Chapter 2

FORMULATION OF THE TWO-NODE CATENARY ELEMENT

Basic Equations

In this study the }wo—node catenary element proposed by
Jayaraman and Knudson (13) ié enmployed. The material is assumed to be
linear elastic 'iqnd'e‘rgoing "tj;mall strain deformation through large

displacements. Flgy';ic.he elastic eable element stretched between points
4

I and J in vertical plane \?Z quder the action of uniform gravity loads
as shown in f 1gur¢ 2.1, t.he r;sultlng deformed shape is given by the

well known catenary equations /N
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where L is the actual stressed length of cable element, V and H are
the vertical and horizontal components of vector 1J, w is the weight
per unit unstretched length of the cable element and F, is the

horizontal component of the cable force

The vertical component of the cable force, Fos is related to

the external load, w, by



F. = w|-VcoshiA + L (2.3)
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The horizontal and vertical projections of the cable element
are related to the cable forces and self weight through the elastic

catenary equations, in which | elastic deformation is included (15).

Thus,
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in which L is the unstretched length of the cable element, E is the
modulus of- elasticity, A is the unstressed)cross sectional area, F o 18
the vertical component of the cable force at end J,and T, and T, are

the tensions atiorigin I and end J, respectively.

The variables F,, F,, F,, F,, T, and T, are related by simple

static equilibrium conditions as follows :
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Flexibilii.y Iteration of Elastic Catenary Element

Equations (2.1) to (2.»6;)*"' zelate the force quantities with
geometry in the equilibrium st,gt.e. Smce the relations are nonlinear,
one cannot readily 's'plve for the internal forces given a set of end
positions. Itera":ill f;rocedur‘és are inevitably required. To do this

one needs to / t,he relat:.pnshm between small changes in cable
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By virtue of eqn& 4(2 4),/.(2 5) and (2.7a) to (2.7d), Hand V

xi

can be written as functmns of = and F, only. Small changes in

-

forces and end

w.. =] =

Hand V (i.e. agl and 8V in flgure 2.2) caq “thus be written in ternms

of 8F, and &F, JSy using the chain rule of d;f} erentiation. Thus,

8H; £e i SF
- (2.8)
1 1! 1 1
5V 12 g S5F}
vhere IV = (oweF) (2.92)
1 1 :
3 = (9H/8F ) (2.9b)
i 1
- = (9V/oF ) (2.9¢)



i

(av/aF,) " (2.9d)

and i refers to the i‘" iteration

Evaluation of the relations (2.9a),(2.9b),(2.9c) and (2.9d),

in view of egns.(2.4) and (2

" leads to

(2.10a)
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If the misclosure vector J J at iteration step i (figure 2.2)
exceeds the prescribed tolerance value, the process will be repeated
with the new values of B and A for the next step i+1. The end forces

F, and F, at the step i+1 are simply
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Fi*' = F, + &F) (2.11a)
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The correcting forces SF: and SF; are easily determined by

inverting eqn.(2.8). Thus,
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in which L is replaced by L in eqn. (2.1) and keeping only the first

term of a series expansion of (sinh® ) /7(A%).

Values of F, and F, then follow from egns. (2.2) and (2.3) by

noting that the sign of F, is always oppoésite to that of H. Thus,
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F, = ~-wH - (2.14)
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Again the unstretched l*éag}h is used instead of the actual
one. In case where the unstretched length L, is shorter than the chord

length, then eqn. (2:13) cannot be solved. Then, the value of A may

) -___.é‘ e 1
be estimated to yo/z as sugéested by Peyrot and Goulois (12).
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Formulation of T?éxt{r Stlrf fnesé, Matrix and Element Nodal Forces
r " .l"J
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The local gﬁngem:‘ stlfféess matrix is obtained by combining
.l:' ‘.IJ b
the stiffness in the directlonﬁ'rpendlcular to the element. plane to

t.r sl

the inplane stiffness. Thus, f )
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This tangent stiffness matrix is then transformed to the

global coordinate system by appling the usual transformation matrix
[al,

[al o | (2.17)

where 1 and m ly, and P is the angle

between the eleme ) he global YZ plane. The tangent

: - X | (2.18)
e AT INENTNYINS
AR SNIYNNING Y-

£cl1 = - =F,1 - am —o_m (2.19)

symmetry




" 48

The element nodal forces after tfransformation can be estimated
by the standard procedure. Thus,

(2.20)
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Flow Chart for Flexibility Iterative Process

Input w,E,A,L , tolerance EPS and

global coordinate of end points

E

Calculate the intercept in the plane of the element:
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Starting values of ¥, and ¥, from eqn. (2.14) and (2.15)
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" I(!omput.é" ‘other end forces:from eqn. (2.7)
il §

| ‘and maX, VAX from eqn. (2.4) &nd (2.5)

Calculate misclosure vector

SH'=-H - HAX, ' 8V.= V = VAX

"EPS < <= EPS
w
determine the correcting : Calculate the stiffness
forces from eqn. (2.12) | matrix from egqn. (2.18)
and apply to F, and F, by and element nodal forces
using egn. (2.11) from eqn. (2.20)
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