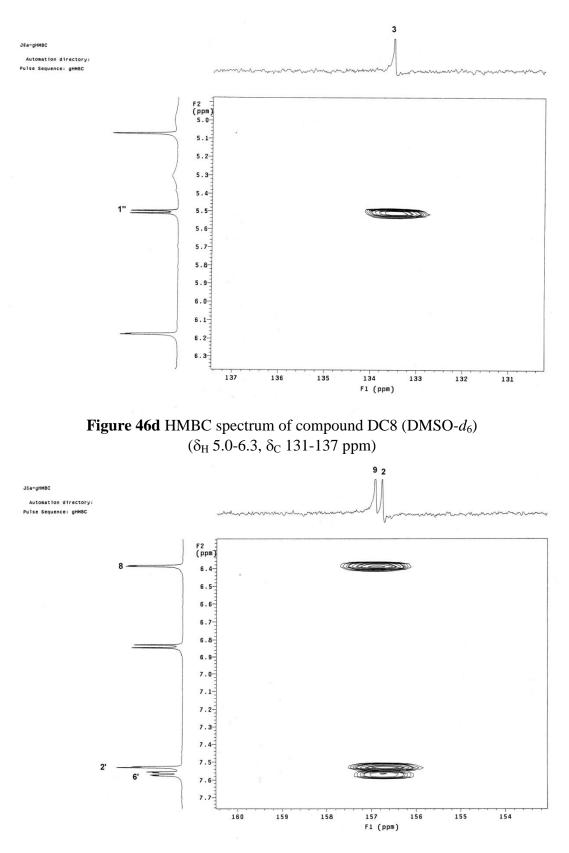


Figure 46e HMBC spectrum of compound DC8 (DMSO- d_6) ($\delta_{\rm H}$ 6.3-7.7, $\delta_{\rm C}$ 154-160 ppm)

High resolution report

Analysis Name D:\Data\customer\DS19 High.d Method NaFormate_pos_infusion.m Sample Name DS19 High Acquisition Date 2/15/2011 2:02:34 PM

Operator Sutichai Ext: 3560 Instrument micrOTOF Bruker Calibrate by Sodium Formate

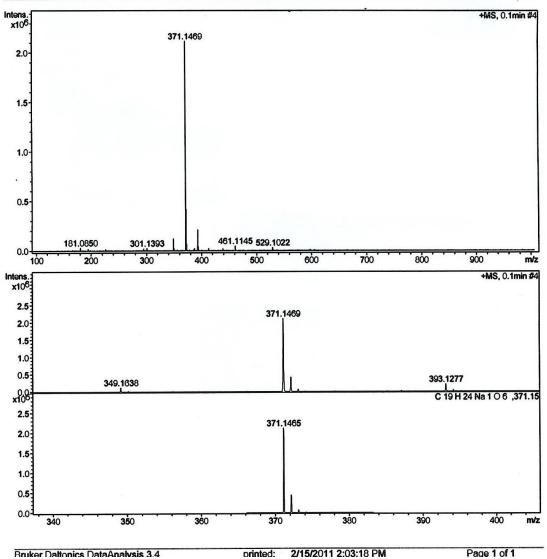
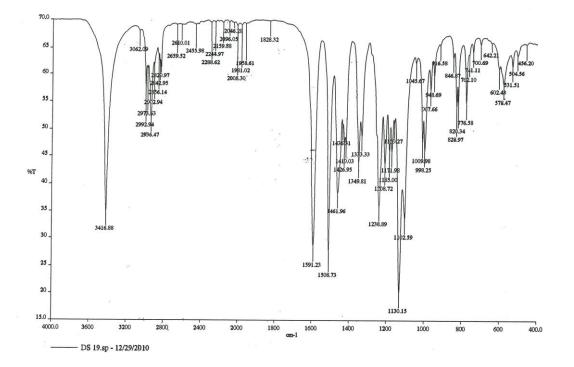
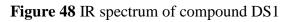




Figure 47 Mass spectrum of compound DS1

Fourier Transform Infrared Spectrometer, PerkinElmer (Spectrum One)

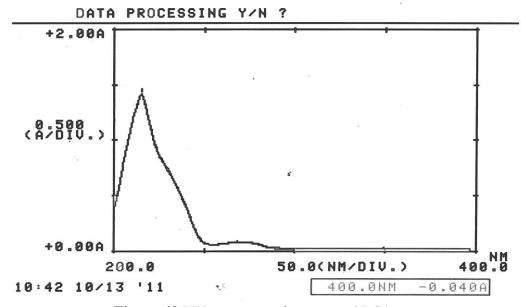
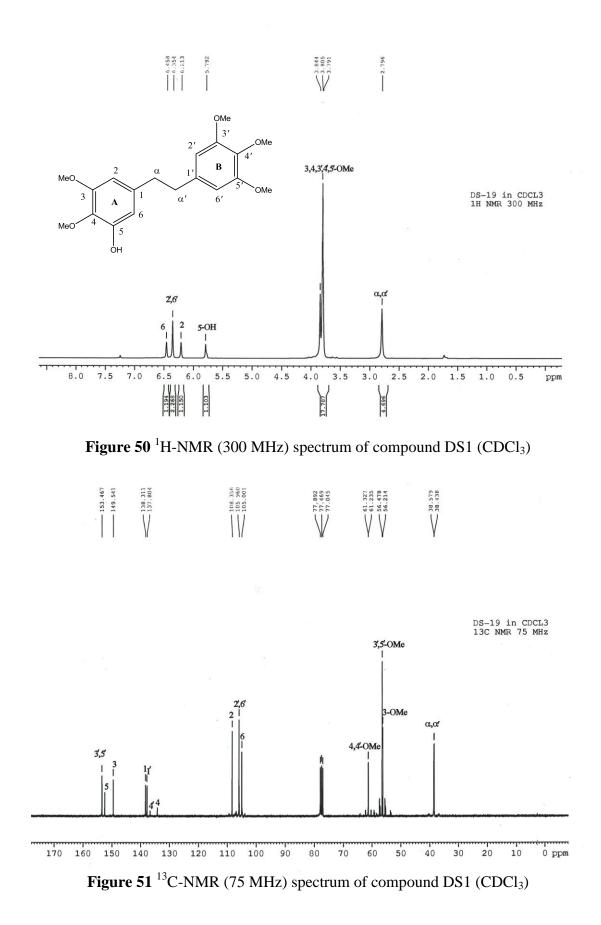



Figure 49 UV spectrum of compound DS1

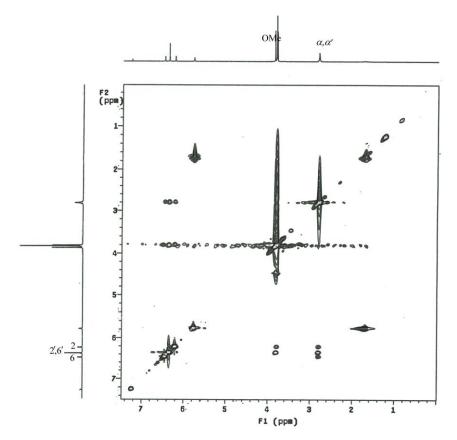


Figure 52a NOESY spectrum of compound DS1 (CDCl₃)

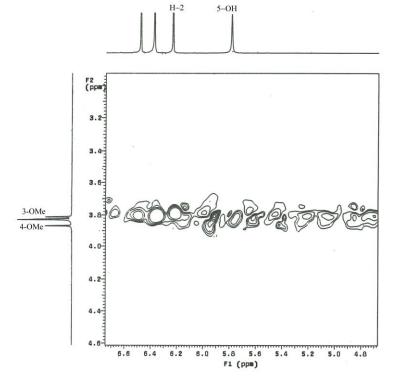


Figure 52b NOESY spectrum of compound DS1 (CDCl₃) $(\delta_H 4.8\text{-}6.6, \delta_H 3.2\text{-}4.6 \text{ ppm})$

BIORESOURCES RESEARCH UNIT

Low resolution report

Analysis Name Method Sample Name	D:\Data\customer\DS_M NaFormate_pos_infusior DS_M2			Operator Instrument	Sutichai micrOTOF	Ext: 3560 Bruker
Acquisition Pa	rameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer		1.0 Bar
Focus	Not active			Set Dry Hea		150 °C
Scan Begin	100 m/z	Set Capillary	5000 V	Set Dry Gas		2.0 l/min
Scan End	1500 m/z	Set End Plate Offset	-500 V	Set Divert V	aive	Source
ns.						+MS, 0.0min #

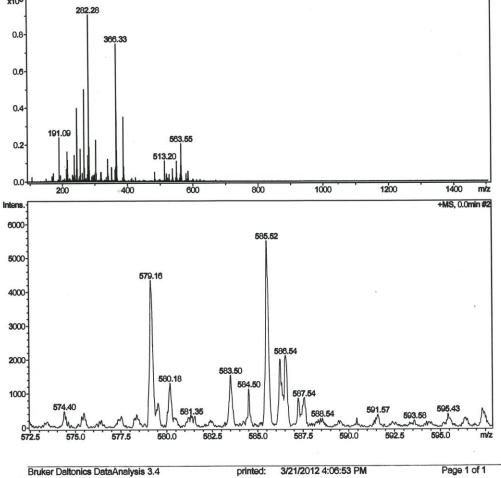
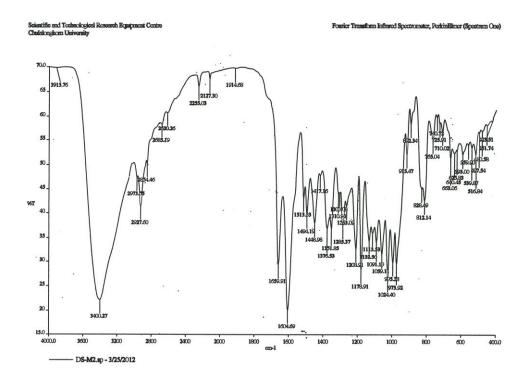
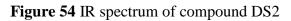




Figure 53 Mass spectrum of compound DS2

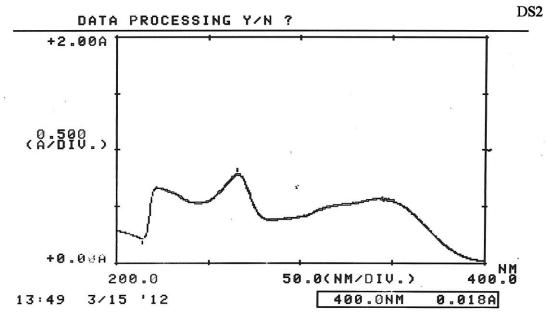


Figure 55 UV spectrum of compound DS2

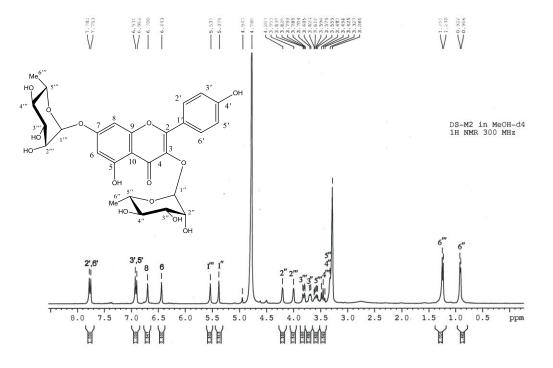


Figure 56 ¹H-NMR (300 MHz) spectrum of compound DS2 (CD₃OD)

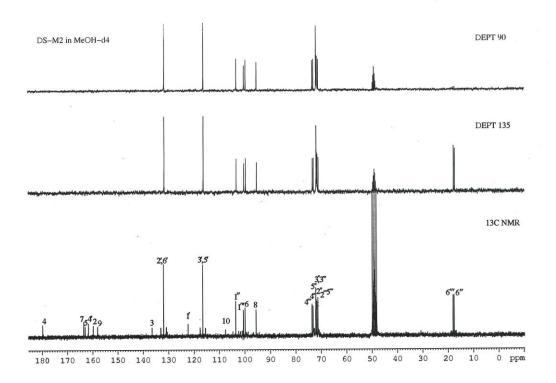


Figure 57 ¹³C-NMR (75 MHz) and DEPT spectra of compound DS2 (CD₃OD)

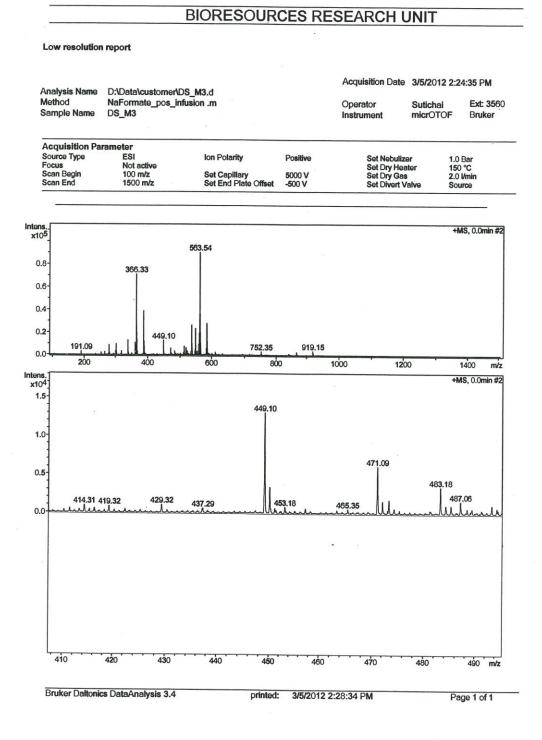
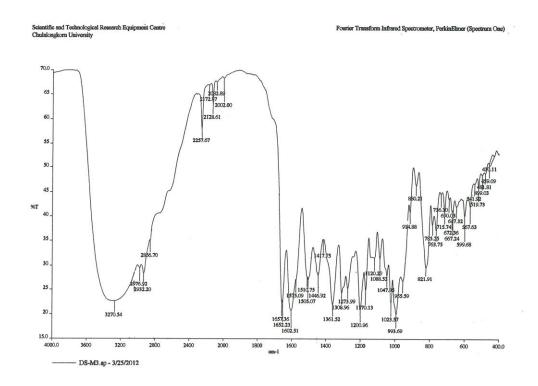
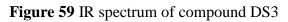




Figure 58 Mass spectrum of compound DS3

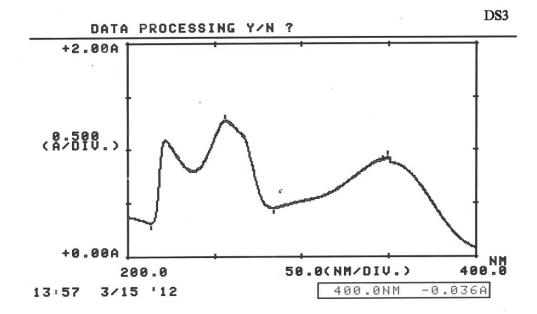


Figure 60 UV spectrum of compound DS3

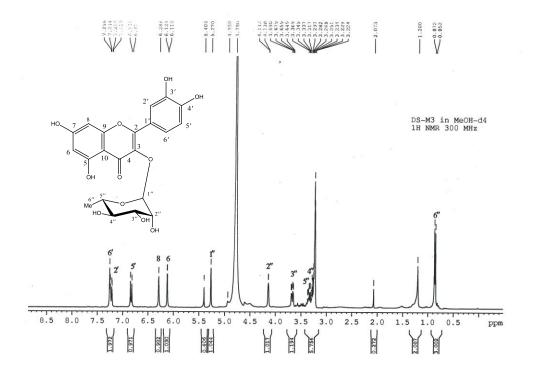


Figure 61 ¹H-NMR (300 MHz) spectrum of compound DS3 (CD₃OD)

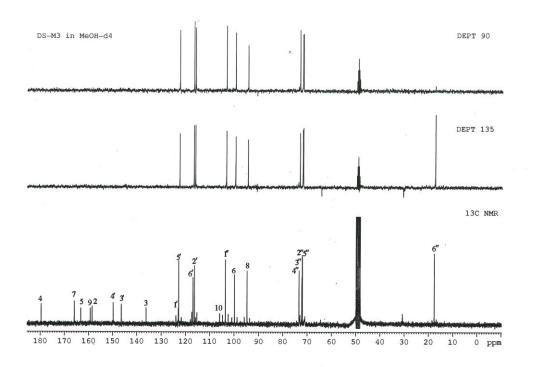


Figure 62¹³C-NMR (75 MHz) and DEPT spectra of compound DS3 (CD₃OD)

BIORESOURCES RESEARCH UNIT

Low resolution report

Analysis Name DAL Method NaF Sample Name DS

D:\Data\customer\DS_M5.d NaFormate_pos_infusion .m DS_M5 Acquisition Date 3/5/2012 2:27:06 PM

Operator Sutichel Ext: 3560 Instrument micrOTOF Bruker

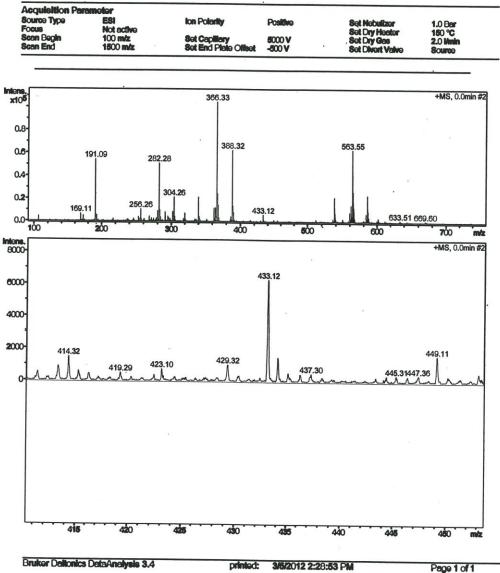
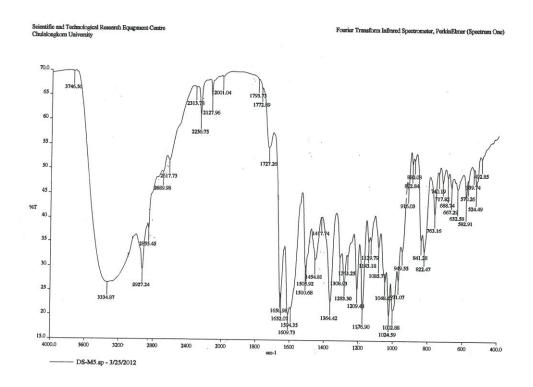
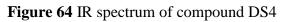




Figure 63 Mass spectrum of compound DS4

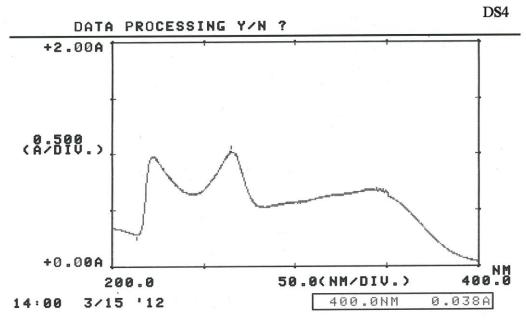
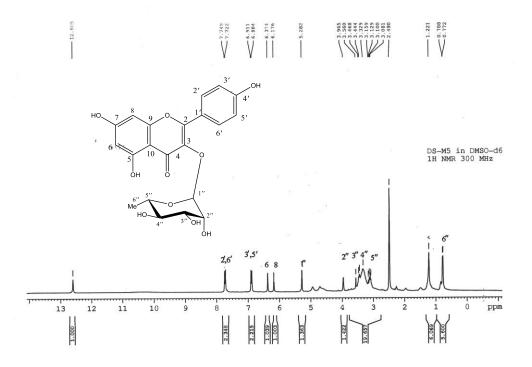



Figure 65 UV spectrum of compound DS4

Figure 66 ¹H-NMR (300 MHz) spectrum of compound DS4 (DMSO-*d*₆)

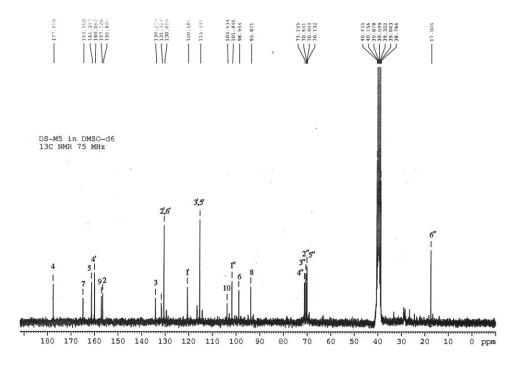


Figure 67 ¹³C-NMR (75 MHz) spectrum of compound DS4 (DMSO-*d*₆)

VITA

Mr. Thanawuth Phechrmeekha was born on December 29, 1984 in Phatthalung, Thailand. He received his B. Pharm. in 2008 from the Faculty of Pharmaceutical Sciences, Prince of Songkla University, Thailand.

Poster presentation

<u>Thanawuth Phechrmeekha</u>, Boonchoo Sritularak and Kittisak Likhitwitayawuid. Cytoxic constituents from *Dendrobium capillipes*. Proceedings of the 28th Annual Research conference in Pharmaceutical Sciences, January 20, 2012. Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand. p. 4-5.

Publication

Thanawuth Phechrmeekha, Boonchoo Sritularak and Kittisak Likhitwitayawuid. New phenolic compounds from *Dendrobium capillipes* and *D. secundum*. Journal of Asian Natural Products Research (in press).