ผลกระทบของวิวิธพันธุ์ของแหล่งกักเก็บต่อการผลิตน้ำมัน

นายสฤษดิ์ สุวรรณมณี

ศูนย์วิทยทรัพยากร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมปิโตรเลียม ภาควิชาวิศวกรรมเหมืองแร่และปิโตรเลียม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2551 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

EFFECT OF RESERVOIR HETEROGENEITY ON OIL PRODUCTION

Mr. Sarit Suwanmanee

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Petroleum Engineering Department of Mining and Petroleum Engineering Faculty of Engineering Chulalongkorn University Academic Year 2008 Copyright of Chulalongkorn University

Thesis Title	EFFECT OF RESERVOIR HETEROGENEITY
	ON OIL PRODUCTION
Ву	Mr. Sarit Suwanmanee
Field of Study	Petroleum Engineering
Advisor	Assistant Professor Suwat Athichanagorn, Ph.D.
Co-Advisor	Assistant Professor Sunthorn Pumjan, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

5. prole .. Dean of the Faculty of Engineering (Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

THESIS COMMITTEE

(Associate Professor Sarithdej Pathanasethpong)

Survat Attuchanayorn Advisor

(Assistant Professor Suwat Athichanagorn, Ph.D.)

Co-Advisor

(Assistant Professor Sunthorn Pumjan, Ph.D.)

Chan? Examiner

(Jirawat Chewaroungroaj, Ph.D.)

สฤษดิ์ สุวรรณมณี: ผลกระทบของวิวิธพันธุ์ของแหล่งกักเก็บต่อการผลิตน้ำมัน. (EFFECT OF RESERVOIR HETEROGENEITY ON OIL PRODUCTION) อ.ที่ปรึกษาวิทยานิพนธ์ หลัก: ผศ. คร. สุวัฒน์ อธิชนากร, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ผศ. คร. สุนทร พุ่มจันทร์, 96 หน้า.

้ก่ากวามซึมผ่านของหินเป็นตัวแปรที่มีวิวิธพันธุ์สูงสุด และยังเป็นตัวแปรที่มีกวามสำคัญ มากก่าหนึ่ง ซึ่งมีผลกระทบต่อกวามสามารถในการผลิตของแหล่งกักเก็บไม่ว่าจะเป็นในส่วนของ อัตราการผลิตและกระบวนการให้ได้มาของน้ำมัน เพื่อจะศึกษาผลกระทบของวิวิธพันธุ์ต่อการผลิต จึงได้มีการสร้างแหล่งกักเก็บที่มีค่าวิวิชพันธุ์ที่แตกต่างกัน

ในการศึกษานี้ ได้นำขั้นตอนการจำลองด้วยวิธีการโดยลำดับเกาส์เซียนมาสร้างแบบจำลอง แหล่งกักเก็บที่มีความแตกต่างกัน นอกจากนั้นยังได้ศึกษาถึงก่าความไม่แน่นอนของตัวแปรต่างๆ ที่ ใช้ในการสร้างการจำลองแบบ โดยลำดับเกาส์เซียน เมื่อได้แบบจำลองมาแล้ว เราจะคำนวณค่าซึ่ง แสดงถึงวิวิธพันธุ์คือ สัมประสิทธิ์ใดสตราพาสันของแต่ละแหล่งกักเก็บ

การจำลองการไหลในแหล่งกักเกี่บถูกนำมาศึกษาผลกระทบของวิวิธพันธุ์ต่อความสามารถ ในการผลิตหลังจากได้สร้างชั้นกักเก็บต่างๆ ที่มีการกระจายตัวของค่าความซึมผ่านของหินต่างกัน ซึ่งเราได้วิเคราะห์ผลกระทบของวิวิธพันธุ์ต่อความสามารถในการผลิตโดยการขับเคลื่อนด้วยก๊าซที่ ละลายในน้ำมันในแหล่งกักเก็บ นอกจากนั้นได้มีการประเมินความไม่แน่นอนของผลการจำลองที่ เกิดจากค่าวิวิธพันธ์ต่าง

อัตราส่วนของปริมาณน้ำมันที่เรานำขึ้นมาได้ต่อปริมาณทั้งหมดที่มีอยู่ในแหล่ง ได้ถูกนำมา เป็นตัวกำหนดในการเปรียบเทียบ กล่าวคือ อัตราส่วนของปริมาณน้ำมันที่เรานำขึ้นมาได้ต่อปริมาณ ทั้งหมดที่มีอยู่ในแหล่ง มีค่าลดลงเล็กน้อย เมื่อแหล่งกักเก็บมีวิวิธพันธุ์มากขึ้น นอกจากนั้นแล้วยัง ได้มีการนำระขะเวลาในการผลิตมาใช้ในการประเมิน พบว่าแหล่งกักเก็บที่มีค่าวิวิธพันธุ์สูงสุดจะใช้ เวลาในการผลิตยาวนานที่สุด แต่ในทางตรงกันข้ามกลับให้อัตราส่วนของปริมาณน้ำมันที่เรานำ ขึ้นมาได้ต่อปริมาณทั้งหมดที่มีอยู่ในแหล่งน้อยที่สุด ค่าวิวิธพันธุ์ที่เพิ่มขึ้นจะทำให้ระยะเวลาในการ ผลิตเพื่อให้ได้น้ำมันมานั้นมีก่าสูงขึ้นด้วย

สาขาวิชา วิศวกรรมปีโตรเลียม ปีการศึกษา 2551

ภาควิชา วิศวกรรมเหมืองแร่และปีโตรเลียม ลายมือชื่อนิสิต<u>กับจร์ ส่วรรณะพื</u>่ ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์หลัก 2" ohi ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์ร่วม. 💱 🐙

4871609821 : MAJOR PETROLEUM ENGINEERING

KEYWORDS : STOCHASTIC SIMULATION / GEOSTATISTICS / SEQUENTIAL GAUSSIAN SIMULATION / DYKSTRA-PARSONS COEIFFICIENT

SARIT SUWANMANEE : EFFECT OF RESERVOIR HETEROGENEITY ON OIL PRODUCTION. ADVISOR: ASST. PROF. SUWAT ATHICHANAGORN, Ph.D., CO-ADVISOR : ASST. PROF. SUNTHORN PUMJAN, Ph.D., 96 pp.

Permeability which has the highest level of heterogeneity is one of the most important parameters which affect reservoir performance such as production profile and recovery processes. To study such effect, reservoirs with different degrees of reservoir heterogeneity were created and studied.

In this thesis, Sequential Gaussian Simulation (SGS) is used to generate maps of the reservoir. Moreover, sensitivity analysis of spatial continuity and SGS is performed to assess uncertainties by varying range, nugget and random seed. When the reservoir model is generated, Dykstra-Parsons coefficient (VDP) is computed to measure the degree of heterogeneity.

Then, reservoir simulation is performed to study the effect of heterogeneity on reservoir performance for reservoirs with different permeability distributions that have been generated. The effect of heterogeneity on performance prediction for solution gas drive reservoir is quantified. The uncertainties associated with the results obtained from the heterogeneity are assessed.

The oil recovery factors (RF) at abandonment are compared. As VDP increases, RF slightly decreases. When considered the time to abandonment, reservoir with the highest VDP takes the longest time to produce oil. In general, the more heterogeneity, the longer time it takes to recover the fluid.

Department: Mining and Petroleum Engineering Student's Signature. Field of Study: Petroleum Engineering Academic Year: 2008

Advisor's Signature Somet Allichancyon Co-Advisor's Signature.

ACKNOWLEDGEMENTS

I would like to express my appreciation to my advisor, Dr. Suwat Athichanagorn, for providing me with knowledge of petroleum engineering and invaluable guidance during this study. I am also grateful to Dr. Sunthorn Pumjan my thesis co-advisor for creative suggestions and invaluable advice.

I wish to thank the thesis committee members for their comments and recommendations.

I would like to further mention my deep appreciation to my family and my friends who offered me their undivided attention, endless love, encouragement, and support.

CONTENTS

Abstract (in Thai)iv
Abstract (in English)v
Acknowledgementsvi
Contentsvii
List of Tablesix
List of Figuresx
List of Abbreviationsxv
Nomenclaturexvi
CHAPTER
I Introduction1
1.1 Introduction 1
1.2 Thesis Outline
II Literature Review
2.1 Literature Review
III Theories and Concepts
3.1 Structural Analysis6
3.2 Kriging Concepts10
3.2.1 Ordinary Kriging (OK) Algorithm10
3.3 Conditional Simulation13
3.3.1 Sequential Gaussian Simulation Procedure
3.4 Dykstra-Parsons Coefficient16
IV Reservoir Model Construction18
4.1 Base Model
4.2 Reservoir Model with Different Degrees of Heterogeneity23
4.2.1 Sensitivity Analysis of Variogram27
4.2.2 Sensitivity Analysis of Realizations

CE	IAPTER	Page
V	Reservoir Performance Prediction	58
	5.1 Performance of Reservoir having Different Levels of Heterogeneity	58
VI	Conclusions and Recommendations	74
	6.1 Conclusions	74
	6.2 Recommendations	75
Re	ferences	76
Ар	pendices	78
	Appendix A	79
	Appendix B	87

tae	96

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

LIST OF TABLES

Table 4.1	Permeability and porosity of input data	. 20
Table 4.2	Statistical results of eight main models	26
Table 4.3	Comparison of eight-model normal score transform variogram data	.37
Table 4.4	SGS results of eight models by varying parameters	. 54
Table 5.1	Statistical results of oil recovery and reservoir pressure of different	
	models	63
Table 5.2	Comparison of statistical results of oil recovery factor and V_{DP} of	
	each model	. 65
Table B1	Comparison of oil recovery and reservoir pressure at different	
	degrees of heterogeneity	95

Page

LIST OF FIGURES

	Page
Figure 3.1	Variogram models with a sill8
Figure 3.2	Power variogram models without a sill9
Figure 3.3	Transform of original data to a normal score14
Figure 3.4	SGS algorithm procedure16
Figure 3.5	Dykstra-Parsons plot
Figure 4.1	Assumed distribution (a) and location map (b) of permeability
	of base model
Figure 4.2	Permeability histograms of original data
Figure 4.3	Location maps of each model
Figure 4.4	Probability plot of permeability of 109-wells in the base case25
Figure 4.5	Normal score transform of omni-directional spherical variograms
	of main model varied nuggets and ranges using number of
	lags of 32, lag distance of 60 m
Figure 4.6	Normal score transform of omni-directional spherical variograms
	of the model I varied nuggets and ranges using number of
	lags of 35, lag distance of 70 m 30
Figure 4.7	Normal score transform of omni-directional spherical variograms
	of the model II varied nuggets and ranges using number of
	lags of 35, lag distance of 74 m 31
Figure 4.8	Normal score transform of omni-directional Gaussian variograms
	of the model III varied nuggets and ranges using number of
	lags of 38, lag distance of 48 m 32
Figure 4.9	Normal score transform of omni-directional spherical variograms
	of the model IV varied nuggets and ranges using number of
	lags of 37, lag distance of 80 m
Figure 4.10	Normal score transform of omni-directional spherical variograms
	of the model V varied nuggets and ranges using number of
	lags of 34, lag distance of 58 m 34

Figure 4.11	Normal score transform of omni-directional spherical variograms
	of the model VI varied nuggets and ranges using number of
	lags of 40, lag distance of 50 m 35
Figure 4.12	Normal score transform of omni-directional spherical variograms
	of the model VII varied nuggets and ranges using number of
	lags of 30, lag distance of 58 m 36
Figure 4.13	Relationship between number of lags and lag distance
Figure 4.14	Flow sheet to obtain realizations with different degrees of
	heterogeneity
Figure 4.15	SGS of the main model varied nuggets and ranges at the seed
	number of 10623640
Figure 4.16	SGS of the main model varied nuggets and ranges at the seed
	number of 129946040
Figure 4.17	SGS of the main model varied nuggets and ranges at the seed
	number of 421184741
Figure 4.18	SGS of the main model varied nuggets and ranges at the seed
	number of 520925441
Figure 4.19	SGS of the model I varied nuggets and ranges at the seed
	number of 15356742
Figure 4.20	SGS of the model I varied nuggets and ranges at the seed
	number of 89607842
Figure 4.21	SGS of the model I varied nuggets and ranges at the seed
	number of 477304943
Figure 4.22	SGS of the model I varied nuggets and ranges at the seed
	number of 523780243
Figure 4.23	SGS of the model II varied nuggets and ranges at the seed
	number of 378238644
Figure 4.24	SGS of the model II varied nuggets and ranges at the seed
	number of 4574483
Figure 4.25	SGS of the model II varied nuggets and ranges at the seed
	number of 676811345

Page

Figure 4.26	SGS of the model III varied nuggets and ranges at the seed	
	number of 218583	45
Figure 4.27	SGS of the model III varied nuggets and ranges at the seed	
	number of 2904965	46
Figure 4.28	SGS of the model III varied nuggets and ranges at the seed	
	number of 7497676	46
Figure 4.29	SGS of the model IV varied nuggets and ranges at the seed	
	number of 289 <mark>5849</mark>	47
Figure 4.30	SGS of the model IV varied nuggets and ranges at the seed	
	number of 6259246	47
Figure 4.31	SGS of the model IV varied nuggets and ranges at the seed	
	number of 9451304	48
Figure 4.32	SGS of the model V varied nuggets and ranges at the seed	
	number of 69069	48
Figure 4.33	SGS of the model V varied nuggets and ranges at the seed	
	number of 5027296	49
Figure 4.34	SGS of the model V varied nuggets and ranges at the seed	
	number of 7301294	49
Figure 4.35	SGS of the model VI varied nuggets and ranges at the seed	
	number of 1042094	50
Figure 4.36	SGS of the model VI varied nuggets and ranges at the seed	
	number of 6160440	50
Figure 4.37	SGS of the model VI varied nuggets and ranges at the seed	
	number of 8275380	51
Figure 4.38	SGS of the model VII varied nuggets and ranges at the seed	
	number of 307057	51
Figure 4.39	SGS of the model VII varied nuggets and ranges at the seed	
	number of 5280856	52
Figure 4.40	SGS of the model VII varied nuggets and ranges at the seed	
	number of 8326199	52

	Page
Figure 5.1	Reservoir model with 32 producers
Figure 5.2	Relationship between oil recovery factor and V_{DP} at 5,160 days61
Figure 5.3	Relationship between oil recovery factor and V_{DP} at abandonment61
Figure 5.4	Relationship between time to abandonment and V_{DP} 62
Figure 5.5	Relationship between oil recovery and time to abandonment62
Figure 5.6	Relationship between field oil production rate and time of
	9 models with different values of V_{DP} using 32 producers
Figure 5.7	Relationship between reservoir pressure and time of
	9 models with different values of V_{DP} using 32 producers
Figure 5.8	Relationship between cumulative oil production and time of
	9 models with different values of V _{DP} using 32 producers69
Figure 5.9	Comparison of hydrocarbon pore volume and time
Figure 5.10	Reservoir model with 15 producers70
Figure 5.11	Relationship between field oil production rate and time of
	9 models with different values of V _{DP} using 15 producers70
Figure 5.12	Relationship between field oil production rate and time using
	32 and 15 producers
Figure 5.13	Relationship between reservoir pressure and time of
	9 models with different values of V _{DP} using 15 producers71
Figure 5.14	Relationship between reservoir pressure and time using
	32 and 15 producers
Figure 5.15	Relationship between cumulative oil production and time of
	9 models with different values of V_{DP} using 15 producers72
Figure 5.16	Relationship between cumulative oil production and time
	using 32 and 15 producers73
Figure 5.17	Relationship between oil recovery and time using
	32 and 15 producers73
Figure A1	Omni-directional spherical variograms of main model varied
	nuggets and ranges using number of lags of 32, lag distance
	of 60 m

xiv	
Page	

Figure A2	Omni-directional spherical variograms of the model I varied
	nuggets and ranges using number of lags of 35, lag distance
	of 70 m
Figure A3	Omni-directional spherical variograms of the model II varied
	nuggets and ranges using number of lags of 35, lag distance
	of 74 m
Figure A4	Omni-directional Gaussian variograms of the model III varied
	nuggets and ranges using number of lags of 38, lag distance
	of 48 m
Figure A5	Omni-directional spherical variograms of the model IV varied
	nuggets and ranges using number of lags of 37, lag distance
	of 80 m
Figure A6	Omni-directional spherical variograms of the model V varied
	nuggets and ranges using number of lags of 34, lag distance
	of 58 m
Figure A7	Omni-directional spherical variograms of the model VI varied
	nuggets and ranges using number of lags of 40, lag distance
	of 50 m
Figure A8	Omni-directional spherical variograms of the model VII varied
	nuggets and ranges using number of lags of 30, lag distance
	of 58 m

LIST OF ABBREVIATIONS

CV	coefficient of variation
CS	conditional simulation
HPV	hydrocarbon pore volume
MVUE	minimum variance unbiased estimation
NS	normal score transform
OK	Ordinary Kriging
PVT	pressure-volume-temperature
RF	recovery factor
SD	standard deviation
SGCOSIM	sequential Gaussian cosimulation
SGS	sequential Gaussian simulation
MVUE	minimum variance unbiased estimation

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

NOMENCLATURE

а	range
C_0	nugget effect
cdf	cumulative distribution function
Ε	expected value
$F^{1}(p)$	inverse cumulative distribution function for the probability value
$F_{Y}(y)$	cumulative distribution function of a random variable Y
$F_Z(y)$	cumulative distribution function of a random variable Z
$G(\cdot)$	standard Gaussian distribution
G(y)	standard normal cumulative distribution function
$G^{-1}(p)$	standard normal p-quartile function
h	lag distance
k	permeability
m	mean
m(u)	local mean within a search neighborhood
Ν	number of sample size
N(h)	total number of sample pairs for the lag interval h
RF	random function
RV	random variable
u_i	sampled location
\mathcal{U}_j	sampled location
u_0	unsampled location
V _{DP}	Dykstra-Parsons coefficient
Y(u)	generic variable function of location <i>u</i>
Z(u)	generic random variable at location <i>u</i>
z(u)	generic variable function of location <i>u</i>
$z^{(1)}(u)$	<i>l</i> -th realizations of the random function $Z(u)$ at location u
$Z(x_i+\vec{h})$	value of sample located at point $x_i + \vec{h}$
$Z(x_i)$	value of sample located at point x _i

GREEK LETTERS

Φ	porosity
∞	infinity
σ	standard deviation
σ^2	variance
$\sigma_{\!E}^{2}$	error variance
$\Upsilon(h)$	variogram at distance h
μ(u)	Lagrange parameter
λ_i	weight assigned to each sample
λ_0	a constant

CHAPTER I

INTRODUCTION

1.1 Introduction

In reality, reservoir performance prediction always deals with a lot of uncertainties involving internal variables such as fluids and rock properties and the heterogeneity of the reservoir, and external variables such as oil price, operating cost, and capital expenditure. Specifically, the internal variable, namely, heterogeneity is one of the most important measures for geologists, geophysicists and reservoir engineers to quantify in order to generate an acceptable reservoir model for predicting the reservoir performance. The main point of this work is to assess uncertainties in the simulation results when the reservoir has a different degree of heterogeneity.

The variable that has highest level of heterogeneity is permeability. It is an important parameter that affects flow and displacement processes due to its variation. Therefore, in reservoir analysis, the measures of heterogeneity are almost exclusively focused and applied to permeability data because permeability variations are typically much larger than variations of other properties. Thus, changes in permeability can easily dominate the influence of variations in other properties. The most common method that has been used to measure such complexity is Dykstra-Parsons coefficient. Not only can it help engineers to quantify and measure the heterogeneity but also help them to understand the performance of the natural drive mechanism.

Before performing the reservoir simulation, it is necessary to quantify the distribution of permeability at the grid cells. Therefore, Geostatistical methods are frequently used to do the task because they offer the advantages of linking statistical methods with the position of variables in space and direction compared with other methods which do not.

After generating realizations with different permeability distributions, reservoir simulation is performed to study the effect of heterogeneity on reservoir performance. In this study, we are interested in the effect of heterogeneity on oil recovery based on natural depletion. The uncertainties associated with the results obtained from this recovery schemes will be assessed.

1.2 Thesis Outline

The thesis report consists of six chapters and the outlines of each chapter are listed below.

Chapter II reviews literature that are involved with stochastic techniques by mentioning the advantages, drawback and application of each algorithm such as Kriging and Sequential Gaussian Simulation (SGS). In addition, it also mentions the application of Dykstra-Parsons coefficient (V_{DP}).

Chapter III presents theories and concepts related with this study.

Chapter IV shows how to prepare and obtain the extra seven models and compares statistical results of all models varied uncertainties in spatial continuity models and random number seed of SGS. In addition, it mentions how to determine V_{DP} value from permeability distributions. Finally, this chapter also examines the simulation studies from the SGS technique at different degrees of heterogeneity.

Chapter V examines and compares the simulation results in reservoir performance based on specific abandonment times at different degrees of V_{DP} .

Chapter VI provides conclusions of the study and recommendations for future work.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

LITERATURE REVIEW

2.1 Literature Review

An accurate understanding of the description of a reservoir is required to improve production forecasts. Due to the lack of information between wells, a geostatistical model is used to generate equiprobable lithofacies simulations between wells. It has also been widely used in the petroleum industry because it can integrate geological, geophysical, and petrophysical data for building a more realistic reservoir model. Considering the complex behavior of the spatial distributions of petrophysical variables and the limited number of samples used in estimation, a smooth deterministic model, such as the one derived from Kriging, may not yield a realistic level of heterogeneity. To represent such heterogeneity, stochastic modeling based on conditional simulation has been increasingly used in recent years, Journel (1990) and Srivastava (1994). Using these techniques, a variable value at a location in space is determined by first obtaining the probability distribution at that location, and then drawing a number (i.e. simulated value) at random from this distribution. The simulated values do not only reproduce statistical and spatial patterns of the input data, but also honor this data at the sampling locations. Unlike Kriging, stochastic modeling provides a range of equi-probable realizations or models of reservoir, each comprising more realistic levels of heterogeneity. Such multiple models provide valuable information to assess the uncertainty, and hence are of considerable help in reservoir management, Journel (1994). Therefore, the conditional simulation is considered more appropriate for the simulation of the reservoir data.

Poquioma, P., and Mohan Kelkar (1994) presented the results for applying geostatistical techniques (Ordinary Kriging and conditional simulation) to generate distribution of permeability in order to improve the simulation of the fluid flow. The comparison indicates that conditional simulation techniques can be effectively used to represent the variability of the reservoir properties.

Paul J. Hicks studied the ability of three-dimensional fluid flow simulations using 3-D porosity distributions generated from unconditional sequential Gaussian simulation (SGS) to match the result of fluid flow simulations using the experimental 3-D porosity distribution. He mentioned that the SGS technique has an advantage over Krigging and other linear interpolation techniques because they maintain the spatial variability of the property being simulated. Any number of possibilities for the spatial distribution of permeability, or other unknown properties, can be generated as opposed to Kriging which generates one estimation.

Al-Khalifa (2006) studied and estimated hydrocarbon in-place using SGS with different uncertainties of the input data such as core data, facies based and well logs. There were two stochastic porosity models built using the same input data, but one model was based on a conceptual model and the other was not. The results showed that the use of conceptual models has given higher oil and gas estimates. He pointed out that the uniqueness of stochastic modeling methods has the ability to create many equi-probable realizations from the same geological data.

Kirk B. Hird investigated the effect of areal permeability heterogeneities on well performance and explained that stochastic simulation techniques can generate equally probable permeability realizations which result in widely varying simulated well performance under normal waterflood conditions.

Baker, R.O., and Moore, R.G (1997) mentioned the heterogeneity is a key factor in predicting waterflood or EOR recovery. It is not possible to make accurate performance predictions for EOR or waterflood schemes without adequate reservoir characterization.

Jerry Lucia, F., and Graham E. Fogg used conditional simulation to simulate permeability distribution and explained that realization having low permeability has low recovery and production efficiency.

Sahni, A., and Dehghani K (2005) focused a workflow for benchmarking reservoir model heterogeneity from production logs and core data by varying the level of heterogeneity using Dykstra Parsons coefficient (V_{DP}). V_{DP} determined from production logs was used to estimate flow near the well and to calibrate a simulation model while V_{DP} measured from core data was used to quantify permeability heterogeneity trends. He also investigated the workflow how a history matched

simulation model could be used to predict displacement performance at any given heterogeneity level.

Jakobsen, S.R (1994) applied Dykstra Parsons coefficient to reduce the error of relative permeability data obtained on heterogeneous cores. He demonstrated that the results of displacement efficiency, wettability and reservoir performance can be improved if relative permeability is correct. The Johnson-Bossler-Nauman (JBN) technique is a conventional method that is only applicable to homogeneous core material. As a result, flow behavior investigated by JBN method to derive relative permeability curves is incorrect. The true curve must be taken into account for the impact of heterogeneities depending on V_{DP} . For example, the deviation of relative permeability decreases with decreasing V_{DP} .

Karn B., Jakarrin A. and Atjana L. (2005) determined sets of permeability data with V_{DP} values of 0.1, 0.2 and 0.9. by using $V_{DP} = 1 \cdot e^{-\sigma}$. When V_{DP} was first selected, standard deviation (SD) of its model could be calculated and then permeability of 100 wells was randomly generated by the Monte Carlo simulation where permeability distribution trends of each data set was assumed in increasing the value from Northwest to Southeast in which the well locations were also randomly selected. They used SGS to generate multiple maps for reducing uncertainty in performance prediction. The results showed that the higher heterogeneity, the lower oil recovery it will be. Moreover, they mentioned that If V_{DP} value is greater than 0.5, it should not be used to simulate as a homogeneous reservoir because it has a wider range of standard deviation which has more effect on oil recovery factor.

ิ พูนยาทยทวพยากว จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER III

THEORIES AND CONCEPTS

Geostatistical techniques have been used extensively in the mining industry since the early 1950's. It was initially developed to evaluate the ore reserves in the mining industry.

In the petroleum industry, this technique was introduced in the 1970's and has been widely applied and developed to predict the reservoir properties because it can generate multiple realizations that can account for the uncertainty and spatial variability of the key reservoir parameters such as porosity or permeability. Spatial continuity or variation is modeled in geostatistics by the variogram. The relative degree of continuity or spatial correlation between different directions is one of the most important aspects of the spatial continuity model. In this approach, the unsampled values are implicitly assumed to be correlated with each other. To study such a correlation, structural analysis is first used to quantify; the predictions at unsampled locations are then made using kriging technique or it can be simulated using conditional simulations.

3.1 Structural Analysis

Structural analysis, variogram or correlogram is used to measure and study spatial variability or continuity of a particular variable and also to quantify spatial correlation of data as a function of distance and direction. It can be applied to determine cross-continuity of different variables at different locations. The variogram is calculated from the data as the variance of difference between data separated a certain distance apart. When the data is bigger in difference, the variance is larger. The most important factor in estimating the variogram is to use the information to estimate variable values at unsampled locations. The first step in performing the spatial analysis is to estimate the value of the variograms using the well data. These variograms are usually mentioned as the conditioning or experimental variograms. Estimating the conditioning variograms in practice requires great care and caution due to some problems such as lack of data pairs at certain lag distance, e.g., due to well spacing, selective well location, and biased sampling. The variogram solution is presented below

$$\gamma(\vec{h}) = \frac{1}{2N(\vec{h})} \sum_{i=1}^{N} \left[Z(x_i) - Z(x_i + \vec{h}) \right]^2$$
(3.1)

where $\gamma(\bar{h})$ = variogram value at distance h

h = lag distance

 $Z(x_i)$ = value of sample located at point x_i

 $Z(x_i + \vec{h}) =$ value of sample located at point $x_i + \vec{h}$

 $N(\vec{h})$ = total number of sample pairs for the lag interval \vec{h}

The variogram is an important input into stochastic modeling. Proper variogram modeling is a key factor to get a realistic reservoir characterization model. It is a mathematical tool that quantifies spatial correlation and continuity of a variable. Equation 3.1 defines that any function of two random variables located \vec{h} distance apart is independent of the location and is a function of only the distance and the direction between the two locations. In addition, it is a plot of the average squared difference in value between data points against their separation distance. It is computed as half the average squared difference between the components of every data pair. The geostatistical model states that nearby sample points have more influence on the result of simulation than those far apart; in fact, if the separation between two sample points is beyond the range of influence, they have no spatial correlation. The variogram model that is normally used to study the spatial variability can be classified into 2 categories which are models with a sill and without as presented in Equations 3.2 to 3.5. Models with a sill, or transition models, are used when the variogram reaches a constant value after a certain lag distance including the spherical, exponential, Gaussian, and hole effect model. Usually, the sill is close to the variance. And those without a sill include the power, nugget effect and linear models. Some of the variogram models that have commonly seen are sketched in Figures 3.1 and 3.2.

(i) Spherical Model

$$\gamma(\vec{h}) = \begin{cases} C_0 + C_1 \left[1.5 \left(\frac{\vec{h}}{a} \right) - 0.5 \left(\frac{\vec{h}}{a} \right)^3 \right] & \text{where} \quad \vec{h} \le a \\ C_0 + C_1 & \text{where} \quad \vec{h} > a \end{cases}$$
(3.2)

 C_0 = nugget effect C+C₀ = sill

(ii) Exponential Model

$$\gamma(\vec{h}) = \begin{cases} C_0 + C_1 \left[1 - \exp\left(-\frac{\vec{h}}{a}\right) \right] & \text{where} \quad \vec{h} \le a \\ C_0 + C_1 & \text{where} \quad \vec{h} > a \end{cases}$$
(3.3)

(iii) Gaussian Model

Figure 3.1 : Variogram models with a sill

 $\gamma(\bar{h}) = C_0 + W \cdot \bar{h}^a$ where $W = slope \ at \ origin$ (3.5)

Figure 3.2 : Power variogram models without a sill

3.2 Kriging Concepts

The concept of Kriging assumes that the estimated value of the variable is linearly related to the nearby samples by using the minimum variance unbiased estimation technique to estimate the weights. That is to say, the estimated value is unbiased and will result in minimum error variance. One of the disadvantages of Kriging technique is that it can produce only one reservoir model. Selecting only one reservoir model could lead to errors in the prediction of the production and not allow an assessment of uncertainty in prediction. Normally, we would expect larger uncertainty in areas that are farther away from the control data.

Typically, there are several Kriging procedures to estimate the sampled variable, for example, "*Simple Kriging*" is the simplest one but it is not practical because it requires a knowledge of population mean. In practice, the true global may not be known without a prior assumption, "*Ordinary Kriging or Conventional Kriging*" is more flexible than simple Kriging and allows for variations in local change. It is most widely used in the Kriging technique because it does not require the knowledge of mean at unsampled locations, "*Co-Kriging*" allows the estimation of one variable based on the spatial information of other related variables. This procedure is useful when there is one extensively sampled variable and one sparsely sampled variable, and they are spatially related. And, "*Universal Kriging*" is used when the sample data exhibits a trend in a particular direction.

As stated above, Ordinary Kriging is the algorithm that is most widely used to define unsampled values. The derivation of the OK system and its solution will be explained, and it will be used in the conventional simulation subroutine.

3.2.1 Ordinary Kriging (OK) Algorithm

The objective is to find the estimate Z_0^* at an unknown location from a weighted sum of Z_i 's at known locations. We will first come up with the solution as shown below.

$$Z^{*}(u_{0}) = \sum_{i=1}^{n} \lambda_{i} Z(u_{i}) + \lambda_{0}$$
(3.6)

At unbiased condition requires that

$$E[Z(u_0) - Z^*(u_0)] = 0$$
(3.7)

By substituting Eq. 3.6 into Eq. 3.7, we obtain

$$E[Z(u_0)] = \lambda_0 + \sum_{i=1}^n \lambda_i E[Z(u_i)]$$
(3.8)

The assumption of OK is that $E[Z(u_0)] = E[Z(u_i)] = m(u_0)$, where $m(u_0)$ is the local mean within the search neighborhood, we can express Eq. 3.8 as

$$\lambda_0 = m(u_0) \left(1 - \sum_{i=1}^n \lambda_i \right)$$
(3.9)

In practice, we do not know the value of $m(u_0)$, we can force λ_0 to be zero. Then,

$$\sum_{i=1}^{n} \lambda_i = 1 \tag{3.10}$$

As a result, the value at the unknown location is estimated by

$$Z^{*}(u_{0}) = \sum_{i=1}^{n} \lambda_{i} Z(u_{i})$$
(3.11)

In order to estimate the weights of the neighboring values that have influence with the unknown data, the minimum variance unbiased estimation (MVUE) is used for the Kriging algorithm.

$$\sigma_E^2 = Var[Z(u_0) - Z^*(u_0)] = Var[Z(u_0) - \sum_{i=1}^n \lambda_i Z(u_i)]$$
(3.12)

Expanding,

$$\sigma_E^2 = \gamma(u_0, u_0) + \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j \gamma(u_i, u_j) - 2 \sum_{i=1}^n \lambda_i \gamma(u_i, u_0)$$
(3.13)

We must minimize the error variance with a constraint defined in Eq. 3.10. To do so, the Lagrange multiplier method is used. As a result, we define the function, F, as

$$F = \sigma_E^2 + \left(\sum_{i=1}^n \lambda_i - 1\right)$$

= $\gamma(u_0, u_0) + \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j \gamma(u_i, u_j) - 2\sum_{i=1}^n \lambda_i \gamma(u_i, u_0) + 2u\left(\sum_{i=1}^n \lambda_i - 1\right)$ (3.14)

where *u* is a Lagrange parameter

Taking the derivatives to minimize the error variance, we will obtain

$$\frac{\partial F}{\partial \lambda_i} = 0 = 2\sum_{j=1}^n \lambda_j \gamma \left(u_i, u_j \right) + 2u - 2\gamma \left(u_i, u_0 \right) \quad \text{for } i = 1, \dots, n. \quad (3.15)$$

and

$$\frac{\partial F}{\partial u} = 0 = \sum_{i=1}^{n} \lambda_i - 1 \tag{3.16}$$

Rearranging Eq. 3.15, we can obtain it as

$$\sum_{j=1}^{n} \lambda_j \gamma(u_i, u_j) + u = \gamma(u_i, u_0) \quad \text{for } i = 1, \dots, n.$$
(3.17)

Eq. 3.17 can be expressed as a matrix form which results in the $(n+1) \times (n+1)$ matrix as shown below

$$\begin{bmatrix} \gamma(u_1, u_1) \cdots \gamma(u_1, u_n) 1 \\ \vdots & \vdots \\ \gamma(u_n, u_1) \cdots \gamma(u_n, u_n) 1 \\ 1 & \cdots & 1 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \\ u \end{bmatrix} = \begin{bmatrix} \gamma(u_1, u_0) \\ \vdots \\ \gamma(u_n, u_0) \\ 1 \end{bmatrix}$$
(3.18)

By solving the matrix equation, we can get the values of λ_i and u.

Once λ_i is calculated, the estimated value of variable at u_0 , $Z^*(u_0)$, is reckoned with Eq. 3.11. The error variance is also estimated by using the equation below.

$$\sigma_{E}^{2} = \gamma(u_{0}, u_{0}) - \sum_{i=1}^{n} \lambda_{i} \gamma(u_{0}, u_{0}) - u$$
(3.19)

3.3 Conditional Simulation

As discussed above, Kriging estimations are deterministic and cannot be used to quantify uncertainty because it creates a smooth picture. Although, Kriging which has a minimum error variance yields a unique realization, it does not reproduce spatial fluctuations. That is, it will normally preserve the large-scale features of variabilities and will eliminate the small features of variabilities. In addition, it produces conditional bias in the sense that through smoothing, small values are overestimated and large values are underestimated. Smoothed maps should not be used where spatial patterns of values are important. As a result, it is difficult and might not be adequate enough to properly capture local uncertainties and represent the real reservoir heterogeneity. Therefore, we need to choose the technique of conditional simulation (CS) which can provide a range of equi-probable realizations to generate stochastic random fields.

Sequential Gaussian Simulation (SGS) is the most popular algorithm to generate multiple realizations with the help of a random number generator. In addition, the unique point of SGS technique is that it samples a value and back transforms the value into the original domain after visiting every new unsampled location. This leads to adequately capturing the spatial relationship without losing the information in the class distribution. Therefore, in this thesis, SGS is used to generate the realization of permeability data. In addition, the variogram structure (nugget and range) are varied in order to observe their influence on the generated permeability field.

As mentioned before, in order to proceed with the SGS technique, multivariate Gaussian or normal score transform is required as it will transform the raw data into a new domain so that the data of each category in the Gaussian space can be easily defined. The condition of the Gaussian transform is said that random function RF Y(u) of any original data needs to be normal as written in Eq. 3.20

$$\Pr{ob}\{Y(u) \le y\} = G(y) \forall y \tag{3.20}$$

where $G(\cdot)$ is the standard Gaussian distribution and Y(u) is assumed to be standardized with a zero mean and unit variance.

Let Z and Y be the two data sets and their cumulative distribution function (cdf) are $F_Z(z)$ and $F_Y(y)$. The transform $Y = \psi(Z)$ identifies the cumulative probabilities which correspond to the Z and Y p-quantiles:

$$F_{Y}(y_{p}) = F_{Z}(z_{p}) = p, \forall p \in [0,1]$$

$$(3.21)$$

We can express p-quantile of $F_Y(y)$, y_p as,

$$y_p = F_Y^{-1}(F_Z(z_p)) = F_Y^{-1}(p), \,\forall p \in [0,1]$$
(3.22)

where $F_{Y}^{-1}(\cdot)$ is a quartile function of the random variable, RV Y.

If Y is standard normal with cdf $F_Y(y) = G(y)$, the transform $G^{-1}(F_Z(\cdot))$ is the normal score transform. Figure 3.3 shows an example of transforming original data to a normal score.

Figure 3.3 : Transform of original data to a normal score

3.3.1 Sequential Gaussian Simulation Procedure

Sequential Gaussian Simulation (SGS) is a procedure that uses the Kriging mean variance to generate and solve a Gaussian field where unsampled locations are sequentially visited in random order until all unsampled data are simulated or visited. The SGS procedure will be explained in details below:

- 1. Transform the data set into a Gaussian distribution or standard normal data
- 2. Construct variogram analysis to fit with a proper model.
- 3. Select grid node at random.
- 4. Perform Ordinary Kriging at the grid cell to estimate mean and variance of normal distribution.
- 5. Draw a simulated data from $N(\mu, \sigma^2)$ and add the simulated data to the data set.
- 6. Select another grid node at random and repeat the procedure for Ordinary Kriging until all grid nodes are visited or simulated.
- Back transform the simulated data to the original space, and the realization map is created.
- 8. Provide different random number sequences for random visited nodes and repeat the same procedure for additional realization maps.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 3.4 : SGS algorithm procedure

3.4 Dykstra-Parsons Coefficient

In order to investigate a degree of heterogeneity in a reservoir, Dykstra-Parson coefficient is used. In the petroleum industry, Dykstra-Parsons coefficient, sometimes called coefficient of permeability variation, or variance, V_{DP} , is the most common method used to measure the variation of permeability. Permeability typically has a log normal distribution. The Dykstra-Parsons coefficient is defined as follows:

$$V_{DP} = \frac{k_{0.50} - k_{0.16}}{k_{0.50}} \tag{3.23}$$

where $k_{0.50}$ is the median permeability and $k_{0.16}$ is the permeability one standard deviation below $k_{0.50}$ on a log-probability plot. The variation of V_{DP} ranges from 0 (uniform) to 1 (infinitely heterogeneous). The lower values (0 to 0.5) represent cases of low heterogeneity, while the higher values (0.7 to 1.0) reflect reservoirs with large to extremely large levels of heterogeneity according to Larry W. Lake and Jerry L. Jensen. Most reservoirs have the V_{DP} values of 0.5 to 0.9 according to Wilhite, G. Paul (1986).

The Dykstra-Parsons coefficient is determined from a set of permeability data ordered in increasing value as shown in Figure 3.5. Dykstra and Parsons (1950) state that the values to be used in the definition are taken from a "best-fit" line through the data when they are plotted on a log-probability plot. If the points do not fall approximately on a straight line, more weight is to be given to the central points than the points at the extremities.

CHAPTER IV

Reservoir Model Construction

This chapter is divided into two sections which are a base model and a reservoir model with a different degree of heterogeneity. The base model section explains how to prepare and formulate the base case and the next section shows how to generate maps from the original data and assess uncertainties using Sequential Gaussian Simulation Technique (SGS) as well as measuring the heterogeneity using Dykstra-Parsons coefficient.

4.1 Base Model

This study investigated the effect of areal permeability heterogeneities on well performance where thickness was assumed to be constant and porosity was assumed to be correlated with permeability. The permeability distribution of base case was assumed with a known spatial correlation of lognormal frequency distribution as shown in Figures 4.1 (a) and 4.2 (a). 109 wells were also assumed to be drilled in the base model where the well locations were illustrated in Figure 4.1 (b). The assigned locations of 109 wells will help us obtain different maps with degrees of heterogeneity as explained in detail in the next section.

As shown in Figures 4.1 (a) and (b), the permeability data cover an area of 2500 x 3400 square-meter. The distributions of reservoir rock properties were generated for a rectangular reservoir with dimensions of 136 x 100 x 1 blocks with a block size equal to 25 x 25 x 7 m. in the x, y and z directions, respectively.

Figure 4.1 : Assumed distribution (a) and location map (b) of permeability of base model

Table 4.1 shows the x and y coordinates of the original data, permeability and porosity, from the 109 wells which have the minimum and maximum values of 0.27 md., 720 md. and 0.15 and 0.27 respectively. In addition, the names of each well are assigned as well 1 to well 109, respectively where the well names were ordered in increasing values of permeability. The correlation that we used to determine porosity value from the permeability value is shown in Equation 4.1.

$$\phi = \frac{1}{43.586} \times \left[\ln \left(\frac{k}{0.0057} \right) \right]$$
(4.1)
Table 4.1 : Permeability and porosity of input data

	V _	V-		Normal		
Well name	coordinate	coordinate	Permeability,	transform	Porosity,	
	(m.)	(m.)	md.	of	(%)	
				permeability		
1	2500	2380	0.27	-2.605	0.15	
2	1680	1930	0.39	-2.204	0.10	
3	1244	120	0.47	-1.997	0.16	
4	1680	730	0.53	-1.851	0.10	
5	2416	2124	0.80	-1.736	0.17	
6	1980	730	0.87	-1.640	0.12	
/	1380	/30	0.94	-1.558	0.12	
8	2180	1030	0.96	-1.485	0.12	
9	180	1020	1.04	-1.419	0.12	
10	1680	1930	1.20	-1.338	0.12	
12	1707	599	1.21	-1.303	0.12	
13	1980	1030	1 34	-1 202	0.13	
14	942	623	1.61	-1.156	0.15	
15	2280	2230	2.10	-1.112	0.14	
16	480	2230	2.56	-1.070	0.14	
17	180	2230	2.75	-1.031	0.14	
18	1080	130	4.05	-0.992	0.15	
19	1606	1312	4.47	-0.955	0.20	
20	3180	1930	4.47	-0.920	0.15	
21	2738	2411	4.68	-0.885	0.19	
22	480	1630	4.70	-0.851	0.15	
23	10 <mark>8</mark> 0	430	4.84	-0.819	0.15	
24	2580	2230	4.90	-0.787	0.15	
25	3301	1024	4.93	-0.756	0.19	
26	1080	1330	5.10	-0.726	0.16	
27	1384	881	8.42	-0.696	0.20	
28	1380	1330	9.07	-0.667	0.17	
29	2880	1930	9.08	-0.639	0.17	
30	2880	2230	9.79	-0.611	0.17	
31	1080	1030	9.8/	-0.583	0.17	
32	2280	1930	10.01	-0.330	0.17	
33	480	1030	10.13	-0.530	0.17	
35	1380	430	10.21	-0.303	0.17	
36	1080	730	10.20	-0.452	0.17	
37	1664	1301	10.78	-0.427	0.24	
38	1680	1630	11.40	-0.401	0.17	
39	3180	1630	13.12	-0.377	0.18	
40	1495	2138	14.65	-0.352	0.14	
41	180	1330	15.78	-0.328	0.18	
42	2580	1630	18.13	-0.304	0.19	
43	2580	130	18.52	-0.280	0.19	
44	1380	1030	18.91	-0.256	0.19	
45	780	1630	19.07	-0.232	0.19	
46	2131	1909	21.25	-0.208	0.19	
47	2031	1345	23.44	-0.185	0.22	
48	2580	1930	23.78	-0.162	0.19	
49	1980	2230	25.81	-0.138	0.19	
50	1980	430	28.48	-0.115	0.20	
51	1080	1630	30.43	-0.092	0.20	
52	3262	1394	30.93	-0.069	0.20	
53	1380	1030	21.02	-0.046	0.20	
54	480	130	51.05	-0.023	0.20	

b permeability 55 780 1330 31.05 0.000 0.20 56 2280 730 31.30 0.023 0.20 57 3008 2092 31.71 0.046 0.23 58 2880 130 33.50 0.069 0.20 60 2280 1330 34.27 0.115 0.20 61 180 130 36.73 0.138 0.20 63 480 1330 38.72 0.208 0.20 64 3180 1330 38.72 0.208 0.20 65 1870 100 39.67 0.328 0.20 66 1980 1930 40.65 0.328 0.20 67 2580 430 40.44 0.280 0.20 68 1380 1930 41.05 0.328 0.20 71 2400 547 41.08 0.377 0.23 7	Well name	x-coordinate (m.)	y-coordinate (m.)	Permeability, md.	Normal score transform of	Porosity, (%)		
55 780 1330 31.05 0.000 0.20 56 2280 730 31.30 0.023 0.20 57 3008 2092 31.71 0.046 0.23 58 2880 130 33.50 0.069 0.20 60 2280 1330 34.27 0.115 0.20 61 180 130 36.73 0.138 0.20 62 2280 130 36.97 0.162 0.20 63 480 1330 38.31 0.185 0.20 64 3180 1330 40.86 0.20 0.24 66 1980 1930 40.86 0.304 0.20 67 2580 430 40.92 0.328 0.20 70 1980 1630 41.05 0.352 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1630 45.79					permeability			
56 2280 730 31.30 0.023 0.20 57 3008 2092 31.71 0.046 0.23 58 2880 130 33.30 0.069 0.20 59 1380 130 33.427 0.115 0.20 61 180 130 36.73 0.115 0.20 63 480 1330 38.31 0.185 0.20 64 3180 1330 38.31 0.185 0.20 65 1870 100 39.67 0.232 0.24 66 1980 1930 40.05 0.256 0.20 67 2580 430 40.92 0.328 0.20 70 1980 1930 41.05 0.352 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1630 42.70 0.401 0.20 73 2880 130 57.13	55	780	1330	31.05	0.000	0.20		
57 3008 2092 31.71 0.046 0.23 58 2880 130 33.50 0.069 0.20 60 2280 1330 34.27 0.115 0.20 61 180 130 36.73 0.138 0.20 62 2280 130 36.73 0.138 0.20 63 480 1330 38.31 0.185 0.20 65 1870 100 39.67 0.232 0.24 66 1980 1930 40.05 0.256 0.20 67 2580 430 40.44 0.280 0.20 68 1380 1930 41.05 0.352 0.20 70 1980 1930 41.05 0.352 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1630 42.70 0.401 0.20 73 2880 1030 57.1	56	2280	730	31.30	0.023	0.20		
58 280 130 33.50 0.069 0.20 59 1380 130 33.94 0.092 0.20 60 2280 1330 34.27 0.115 0.20 61 180 130 36.73 0.138 0.20 63 480 1330 38.31 0.162 0.20 63 480 1330 38.72 0.208 0.20 64 3180 1330 38.72 0.208 0.20 65 1870 100 39.67 0.232 0.24 66 1980 1930 40.05 0.256 0.20 67 2580 430 40.92 0.328 0.20 70 1980 1930 41.05 0.352 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1630 42.70 0.401 0.20 73 2880 1030 51.79	57	3008	2092	31.71	0.046	0.23		
59 1380 130 33.94 0.092 0.20 60 2280 1330 34.27 0.115 0.20 62 2280 130 36.73 0.138 0.20 63 480 1330 38.31 0.162 0.20 64 3180 1330 38.31 0.185 0.20 65 1870 100 39.67 0.232 0.24 66 1980 1930 40.05 0.256 0.20 67 2580 430 40.44 0.280 0.20 68 1380 1930 41.05 0.352 0.20 70 1980 1930 41.08 0.377 0.23 71 2400 54.7 41.08 0.377 0.23 72 1980 130 51.79 0.452 0.21 73 2880 130 57.43 0.530 0.21 74 1980 130 57.4	58	2880	130	33.50	0.069	0.20		
60 2280 130 36.73 0.115 0.20 62 2280 130 36.97 0.162 0.20 63 480 1330 38.31 0.185 0.20 64 3180 1330 38.72 0.208 0.20 65 1870 100 39.67 0.232 0.24 66 1980 1930 40.05 0.256 0.20 67 2580 430 40.44 0.280 0.20 68 1380 1930 41.05 0.328 0.20 70 1980 1630 42.70 0.401 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1630 42.70 0.401 0.20 73 2880 1030 51.79 0.452 0.21 75 2086 1272 53.35 0.477 0.21 76 3180 130	59	1380	130	33.94	0.092	0.20		
61 180 150 35.73 0.138 0.20 62 2280 130 36.97 0.162 0.20 63 480 1330 38.31 0.185 0.20 64 3180 1330 38.72 0.208 0.20 65 1870 100 39.67 0.232 0.24 66 1980 1930 40.05 0.232 0.24 66 1980 1930 40.86 0.304 0.20 67 2580 430 40.92 0.328 0.20 70 1980 1930 41.05 0.352 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1630 42.70 0.401 0.20 73 2880 1030 57.43 0.530 0.21 74 1980 130 57.43 0.530 0.21 75 2086 1272 53.	60	2280	1330	34.27	0.115	0.20		
62 2280 130 36.37 0.162 0.20 63 480 1330 38.31 0.185 0.20 64 3180 1330 38.72 0.208 0.20 65 1870 100 39.67 0.232 0.24 66 1980 1930 40.05 0.235 0.20 67 2580 430 40.44 0.280 0.20 68 1380 1930 41.05 0.332 0.20 70 1980 1930 41.05 0.352 0.20 71 2400 547 41.08 0.377 0.23 72 1980 130 51.79 0.452 0.21 73 2880 130 57.43 0.530 0.21 75 2086 1272 53.35 0.417 0.22 77 2880 730 $57.$	61	180	130	36.73	0.138	0.20		
63 480 1330 38.72 0.183 0.20 65 1870 100 39.67 0.232 0.24 66 1980 1930 40.05 0.232 0.24 66 1980 1930 40.44 0.280 0.20 68 1380 1930 40.86 0.304 0.20 70 1980 1930 41.05 0.332 0.20 70 1980 1530 41.05 0.332 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1530 41.05 0.332 0.20 73 2880 130 51.79 0.452 0.21 75 2086 1272 53.35 0.477 0.21 77 2880 730 57.43 0.530 0.21 77 2880 730 6	62	2280	130	36.97	0.162	0.20		
37 3130 1300 39.67 0.232 0.24 66 1980 1930 40.05 0.256 0.20 67 2580 430 40.44 0.280 0.20 68 1380 1930 40.05 0.328 0.20 69 780 430 40.92 0.328 0.20 70 1980 1930 41.05 0.352 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1630 42.70 0.401 0.20 73 2880 1030 45.67 0.427 0.21 74 1980 130 57.43 0.530 0.21 75 2086 1272 53.35 0.477 0.21 76 3180 1030 57.43 0.530 0.21 79 2757 1554 64.77 0.583 0.21 80 </td <td>64</td> <td>3180</td> <td>1330</td> <td>38.72</td> <td>0.185</td> <td>0.20</td>	64	3180	1330	38.72	0.185	0.20		
30 100 100 40.05 0.22 0.21 67 2580 430 40.44 0.280 0.20 68 1380 1930 40.86 0.304 0.20 69 780 430 40.92 0.328 0.20 70 1980 1930 41.05 0.352 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1630 42.70 0.401 0.20 73 2880 1030 51.79 0.452 0.21 75 2086 1272 53.35 0.477 0.21 76 3180 1030 57.43 0.530 0.21 77 2880 730 57.43 0.530 0.21 79 2757 1554 64.77 0.583 0.21 79 2757 1554 $64.$	65	1870	100	39.67	0.208	0.20		
67 2580 430 40.44 0.280 0.20 68 1380 930 40.86 0.304 0.20 69 780 430 40.92 0.328 0.20 70 1980 1930 41.05 0.352 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1630 42.70 0.401 0.20 73 2880 130 51.79 0.452 0.21 74 1980 130 57.13 0.530 0.21 76 3180 1030 57.13 0.530 0.21 77 2880 730 0.556 0.21 79 2757 1554 64.77 0.583 0.21 79 2757 1554 64.77 0.583 0.21 80 1680 2230 77.71 0.6	66	1980	1930	40.05	0.256	0.24		
68 1380 1930 40.86 0.304 0.20 69 780 430 40.92 0.328 0.20 70 1980 1930 41.05 0.352 0.20 71 2400 547 41.05 0.352 0.20 72 1980 1630 42.70 0.401 0.20 73 2880 1030 45.67 0.427 0.21 74 1980 130 51.79 0.452 0.21 75 2086 1272 53.35 0.477 0.21 76 3180 1030 57.15 0.503 0.21 78 180 430 62.24 0.556 0.21 79 2757 1554 64.77 0.583 0.21 80 1680 230 77.71 0.667 0.22 81 2880 1330 77.44 0.639 0.22 84 2601 1041	67	2580	430	40.44	0.280	0.20		
69 780 430 40.92 0.328 0.20 70 1980 1930 41.05 0.352 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1630 42.70 0.401 0.20 73 2880 1030 45.67 0.427 0.21 74 1980 130 51.79 0.452 0.21 75 2086 1272 53.35 0.477 0.21 76 3180 1030 57.15 0.503 0.21 77 2880 730 57.43 0.530 0.21 78 180 430 62.24 0.556 0.21 79 2757 1554 64.77 0.583 0.21 80 1680 430 69.85 0.611 0.22 81 2280 1330 77.44 0.639 0.22 82 1380 2230 77.71 0.667 0.22 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.787 0.24 86 180 1030 180.02 0.787 0.24 90 780 730 194.52 0.885 0.24 90 780 730 194.52 0.885 0.24 90 780 1330 200.27 0.992 0.24 93 2880 1630 204.35 <td< td=""><td>68</td><td>1380</td><td>1930</td><td>40.86</td><td>0.304</td><td>0.20</td></td<>	68	1380	1930	40.86	0.304	0.20		
70 1980 1930 41.05 0.352 0.20 71 2400 547 41.08 0.377 0.23 72 1980 1630 42.70 0.401 0.20 73 2880 1030 45.67 0.427 0.21 74 1980 130 51.79 0.452 0.21 76 3180 1030 57.15 0.503 0.21 78 180 430 62.24 0.556 0.21 79 2757 1554 64.77 0.583 0.21 80 1680 430 69.85 0.611 0.22 81 2880 1330 77.44 0.639 0.22 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.756 0.23 86 180 1030 180.02 0.787 0.24 87 480 430	69	780	430	40.92	0.328	0.20		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	70	1980	1930	41.05	0.352	0.20		
721980163042.700.4010.20 73 2880103045.670.4270.21 74 198013051.790.4520.21 75 2086127253.350.4770.21 76 3180103057.150.5030.21 77 288073057.430.5300.21 78 18043062.240.5560.21 79 2757155464.770.5830.21 80 168043069.850.6110.22 81 2880133077.440.6390.22 82 1380223077.710.6670.22 83 1680223081.010.6960.22 84 2601104183.290.7260.21 85 2580730135.740.7560.23 86 1801030180.020.7870.24 87 480430196.160.8190.24 90 7801030190.270.9920.24 91 10802230197.750.9550.24 92 25801330200.270.9920.24 94 7802230208.131.0700.24 95 1462178208.781.1120.23 96 7801930313.071.1560.25 97 480730320.201.2020.25	71	2400	547	41.08	0.377	0.23		
73 2880 1030 45.67 0.427 0.21 74 1980 130 51.79 0.452 0.21 75 2086 1272 53.35 0.477 0.21 76 3180 1030 57.43 0.530 0.21 77 2880 730 57.43 0.530 0.21 78 180 430 62.24 0.556 0.21 79 2757 1554 64.77 0.583 0.21 80 1680 430 69.85 0.611 0.22 81 2880 1330 77.44 0.639 0.22 82 1380 2230 77.71 0.667 0.22 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.756 0.23 86 180 940 19	72	1980	1630	42.70	0.401	0.20		
741980130 51.79 0.452 0.21 75 2086 1272 53.35 0.477 0.21 76 3180 1030 57.15 0.503 0.21 77 2880 730 57.43 0.530 0.21 78 180 430 62.24 0.556 0.21 79 2757 1554 64.77 0.583 0.21 80 1680 430 69.85 0.611 0.22 81 2280 1330 77.44 0.639 0.22 82 1380 2230 77.71 0.6667 0.22 83 1680 2230 81.01 0.696 0.22 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.756 0.23 86 180 1030 180.02 0.787 0.24 87 480 430 186.16 0.819 0.24 90 780 1030 194.52 0.885 0.24 90 780 1030 196.19 0.920 0.24 91 1080 2230 208.13 1.070 0.24 92 2580 1330 200.27 0.992 0.24 93 2280 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 95 1462 178 208.78 <t< td=""><td>73</td><td>2880</td><td>1030</td><td>45.67</td><td>0.427</td><td>0.21</td></t<>	73	2880	1030	45.67	0.427	0.21		
75 2086 1272 53.35 0.477 0.21 76 3180 1030 57.15 0.503 0.21 77 2880 730 57.43 0.530 0.21 78 180 430 62.24 0.556 0.21 79 2757 1554 64.77 0.583 0.21 80 1680 430 69.85 0.611 0.22 81 2880 1330 77.44 0.639 0.22 82 1380 2230 77.71 0.667 0.22 83 1680 2330 81.01 0.696 0.22 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.756 0.23 86 180 1030 180.02 0.787 0.24 87 480 430 186.16 0.819 0.24 90 </td <td>74</td> <td>1<mark>9</mark>80</td> <td>130</td> <td>51.79</td> <td>0.452</td> <td>0.21</td>	74	1 <mark>9</mark> 80	130	51.79	0.452	0.21		
76 3180 1030 57.15 0.503 0.21 77 2880 730 57.43 0.530 0.21 78 180 430 62.24 0.556 0.21 79 2757 1554 64.77 0.583 0.21 80 1680 430 69.85 0.611 0.22 81 2880 1330 77.44 0.639 0.22 82 1380 2230 81.01 0.667 0.22 83 1680 2230 81.01 0.667 0.22 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.756 0.23 86 180 1030 180.02 0.787 0.24 87 480 430 186.16 0.819 0.24 89 780 730 19	75	2086	1272	53.35	0.477	0.21		
77 2880 730 57.43 0.530 0.21 78 180 430 62.24 0.556 0.21 79 2757 1554 64.77 0.583 0.21 80 1680 430 69.85 0.611 0.22 81 2880 1330 77.44 0.639 0.22 82 1380 2230 81.01 0.696 0.22 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.756 0.23 86 180 1030 180.02 0.787 0.24 87 480 430 186.16 0.819 0.24 88 100 940 194.52 0.885 0.24 90 780 1030 196.19 0.920 0.24 91 1080 2230 2	76	3180	1030	57.15	0.503	0.21		
78 180 430 62.24 0.556 0.21 79 2757 1554 64.77 0.583 0.21 80 1680 430 69.85 0.611 0.22 81 2280 77.71 0.667 0.22 82 1380 2230 77.71 0.667 0.22 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.756 0.23 86 180 1030 180.02 0.787 0.24 87 480 430 186.16 0.819 0.24 87 480 430 194.52 0.885 0.24 90 780 1030 199.775 0.920 0.24 91 1080 2230 208.13 1.070 0.24 92 2580 1330 200.27 <	77	2880	730	57.43	0.530	0.21		
79 2757 1554 64.77 0.385 0.21 80168043069.85 0.611 0.22 8128801330 77.44 0.639 0.22 8213802230 77.71 0.667 0.22 8316802230 81.01 0.696 0.22 8426011041 83.29 0.726 0.21 852580730135.74 0.756 0.23 861801030180.02 0.787 0.24 87480430186.16 0.819 0.24 88100940194.10 0.851 0.27 89780730194.52 0.885 0.24 907801030196.19 0.920 0.24 9110802230197.75 0.955 0.24 9225801330200.27 0.992 0.24 9328801630204.35 1.031 0.24 947802230208.13 1.070 0.24 951462178208.78 1.112 0.23 967801930313.07 1.156 0.25 994961053339.40 1.303 0.24 1003180730351.31 1.358 0.25 1013180730351.31 1.358 0.25 1021680130486.93 1.445 0.26 103<	/8	180	430	62.24	0.556	0.21		
80 1680 430 69.35 0.611 0.22 81 2880 1330 77.44 0.639 0.22 82 1380 2230 81.01 0.667 0.22 83 1680 2230 81.01 0.696 0.22 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.756 0.23 86 180 1030 180.02 0.787 0.24 87 480 430 186.16 0.819 0.24 88 100 940 194.52 0.885 0.24 90 780 1030 194.52 0.885 0.24 90 780 1030 194.52 0.885 0.24 91 1080 2230 197.75 0.955 0.24 92 2580 1330 <t< td=""><td>/9</td><td>2/5/</td><td>1554</td><td>64.77</td><td>0.583</td><td>0.21</td></t<>	/9	2/5/	1554	64.77	0.583	0.21		
81 2000 1330 2230 77.71 0.667 0.22 83 1680 2230 81.01 0.696 0.22 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.756 0.23 86 180 1030 180.02 0.787 0.24 87 480 430 186.16 0.819 0.24 88 100 940 194.10 0.851 0.27 89 780 730 194.52 0.885 0.24 91 1080 2230 197.75 0.9955 0.24 92 2580 1330 200.27 0.992 0.24 93 2880 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 95 1462	81	2880	1330	77.44	0.611	0.22		
62 1300 2230 81.01 0.696 0.22 83 1680 2230 81.01 0.696 0.22 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.756 0.23 86 180 1030 180.02 0.787 0.24 87 480 430 186.16 0.819 0.24 88 100 940 194.52 0.885 0.24 90 780 1030 196.19 0.920 0.24 91 1080 2230 197.75 0.992 0.24 92 2580 1330 200.27 0.992 0.24 93 2880 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 94 780 1930	82	1380	2230	77.71	0.657	0.22		
30 100 100 100 100 100 84 2601 1041 83.29 0.726 0.21 85 2580 730 135.74 0.756 0.23 86 180 1030 180.02 0.787 0.24 87 480 430 186.16 0.819 0.24 88 100 940 194.10 0.851 0.27 89 780 730 194.52 0.885 0.24 90 780 1030 196.19 0.920 0.24 91 1080 2230 197.75 0.955 0.24 92 2580 1330 200.27 0.992 0.24 93 2880 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 94 780 2230 208.13 1.070 0.24 95 1462 178 208.78 1.112 0.23 96 780 1930 313.07 1.156 0.25 97 480 730 320.20 1.202 0.25 98 2280 1030 332.05 1.251 0.25 101 3180 730 351.31 1.358 0.25 101 3180 730 351.31 1.358 0.27 104 780 130 590.61 1.640 0.26 105 2880 430 602.47 1.7	83	1680	2230	81.01	0.696	0.22		
85 2580 730 135.74 0.756 0.23 86 180 1030 180.02 0.787 0.24 87 480 430 186.16 0.819 0.24 88 100 940 194.10 0.851 0.27 89 780 730 194.52 0.885 0.24 90 780 1030 196.19 0.920 0.24 91 1080 2230 197.75 0.955 0.24 92 2580 1330 200.27 0.992 0.24 93 2880 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 94 780 2230 208.13 1.070 0.24 95 1462 178 208.78 1.112 0.23 96 780 1930 313.07 1.156 0.25 97 480 730 320.20 1.202 0.25 98 2280 1030 332.05 1.251 0.25 99 496 1053 339.40 1.303 0.24 100 3180 730 351.31 1.358 0.26 101 3180 430 403.28 1.419 0.26 102 1680 130 486.93 1.485 0.26 103 2161 2017 565.05 1.558 0.27 104 780 130 5	84	2601	1041	83.29	0.726	0.21		
86 180 1030 180.02 0.787 0.24 87 480 430 186.16 0.819 0.24 88 100 940 194.10 0.851 0.27 89 780 730 194.52 0.885 0.24 90 780 1030 196.19 0.920 0.24 91 1080 2230 197.75 0.955 0.24 92 2580 1330 200.27 0.992 0.24 93 2880 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 95 1462 178 208.78 1.112 0.23 96 780 1930 313.07 1.156 0.25 97 480 730 320.20 1.202 0.25 98 2280 1030 332.05 1.251 0.25 99 496 1053 339.40 1.303 0.24 100 3180 730 351.31 1.358 0.25 101 3180 430 403.28 1.419 0.26 102 1680 130 486.93 1.485 0.26 103 2161 2017 565.05 1.558 0.27 104 780 130 590.61 1.640 0.26 105 2880 430 602.47 1.736 0.27 106 1080 1930 <td< td=""><td>85</td><td>2580</td><td>730</td><td>135.74</td><td>0.756</td><td>0.23</td></td<>	85	2580	730	135.74	0.756	0.23		
87 480 430 186.16 0.819 0.24 88 100 940 194.10 0.851 0.27 89 780 730 194.52 0.885 0.24 90 780 1030 196.19 0.920 0.24 91 1080 2230 197.75 0.955 0.24 92 2580 1330 200.27 0.992 0.24 93 2880 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 95 1462 178 208.78 1.112 0.23 96 780 1930 313.07 1.156 0.25 97 480 730 320.20 1.202 0.25 98 2280 1030 332.05 1.251 0.25 99 496 1053 339.40 1.303 0.24 100 3180 730 351.31 1.358 0.25 101 3180 430 403.28 1.419 0.26 102 1680 130 486.93 1.485 0.26 103 2161 2017 565.05 1.558 0.27 104 780 130 590.61 1.640 0.26 105 2880 430 602.47 1.736 0.27 106 1080 1930 625.15 1.851 0.27 107 180 730 <td< td=""><td>86</td><td>180</td><td>1030</td><td>180.02</td><td>0.787</td><td>0.24</td></td<>	86	180	1030	180.02	0.787	0.24		
88100940194.100.8510.27 89 780730194.520.8850.24 90 7801030196.190.9200.24 91 10802230197.750.9550.24 92 25801330200.270.9920.24 93 28801630204.351.0310.24 94 7802230208.131.0700.24 95 1462178208.781.1120.23 96 7801930313.071.1560.25 97 480730320.201.2020.25 98 22801030332.051.2510.25 99 4961053339.401.3030.24 100 3180730351.311.3580.25 101 3180430403.281.4190.26 102 1680130486.931.4850.26 103 21612017565.051.5580.27 104 780130590.611.6400.26 105 2880430602.471.7360.27 106 10801930625.151.8510.27 107 180730630.271.9970.27 108 22801630702.732.2040.27 109 632369720.002.6050.27	87	480	430	186.16	0.819	0.24		
89 780 730 194.52 0.885 0.24 90 780 1030 196.19 0.920 0.24 91 1080 2230 197.75 0.955 0.24 92 2580 1330 200.27 0.992 0.24 93 2880 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 95 1462 178 208.78 1.112 0.23 96 780 1930 313.07 1.156 0.25 97 480 730 320.20 1.202 0.25 98 2280 1030 332.05 1.251 0.25 99 496 1053 339.40 1.303 0.24 100 3180 730 351.31 1.358 0.25 101 3180 430 403.28 1.419 0.26 102 1680 130 486.93 1.485 0.26 103 2161 2017 565.05 1.558 0.27 104 780 130 590.61 1.640 0.26 105 2880 430 602.47 1.736 0.27 106 1080 1930 625.15 1.851 0.27 107 180 730 630.27 1.997 0.27 108 2280 1630 702.73 2.204 0.27	88	100	940	194.10	0.851	0.27		
90 780 1030 196.19 0.920 0.24 91 1080 2230 197.75 0.955 0.24 92 2580 1330 200.27 0.992 0.24 93 2880 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 95 1462 178 208.78 1.112 0.23 96 780 1930 313.07 1.156 0.25 97 480 730 320.20 1.202 0.25 98 2280 1030 332.05 1.251 0.25 99 496 1053 339.40 1.303 0.24 100 3180 730 351.31 1.358 0.25 101 3180 730 351.31 1.358 0.26 102 1680 130 486.93 1.485 0.26 103 2161 2017 565.05 1.558 0.27 104 780 130 590.61 1.640 0.26 105 2880 430 602.47 1.736 0.27 106 1080 1930 625.15 1.851 0.27 107 180 730 630.27 1.997 0.27 108 2280 1630 702.73 2.204 0.27	89	780	730	194.52	0.885	0.24		
91 1080 2230 197.75 0.955 0.24 92 2580 1330 200.27 0.992 0.24 93 2880 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 95 1462 178 208.78 1.112 0.23 96 780 1930 313.07 1.156 0.25 97 480 730 320.20 1.202 0.25 98 2280 1030 332.05 1.251 0.25 99 496 1053 339.40 1.303 0.24 100 3180 730 351.31 1.358 0.25 101 3180 430 403.28 1.419 0.26 102 1680 130 486.93 1.485 0.26 103 2161 2017 565.05 1.558 0.27 104 780 130 590.61 1.640 0.26 105 2880 430 602.47 1.736 0.27 106 1080 1930 625.15 1.851 0.27 107 180 730 630.27 1.997 0.27 108 2280 1630 702.73 2.204 0.27	90	780	1030	196.19	0.920	0.24		
92 2580 1330 200.27 0.992 0.24 93 2880 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 95 1462 178 208.78 1.112 0.23 96 780 1930 313.07 1.156 0.25 97 480 730 320.20 1.202 0.25 98 2280 1030 332.05 1.251 0.25 99 496 1053 339.40 1.303 0.24 100 3180 730 351.31 1.358 0.25 101 3180 430 403.28 1.419 0.26 102 1680 130 486.93 1.485 0.26 103 2161 2017 565.05 1.558 0.27 104 780 130 590.61 1.640 0.26 105 2880 430 602.47 1.736 0.27 106 1080 1930 625.15 1.851 0.27 107 180 730 630.27 1.997 0.27 108 2280 1630 702.73 2.204 0.27 109 632 369 720.00 2.605 0.27	91	1080	2230	197.75	0.955	0.24		
93 2880 1630 204.35 1.031 0.24 94 780 2230 208.13 1.070 0.24 95 1462 178 208.78 1.112 0.23 96 780 1930 313.07 1.156 0.25 97 480 730 320.20 1.202 0.25 98 2280 1030 332.05 1.251 0.25 99 496 1053 339.40 1.303 0.24 100 3180 730 351.31 1.358 0.25 101 3180 430 403.28 1.419 0.26 102 1680 130 486.93 1.485 0.26 103 2161 2017 565.05 1.558 0.27 104 780 130 590.61 1.640 0.26 105 2880 430 602.47 1.736 0.27 106 1080 1930 625.15 1.851 0.27 107 180 730 630.27 1.997 0.27 108 2280 1630 702.73 2.204 0.27 109 632 369 720.00 2.605 0.27	92	2580	1330	200.27	0.992	0.24		
34 780 2230 208.13 1.070 0.24 95 1462 178 208.78 1.112 0.23 96 780 1930 313.07 1.156 0.25 97 480 730 320.20 1.202 0.25 98 2280 1030 332.05 1.251 0.25 99 496 1053 339.40 1.303 0.24 100 3180 730 351.31 1.358 0.25 101 3180 730 351.31 1.358 0.26 102 1680 130 486.93 1.485 0.26 103 2161 2017 565.05 1.558 0.27 104 780 130 590.61 1.640 0.26 105 2880 430 602.47 1.736 0.27 106 1080 1930 625.15 1.851 0.27 107 180 730 630.27 1.997 0.27 108 2280 1630 702.73 2.204 0.27	93	2880	1030	204.35	1.031	0.24		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	94	1462	178	208.15	1.070	0.24		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	96	780	1930	313.07	1.112	0.25		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	97	480	730	320.20	1.202	0.25		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	98	2280	1030	332.05	1.251	0.25		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	99	496	1053	339.40	1.303	0.24		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100	3180	730	351.31	1.358	0.25		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	101	3180	430	403.28	1.419	0.26		
103 2161 2017 565.05 1.558 0.27 104 780 130 590.61 1.640 0.26 105 2880 430 602.47 1.736 0.27 106 1080 1930 625.15 1.851 0.27 107 180 730 630.27 1.997 0.27 108 2280 1630 702.73 2.204 0.27 109 632 369 720.00 2.605 0.27	102	1680	130	486.93	1.485	0.26		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	103	2161	2017	565.05	1.558	0.27		
105 2880 430 602.47 1.736 0.27 106 1080 1930 625.15 1.851 0.27 107 180 730 630.27 1.997 0.27 108 2280 1630 702.73 2.204 0.27 109 632 369 720.00 2.605 0.27	104	780	130	590.61	1.640	0.26		
106 1080 1930 625.15 1.851 0.27 107 180 730 630.27 1.997 0.27 108 2280 1630 702.73 2.204 0.27 109 632 369 720.00 2.605 0.27	105	2880	430	602.47	1.736	0.27		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	106	1080	1930	625.15	1.851	0.27		
100 2200 1030 702.75 2.204 0.27 109 632 369 720.00 2.605 0.27	10/	180	/30	030.27	1.997	0.27		
	108	632	360	720.00	2.204	0.27		

Table 4.1 : Permeability and porosity of input data (continued)

In reality, permeability distribution typically exhibits as a log-normal. In order to quantify the statistical data, permeabilities of the original data were plotted into the histogram as it shows a log-normal distribution in which the mean is 101.7402 md. and standard deviation is 169.9434 md. Figure 4.2 illustrates permeability histogram of the original data.

(b) Normal score transform histogram

Figure 4.2 : Permeability histograms of original data

4.2 Reservoir Model with Different Degrees of Heterogeneity

As mentioned before, to study the effect of heterogeneity, it becomes difficult to get the wide range of permeability which can represent all degrees of heterogeneity in one field. As a result, seven extra models are generated to support the study.

Reducing the numbers of wells is performed manually so that the mean can be controlled as close as possible to the base case. In this study, seven other models are created where the wells of each model are taken out gradually from their maximum and minimum values until their means are close to 101.74. For example, when well 1 to well 12, lower tail, and well 108 and well 109, upper tail, were taken out from the base model, model I would be created and have the mean of 101.65. In this case, care should be taken. That is to say that if we took out the maximum value of only well 109 instead of both well 108 and well 109, the mean of the Model I would be 107.91 where then the new mean value is beyond the mean of the base case. As a result, the comparison may be difficult when explaining the performance of different cases. Therefore, the same method is applied to all the remaining models which can represent different degrees of heterogeneity. That is, after wells of each model had been taken out from both lower tail and upper tail to get their means close to the base case mean, Model I, II, III, IV, V, VI and VII then only used wells 13 to 107, 24 to 105, 34 to 103, 44 to 101, 51 to 99, 58 to 97 and 64 to 95, respectively as seen in Table 4.2. After all other seven models were created, the location maps of each model is illustrated in Figure 4.3.

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

Location map

(a) Base case with 109 wells

(h) Model VII with 32 wells

Figure 4.3 : Location maps of each model

After the new seven models were created, we would measure the degree of heterogeneity. Theoretically, there are many methods to measure the degree of heterogeneity. In this case, Dykstra-Parsons coefficient (V_{DP}) is used. In this study, permeability distribution of each model was plotted into a log-normal probability scale. To quantify the permeability values at the probability of 16% and 50%, MINITAB program, a statistical software, is used. The uniqueness of this program is to choose the exact value at a given probability without any bias. Figure 4.4 shows the example of 109-well permeability data obtained from the base case and how to obtain the V_{DP} value from the probability plot.

Model	Base	Model I	Model II	Model	Model	Model V	Model	Model
name	case	Model I	Widdel II	III	IV	Widdel v	VI	VII
Used well	1	13	24	34	44	51	58	64
name	to	to	to	to	to	to	to	to
name	109	107	105	103	101	99	97	95
Number of well	109	95	82	70	58	49	40	32
Mean (md.)	101.7402	101.6523	101.9997	101.280	101.8003	101.8182	102.5048	101.6620
Std. dev.	169.9434	155.0001	140.6738	122.2001	102.0488	91.1697	81.0508	67.1185
Coef. of var	1.6704	1.5248	1. <mark>3792</mark>	1.2066	1.0024	0.8954	0.7907	0.6602
Skewness	2.26	2.16	2.10	1.90	1.45	1.31	1.15	0.66
Kurtosis	4.35	3.98	3.94	3.28	1.00	0.60	0.27	-1.45
Maximum	720	630.27	602.47	565.05	403.28	339.4	320.2	208.78
Upper quartile	78.5352	8 <mark>2.72</mark>	135.7415	180.0185	186.1601	188.1451	190.1301	190.13
Median	31.05	34.27	39.195	40.89	44.185	53.35	59.835	67.31
Lower quartile	8.9075	10.4425	18.91	30.43	33.5	37.975	40.65	41.89
Minimum	0.27	1.34	4.9	10.21	18.91	30.43	33.5	38.72
V _{DP}	0.853	0.779	0.713	0.656	0.59	0.551	0.52	0.482

Table 4.2 : Statistical results of eight main models

As the number of wells and means of each model were deduced and controlled, Model VI gave the maximum mean value of 102.51 md. while Model III give the minimum mean value of 101.28 md. The means of the new seven models are close to the base case mean of 101.74 md. In this regard the recovery factor in reservoir simulation which we will later be performed can be easily compared.

After all the models were created, the coefficients of variation (V_{DP}) could be found in the ranges of 0.853 to 0.482 from the base case to model VII, respectively. Table 4.2 shows that V_{DP} decreases as standard deviation decreases.

As seen in Table 4.2, the upper, median and lower quartile values gradually increase from the base model to model VII. This could represent that their values rely very much on the standard deviation. The lower the value of standard deviation, the higher the value at given quartiles will be. The coefficient of variation (CV) is a normalized measure of dispersion of a probability distribution. It is defined as the ratio of the standard deviation to the mean. Typically, distributions with CV less than one are considered low-variance while those with CV greater than one are considered high-variance because standard deviation alone normally has little interpretable meaning unless the mean value is also reported.

Again, at CV greater than one, the standard deviation tends to have a wider range started from the Model IV upwards to the Base case. This could represent that the large level of heterogeneity would start from the V_{DP} of 0.59 to 0.853 in this case.

Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable. All models in our study provide the positive skewness in which the mass of the distribution is concentrated on the left. In order words, this kind of distributions is said to be right-skewed. Moreover, kurtosis is a measure of the peakedness of the probability distribution of a real-valued random variable. In this case, the higher kurtosis, the higher variance.

4.2.1 Sensitivity Analysis of Variogram

As illustrated in Figure 4.3, we generated seven more models at different degrees of heterogeneity varying V_{DP} values from 0.853 to 0.482. Geostatistically, there is not enough information to represent reservoir uncertainty characteristic and its effect on reservoir performance. Therefore, sensitivity analysis will be conducted in order to assess uncertainty of the model reservoirs. We will first study the effect of variogram in which it comprises of nugget and range and secondly investigate random number seed by using SGS.

To find spatial variability of its data as a function of distance and direction, in this case, omni-directional variogram is applied as it includes both vertical and horizontal directions. Tolerances with respect to distance and direction are used and given as a haft of lag distance and ± 22.5 degree of direction, respectively.

Nugget effects are chosen as the uncertainty in the values of 0.1 and 0.3. Practically, nugget value of zero is very difficult to obtain due to the limited data for capturing the spatial relationship in petroleum field. In this case, variogram does not exhibit a clearly defined nugget and structure or shows too many fluctuations. Theoretically, the nugget effect value should not be greater than 0.3. Otherwise, it would be unacceptable data or statistical random value. Range is varied from 300 m. to 900 m. depending on variogram characteristics. Theoretically, the range is to use half the maximum possible distance within the region of interest. The reason is to ensure that representative pairs are colleted on both sides of a given location. As

referred to the location maps, 2,500 m. is the maximum distance between any two sample points within the region of interest. As a result, the variogram estimation is restricted to a maximum lag distance or range of 1,250 m. There are three ranges fitted in variograms such as 300-600 m., 500-800 m., and 600-900 m. The different of 300 m.-range is given to be the uncertainty. The reason to come up with the value is that we normally get an erratic variogram result, particularly, in petroleum field due to the lack of a sample. Thus, range, in this case, is quite difficult to define and cannot preserve the correct behavior. If the range is set too large, we might get an outside sample of the local stationary region. On the other hand, if it is given too small, we may not have enough data to represent a good estimation. Therefore, 300 m.-range is given to be the uncertainty as it can help us to cover and represent a better result.

Before SGS has been used, Gaussian transformation is required to transform the cumulative distribution function to Gaussian variable in which its variability of the data set is restricted to -3 to +3 as seen in Figure 4.2 (b). Theoretically, SGS algorithm needs to be used in the Gaussian distribution to transform sample data into equivalent data. The advantage of the Gaussian transform is that it is easier to define the raw data into a normal score which has a mean of zero and a variance of one and can be also reduced the effect of extreme data on variogram. Therefore, normal score transform was defined. After performing SGS, we can backtransform the data to original values and will use SGS of the base case for generating multiple maps and sensitivity analysis as explained in the following details. The sensitivity analysis of normal score variograms is illustrated from Figures 4.5 to 4.12.

จุฬาลงกรณ์มหาวิทยาลัย

(a) Nugget = 0.1, Range = 300 m. (b) Nugg

(a) Nugget = 0.1, Range = 600 m. (b) Nugget = 0.3, Range = 600 m.

Figure 4.6 : Normal score transform of omni-directional spherical variograms of the model I varied nuggets and ranges using number of lags of 35, lag distance of 70 m.

Figure 4.7 : Normal score transform of omni-directional spherical variograms of the model II varied nuggets and ranges using number of lags of 35, lag distance of 74 m.

Figure 4.8 : Normal score transform of omni-directional Gaussian variograms of the model III varied nuggets and ranges using number of lags of 38, lag distance of 48 m.

Figure 4.9 : Normal score transform of omni-directional spherical variograms of the model IV varied nuggets and ranges using number of lags of 37, lag distance of 80 m.

(a) Nugget = 0.1, Range = 300 m.

(b) Nugget = 0.3, Range = 300 m.

Figure 4.10 : Normal score transform of omni-directional spherical variograms of the model V varied nuggets and ranges using number of lags of 34, lag distance of 58 m.

Figure 4.11 : Normal score transform of omni-directional spherical variograms of the model VI varied nuggets and ranges using number of lags of 40, lag distance of 50 m.

Figure 4.12 : Normal score transform of omni-directional spherical variograms of the model VII varied nuggets and ranges using number of lags of 30, lag distance of 58 m.

Model Name	Variogram Type	Number of Lags	Lag Distance (m.)	Lags Tolerance (m.)	Ranges (m.)
Base case	Spherical	32	60	30	300, 600
Model I	Spherical	35	70	35	600, 900
Model II	Spherical	35	74	37	600, 900
Model III	Gaussian	38	48	24	600, 900
Model IV	Spherical	37	80	40	500, 800
Model V	Spherical	34	58	29	300, 600
Model VI	Spherical	40	50	25	600, 900
Model VII	Spherical	30	58	28	300, 600

Table 4.3 : Comparison of eight-model normal score transform variogram data

As explained earlier, conventional variogram does not give a clear structural model to describe its spatial relationship in which it normally exhibits the most fluctuation. Thus, a normal score variogram is chosen for reducing that effect. Table 4.3 shows the comparison of eight-model normal score transform variogram data which are varied according to the parameters such as nugget effects and ranges.

There are two types of variogram used in this study such as spherical and Gaussian variograms. Spherical variogram characterizes all models except model III is fitted by the Gaussian variogram. All the models are generated using the nugget effects of 0.1 and 0.3. Base case, Model V and VII are fitted with the range of 300 to 600 m. Model IV is fitted with the range of 500 to 800 m. Model I, II, III and VI are fitted with the range of 600 to 900 m., respectively. As expected, the variogram starts with a zero value and increases as the lag distance between the two values increase. As a result, variance increases as lag distance increases. Lags tolerance is typically given half the lag distance to ensure that we can capture additional lags for a better estimate of the variogram. As seen from the normal score transform variogram plots, the base case to model IV give a clearly interpretable structure but model V to model VII still shows some fluctuation in the estimated values. This is because the lack of the data and/or spatial continuity should have significant effect on the interpretation. The relationship between number of lags and lag distance is shown in Figure 4.13.

Figure 4.13 : Relationship between number of lags and lag distance

Figure 4.13 shows that the possible number of lags decrease as lag distance increases. Theoretically, at given lag distance, the more lags we have, the more accurate the estimate of the variogram.

4.2.2 Sensitivity Analysis of Realizations

In this study, we investigate only the effect of permeability on reservoir performance. Although, there are many factors which can help us in understanding more accurately such as porosity, water saturation etc., we assume that there are less effect than permeability. As a result, this study will be concerned with only parameter.

Geostatistically, multiple fine-scale stochastic realizations are generated by changing the random number seed in the SGS. Moreover, the variogram parameters which are range and nugget are varied. The realizations which give a different degree of heterogeneity are used to quantify uncertainty in performance predictions. As mentioned before, SGS has been widely used to assess spatial uncertainty in the reservoir performance because it can create the different schemes of reservoir characteristics in some global sense by giving the numbers of equiprobable images. Comparing with the Kriging method, it provides a single numerical image which is best in some local accuracy sense and does not represent the reality. In addition, it only relies on neighborhood data which gives a smooth picture. Once, we use the Kriging model to study the effect on reservoir performance, it will not give us precise information. As a result, SGS is used to access reservoir uncertainty. Figure 4.14 illustrates the flow sheet to obtain realizations with different degrees of heterogeneity. Figures 4.15 to 4.40 show the result of 104 realizations generated by SGS.

Figure 4.14 : Flow sheet to obtain realizations with different degrees of heterogeneity

(a) Nugget = 0.1, Range = 300 m. (b) Nugget = 0.3, Range = 300 m.

(c) Nugget = 0.1, Range = 600 m. (d) Nugget = 0.3, Range = 600 m. Figure 4.15 : SGS of the base case varied nuggets

(c) Nugget = 0.1, Range = 600 m.

(d) Nugget = 0.3, Range = 600 m.

Figure 4.16 : SGS of the base case varied nuggets and ranges at the seed number of 1299460

(a) Nugget = 0.1, Range = 300 m. (b) Nugget = 0.3, Range = 300 m.

(c) Nugget = 0.1, Range = 600 m. (d) Nugget = 0.3, Range = 600 m. Figure 4.17 : SGS of the base case varied nuggets

and ranges at the seed number of 4211847

(a) Nugget = 0.1, Range = 300 m.

(b) Nugget = 0.3, Range = 300 m.

(c) Nugget = 0.1, Range = 600 m. (d) Nugget = 0.3, Range = 600 m. Figure 4.18 : SGS of the base case varied nuggets and ranges at the seed number of 5209254

(a) Nugget = 0.1, Range = 600 m.

(b) Nugget = 0.3, Range = 600 m.

(c) Nugget = 0.1, Range = 900 m. (d) Nugget = 0.3, Range = 900 m. Figure 4.19 : SGS of the model I varied nuggets

and ranges at the seed number of 153567

(c) Nugget = 0.1, Range = 900 m.
(d) Nugget = 0.3, Range = 900 m.
Figure 4.20 : SGS of the model I varied nuggets and ranges at the seed number of 896078

(c) Nugget = 0.1, Range = 900 m. (d) Nugget = 0.3, Range = 900 m. Figure 4.21 : SGS of the model I varied nuggets

(a) Nugget = 0.1, Range = 600 m.

(b) Nugget = 0.3, Range = 600 m.

(c) Nugget = 0.1, Range = 900 m.
(d) Nugget = 0.3, Range = 900 m.
Figure 4.22 : SGS of the model I varied nuggets and ranges at the seed number of 5237802

(c) Nugget = 0.1, Range = 900 m. (d) Nugget = 0.3, Range = 900 m. Figure 4.23 : SGS of the model II varied nuggets

and ranges at the seed number of 3782386

Figure 4.24 : SGS of the model II varied nuggets and ranges at the seed number of 4574483

(a) Nugget = 0.1, Range = 600 m.

(b) Nugget = 0.3, Range = 600 m.

2-D plot

(c) Nugget = 0.1, Range = 900 m.

(d) Nugget = 0.3, Range = 900 m.

Figure 4.25 : SGS of the model II varied nuggets

and ranges at the seed number of 6768113

(c) Nugget = 0.1, Range = 900 m. (d) Nugget = 0.3, Range = 900 m. Figure 4.26 : SGS of the model III varied nuggets and ranges at the seed number of 218583

45

(c) Nugget = 0.1, Range = 900 m.(d) Nugget = 0.3, Range = 900 m.Figure 4.27 : SGS of the model III varied nuggets

and ranges at the seed number of 2904965

(a) Nugget = 0.1, Range = 600 m.

(b) Nugget = 0.3, Range = 600 m.

(c) Nugget = 0.1, Range = 900 m.(d) Nugget = 0.3, Range = 900 m.Figure 4.28 : SGS of the model III varied nuggets and ranges at the seed number of 7497676

46

(a) Nugget = 0.1, Range = 500 m. (b) Nugget = 0.3, Range = 500 m.

2-D plot

(c) Nugget = 0.1, Range = 800 m.

(d) Nugget = 0.3, Range = 800 m.

Figure 4.29 : SGS of the model IV varied nuggets

and ranges at the seed number of 2895849

(a) Nugget = 0.1, Range = 500 m.

(b) Nugget = 0.3, Range = 500 m.

(c) Nugget = 0.1, Range = 800 m. (d) Nugget = 0.1, Range = 800 m. Figure 4.30 : SGS of the model IV varied nuggets

and ranges at the seed number of 6259246

47

52 000 216.000 160.000 44 000 08.000

(a) Nugget = 0.1, Range = 500 m. 2-D plot

(c) Nugget = 0.1, Range = 800 m. (d) Nugget = 0.3, Range = 800 m. Figure 4.31 : SGS of the model IV varied nuggets

(a) Nugget = 0.1, Range = 300 m.

(c) Nugget = 0.1, Range = 600 m.
(d) Nugget = 0.3, Range = 600 m.
Figure 4.32 : SGS of the model V varied nuggets and ranges at the seed number of 69069

48

720.000 684.000 648.000 612.000

576.000 540.000 504.000 456.000 432.000 396.000 286.000 286.000 286.000 286.000 252.000 216.000 160.000 72.000 386.000

(c) Nugget = 0.1, Range = 600 m. (d) Nugget = 0.3, Range = 600 m. Figure 4.33 : SGS of the model V varied nuggets

(c) Nugget = 0.1, Range = 600 m.(d) Nugget = 0.3, Range = 600 m.Figure 4.34 : SGS of the model V varied nuggets and ranges at the seed number of 7301294

(a) Nugget = 0.1, Range = 600 m.

 (c) Nugget = 0.1, Range = 900 m.
 (a) Nugget = 0.3, Range = 900 m.
 Figure 4.36 : SGS of the model VI varied nuggets and ranges at the seed number of 6160440 50

252.000 216.000 160.000 144.000 106.000 72.000 36.000

0.0

(a) Nugget = 0.1, Range = 600 m. (b) Nugget = 0.3, Range = 600 m.

(d) Nugget = 0.3, Range = 900 m. (c) Nugget = 0.1, Range = 900 m. Figure 4.37 : SGS of the model VI varied nuggets

and ranges at the seed number of 8275380

(a) Nugget = 0.1, Range = 300 m.

(b) Nugget = 0.3, Range = 300 m.

(c) Nugget = 0.1, Range = 600 m. (d) Nugget = 0.3, Range = 600 m. Figure 4.38 : SGS of the model VII varied nuggets and ranges at the seed number of 307057

51

(a) Nugget = 0.1, Range = 300 m.

(c) Nugget = 0.1, Range = 600 m. (d) Nugget = 0.3, Range = 600 m. Figure 4.39 : SGS of the model VII varied nuggets

(c) Nugget = 0.1, Range = 600 m.
(d) Nugget = 0.3, Range = 600 m.
Figure 4.40 : SGS of the model 7 varied nuggets and ranges at the seed number of 8326199

As shown from Figures 4.15 to 4.40, to assess the uncertainties, random number seed of 3 values are generated into SGS in which all simulated models use the number of grids of 13,600 except the Base case and model I are given random number seed of 4 values due to its wide range of standard deviation. As described earlier, nugget effects of 0.10 and 0.30 and ranges of 300-600 m., 500-800 m. and 600-900 m. are obtained to approach the spatial uncertainty. Thus, by varying all the parameters, 104 realizations are created. Table 4.4 summarizes statistical parameters of all realizations.

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

Base case with 109 wells (Prior to simulation, $V_{DP} = 0.853$, mean = 101.74 md., and SD = 169.94)																
Seed no.	1299460 4211847					5209254 1062367										
Model type		Sphe	erical		Spherical			Spherical			Spherical					
Distance (m.)	300	300	600	600	300	300	600	600	300	300	600	600	300	300	600	600
Nugget value (%)	10	30	10	30	10	30	10	30	10	30	10	30	10	30	10	30
V _{DP}	0.875	0.88	0.86	0.87	0.867	0.872	0.846	0.856	0.879	0.885	0.862	0.873	0.876	0.879	0.855	0.864
Mean	99.243	102.64	91.671	97.07	107.64	111.8	99.641	104.84	114.96	118.55	100.68	107.96	109.35	111.19	97.138	102.09
Std.dev.	175.8	180.94	159.02	169.5	178.77	185.18	164.23	173.93	186.46	194	165.81	179.57	182.05	186.06	159.93	171.4
Coef. of var	1.7714	1.7628	1.7346	1.7462	1.6608	1.6563	1.6482	1.6591	1.622	1.6364	1.647	1.6633	1.6648	1.6734	1.6464	1.6788
Maximum	720	720	720	720	720	720	720	720	720	720	720	720	720	720	720	720
Upper quartile	72.41	75.553	69.592	72.927	81.888	82.715	79.15	81.041	148.89	153.11	80.683	82.283	81.813	82.653	79.183	79.092
Median	28.309	26.611	30.788	30.296	31.127	31.155	31.403	31.163	31.035	31.012	31.02	31.002	31.008	30.992	31.032	31.009
Lower quartile	4.6879	4.5515	4.9038	4.7786	4.9916	4.9263	9.0744	8.4897	4.8685	4.7295	4.9287	4.8808	4.8503	4.8279	5.0528	4.9457
Minimum	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
			Mode	el I with 95	wells (Pri	or to simul	ation, V _{DP} :	= 0.779, m	ean = 101.	65 md., and	d SD = 155	5.00)				
Seed no.		153	567			896	078			4773	3049			523	7802	
Model type		Sphe	erical			Spherical			Spherical				Spherical			
Distance (m.)	600	600	900	900	600	600	900	900	600	600	900	900	600	600	900	900
Nugget value (%)	10	30	10	30	10	30	10	30	10	30	10	30	10	30	10	30
V _{DP}	0.798	0.804	0.783	0.794	0.773	0.781	0.754	0.766	0.813	0.819	0.797	0.808	0.786	0.795	0.768	0.782
Mean	104.25	113.45	95.908	107.39	86.868	92.976	79.042	86.734	107.17	113.3	98.102	106.42	97.441	104.54	87.891	97.113
Std.dev.	158	170.92	145.23	162.68	134.29	145.24	121.58	135.54	162.22	171.68	148.37	162.36	146.81	157.08	131.71	146.24
Coef. of var	1.5156	1.5067	1.5143	1.5148	1.5459	1.5621	1.5382	1.5628	1.5137	1.5153	1.5124	1.5257	1.5067	1.5026	1.4986	1.5059
Maximum	630.27	630.27	630.27	630.27	630.27	630.27	630.27	630.27	630.27	630.27	630.27	630.27	630.27	630.27	630.27	630.27
Upper quartile	127.52	176.38	81.88	133	77.538	77.671	69.056	74.878	173.41	183.89	110.59	147.95	88.587	135.99	79.209	82.412
Median	33.992	34.23	33.918	34.216	32.468	33.53	32.061	33.427	32.031	32.389	31.684	33.113	33.907	34.212	33.856	34.216
Lower quartile	10.165	10.186	10.245	10.248	10.232	10.246	10.3	10.294	9.5808	9.5734	9.8599	9.8439	10.18	10.206	10.256	10.277
Minimum	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34	1.34

Table 4.4 : SGS r	esults of eight	models by v	arying paramet	ers

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Model II with 82 wells (Prior to simulation, $V_{DP} = 0.713$, mean = 102.00 md., and SD = 140.67)												
Seed no.		3782	2386			4574	1483		6768113			
Model type		Sphe	rical		Spherical				Spherical			
Distance (m.)	600	600	900	900	600	600	900	<u>900</u>	600	600	900	900
Nugget value (%)	10	30	10	30	10	30	10	30	10	30	10	30
V _{DP}	0.7	0.709	0.682	0.696	0.703	0.719	0.678	0.704	0.691	0.709	0.672	0.697
Mean	107.28	114.81	97.839	107.54	92.09	98.669	82.445	92.071	94.692	105.26	87.257	99.944
Std.dev.	143.06	149.94	130.48	140.58	122.17	134.81	107.85	125.29	123.05	137.84	111.37	129.89
Coef. of var	1.3335	1.306	1.3337	1.3072	1.3266	1.3663	1.3081	1.3608	1.2995	1.3095	1.2764	1.2996
Maximum	602.47	602.47	602.47	602.47	602.47	602.47	602.47	602.47	602.47	602.47	602.47	602.47
Upper quartile	179.98	190.55	90.943	181.47	104.4	129.12	78.613	82.3	119.81	181.98	81.855	157.46
Median	40.4	40.841	40.0 <mark>88</mark>	40.688	38.893	39.005	38.612	38.72	39.927	40.401	39.838	40.352
Lower quartile	23.471	23.617	<mark>23.</mark> 57	23.822	18.464	18.232	18.872	18.565	19.477	19.524	21.259	21.004
Minimum	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9
	Mode	l III with 7	0 well <mark>s (</mark> Pr	io <mark>r t</mark> o simu	lation, VDF	= 0.656, n	nean = 101	.28 md., ar	nd SD = 12	2.20)		
Seed no.		218	583			7493	7676			2904	1965	
Model type		Gau	ssain			Gau	ssain			Gau	ssain	
Distance (m.)	600	600	900	900	600	600	900	900	600	600	900	900
Nugget value (%)	10	30	10	30	10	30	10	30	10	30	10	30
V _{DP}	0.654	0.659	0.624	0.639	0.663	0.675	0.63	0.656	0.651	0.654	0.62	0.635
Mean	102.29	114.74	88.73	106.65	100.99	111.3	87.332	102.99	96.258	104.9	83.176	98.435
Std.dev.	117.01	126.86	100.14	117.06	120.73	129.6	105.25	118.89	117.01	125.77	100.06	116.46
Coef. of var	1.1439	1.1056	1.1286	1.0977	1.1954	1.1644	1.2051	1.1544	1.2156	1.1989	1.203	1.1831
Maximum	565.05	565.05	565.05	565.05	565.05	565.05	565.05	565.05	565.05	565.05	565.05	565.05
Upper quartile	185	194.5	83.229	189.33	183.35	194.27	81.969	184.69	154.63	184.07	79.442	151.07
Median	41.061	45.339	40.889	43.124	40.884	41.074	40.7	41.065	40.005	40.912	39.811	40.92
Lower quartile	30.854	31.028	30.914	31.041	27.275	30.53	30.218	30.946	27.167	30.773	29.073	31.001
Minimum	10.21	10.21	10.21	10.21	10.21	10.21	10.21	10.21	10.21	10.21	10.21	10.21
	Mode	IV with 5	8 wells (Pr	ior to simu	lation, V _{DI}	s = 0.590, n	nean = 101	.80 md., ar	nd $SD = 10$	2.05)		
Seed no.		6259	9246			9451	1304		2895849			
Model type		Sphe	erical			Sphe	rical			Sphe	rical	
Distance (m.)	500	500	800	800	500	500	800	800	500	500	800	800
Nugget value (%)	10	30	10	30	10	30	10	30	10	30	10	30
V _{DP}	0.586	0.594	0.562	0.579	0.587	0.597	0.573	0.588	0.572	0.584	0.562	0.578
Mean	94.188	96.646	85.63	90.673	103.27	108.66	94.306	102.43	95.214	100.21	89.951	96.891
Std.dev.	98.552	102.06	90.497	96.336	101.09	106.29	94.062	101.4	96.333	100.83	91.782	97.611
Coef. of var	1.0463	1.056	1.0568	1.0625	0.9789	0.9782	0.9974	0.99	1.0118	1.0062	1.0204	1.0074
Maximum	403.24	403.24	403.24	403.24	403.24	403.24	403.24	403.24	403.24	403.24	403.24	403.24
Upper quartile	146.96	171.98	81.178	98.508	189.15	194.33	162.23	187.94	154.34	183.59	91.567	179.42
Median	41.056	41.025	40.918	40.929	48.62	51.82	42.036	44.947	42.065	43.372	41.069	42.068
Lower quartile	31.153	31.051	31.188	31.084	33.772	33.785	32.567	33.472	33.568	33.085	32.77	32.532
Minimum	18.91	18.91	18.91	18.91	18.91	18.91	18.91	18.91	18.91	18.91	18.91	18.91

Table 4.4 : SGS results of eight models by varying parameters (continued)
Model V with 49 wells (Prior to simulation, $V_{DP} = 0.551$, mean = 101.82 md., and SD = 91.17)												
Seed no.	69069			7301294			5027296					
Model type		Sphe	rical			Spherical			Spherical			
Distance (m.)	300	300	600	600	300	300	600	600	300	300	600	600
Nugget value (%)	10	30	10	30	10	30	10	30	10	30	10	30
V _{DP}	0.568	0.571	0.551	0.559	0.554	0.559	0.532	0.544	0.562	0.566	0.539	0.55
Mean	108.72	110.49	98.335	102.16	102.04	104.23	91.601	96.55	107.69	108.57	96.244	100.49
Std.dev.	98.631	100.18	89.963	93.849	92.317	94.365	83.655	88.38	96.382	97.89	86.441	91.176
Coef. of var	0.9072	0.9067	0.9149	0.9186	0.9047	0.9053	0.9133	0.9154	0.895	0.9017	0.8981	0.9073
Maximum	339.4	339.4	339.4	<u>339.4</u>	339.4	339.4	339.4	339.4	339.4	339.4	339.4	339.4
Upper quartile	194.35	194.77	183.93	190.29	189.15	192.69	143.69	181.31	194.36	194.44	181.4	187.31
Median	54.28	54.971	49.0 <mark>67</mark>	51.306	52.494	52.675	44.808	47.864	54.156	53.416	51.065	51.823
Lower quartile	36.775	36.781	34.148	34.902	36.842	36.78	36.64	36.743	37.521	36.934	37.201	36.925
Minimum	30.43	30.43	30.43	30.43	30.43	30.43	30.43	30.43	30.43	30.43	30.43	30.43
	Mode	l VI with 4	40 wells (P	rio <mark>r</mark> to sim	ulation, V _D	$_{\rm P} = 0.520, 1$	mean = 102	2.51 md., a	nd $SD = 8$	1.05)		
Seed no.		1042	2094			6160)440			8275	5380	
Model type		Sphe	rical			Sphe	rical			Sphe	rical	
Distance (m.)	600	600	900	900	600	600	900	900	600	600	900	900
Nugget value (%)	10	30	10	30	10	30	10	30	10	30	10	30
V _{DP}	0.524	0.531	0.506	0.519	0.508	0.516	0.493	0.507	0.499	0.515	0.489	0.507
Mean	98.019	102.02	91.746	97.01	102.32	104.79	97.805	101.82	99.798	107.36	97.524	105.09
Std.dev.	79.749	84.151	73.248	79.334	78.108	81.011	73.296	78.031	75.465	80.911	71.613	77.87
Coef. of var	0.8136	0.8249	0.7984	0.8178	0.7633	0.7731	0.7494	0.7663	0.7562	0.7536	0.7343	0.741
Maximum	320.2	320.2	320.2	320.2	320.2	320.2	320.2	320.2	320.2	320.2	320.2	320.2
Upper quartile	187.24	192	174.04	184.47	188.85	193.49	182.66	188.1	185.14	194.21	182.55	192.86
Median	55.776	57.159	53.195	55.401	62.738	62.853	61.677	62.364	62.335	64.739	62.737	64.774
Lower quartile	38.601	39.149	38.657	39.212	40.878	40.863	40.92	40.89	40.918	40.92	40.989	40.972
Minimum	33.5	33.5	33.5	33.5	33.5	33.5	33.5	33.5	33.5	33.5	33.5	33.5
	Mode	1 VII with	31 wells (P	rior to sim	ulation, V _I	$_{\rm DP} = 0.482,$	mean = 10	1.66 md., a	and $SD = 6$	7.12)		
Seed no.		307	057		5280856			8326199				
Model type		Sphe	erical			Sphe	rical			Sphe	rical	
Distance (m.)	300	300	600	600	300	300	600	600	300	300	600	600
Nugget value (%)	10	30	10	30	10	30	10	30	10	30	10	30
V _{DP}	0.483	0.484	0.478	0.48	0.485	0.487	0.482	0.484	0.476	0.479	0.468	0.474
Mean	101.65	101.47	99.113	99.479	113.35	114.77	114.77	114.92	101.69	102.34	102.87	102.91
Std.dev.	68.154	68.332	66.85	67.284	70.185	70.555	69.614	69.935	66.946	67.601	66.05	66.879
Coef. of var	0.6705	0.6734	0.6745	0.6764	0.6192	0.6148	0.6066	0.6085	0.6583	0.6605	0.6421	0.6499
Maximum	208.78	208.78	208.78	208.78	208.78	208.78	208.78	208.78	208.78	208.78	208.78	208.78
Upper quartile	193.26	193.62	187.8	189.97	195.94	196.19	195.53	195.9	190.76	192.27	189.66	190.38
Median	64.813	64.645	64.018	63.858	77.632	77.706	78.479	78.286	67.604	67.431	70.04	68.994
Lower quartile	41.066	41.061	41.068	41.06	46.502	46.527	50.033	48.574	41.9	41.476	45.479	43.174
Minimum	38.72	38.72	38.72	38.72	38.72	38.72	38.72	38.72	38.72	38.72	38.72	38.72

Table 4.4 : SGS results of eight models by varying parameters (continued)

As can be seen from Table 4.4, the results show that heterogeneity largely depends upon standard deviation (SD). For example, the simulated base case values give the highest V_{DP} in the range of 0.86 to 0.885 and SD in the range of 159 to 194. While the simulated model VII values show the lowest V_{DP} in the range of 0.478 to 0.487 and SD in the range of 99 to 115. As a result, V_{DP} is mostly characterized by standard deviation. In this study, we deal with a lot of uncertainties by varying random number seed, range and nugget. The comparison of these uncertainties will be explained.

In order to get multiple realizations, random number seeds are used for the study. It was found that the base case still give the highest V_{DP} and SD. On the contrary, model VII gives the lowest V_{DP} and SD. Comparing with the raw data of each model, we observed that all simulated statistical data give wide range of variation. At higher V_{DP} , statistical results give a wide range of all parameters. In other words, the higher variation it has, the more uncertainty will be identified. Furthermore, from the simulated base case data to simulated model VII data, it was found that V_{DP} values deceased gradually from 0.885 to 0.478.

Normally, the size for searching nearby data is relatively difficult to determine. If it is too small, we may not have sufficient samples within the neighborhood to estimate a representative value. If it is too large, we might select samples outside the local stationary region. To minimize the effect of outliers or extreme data, varying ranges are used. As range is decreased, heterogeneity will be increased. In addition, the continuity increases as the range increases. This is because the proximity to the estimated location and data redundancy becomes important.

The nugget effect indicates a total lack of information with respect to spatial relationship. As the nugget effect is increased, the reservoir tends to have a higher value of heterogeneity. Moreover, as the mean and CV increase, SD also increases.

CHAPTER V

RESERVOIR PERFORMANCE PREDICTION

This chapter begins with explanations for preparing data for reservoir modeling, assumptions used in the reservoir simulation and then moves on to study relationships of all results from performance predictions such as V_{DP} and recovery factor at the time of abandonment for both homogeneous and heterogeneity reservoirs.

5.1 Performance of Reservoir Having Different Levels of Heterogeneity

In order to assess reservoir performance at different degrees of heterogeneity, reservoir simulation is conducted. ECLISPE 100, a black-oil simulator, is used to evaluate the performance with the same grid dimensions and block sizes as geostatistics modeling in which grid dimensions are $136 \times 100 \times 1$ blocks and block sizes are equal to $25 \times 25 \times 7$ m. in the x, y and z directions, respectively. After 104 realizations were created using SGS, all data needed to be transferred into ECLISPE. Typically, porosity is one of the important parameters in reservoir modeling. Therefore, as original porosity data from 109 wells were obtained and shown in Table 4.1, we calculated unsampled porosity based on correlation between permeability and porosity for the given field. The correlation that we use to determine porosity value from simulated permeability value was shown in Equation 4.1.

After porosity had been calculated, reservoir models were created. Figure 5.1 shows example of reservoir model with 32 producers.

Figure 5.1 : Reservoir model with 32 producers

As sketched in Figure 5.1, the locations of the 32 producers which were the same as the number of wells and well locations of Model VII were fixed to use with all other reservoir models so that the uncertainty in reservoir performance can be easily defined. The reason to select the same number of wells and well locations as in model VII is that we cannot choose at other simulated locations where the permeability is always changed by SGS algorithm. As a result, selecting other simulated locations may cause erratic comparison in the recovery factor. Although other models have more producers than the 32 wells, we assume that all other wells are shut in so that the comparison can be easily investigated.

In this study, homogeneous permeability reservoir which has a mean of 101.74 md. is used to compare with the uncertainties of 104 realizations. Only the primary drive mechanism is studied as the stage of production in which the maximum and minimum production rates of all wells are controlled at 250 stb/day and 5 stb/day, respectively. The minimum reservoir pressure is set at 500 psia, and the pump is assumed to be used with this depletion drive. All other input data in the ECLISPE program are shown in Appendix B.

In this study, we compare the recovery factor at two conditions: (1) at the time to abandonment of homogeneous reservoir and (2) at the time to abandonment of the actual heterogeneous reservoirs.

In the first criteria, the comparison between recovery factor for different V_{DP} 's based on time to abandonment of homogeneous reservoir was performed. To do so, the homogeneous model is first simulated until all the wells are shut in so that the

time to abandonment of homogeneous reservoir can be defined. In this case, all the wells were shut in at the days of 5,160. This time will be used as the maximum producing time of all other models so that the different degrees of heterogeneity schemes can be compared. The schematic comparison of recovery efficiency for different V_{DP} 's at this period is sketched in Figure 5.2.

In the second criteria, the comparison between recovery factor for different V_{DP} 's is performed when all the wells in each of the heterogeneity reservoir had been shut in. Figure 5.3 shows the relationship between oil recovery factor and V_{DP} at abandonment. Moreover, all the results of the second condition are shown in Table B1.

Figure 5.2 : Relationship between oil recovery factor and V_{DP} at 5,160 days

Figure 5.3 : Relationship between oil recovery factor and V_{DP} at abandonment

Figure 5.4 : Relationship between time to abandonment and V_{DP}

Figure 5.5 : Relationship between oil recovery and time to abandonment

Model name	Nugget (%) and range (m.)	% recov the da 5,1	Oil ery at ays of 60	% recov abando	Oil ery at onment	Rese pres (psi) day 5,1	rvoir sure at the s of .60	Rese pres (psi abando	ervo sur i) at
		mean	SD	mean	SD	mean	SD	mean	S
Base case	0.1_300	21.48	0.24	22.03	0.10	578	18	509	
	0.3_300	21.34	0.28	21.98	0.12	588	18	509	
	0.1_{600}	21.52	0.16	22.02	0.07	573	13	509	
	0.3_600	21.37	0.21	21.97	0.10	585	15	509	
Model I	0.1_600	21.83	0.13	22.20	0.07	556	8	508	
	0.3_600	21.84	0.16	22.20	0.10	555	7	508	
	0.1_900	21.85	0.11	22.20	0.06	554	6	508	
	0.3_900	21.86	0.15	22.21	0.09	554	7	508	
Model II	0.1_600	22.47	0.14	22.62	0.09	528	7	507	
	0.3_600	22.46	0.17	22.63	0.11	530	9	507	
	0.1_900	22.44	0.12	22.60	0.08	529	6	507	
	0.3_900	22.44	0.17	22.61	0.11	531	8	507	
Model III	0.1_600	22.56	0.04	22.69	0.03	524	2	507	
	0.3_600	22.63	0.06	22.74	0.04	524	2	507	
	0.1_900	22.51	0.06	22.66	0.04	527	3	508	
	0.3_900	22.62	0.07	22.74	0.05	524	3	507	
Model IV	0.1_500	22.78	0.03	22.86	0.02	518	1	506	
	0.3_500	22.78	0.05	22.86	0.04	519	1	506	
	0.1_800	22.75	0.03	22.83	0.02	519	1	506	
	0.3_800	22.75	0.04	22.84	0.03	519	1	507	
Model V	0.1_300	22.83	0.05	22.90	0.04	517	1	507	
	0.3_300	22.82	0.04	22.89	0.03	518	1	507	
	0.1_600	22.79	0.05	22.86	0.04	517	1	507	
	0.3_600	22.78	0.05	22.86	0.04	518	1	507	
Model VI	0.1_600	22.87	0.06	22.93	0.05	516	2	506	
	0.3_600	22.87	0.06	22.93	0.04	516	3	506	
	0.1_900	22.86	0.05	22.92	0.05	516	2	506	
	0.3_900	22.86	0.05	22.92	0.04	516	3	506	
Model VII	0.1_300	22.92	0.03	22.98	0.03	515	1	506	
	0.3_300	22.91	0.03	22.97	0.03	516	1	507	
	0.1_600	22.94	0.05	22.99	0.05	515	1	507	
	0.3_600	22.91	0.05	22.97	0.04	514	3	507	

Table 5.1 : Statistical results of oil recovery and reservoir pressure of different models

In this study, we will quantify and mention only the effect of heterogeneity on the recovery at the days of 5,160 and abandonment. As seen from Figures 5.2 and 5.3, a high V_{DP} results in a slightly low recovery factor. That is to say that the reservoir which has a low continuity will obstruct the fluid flow into the well more than the one which has a high continuity. In other words, the fluid will take more time to flow into the well than the one with higher continuity. For example, as shown in Figure 5.4, at V_{DP} of 0, the time to abandonment was 5,160 days or 14.1 years comparing with V_{DP} of 0.879 spent 24,660 days or 67.6 years for the time to abandonment. As a result, the more heterogeneity the reservoir is, the more time will be spent to recover the fluid as shown in Figure 5.5. For example, at the time to abandonment of the homogeneous reservoir, $V_{DP} = 0$, of 5,160 days, oil recovery factor was 22.95% compared with the time to abandonment of the extreme large heterogeneity reservoir, $V_{DP} = 0.885$, of 24,660 days oil recovery factor was 22.02%. The difference of 0.93% could also tell that the higher heterogeneity the reservoir is, the more reduction and obstruction of flow efficiency into the wellbore will be. However, the heterogeneity has a small effect on ultimate recovery but tremendous effect on time to abandonment. Table B1 gives the comparison of oil recovery at the different degrees of heterogeneities. When the range increases, V_{DP} decreases while the recovery factor slightly increases. When the nugget increases, V_{DP} increases while the recovery factor slightly decreases.

As we varied the random number of seeds to get different maps in geostatistical modeling, statistical analysis is used to determine the variation of each model. As shown in Table 5.1, we calculated the mean and SD of realizations at the same nugget and range values so that uncertainties of each simulated model can be compared. In this case, changing nugget had slightly more effect on the recovery factor than range.

Model name	V _{DP} Prior to	V _D	_{DP} of simulated models			% Oil recovery at the days of 5,160			% Oil recovery at abandonment		
	name	simulation	mean	max	min	SD	max	min	SD	max	min
Base case	0.853	0.869	0.885	0.846	0.011	21.831	21.066	0.218	22.167	21.867	0.092
Model I	0.779	0.789	0.819	0.754	0.018	22.024	21.658	0.122	22.306	22.073	0.075
Model II	0.713	0.697	0.719	0.672	0.014	22.635	22.273	0.129	22.749	22.506	0.086
Model III	0.656	0.647	0.675	0.620	0.017	22.680	22.452	0.068	22.776	22.615	0.050
Model IV	0.590	0.580	0.597	0.562	0.011	22.818	22.706	0.038	22.888	22.802	0.030
Model V	0.551	0.555	0.571	0.532	0.012	22.884	22.740	0.047	22.945	22.830	0.039
Model VI	0.520	0.510	0.531	0.489	0.012	22.929	22.800	0.048	22.981	22.872	0.039
Model VII	0.482	0.480	0.487	0.468	0.005	22.992	22.873	0.038	23.038	22.934	0.038

Table 5.2 : Comparison of statistical results of oil recovery factor and V_{DP} of each model.

Generally, if V_{DP} is less than 0.5, it should be simulated as a homogeneous reservoir. This is because it has a small variation which does not have much effect on the recovery factor. In this study, the lowest V_{DP} value is 0.468 due to a lack of information. We can illustrate that at lower V_{DP} , there is less effect on the recovery factor. As seen in Table 5.2, at the lowest average V_{DP} of 0.480, the standard deviations of the recovery factors at 5,160 days and abandonment have the lowest value. Comparing with the highest average V_{DP} of 0.869, the standard deviations of the recovery factors at 5,160 days and abandonment have the highest value. Again, the model that has a high V_{DP} will give a slightly low recovery factor because it is more difficult for the fluid to flow into the well bore.

Figures 5.6, 5.7 and 5.8 compare the production profiles of the homogeneous model and other eight main models where each main model was the realization which has the highest V_{DP} as shown in Table B1 so that the comparison can be easily defined. For example, the base case which has the maximum V_{DP} of 0.885 is used from the realization with seed number of 5209294, nugget effect of 0.3 and range of 300 m., and all other seven models are obtained with the same method. Figure 5.6 shows that the homogeneous model will produce at a constant rate for longer than other models. It seems that the higher heterogeneity, the shorter duration of constant flow rate will be. This is because with higher heterogeneity the fluid will be more difficult to flow from the reservoir to the well bore than with the lower heterogeneity. Figure 5.7 shows the relationship between reservoir pressure and time for different models. It was found that the higher heterogeneity, the slower the pressure will drop

and the longer the production time. Moreover, as the heterogeneity increases, the reservoir pressure will drop faster because it requires more pressure loss to flow the same amount of fluid into the well. When the gas-oil ratio starts to decline, the reservoir pressure of the homogeneous model will drop faster than the reservoir pressure of the heterogeneous models because the higher heterogeneity, the longer time to produce the fluid. Thus, the reservoir still has pressure left in the system. Figure 5.8 illustrates that the lower heterogeneity, the higher the cumulative oil production will be. Although the global permeability mean of all the models is controlled as close as possible to the global permeability mean of the base case of 101.74 md., the global porosity mean of each model obtained from Equation 4.1 does not have the same value due to lognormal distribution of permeability. The higher the heterogeneity, the lower global porosity mean will be. For example, the homogenous model which has the global permeability mean of 101.74 md. has the global porosity mean of 0.2246 and the base case which has the global permeability mean of 101.74 has the global porosity mean of 0.1897. Therefore, the homogeneous model would give the maximum cumulative oil production. On the other hand, the most heterogeneous case would give the minimum cumulative oil production. As a result, the higher the heterogeneity is, the lower the cumulative oil production and the longer the time to produce fluid will be.

As stated before, the global permeability means of all the models are quite the same but all the models give the different global porosity mean due to the lognormal permeability distribution. Therefore, hydrocarbon pore volumes (HPV) for different reservoir models shown in Figure 5.9 are also slightly different as they depend upon the porosity. In this study, the higher heterogeneity is, the lower global porosity mean and the lower HPV will be.

As the number of producers is reduced from 32 wells to 15 wells which is illustrated in Figure 5.10, oil production rate shown in Figures 5.11 and 5.12 will constantly maintain longer than oil production rate with 32 producers and the effect on reservoir pressure between the homogeneous and heterogeneous reservoirs which is shown in Figure 5.13 is similar to the reservoir pressure with 32 producers as explained before in Figure 5.7 except the time will be different. That is to say that the reservoir pressure of all the models with 15 producers will spend a longer time to

reach abandonment than that with 32 producers. In other words, the higher production is, the faster reservoir pressure will be decreased as shown in Figure 5.14.

Figures 5.15, 5.16 and 5.17 illustrate the comparison of cumulative oil production and time, and oil recovery and time. It was found that reducing the producers from 32 wells to 15 wells would have a slight difference on both cumulative oil production and oil recovery. That is, using 15 producers would increase a little bit both the cumulative oil production and oil recovery. In other words, with 32 producers at below the bubble point, gas which forms in pore space helps maintain the reservoir pressure and will be produced more and faster than the case with 15 producers. As a result, there is not much free gas to support reservoir pressure. For the same reservoir properties and conditions, the higher reservoir pressure and free gas in pore space, the more oil will be produced. Once, much gas is produced to surface at some certain time just before abandonment, gas would decline suddenly. Then, wells would be shut in faster than usual. Therefore, using 32 producers will produce less oil than using 15 producers. In addition, the higher free gas in pore space at below the bubble point, the higher and longer the pressure to lift the fluid to the surface. Once free gas is produced quickly with more producers, the pressure will decrease rapidly.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 5.6 : Relationship between field oil production rate and time of 9 models with different values of V_{DP} using 32 producers

Figure 5.7 : Relationship between reservoir pressure and time of 9 models with different values of V_{DP} using 32 producers

Figure 5.8 : Relationship between cumulative oil production and time of 9 models with different values of V_{DP} using 32 producers

Figure 5.9 : Comparison of hydrocarbon pore volume and time

Figure 5.10 : Reservoir model with 15 producers

Figure 5.11 : Relationship between field oil production rate and time of 9 models with different values of V_{DP} using 15 producers

Figure 5.12 : Relationship between field oil production rate and time using 32 and 15 producers

Figure 5.13 : Relationship between reservoir pressure and time of 9 models with different values of V_{DP} using 15 producers

Figure 5.14 : Relationship between reservoir pressure and time using 32 and 15 producers

Figure 5.15 : Relationship between cumulative oil production and time of 9 models with different values of V_{DP} using 15 producers

Figure 5.16 : Relationship between cumulative oil production and time using 32 and 15 producers

Figure 5.17 : Relationship between oil recovery and time using 32 and 15 producers

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

To determine the level of heterogeneity in reservoir, we used a statistic measure, namely, Dykstra-Parsons coefficient. In reality, in reservoir evaluation we always deal with uncertainties concerned by amounts of data. The more information we have, the less uncertainty and more accuracy the reservoir prediction will be. As limited data in the petroleum industry are unavoidable due to cost of operations, Geostatistical method can be used to create realization(s) with limited data by using spatial relationships or variograms to describe how neighborhood values are related according to distance and direction. The accuracy of finding the values at unsampled locations depends on how good the variogram model is. That is, minimize the impact of outlier. In this study, spherical and Gaussian variogram models were used. In addition, varying spatial continuity parameters such as relative nugget and range was also used to assess uncertainty. Once, spatial relationship was defined, Sequential Gaussian Simulation was used to generate different maps while preserving the original statistical data. Finally, reservoir simulation was performed in order to investigate the effect of different degrees of reservoir heterogeneities in recovery factor and time to abandonment.

The conclusions of the study are summarized below:

- 1. V_{DP} mainly depends upon standard deviation (SD) of the data. That is, the higher SD, the higher V_{DP} will be obtained. In this study, the simulated maximum and minimum V_{DP} values are 0.885 and 0.480, respectively.
- 2. The maximum and minimum oil recoveries in this study are 22.95% and 21.86%. There is only a slight difference on the recovery factor as V_{DP} varies.

- 3. As the range increases the continuity increases causing the V_{DP} to decrease and the recovery to increase slightly. Conversely, as the nugget increases, the V_{DP} increases and the recovery decreases.
- 4. At a higher degree of heterogeneity, there is a wider range of variation or more uncertainty on recovery factor than the lower one.
- 5. Reducing the number of producers slightly increases RF.
- 6. Considering with the time to abandonment, a reservoir with the highest V_{DP} will take the longest time to produce oil and get the lowest RF. However, there is only a slight decrease in recovery factor.

6.2 Recommendations

Recommendations for future study are as follows:

- To obtain more accurate results, permeability and porosity need to be jointly investigated within the framework of Sequential Gaussian Cosimulation (SGCOSIM)
- 2. As some authors state that permeability can be normal distribution and V_{DP} algorithm can be used for both normal and log-normal distributions, uncertainty between these two distributions might be further studied.
- 3. As the depletion drive did not have much variation on RF, waterflooding would have more pronounced effect on variation of RF. As a result, waterflooding needs to be investigated in the future.

จุฬาลงกรณ์มหาวิทยาลัย

References

- Al-Khalifa, M.A. The Role of Conceptual Geological Models in More Accurately Estimating In Place Hydrocarbon: An Example From the Cooper Basin, South Australia, paper SPE 100956, <u>SPE Adelaide</u>, Australia, September 2006
- AI Rumhy, M.H. A Synergistic Approach to Characterization of Reservoir Permeability: A Conditional Kriging Method, paper SPE 21446, <u>SPE Middle</u> <u>East Oil Show</u>, Bahrain, November 1990.
- Baker, R.O., and Moore, R.G. Effect of Reservoir Heterogeneities on Flow Simulation Requirements, paper SPE 35413, <u>Improved Oil Recovery</u> <u>Symposium</u>, Tulsa, April, 1997
- Jakobsen, S.R. Assessing the Reletive Permeability of Heterogeneous Reservoir Rock, paper SPE 28856, <u>European Petroleum Conference</u>, London, U.K., October 1994.
- Jerry Lucia, F., and Graham E. Fogg. <u>Geologic/Stochastic Mapping of Heterogeneity</u> <u>in a Carbonate Reservoir</u>, SPE, University of Texas and California.
- Journel, A.G. Geostatistics for Reservoir Characterization, paper SPE 20750, <u>The 65th</u> <u>Annual Technical Conference and Exhibition</u>, New Orleans, LA, September 1990.
- Journel, A.G. <u>Geostatistics and Reservoir Geology</u>, AAPG Computer Applications in Geology, no. 3, pp. 19-20. Tulsa, U.S.A.,1994.
- Karn B., Jakarrin A. and Atjana L. <u>Comparison of Homogeneous and Heterogeneous</u> <u>Models</u>, Bachelor's Project, Department of Mining and Petroleum Engineering, Chulalongkorn University, 2005.

- Kirk B. Hird. <u>Conditional Simulation Method for Reservoir Description Using Spatial</u> <u>and Well-Performance Constraints</u>, SPE, Amoco Production Research.
- Larry W. Lake and Jerry L. Jensen. <u>A Review of Heterogeneity Measures Used in</u> <u>Reservoir Characterization</u>, The University of Texas at Austin and Heriott-Watt University, Texas, U.S.A.
- Paul J. Hicks. Unconditional <u>Sequential Gaussian Simulation For 3-D Flow In A</u> <u>Heterogeneous Core</u>, The Pennsylvania State University, University Park, U.S.A.
- Poquioma, P., and Mohan Kelkar. <u>Application of Geostatistics to Forecast</u> <u>Performance for Waterflooding an Oil Field</u>, S.A. and The University of Tulsa, 1994.
- Sahni, A., and Dehghani K. Benchmarking Heterogeneity of Simulation Models, paper SPE 96838. <u>SPE Annual Technical Conference</u>, Texas, U.S.A., October 2005.
- Srivastava, R.M. <u>An Overview of Stochastic Model for Reservoir Characterization</u>, AAPG Computer Applications in Geology, no. 3, pp. 3-16. Tulsa, U.S.A., 1994.

Wilhite, G. Paul. <u>Waterflooding</u>, SPE Textbook, Dallas, 1986.

APPENDICES

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX A

79

(a) Nugget = 0.1, Range = 600 m. (b) Nugget = 0.3, Range = 600 m.

Figure A2 : Omni-directional spherical variograms of the model I varied nuggets and ranges using number of lags of 35, lag distance of 70 m.

(a) Nugget = 0.1, Range = 600 m.

(b) Nugget = 0.3, Range = 600 m.

(a) Nugget = 0.1, Range = 600 m.

(b) Nugget = 0.3, Range = 600 m.

Figure A4 : Omni-directional Gaussian variograms of the model III varied nuggets and ranges using number of lags of 38, lag distance of 48 m.

ogi γ 8000. 4000. Distance Distance (c) Nugget = 0.1, Range = 800 m. (d) Nugget = 0.3, Range = 800 m.

Figure A6 : Omni-directional spherical variograms of the model V varied nuggets and ranges using number of lags of 34, lag distance of 58 m.

Figure A7 : Omni-directional spherical variograms of the model VI varied nuggets and ranges using number of lags of 40, lag distance of 50 m.

Figure A8 : Omni-directional spherical variograms of the model VII varied nuggets and ranges using number of lags of 30, lag distance of 58 m.

APPENDIX B

B1) Input parameters used in the ECLIPSE program

B1.1) Case Definition

General

-	simula	tor Black Oil	
-	Simul	ation Start Date	1 Jan 2009
-	Select	Model Dimensions	
	0	No. of cells in X direction	136
	0	No. of cells in Y direction	100
	0	No. of cells in Z direction	1

<u>Reservoir</u>

-	Grid option	
	o Grid type	Cartesian
-	Geometry option	
	o Geometry type	Block Centered

<u>PVT</u>

- Oil-Gas-Water properties Water, Oil and Dissolved Gas

B1.2) Grid

หาลงกรณมหาวทยาลย

Grid Keyword Section

- Geometry

0	Grid Data Units	Feet
0	X Grid Block Sizes	82
0	Y Grid Block Sizes	82
0	Z Grid Block Sizes	23
0	Depth of Top Faces	5300

B1.3) PVT

PVT Keyword Section

- Water PVT Properties

0	Reference Pressure (Pref)	3,200	psia
0	Water FVF at Pref	1.0223	rb/stb
0	Water Compressibility	3.5E ⁻⁶	/psi
0	Water Viscosity at Pref	0.3	ср

- Live Oil PVT Properties (Dissolved Gas)

R _s (Mscf/stb)	P _{bub} (psia)	FVF (rb/stb)	Viscosity (cp)
0.03	192	1.1363	1.7259
	445.05	1.1336	1.7666
	698.11	1.1309	1.8074
	951.16	1.1282	1.8481
	1204.2	1.1255	1.8889
	1457.3	1.1228	1.9296
	1710.3	1.1201	1.9704
	1963.4	1.1174	2.0111
	2216.4	1.1147	2.0518
	2469.5	1.112	2.0926
	2722.5	1.1093	2.1333
	2975.6	1.1066	2.1741
	3228.6	1.1039	2.2148
	3481.7	1.1012	2.2555
0	3734.7	1.0985	2.2963
	3987.8	1.0958	2.337
	4240.8	1.0931	2.3778
	4493.9	1.0904	2.4185
	4746.9	1.0877	2.4593
200	5000	1.085	2.5
0.15	575	1.1675	1.4
	807.89	1.165	1.4368
9 9 9 9	1040.8	1.1625	1.4737
LACE d	1273.7	1.16	1.5105
	1506.6	1.1575	1.5474
	1739.5	1.155	1.5842
0.000	1972.4	1.1525	1.6211
	2205.3	1.15	1.6579
01 11 1 1	2438.2	1.1475	1.6947
	2671.1	1.145	1.7316
	2903.9	1.1425	1.7684
	3136.8	1.14	1.8053
	3369.7	1.1375	1.8421
	3602.6	1.135	1.8789
	3835.5	1.1325	1.9158
	4068.4	1.13	1.9526
	4301.3	1.1275	1.9895
	4534.2	1.125	2.0263
	4767.1	1.1225	2.0632
	5000	1.12	2.1

R _s (Mscf/stb)	P _{bub} (psia)	FVF (rb/stb)	Viscosity (cp)
0.215	928	1.195	1.23
	1142.3	1.1924	1.2679
	1356.6	1.1897	1.3058
	1570.9	1.1871	1.3437
	1785.3	1.1845	1.3816
	1999.6	1.1818	1.4195
	2213.9	1.1792	1.4574
	2428.2	1.1766	1.4953
	2642.5	1.1739	1.5332
	2856.8	1.1713	1.5711
	3071.2	1.1687	1.6089
	3285.5	1.1661	1.6468
	3499.8	1.1634	1.6847
	3714.1	1.1608	1.7226
	3928.4	1.1582	1.7605
	4142.7	1.1555	1.7984
	4357.1	1.1529	1.8363
	4571.4	1.1503	1.8742
	4785.7	1.1476	1.9121
	5000	1.145	1.95
0.28	1281	1.225	1.125
	1476.7	1.2229	1.1579
	16/2.5	1.2208	1.1908
	1868.2	1.2187	1.2237
	2063.9	1.2166	1.2566
	2259.7	1.2145	1.2895
	2455.4	1.2124	1.3224
	2651.2	1.2103	1.3553
	2840.9	1.2082	1.3882
	3042.0	1.2001	1.4211
	3238.4	1.2039	1.4539
	2620.8	1.2018	1.4000
	2825.6	1.1997	1.5197
	4021.2	1.1970	1.5320
	4021.3	1.1933	1.3633
	4217.1	1.1934	1.0184
	4608 5	1.1913	1.6842
	4804.3	1.1072	1.0042
100	5000	1 185	1.75
0.296	1341	1.23	1 1094
0.270	1533.6	1.2279	1,1392
~ <u> </u>	1726.2	1.2258	1.1689
	1918.7	1.2237	1.1987
	2111.3	1.2216	1.2285
1.9219	2303.9	1.2195	1.2582
	2496.5	1.2174	1.288
	2689.1	1.2153	1.3178
	2881.6	1.2132	1.3475
	3074.2	1.2111	1.3773
	3266.8	1.2089	1.4071
	3459.4	1.2068	1.4369
	3651.9	1.2047	1.4666
	3844.5	1.2026	1.4964
	4037.1	1.2005	1.5262
	4229.7	1.1984	1.5559
	4422.3	1.1963	1.5857
	4614.8	1.1942	1.6155
	4807.4	1.1921	1.6452
	5000	1.19	1.675

- Live Oil PVT Properties (Dissolved Gas) (continued)

Pressure	FVF	Visa (ap)
(psia)	(rb/Mscf)	vise (cp)
0	173.82	0.011
90	31.126	0.01165
200	15.103	0.0124
400	7.6836	0.01315
600	5.1037	0.0136
725	4.2287	0.01365
95 <mark>0</mark>	3.1579	0.01418
1175	2.5033	0.0148
1400	2.0652	0.01549
1625	1.7542	0.01628
1850	1.5245	0.01714
2075	1.3499	0.01807
2300	1.2144	0.01906
2525	1.1073	0.0201
2750	1.0215	0.02116
2975	0.95178	0.02225
3200	0.89446	0.02334
3425	0.84676	0.02442
3650	0.8066	0.0255
3875	0.77244	0.02656
4100	0.74307	0.02761
4325	0.71758	0.02863
4550	0.69526	0.02963
4775	0.67556	0.03061
5000	0.65805	0.03157

- Dry Gas PVT Properties (No Vapourised Oil)

- Fluid Gravities at Surface Conditions

(С	Oil density	51.51	lb/ft ³
(С	Water density	62.5	lb/ft ³
(С	Gas density	0.06	lb/ft ³

- Rock Properties

0	Reference pressure	2,500	psia
---	--------------------	-------	------

o Rock compressibility 3.5E-6 /psi

B1.4) SCAL

Saturation

- Water/Oil Saturation Functions

Sw K _{rw} K _{ro} P _c (psia) 0 0 0.9 10000 0.045455 0 0.9 2557.3 0.090909 0 0.9 653.97 0.13636 0 0.9 167.24 0.18182 0 0.9 12726 0.22727 0 0.9 10.937 0.27273 0 0.9 2.7969 0.31818 0 0.9 0.34262 0.36364 5.19E-05 0.85488 0.18291 0.37333 8.89E-05 0.82279 0.15387 0.39667 0.000711 0.74722 0.083986 0.40909 0.00161 0.7079 0.046776 0.42 0.0024 0.67338 0.038421 0.44333 0.005689 0.60136 0.020549 0.45455 0.008294 0.56769 0.011962 0.46667 0.01111 0.53128 0.002391 0.53667 0.04438 0.400596 <				
0 0 0.9 10000 0.045455 0 0.9 2557.3 0.090909 0 0.9 653.97 0.13636 0 0.9 167.24 0.18182 0 0.9 42.768 0.22727 0 0.9 10.937 0.27273 0 0.9 2.7969 0.31818 0 0.9 0.71526 0.35 0 0.9 0.34262 0.36364 5.19E-05 0.85488 0.18291 0.37333 8.89E-05 0.82279 0.15387 0.39667 0.000711 0.74722 0.083986 0.40909 0.00161 0.7079 0.046776 0.42 0.0024 0.67338 0.038421 0.44333 0.005689 0.60136 0.020549 0.45455 0.008294 0.56769 0.011962 0.44667 0.011111 0.53128 0.000508 0.49 0.0192 0.46328 0.0002391	$\mathbf{S}_{\mathbf{w}}$	K _{rw}	K _{ro}	P _c (psia)
0.04545500.92557.30.09090900.9653.970.1363600.9167.240.1818200.942.7680.2272700.910.9370.2727300.92.79690.3181800.90.715260.3500.90.342620.363645.19E-050.854880.182910.373338.89E-050.822790.153870.396670.0007110.747220.0839860.409090.001610.70790.0467760.420.00240.673380.0384210.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.550910.0984420.198130.00020.536330.188890.215770.0002970.590910.0984420.198130.00020.666670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.676670.243910.0266271.74E-050.676670.243910.0266271.74E-050.676670.243910.0266271.74E-05 <td>0</td> <td>0</td> <td>0.9</td> <td>10000</td>	0	0	0.9	10000
0.09090900.9653.970.1363600.9167.240.1818200.942.7680.2727300.92.79690.3181800.90.715260.3500.90.342620.363645.19E-050.854880.182910.373338.89E-050.822790.153870.396670.0007110.747220.0839860.409090.001610.70790.0467760.420.00240.673380.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.005180.536670.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.550910.0984420.198130.0002970.590910.0984420.198130.0002970.590910.0984420.198130.0002970.536330.15360.111077.20E-050.636360.164970.0986565.12E-050.636360.164970.0986565.12E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.72730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.62861	0.045455	0	0.9	2557.3
0.1363600.9167.240.1818200.942.7680.2272700.92.79690.3181800.92.79690.3181800.90.715260.3500.90.342620.363645.19E-050.854880.182910.373338.89E-050.822790.153870.396670.0007110.747220.0839860.409090.001610.70790.0467760.420.00240.673380.0384210.443330.0056890.601360.205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.530.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.550910.0984420.198130.0002970.590910.0984420.198130.00020.606670.118310.161440.001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.72730.446051.97E-218.56E-070.818180.537331.57E-2	0.090909	0	0.9	653.97
0.1818200.942.7680.2272700.910.9370.2727300.92.79690.3181800.90.715260.3500.90.342620.363645.19E-050.854880.182910.373338.89E-050.822790.153870.396670.0007110.747220.0839860.409090.001610.70790.0467760.420.00240.673380.0384210.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.772730.446051.97E-218.56E-070.818180.537331.57E	0.13636	0	0.9	167.24
0.2272700.910.9370.2727300.92.79690.3181800.90.715260.3500.90.342620.363645.19E-050.854880.182910.373338.89E-050.822790.153870.396670.0007110.747220.0839860.409090.001610.70790.0467760.420.00240.673380.0384210.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.772730.446051.97E-218.56E-070.863640.628611.18E-215.60E-080.909090.71989<	0.18182	0	0.9	42.768
0.2727300.92.79690.3181800.90.715260.3500.90.342620.363645.19E-050.854880.182910.373338.89E-050.822790.153870.396670.0007110.747220.0839860.409090.001610.70790.0467760.420.00240.673380.0384210.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0005960.583330.088890.215770.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.772730.3446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.9	0.22727	0	0.9	10.937
0.3181800.90.715260.3500.90.342620.363645.19E-050.854880.182910.373338.89E-050.822790.153870.396670.0007110.747220.0839860.409090.001610.70790.0467760.420.00240.673380.0384210.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.550.06480.273480.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.636360.164970.0986565.12E-050.6676670.243910.0266271.74E-050.676670.243910.0266271.74E-050.676670.243910.0266271.74E-050.676670.243910.0266271.74E-050.676670.243910.0266271.74E-050.676670.243910.0266271.74E-050.6716670.243910.0266271.74E-05<	0.27273	0	0.9	2.7969
0.3500.90.342620.363645.19E-050.854880.182910.373338.89E-050.822790.153870.396670.0007110.747220.0839860.409090.001610.70790.0467760.420.00240.673380.0384210.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.583330.0888890.215770.002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.636360.164970.0986565.12E-050.676670.243910.0266271.74E-050.676670.243910.0266271.74E-050.676670.243910.0266271.74E-050.678640.256290.0207481.31E-050.772730.446051.97E-213.55E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-21	0.31818	0	0.9	0.71526
0.363645.19E-050.854880.182910.373338.89E-050.822790.153870.396670.0007110.747220.0839860.409090.001610.70790.0467760.420.00240.673380.0384210.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.550.06480.273480.0002970.590910.0984420.198130.00020.606670.118310.161440.001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0207481.31E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.772730.446051.97E-213.55E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.3	0.35	0	0.9	0.34262
0.373338.89E-050.822790.153870.396670.0007110.747220.0839860.409090.001610.70790.0467760.420.00240.673380.0384210.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.636360.164970.0986565.12E-050.676670.243910.0266271.74E-050.678330.195290.0207481.31E-050.772730.446051.97E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.36364	5.19E-05	0.85488	0.18291
0.396670.0007110.747220.0839860.409090.001610.70790.0467760.420.00240.673380.0384210.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.676670.243910.0266271.74E-050.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.37333	8.89E-05	0.82279	0.15387
0.409090.001610.70790.0467760.420.00240.673380.0384210.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.770.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.39667	0.000711	0.74722	0.083986
0.420.00240.673380.0384210.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.770.32.60E-219.19E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.40909	0.00161	0.7079	0.046776
0.443330.0056890.601360.0205490.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.636360.164970.0266271.74E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.42	0.0024	0.67338	0.038421
0.454550.0082940.567690.0119620.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0005960.583330.0888890.215770.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.44333	0.005689	0.60136	0.020549
0.466670.0111110.531280.0095880.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0005960.583330.0888890.215770.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.45455	0.008294	0.56769	0.011962
0.490.01920.463280.0050180.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0005960.583330.0888890.215770.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.46667	0.011111	0.53128	0.009588
0.50.0240380.435090.0030590.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0005960.583330.0888890.215770.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.49	0.0192	0.46328	0.005018
0.513330.0304890.39750.0023910.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0005960.583330.0888890.215770.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.5	0.024038	0.43509	0.003059
0.536670.0455110.334160.0012230.545450.0527760.31130.0007820.560.06480.273480.0005960.583330.0888890.215770.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.51333	0.030489	0.3975	0.002391
0.545450.0527760.31130.0007820.560.06480.273480.0005960.583330.0888890.215770.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.53667	0.045511	0.33416	0.001223
0.560.06480.273480.0005960.583330.0888890.215770.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.54545	0.052776	0.3113	0.000782
0.583330.0888890.215770.0002970.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.56	0.0648	0.27348	0.000596
0.590910.0984420.198130.00020.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.58333	0.088889	0.21577	0.000297
0.606670.118310.161440.0001480.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.59091	0.098442	0.19813	0.0002
0.630.15360.111077.20E-050.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.60667	0.11831	0.16144	0.000148
0.636360.164970.0986565.12E-050.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.63	0.1536	0.11107	7.20E-05
0.653330.195290.0655643.69E-050.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.63636	0.16497	0.098656	5.12E-05
0.676670.243910.0266271.74E-050.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.65333	0.19529	0.065564	3.69E-05
0.681820.256290.0207481.31E-050.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.67667	0.24391	0.026627	1.74E-05
0.70.32.60E-219.19E-060.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.68182	0.25629	0.020748	1.31E-05
0.727270.354772.36E-213.35E-060.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.7	0.3	2.60E-21	9.19E-06
0.772730.446051.97E-218.56E-070.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.72727	0.35477	2.36E-21	3.35E-06
0.818180.537331.57E-212.19E-070.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.77273	0.44605	1.97E-21	8.56E-07
0.863640.628611.18E-215.60E-080.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.81818	0.53733	1.57E-21	2.19E-07
0.909090.719897.87E-221.43E-080.954550.811173.94E-223.66E-0910.9024509.36E-10	0.86364	0.62861	1.18E-21	5.60E-08
0.954550.811173.94E-223.66E-0910.9024509.36E-10	0.90909	0.71989	7.87E-22	1.43E-08
1 0.90245 0 9.36E-10	0.95455	0.81117	3.94E-22	3.66E-09
	1	0.90245	0	9.36E-10
- Gas/Oil Saturation Functions

			Pc
$S_{ m g}$	$ m K_{rg}$	K _{ro}	(psia)
0	0	0.9	0
0.05	0	0.73657	0
0.071429	0.000182	0.66892	0
0.092857	0.001458	0.60281	0
0.11429	0.00492	0.53834	0
0.13571	0.011662	0.4756	0
0.15714	0.022777	0.41473	0
0.17857	0.039359	0.35585	0
0.2	0.0625	0.29914	0
0.22143	0.093294	0.24482	0
0.24286	0.13284	0.19316	0
0.26429	0.18222	0.14452	0
0.28571	0.24253	0.099427	0
0.30714	0.31487	0.058693	0
0.32857	0.40033	0.023837	0
0.35	0.5	0	0
0.65	1	0	0

B1.5) Initialization

Initialization Keyword Section

-Initial pressure vs depth

Depth	Pressure	
(ft)	(psia)	
5300	2252.57	
(ft) 5300	(psia) 2252.57	

0

0.37

0.5

Mscf/stb

- Initial Gas Saturation
- Initial Water Saturation
- Initial R_s

B1.6) Schedule

Events-All

- Well specification

0	Datum depth	5300	ft.
0	Preferred phase	Oil	
0	Inflow equation	STD	
0	Automatic shut-in instruction	SHUT	I

0	Crossflow	YES
0	Density Calculation	SEG

Well Connection Data _

	0	Well	(Using 32 wells)
	0	I Location	(Following Model VII locations)
	0	J Location	(Following Model VII locations)
	0	K Upper	1
	0	K Lower1	1
	0	Open/Shut Flag	Open
	0	Well Bore ID	0.583 ft
	0	Direction	Z
-	Produc	ction Well Control	
	0	Well	(Using 32 wells)
	0	Open/Shut Flag	Open
	0	Control	ORAT

- Oil Rate 250 stb/day 0 500 BHP Target psia 0
- Production Well Economic Limit _

0

0

0	Well	(Using	(Using 32 wells)						
0	Minimum Oil Rate	5	stb/day						
0	Maximum Water Cut	0.9	stb/stb						
0	Workover Procedure	None							
0	End Run	No							
0	Quantify For Economic Limit	Rate							
0	Secondary Workover Procedure	None							
- Print File Output Control									

o Restarts Every Report FIP Reports + Balance Sheet **VFP** Reports No VFP Table Output

Model name	Number of original wells	Seed no.	Variogram type	Nugget (%) and range (m.)	V _{DP}	% Oil recovery at the days of 5,160	Time to abandon- ment (day)	% Oil recovery at abandon- ment	Reservoir pressure (psi) at the days of 5,160	Reservoir pressure (psi) at abandonment
	Homog	eneous at	k = 101.74 r	nd	0	22.954	5160	22.954	510	510
	Ĭ			0.1_300	0.879	21.376	24660	22.048	588	509
		5200254		0.3_300	0.885	21.288	27210	22.019	594	511
		5209254		0.1_600	0.862	21.407	20310	22.037	585	509
				0.3_600	0.873	21.309	23340	22.016	592	510
				0.1_300	0.875	21.282	22620	21.946	592	509
		1299460		0.3_300	0.880	21.066	25320	21.867	607	509
				0.1_600	0.860	21.436	18720	21.974	578	508
Base	109		Spherical	0.3_600	0.870	21.181	22830	21.890	598	509
Case				0.1_300	0.807	21.831	11430	22.107	552	509
		4211847		0.1_600	0.846	21.729	11190	22.138	554	508
				0.3 600	0.856	21.675	11970	22.088	563	508
				0.1 300	0.876	21.424	13800	21.969	578	508
		1002207		0.3_300	0.879	21.286	14340	21.902	586	509
		1062367		0.1_600	0.855	21.475	14010	21.959	574	510
				0.3_600	0.864	21.314	15060	21.898	585	509
				0.1_600	0.773	21.948	10740	22.268	548	507
		896078		0.3_600	0.781	22.01	9540	22.303	546	508
		0,00,0		0.1_900	0.754	21.949	10500	22.259	547	507
				0.3_900	0.766	22.024	9510	22.306	545	508
		153567		0.1_600	0.798	21.919	13740	22.243	550	507
				0.3_600	0.804	21.92	12480	22.257	552	508
				0.1_900	0.783	21.927	11880	22.243	552	508
model I	95		Spherical	0.1_600	0.813	21.524	13470	22.237	562	508
				0.3 600	0.819	21.764	13260	22.179	562	508
		4773049		0.1_900	0.797	21.784	13230	22.185	560	508
				0.3_900	0.808	21.777	12750	22.179	561	509
				0.1_600	0.786	21.682	14460	22.108	562	508
		5237802		0.3_600	0.795	21.658	13590	22.073	560	508
				0.1_900	0.768	21.722	14190	22.123	559	508
				0.3_900	0.782	21.697	13050	22.093	559	508
			-	0.1_600	0.703	22.342	10770	22.543	535	507
		4574483		0.3_600	0.719	22.291	10800	22.520	536	508
				0.1_900	0.078	22.319	11490	22.324	540	508
			1	-0.1 600	0.700	22.616	7980	22.726	522	507
		2702206	a	0.3 600	0.709	22.635	8070	22.749	523	507
model II	82	3782386	Spherical	0.1_900	0.682	22.561	8160	22.681	524	507
			6 C.	0.3_900	0.696	22.603	8190	22.723	524	508
		0.1		0.1_{600}	0.691	22.45	9810	22.602	527	507
		6768113		0.3_600	0.709	22.461	9750	22.616	527	507
	0.00			0.1_900	0.672	22.426	9840	22.581	527	507
			1.4.1.7	0.3_900	0.697	22.451	9690	22.607	528	507
		1.0		0.1_600	0.650	22.582	9180	22.702	523	507
		218583		0.3_000	0.039	22.074	8070	22.112	524	507
				0.1_900	0.639	22.556	8490	22.001	522	508
			1	0.1 600	0.663	22.522	9330	22.661	526	507
model	70	7407 - 7	. ·	0.3_600	0.675	22.56	9090	22.699	526	507
III	/0	/49/6/6	Gaussian	0.1_900	0.630	22.452	9840	22.615	530	508
				0.3_900	0.656	22.539	9180	22.685	527	507
				0.1_600	0.651	22.585	8310	22.709	524	507
		2904965		0.3_600	0.654	22.647	8070	22.763	523	507
		2701705		0.1_900	0.620	22.532	8550	22.671	526	507
1	1	1	1	0.3_900	0.635	22.635	8070	22.755	524	507

Table B1 : Comparison of oil recovery and reservoir pressure at different degrees of heterogeneity

Table B1 : Comparison of oil recovery and reservoir pressure at different degrees of heterogeneity (continued)

Model name	Number of original wells	Seed no.	Variogram type	Nugget (%) and range (m.)	V _{DP}	% Oil recovery at the days of 5,160	Time to abandon- ment (day)	% Oil recovery at abandon- ment	Reservoir pressure (psi) at the day of 5,160	Reservoir pressure (psi) at abandonment
	Homo	geneous at	k = 101.74 m	d	0	22.954	5160	22.954	510	510
				0.1 500	0.586	22.754	7590	22.837	518	506
				0.3 500	0.594	22.727	7830	22.820	520	506
		6259246		0.1 800	0.562	22,721	7770	22.807	519	506
				0.3 800	0.579	22,706	7950	22.802	520	506
			1	0.1 500	0.587	22,783	8610	22.870	518	506
model				0.3 500	0.597	22,793	8640	22.878	518	506
IV	58	9451304	Spherical	0.1 800	0.573	22,733	8880	22.827	519	506
				0.3 800	0.588	22.761	8820	22.852	519	506
				0.1 500	0.572	22.818	7320	22.884	517	507
				0.3 500	0.584	22.817	7440	22.888	518	507
		2895849		0.1 800	0.562	22,783	7560	22.855	518	507
				0.3 800	0.578	22,791	7650	22.867	519	508
				0.1.300	0.554	22.823	7260	22.888	516	507
				0.3 300	0.559	22.809	7200	22.880	517	507
		7301294		0.1_600	0.532	22,773	7470	22.840	517	507
				0.3 600	0.544	22.768	7710	22.842	518	507
				0.1.300	0.568	22,794	8370	22.875	518	506
model				0.3 300	0.571	22.78	8880	22.869	519	506
V	49	69069	Spherical	0.1_600	0.551	22.10	8550	22.830	518	506
				0.3_600	0.559	22.74	9090	22.833	519	506
				0.1.300	0.562	22 884	7290	22.005	516	507
				0.3 300	0.566	22.865	7530	22.943	517	507
		5027296		0,1,600	0.539	22.848	7500	22.933	517	507
				0.3 600	0.550	22.84	7770	22.913	518	507
				0.1_600	0.524	22.806	7620	22.876	518	506
				0.3 600	0.531	22,805	7890	22.880	519	506
		1042094		0.1.900	0.506	22.803	7680	22.880	518	506
				0.3.900	0.519	22.802	7980	22.872	519	506
			1	0.1_600	0.508	22.000	7200	22.073	515	506
model				0.3_600	0.516	22.922	7530	22.961	516	507
VI	40	6160440	Spherical	0.1_000	0.010	22.902	7350	22.902	515	507
			63	0.3 900	0.507	22.900	7200	22.900	516	507
				0.1_600	0.499	22.003	6930	22.911	514	506
			200	0.3_600	0.515	22.005	6960	22.927	514	506
		8275380	111	0.1 900	0.489	22.9	6900	22.947	514	506
				0.3 900	0.507	22.005	6960	22.929	514	506
				0.1_300	0.483	22.093	7650	22.942	515	506
				0.1_300	0.484	22.898	8070	22.934	516	507
		307057		0.1_600	0.404	22.004	7740	22.945	515	506
			1014	0.1_000	0.478	22.09	8100	22.943	511	507
			171	0.1 300	0.485	22.075	6630	22.934	514	506
model			~ ~	0.1_300	0.403	22.937	6840	23.005	515	507
VII	31	5280856	Spherical	0.3_300	0.407	22.93	6870	23.000	513	507
, 11				0.1_000	0.402	22.992	6570	23.038	514	507
	0.01	100	D.06	0.1 200	0.404	22.900	7020	23.010	516	507
			1117	0.1_500	0.470	22.919	7020	22.975	516	507
		8326199	11/10	0.5_500	0.479	22.099	7020	22.939	516	507
	9			0.1_000	0.408	22.955	7020	22.303	516	507
L				0.5_000	0.474	22.903	/140	22.904	510	307

VITAE

Sarit Suwanmanee was born on July 23, 1982 in Surat-Thani, Thailand. He received his B.Eng. in Mining and Metallurgical Engineering from the Faculty of Engineering, Prince of Songkhla University in 2004. After graduating, he worked with a mining company for five months and then he resigned his work to study a Masters in Petroleum Engineering at the Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University. Currently, he has worked since he completed all his academic subjects as a field M/LWD engineer with Sperry Drilling Services Department at Halliburton Energy Services.

