The amounts of colonies per plate after six weeks of incubation at $37^{\circ} \mathrm{C}$ were shown in table 4. Range of numbers of colonies for counting were $30-300$ CFU/piate. The results shown that actual amounts of colonies forming unit (CFU) of M. tuberculosis H37Rv in liquid media which had the same turbidity as a McFarland no. 1 standard were $1.75 \times 10^{\circ} \mathrm{CFU} / \mathrm{ml}$. Thus, the figure obtained was used in the adjustment of the inoculum size of standard microorganism in all the following experiments.

Comparison of the efficient liquid medis formulas

The number of colonies of M. tuberculosis H37Rv in all types of broth were observed evary three day. The results showed that Middlebrook 7 H 9 broth was the most efficient liquid media because it could promote the growth of the smallest inoculum size ($10 \mathrm{CFU} / \mathrm{ml}$) ingthe shortart incubation time 523 days, $\mathrm{P}=0.022$) while the growth of the orgenism in the other media took longer time. For example, the growth of the organism in selective Kirchner media took 26 days with the indculum size of 10 CFU/mi. In addition, Middlebrook 7H9 broth culture contained the highest number of colonies of M. tuberculosis after 32 days of incubation. These number of colonies were significantly higher than those in other media at the same incubation period (table 5).

3.1 Development of the ADC enrichment with various concentration of albumin

The result showed that the number of colonies of M. tuberculosis H37Rv in liquid media containing 5% albumin were higher than that in liquid media containing either 2.5% or 7.5% a lbumin at every weekly interval ($2-6$ weeks) and at every inoculum size (10-10 CFU/ml, 1 ml/flask) (table 6. 1). The 5% albumin concentration should be the most appropriate concentration for the developed liquid media. Thus, the developed liquid media with 5\% albumin were used in the following experiment.

albumin source wss less efficecy then bovine albumin source but was similar to the $L-J$ medium. From the result, human albumin should not be used as the albumin source in the formula of the developedifquid media. 20 nhe the other hand, the 5% concentration of bovinelalbumin was used in the developed liquid media.

The results of this study were shown in table 6.3 and summary in table 6.4. There was a slightly difference in the growth of M. tuberculosis strain no. and no. 7 in liquid media with and without antibiotics in the first incubation period (2-4 weeks).
but in the last incubation period (5-8 weeks) there was no difference. The growth of other strains (no.2,3,4,5,6 and 9) were not different. Thus, only the liquid media with antibiotics was used in the following experiment.
4. Comparison the efficacy of developed liquid media to standard Iiquid medie.

This result showed that the efficacy in culturing the standard organism $\{M$. tuberculosis H37Rv media of developed 1 iquid media were not significantly different (P > 0.05) from the efficacy of standard liquid media at 6 weeks of incubation (table 6.5). Therefore, the developed iiquid medium and standard liquid medium were used in the experiment for isolation of M. tuberculosis from clinical specimens.

Isolation of M. tuberculosis from clinical specimens.

All of the ninty-four specimens received during the 7-month period ending January 1992 were examined. The type of specimens, the number of patients, the result of $:$
a) smear for AFB $\cap Q 9 \approx 9 N\} \cap ?$
b) Thel growth on L-J medium, standard I iquid and developed

The results showed that the most positive results were obtained when using standard liquid media while the least positive result was obtained when using $A F B$ staining. The standard liquid media were found to give twice more positive yield than $L-J$ media (8 cases $: 4$ case or 100% of $L-J$ media). A positive culture of rapid grower mycobacterium (M. fortuitum) was found from pleural effusion using both types of liquid media. The developed liquid media were
found to give a better result than $L-J$ media results (6 vs. 4, positive results). However, among the twenty-four specimem from the patients with tuberculosis, fifteen, eight and one were number of patients that had collected pleural effusion, CSF and ascites, respectively.

Distribution of patients/with suspected tuberculosis by history, symptomatology and investigated results of specimens from pleural effusion, ascites and CSF were shown in table 7.2,7.3 and 7.4, consequently.

The colonies count of M. tuberculosis from clinical specimens and time of visibleoolonies were shown in table 7.5.

Table 4 Standardization of M. tuberculosis H37Rv inoculum.

Dilution of inoculum (ml)	Amounts of colonies/plate		
	plate 1	plate 2	mean
0.3 of 10^{-1} McFarland no	>300	>300	>300
0.3 of $10^{-2} \mathrm{McFarland}$ no.l	>300	>300	>300
0.3 of 10^{-3} McFarlend no. 1	>300	>300	>300
0.3 of 10^{-4} McFarland/no.	,	>300	>300
0.3 of 10^{-5} McFarland no. 1		52	52.5
0.3 of $10^{-6} \mathrm{McFarl}$ and $\mathrm{no.l}$		9	6.5
0.3 of 10^{-7} McFarland $n 0.1$		0	0

- Amounts of colonies approximately 0.3 ml of 10^{-5} dilution of McFarland no. 1 standard should have actually colonies mean
$=52.5 \mathrm{CFU} / \mathrm{ml}$
- Thus, amounts of colonies of M. tubercufosis H37Rv india which have turbidity to a McFarland no. 1 standard have actually \prod_{Q}^{6} ? 9 ? $29 \% 9 N ? \cap ?$

Table 5 Visible colonies of M.tubercutosis H37Rv in various formulas of liquid culture medis or $17,20,23,26,29$ and 32 days.

Table 5 (Continue)

Table 6.1 Effect of various concentrations of albumin on visible grawth of H. tuberculosis $H 37 \mathrm{Rv}$ at various periods incubated in 7H9 liquid media.

Table 6.2 Efficacy of human albumin, bovine albumin in 7H9 media on growth of M. tuberculosis H37Rv, compared to L-J media at various incubation periods.

*p value at 6 weeks of incubation

Table 6.3 Colony count of inine strains of M. tuberculosis in $7 H 9$ liquid medis with and without antibiotics.

Table 6.4 Incidence of growth of nine strains of M. tuberculosis in liquid media with and without antibiotics.

Table 6.5 Efficacy of developed liquid media and standard liquidmedia in supporting the growth of M. tuberculosis H37Rv various incubation periods.

Table 7.1 The laboratosy results of isolation of M. tuberculosis from clinical specimens

Table 7.2 Distribution of patients with pleural effusion by history, symptomatology and investigated results.

Distribution	Patients with TB $\mathbf{n}=15(\%)$	$\begin{gathered} \text { Patients with non-TB } \\ n=18 \text { (\%) } \end{gathered}$	Total $n=33(\%)$
History			
Sex - male		9(50.0)	17 (51.5)
- female	(46.7)	$9(50.0)$	16.(48.5)
Contact TB	13	3 (16.7)	5 (15.2)
Ever with TB	0	(5.6)	1 (3.0)
AIDS	6.7	0 (0.0)	1 (3.0)
DM	(0.0)	1 (5.6)	1 (3.0)
Symptomatology			
Fever	13 (06.7)	9 (50.0)	22 (66.7)
Weight loss	10 (66.7)	$3 \times 16.7)$	13(39.4)
Nausea/Vomiting	$2(13.3)$	1 (5.6)	3 (9.1)
Lose sppetite	$4(26.7)$	2(11.1)	6 (28.2)
Cough	6 $12(80.0)$	6 (33.3)	18 (54.4)
Dyspnes (99)	ค 9746.7$) \sim$	ค7(38.9)	14 (42.4)
Chest pain	$10(66.7)$	$5(27.8)$	15 (45.5)
Biopsy - AFB^{+}	$6.7)$	0 (0.0)	$1(3.0)$
-granuloma	5 (33.3)	1 (5.6)	6 (18.2)
-inflamatory	3 (20.0)	4 (22.2)	7 (21.2)
-chronic	2 (13.3)	4 (22.2)	6 (18.2)
-acute	1 (6.7)	$0(0.0)$	1 (3.0)

Table 7.2 (Cont inue)

number of petients with pleural effusion culture positive
Investigated results

	TB (n)	non - TB (n)
$\mathrm{TC}\left(\mathrm{cells} / \mathrm{mm}^{3}\right)$	2,184 (8)	14,343.7 (9)
WBC (cells/mm ${ }^{3}$)	2,550.4(5)	11.562 .1 (6)
Lym. (\%)	82.6(13)	90.0 (3)
Prot. (g/dl)	7.0 (13)	4.4 (9)
Sugar (mg/dl)	111.4 (12)	47.1 (11)

Table 7.3 Distribution of patients with ascites by history, symptomatology and investigated results.

Table 7.3 (Continue)

Table 7.4 Distribution of patients with suspected tuberculous meningitis by history, symptomatology and investigated results

Distribution	Patient with tuberculosis or possible tuberculosis $\mathrm{n}=10^{\circ}$	Patient with non-tuberculosis $n=23 \quad(\%)$	Total $\mathrm{n}=33$ (\%)
History			
Sex-male	7 (77.8)	12 (52.2)	19 (82.6)
-female	3133.3	11 (47.8)	14 (42.4)
Contact, TB	(1)	$2(8.7)$	3 (9.1)
Ever with TB	11.1)	0 (0.0$)$	1 (3.0)
AIDS	2	2 (8.7)	4 (12.1)
DM	10.0	1 (4.3)	$1(3.0)$
Symptomatology			
Fever	$4(44.4)$	17 (73.9)	21 (63.6)
Weight loss	2.122	$2(8.7)$	4 (12.1)
Nausea/Vomiting	$4(44.4)$	3 8(34.8)	12 (36.4)
Lose appetite	2 (22.2)	6 (26.1)	$8(24.2)$
Headache	- 4 (44.4)	$10(43.5)$	14 (42.4)
Unconciousness ${ }^{\text {a/ }} 9$	$\cap 9 / 2(22.2) \approx 9 N$	$\cap \bigcirc ¢^{8}(34.8)$	10 (30.3)
Drowsiness ¢	$3(33.3)$	13 (56.5)	16 (48.5)
Stiffness-neck, back	$0 \sim 3(33.3)$	$\bigcirc \bigcirc \wedge^{5}(21,7)$	8 (24.2)
Volume - > 3	$\mathrm{O}_{2,2} \mathrm{E}^{*} \mathrm{~N} / \mathrm{l}$	1 (4.3)	3 (9.1)
(cc) - 1-2.9	1,0**	5 (21.7)	6 (18.2)
$-<1$	5,2**	18 (78.3)	23 (69.7)
Colour-Clear, colourless	9 (100.0)	22 (95.7)	31.(93.9)
-Serosanguineous	0 (0.0)	1. (4.3)	1 (3.0)
Recieved antibiotics	6 (66.7)	14 (60.9)	20 (60.6)
Recieved anti-TB drugs	$9(100.0)$	5 (21.7)	14(142.4)

Table 7.4 (Cont inue)

Remark

Table 7.5 The colonies count of M. tubercalosis from clinical specimens and time of visible for this organism colonies

