

จุฬาลงกรณ์มหาวิทยาลัย ทุนวิจัย กองทุนรัชดาภิเษกสมโภช

รายงานวิจัย

การเผาซินเทอร์ซิลิคอนในไทรด์เซรามิกส์ในเตาอากาศ

โดย

สุพัตรา จินาวัฒน์ ปิยาภรณ์ ไชยพรรค ชิเกทากะ วาดะ

พฤศจิกายน ๒๕๔๖

จุฬาลงกรณ์มหาวิทยาลัย

ทุนวิจัย กองทุนรัชดาภิเษกสมโภช

รายงานผลการวิจัย

การเผาซินเทอร์ซิลิคอนในไทรค์เซรามิกส์ในเตาอากาศ

โดย

ปียาภรณ์ ไชยพรรค สุพัตรา จินาวัฒน์ และ ชิเกทากะ วาคะ

พฤศจิกายน 2546

	Page
Abstract (Thai)	i
Abstract (English)	ii
Acknowledgements	iii
Chapter 1: Introduction	
Background	1
Introduction	1
Hypothesis	1
Objectives	2
Chapter 2: Experiment: Materials and methods	
2.1 Materials.	3
2.1.1 Characteristics of starting materials	3
2.2 Methods	
2.2.1 Preparation of specimens	5
2.2.2 Temperature in the filler powder	8
2.2.3 Calculation of SiO _(g) partial pressure	.10
Chapter 3: Results and discussion	
3.1 Starting materials for specimens	12
3.2 Oxygen contents in the Si ₃ N ₄ powders	15
3.3 Sintered specimens	16
Agglomeration of Al ₂ O ₃ filler	17
Deterioration of Al ₂ O ₃ crucible	17
Effect of packing powder on relative density and mass change	17
Mechanical properties of Si ₃ N ₄ specimens	20
Chapter 4: Conclusion	.24
Future suggestions	24
References	25
Appendices	
Appendix 1	26
Appendix 2	30
Appendix 3	32

Table of Contents

เลขหมู่ จาง เลขหมู่ วทเา5 เลขทะเบียน 612401 วัน,เดือน,ปี 27 ม**ก 48**

List of Tables

	Page
Table 2.1 Physical and chemical properties of chemicals for test specimens	3
Table 2.2 Physical and chemical properties of Si ₃ N ₄ packing powders	4
Table 2.3 Physical and chemical properties of Al ₂ O ₃ fillers	4
Table 2.4 Sintering conditions for specimens of Si ₃ N ₄ , set A	9
Table 2.5 Sintering conditions for specimens of Si ₃ N ₄ , set B	9
Table 2.6 Calculated values of $P_{SiO(g)}$ and temperature	11
Table 3.1 Particle size analysis	12
Table 3.2 Oxygen contents in the powders	16
Table 3.3 Actual powder composition for Si ₃ N ₄ specimens, set A	16
Table 3.4 Actual powder composition for Si ₃ N ₄ specimens, set B	16
Table 3.5 Mass change of SN-F2 packing powder	19
Table 3.6 Hv and K_{1C} of specimens	20
Table A-1a Mass change, bulk and relative densities	
of specimens, Set A	26
Table A-1b Mass change, bulk and relative densities	
of specimens, Set B	27
Table A-1c Alpha content in sintered specimens, Set A	27
Table A-1d Alpha content in sintered specimens, Set B	28
Table A-2a Results of fracture toughness and Vickers hardness	
of sintered specimens at 1700°C, measured by SEM	30
Table A-2b Results of fracture toughness and Vickers hardness	
of sintered specimens at 1700°C, measured by OM	30
Table A-2c Calculated results of biaxial bending strength	31

List of Figures

Fig. 2.1 Flow chart of the experiment	6
Fig. 2.2 Arrangement of specimens under sintering	7
Fig. 2.3 Relation between the temperatures in the furnace	8
Fig. 2.4 Relation between $P_{SiO(g)}$ and temperature	10
Fig 3.1 Particle size distributions of powders, Set A	12
Fig. 3.2 Particle size distributions of powders, Set, B	13
Fig. 3.3 Cumulative wt% coarse than of SN-F2	14
Fig. 3.4 Photographs of the packing powders after sintering	
of sopecimens, Set B	15
Fig. 3.5 Bulk densities of sintered specimens, Set A	18
Fig. 3.6 Bulk densities of sintered specimens, Set B	18
Fig. 3.7 Mass change of Si ₃ N ₄ specimens, Set A	19
Fig. 3.8 Mass change of Si ₃ N ₄ specimens, Set B	19
Fig. 3.9 Indents of Si ₃ N ₄ specimens	20
Fig. 3.10 Schematic diagram of cracks	20
Fig. 3.11 Weibull plots of bending strengths at 25°C	21
Fig. 3.12 a- contents of sintered specimens, Set B	21
Fig. 3.13 SEM micrographs of a fractured specimen, Set B	22
Fig. 3.14 SEM micrographs of polished and plasma etched	
specimen, Set B	23
Fig. A-1 Example of XRD patterns of specimens and packing powders	29

.

ชื่อโครงการการเผาซินเทอร์ซิลิคอนในไทรค์เซรามิกส์ในเตาอากาศผู้วิจัยปียาภรณ์ ไชยพรรค สุพัตรา จินาวัฒน์ ชิเกทากะ วาคะเดือนและปีที่ทำวิจัยเสร็จ พฤสจิกายน 2546

บทคัดย่อ การเผาซินเทอร์ซิลิคอนไนไทรด์เซรามิกส์ในเตาอากาศ

ชิ้นตัวอย่างเซรามิกส์ที่เตรียมจากการอัคผงแอลฟ่า-ซิลิคอนไนไทรค์ผสมสารเติมแต่งอิทเทรียและอลูมินา ได้ถูกเผาซินเทอร์ ที่อุณหภูมิ 1550-1700 องศาเซลเซียสในอากาศเป็นผลสำเร็จโคยไม่มีการสูญหายของมวล มากนัก โคยใช้อลูมินาครูซิเบิลชนิคที่มีความบริสุทธิ์สูงซึ่งออกแบบมาเป็นพิเศษ ภายในบรรจุผงซิลิคอนไนไทรค์ และอลูมินา พบว่าขณะเผาเกิคการจับตัวเป็นก้อนของผงที่บรรจุทั้งสองชนิค แต่สามารถจะควบคุมได้โคยเลือกใช้ ผงที่มีขนาคใหญ่ขึ้น นอกจากนี้ครูซิเบิลถูกกัคกร่อนหลังจากใช้งานสองสามครั้ง จึงยังต้องมีการปรับปรุงในเรื่อง ของความทนทาน อย่างไรก็ตามสามารถเผาซินเทอร์ซิลิคอนไนไทรค์เซรามิกส์ให้มีความหนาแน่นสูงสุค(98%) ได้ที่อุณหภูมิ 1700 องศาเซลเซียส ในเวลา 2 ชั่วโมง โดยมีค่าความแข็งแรงคัคชนิคไบแอกเซี่ยลเฉลี่ย เท่ากับ 420 เมกะปาสคาล ค่าความแข็งวิคเกอร์เท่ากับ16 กิกกะปาสคาล และ ค่าแฟรคเจอทัฟเนส เท่ากับ 5 เมกะ ปาสคาลเมตร^{1/2}

้ คำสำคัญ: ซิลิคอนในไตรค์เซรามิกส์ การเผาซินเตอร์ในอากาศ ครูซิเบิล การเปลี่ยนแปลงมวล

Project Title: Sintering of Si₃N₄ ceramics in an air atmosphere furnace Name of the Investigators: Piyaporn Chaiyapuck, Supatra Jinawath and Shigetaka Wada

Year: October 2003

<u>Abstract</u>

Sintering of Si₃N₄ ceramics in an air atmosphere furnace

Pressed specimens of α -Si₃N₄ (SN-E10) powder with Y₂O₃ and Al₂O₃ additives were successfully sintered without a serious mass loss at a temperature range of 1550-1700°C in an air atmosphere furnace using a set of specially designed, high purity Al₂O₃ crucibles, Si₃N₄ packing powder and Al₂O₃ filler. The agglomeration on sintering of both the packing powder and Al₂O₃ filler was encountered, but it could be optimized by using coarse size materials. Additionally, the deterioration of Al₂O₃ crucibles leading to cracking after several times of usage is still to be improved. On the contrary, Si₃N₄ ceramics could be sintered to full density (98%) reproducibly at 1700°C for 2 hours with an average biaxial bending strength of 420 MPa, Vickers hardness of 16 GPa and fracture toughness, K_{1C}, of 5 MPam^{1/2}.

Keywords: Si₃N₄ ceramics, sintering in air atmosphere, crucible, mass change

Acknowledgements

The authors gratefully thank the Rachadapiseksomphot Endowment, Chulalongkorn University, for the financial support. The help in characterization of the specimens from Mr. Thanakorn Wasanapienpong and the collaborative facilities at the Department of Geology, Faculty of Science, the Scientific and Technological Research Equipment Center, Chulalongkorn University and The Siam Research and Development Co. Ltd. are sincerely acknowledged.

.

Chapter 1

Introduction

Background:

Both α -Si₃N₄ and β -Si₃N₄ have hexagonal structure but difference in the sequence of Si-N layer stacking. This results in different unit cell structures. β -Si₃N₄ is columnar grain with a half c-axis of α -Si₃N₄. α -Si₃N₄ is equiaxed grain with twice the c-axis of β -Si₃N₄. β -Si₃N₄ is a more stable form (high temperature form) and has higher theoretical density (3.19 g/cm³) than α -Si₃N₄ (3.16 g/cm³), hence it has a better mechanical strength. However, the composite of the 2 phases is quite common. Normally dense β -Si₃N₄ bodies are sintered from α -rich starting powder (containing 3-7 vol% β -Si₃N₄). Due to the high covalent nature (~75%) of the Si-N bond, Si₃N₄ is difficult to densify without the help of sinteing aids, i.e. Y₂O₃, MgO, CeO₂. They are added to react with surface SiO₂ of the Si₃N₄ powder and form a grain boundary glassy phase. These phenomena assist rearrangement of particles to achieve densification. During liquid phase sintering, $\alpha \rightarrow \beta$ -Si₃N₄ also dissolves in the glassy phase and precipitates as rod-like β -Si₃N₄, hence grain growth occurs. This is known as solution precipitation mechanism.

Introduction:

Si₃N₄ is a very important high strength, high temperature ceramic. Its utilization is extensive, e.g. as parts in diesel engines, which would be operative at temperature above the useful range for super alloys and energy transfer devices. Due to the passive oxidation of Si₃N₄ to SiO₂, commercial Si₃N₄ ceramics are sintered in pressurized N₂ atmosphere. However, nitrogen furnaces consume nitrogen gas and need much amount of water for cooling. Decreasing the production cost has been expected to increase the utilization of Si₃N₄ ceramics. For low-cost fabrication of Si₃N₄ ceramics, non-pressurized sintering in N₂ gas may be a feasible production method. Wada et al. reported, first in the world, a method to sinter Si₃N₄ ceramics in an air furnace based on the basic researches on mass loss reactions of Si_3N_4 ceramics during sintering (1-3). However, the reports only showed possibility of sintering Si₃N₄ in an air furnace. More experiments are essential to complete the findings. То establish and verify competitiveness in properties and excellence in production cost of Si₃N₄ ceramics sintered in an air furnace compared to those sintered in a N₂ furnace is very important and challenging from the stand point of practical applications of the technology in industry.

Hypothesis:

According to Wada et al., Si_3N_4 ceramics undergo a mass loss through the following reactions:

In N	I_2 atm	losp	here
------	-----------	------	------

$Si_{3}N_{4}(s) +$	3SiO ₂ (1)	=	$6SiO(g) + 2N_2(g)$	(1)
In air atmospher	e			
$Si_3N_4(s) +$	3O ₂ (g)	=	$3SiO_2(1) + 2N_2(g)$	(2), passive
oxidation,				
				$PO_2 \sim 2 \times 10^4 Pa$

$$2Si_{3}N_{4}(s) + 3O_{2}(g) = 6SiO(g) + 4N_{2}(g) \quad (3), \text{ active}$$

oxidation,
$$1650-1700^{\circ}C \qquad PO_{2} < 1 \times 10^{2} \text{ Pa}$$

Reaction (1) is responsible to the major mass loss of Si_3N_4 during sintering. When specimen is packed in Si_3N_4 powder, the $P_{SiO(g)}$ can be kept high to oppose the mass loss of specimen. This reaction also can accelerate the change of the reaction from (2) to (3). In air atmosphere, Reaction (2) takes part in the early stage of sintering and later when the pressure of O₂ drops, reaction (3) dominates. Moreover the pressure of O₂ around Si_3N_4 specimens can be kept low when using a specially designed Al_2O_3 sagger and Si_3N_4 or Si_3N_4 -SiO₂ powder beds. Hence Si_3N_4 ceramics can be sintered without serious mass loss in air atmosphere.

Objective:

The objective is to experimentally demonstrate that Si_3N_4 ceramics can be sintered in an air furnace by

- 1. Establishing the method to sinter silicon nitride (Si₃N₄) ceramics in air furnace,
- 2. Studying the properties of the obtained silicon nitride in comparison with the commercial.

Chapter 2

Experiment

Materials and methods

2.1 Materials:
Si₃N₄ powder (SN-E10, Ube Ind., Ltd., Japan)
Y₂O₃ powder (RU, Shin-Etsu Chemical Co., Ltd., Japan)
Al₂O₃ powder (AKP-30, Taimei Chemical Co., Ltd., Japan)
Al₂O₃ filler: AM-21 (Sumitomo Chemicals) and A-11 (Fuji Kasei
Co., Ltd.)
Si₃N₄ packing powders: SN-7, SN-F2 (Denki Kagaku Kogyo Co., Ltd.) and
SN-K05, SN-E10 (Ube Ind., Ltd.)
Al₂O₃ crucibles (Nikkato SSA-S, 50 and 150 cm³, O.D. 80 x I.D. 68 x 23 H and O.D.102 x I.D. 105 x 34.5 H cm³)
h-BN packing powder (Denki Kagaku Kogyo Co., Ltd.), BN = 99.9 wt%
O.D. = outer diameter, I.D. = inner diameter

2.1.1 Characteristics of starting materials

Table 2.1 Physical and chemical properties of chemicals for test specimens (from suppliers and experiment, Table 3.1)

Туре	Si ₃ N ₄	Y ₂ O ₃	Al_2O_3
	(SN-E10)		(AKP-30)
Alpha-phase, wt %	>95		
	Fe < 100 ppm	Y ₂ O ₃ 99.99	Al ₂ O ₃ 99.99
	Al trace	SiO ₂ 0.0087	
	Ca trace	Fe ₂ O ₃ 0.001	
	O < 2.0 wt%	Al ₂ O ₃ 0.001	
	Cl < 100 ppm	CaO 0.0007	
*Specific surface area (m^2/g)	9-13 (10.45)	29.9	
**Mean particle	0.83		
***Tap density, g/cm ³	0.63		

* BET method, ** sedimentation method, *** Tap-Pak volumeter method

Туре	SN-7	SN-K05	SN-F2
Alpha-phase, wt%	74.0	81.6	<1
Chemical	Si 59 wt%		Free Si <0.5 wt%
composition	N 38 wt%	N 38 wt%	-
	Fe 0.3	Fe ≤300 ppm	Fe 0.2 wt%
	Al 0.2	A1 ≤500 ppm	Al 0.1wt%
	Ca 0.2	Ca ≰00 ppm	Ca 0.1 wt5
	Mg < 0.1	Cl ≤100 ppm	Cl < 100 ppm
	O 1.6	O 0.62 wt%	O < 2.0 wt%
		(reference value)	
Specific	4 (3.79)	4-6 (5.03)	1 (0.89)
Surface area, m ² /g		10 P.	in Col
Mean particle size	3.40	1.68	2.22 (fine)
μm			21.71(coarse)
Tap density, g/cm ³	1.16	0.68	1.61(fine)
			1.39(coarse)

Table 2.2 Physical and chemical properties of S_3N_4 packing powders (from suppliers and experiment)

Table 2.3 Physical and chemical properties of Al_2O_3 fillers (from suppliers and experiment)

Qualitative data/grade			AM-21
Chemical composition LOI, wt%			0.05
	Fe ₂ O ₃	0.01	0.01
	SiO ₂	0.01	0.02
	Na ₂ O	0.30	0.26
	Al ₂ O ₃	99.7	99.7
	H ₂ O	0.06	0.10
Physical composition True specific gravity		3.93	3.95
	Apparent specific gravity Packed bulk density,g/cm ³ Loose bulk density Mean particle size, μ m Specific surface area, m ² /g Tap density, g/cm ³	- - 9.0 0.79 0.96	1.3 0.70 4.0 1.27 1.67

•

2.2 Methods:

2.2.1 Preparation of specimens:

Two sets of specimens were prepared, Set A; 92 wt% of Si₃N₄ (E10) : 3 wt% of $Al_2O_3(AKP-30)$: 5 wt% of Y_2O_3 and Set B; 90 wt% of Si_3N_4 (E10) : 5 wt% of Al₂O₃(AKP-30) : 5 wt% of Y₂O₃. About 40 g of A and B mixtures were each ground in a Si₃N₄ ball mill (500 ml), using Si₃N₄ media balls and absolute ethanol as medium for 24 and 192 h, respectively. The content was dried at 80°C, sieved through a 100 mesh screen. Then the powder was compacted into pellet of 25 mm diameter x 5 mm thickness by a hydraulic press at 20 MPa and followed by a cold isostatic press (CIP) at 200 MPa. The obtained specimens were placed in the small Al₂O₃ crucible, embedded with Si₃N₄ packing powder. Then the covered crucible was set in the bigger one and covered with Al₂O₃ filler up to the top, and sintered in air at temperatures of 1550-1700°C. After sintering, the specimens were characterized for bulk density by Archimedes' method, phase analysis by XRD (D8-Advance, Bruker, Ltd.), cross section morphology by SEM (JSM-5410 LV, JEOL Co., Ltd.), hardness by Vickers indentation (Zwick 3212, Rank Taylor Hobson, Ltd.) and biaxial bending strength in conformity to ASTM F-394 (LLOYD 500), respectively. The flow chart of experiment is presented in Fig. 2.1 and the experimental conditions are tabulated in Table 2.1-2.3. The arrangement of the specimens under sintering in the high purity and specially designed crucibles with packing powder and filler to hinder the oxidation of the specimens from the atmospheric oxygen is in Fig. 2.2. The relation between the temperatures in the furnace, outside the crucible and inside the filler, is shown in Fig 2.3.

Fig. 2.2 Arrangement of specimens under sintering

.

Fig. 2.3 Relation between the temperatures in the furnace, inside the furnace and inside the crucible (filler)

2.2.2 Temperature in the filler powder:

It was presumed that the temperature of the specimen was the same as that of the filler and should be less than that of the furnace therefore a blank run with an R-type thermocouple setting in the center of the large crucible filled with Al_2O_3 filler was performed at a constant heating rate of 10°C/min. The results plotted in Fig.2.3 show that the temperature of the filler always lags about 200°C behind and reaches the soaking temperature after 30 min of the onset. However, the delay may not be so serious when we consider the difference in mind.

Specimen	Temperature	Packing powders	Heating	Cooling	Soaking
A, no.	°C	- 50-62 - 62-64	rate	rate	time,h
			°C /min	°C /min	
C1	1550	SN-7,AM-21	5	5	2
C2	1550	SN-E-10,AM-21	5	5	2
C3	1550	(SN-7+BN),A11	5	5	2
C4	1550	SN-E10,A11	5	5	2
C5	1600	(SN-7+BN),A11	5	5	2
C6	1600	SN-E10,A11	5	5	2
C7	1600	(SN-7+BN),A11	5	5	2
C8	1600	SN-E10,A11	10	Natural	2
C9	1650	(SN-7+BN),A11	10	Natural	2
C10	1650	SN-E10,A11	10	Natural	2
C11	1700	(SN-7+BN),A11	10	Natural	1
C12	1700	SN-E10,A11	10	Natural	1
C13	1700	SN-E10,A11	10	Natural	2

Table 2.4 Sintering conditions for specimens of Si_3N_4 , Set A

10 wt% BN was added to hinder the agglomeration of SN-7. Natural cooling: leaving the specimens cool down to room temperature after switching off at the end of the firing program.

Furnace atmosphere: air

Table 2.5 Sintering condit	ions of specimens of Si ₃ N ₄ , Set B
----------------------------	---

Specimen	Temperature,°C	Packing	Heating	Cooling	Soaking
B, no.		powders	Rate,°C/min	Rate,	Time,h
				°C/min	
E1	1650	Lot1	10	Natural	2
		SN-K05,A11			
E2	1650	Lot1	10	Natural	2
		SN-F2,A11			
E3	1700	Lot1	10	Natural	1
		SN-K05,A11			
E4	1700	Lot2	10	Natural	1
		SN-K05,A11			
E5	1700	Lot1	10	Natural	1
		SN-F2,A11			
E6	1700	Lot2	10	Natural	1
		SN-F2,A11			
E7	1700	Lot1	10	Natural	2
		SN-K05,A11			
E8	1700	Lot2	10	Natural	2
		SN-K05,A11			
E9	1700	Lot1	10	Natural	2
		SN-F2,A11			
E10	1700	Lot2	10	Natural	2
		SN-F2,A11			

2.2.3 Calculation of SiO $_{(g)}$ partial pressure, $P_{\text{sio}(g)}$ of the system

According to Wada, $P_{SiO(g)}$ is responsible to the loss of mass by oxidation during sintering of Si₃N₄. However, under a controlled condition, $P_{SiO(g)}$ may oppose to the diffusion of O₂ from air and if $P_{SiO(g)}$ can be kept high throughout the course of sintering, the active reaction becomes dominant and the oxidation of Si₃N₄ will be greatly hindered. Therefore, the relation between $P_{SiO(g)}$ and sintering temperature, based on the following reaction, has to be known.

$$Si3N4(s) + 3 SiO2(l) = 6 SiO(g) + 2 N2(g)$$

The equilibrium value of $P_{SiO(g)}$ at any temperature can be calculated using equation of mass action expression

Where

$$\Delta G = \Delta G^{\circ} + RT \ln K$$

K, equilibrium constant of the reaction, = $(P_{SiO(g)})^6 (P_{N2})^2$

 P_{N2} is taken as 0.8 atm (based on the volume ratio of $O_2/N_2 = 21/79$ at room temperature under 1 atm). R, gas constant, = 1.9872x 10³ Kcal.mol⁻¹.K⁻¹.

Fig. 2.4 Relationship between P_{SiO(g)} and temperature

$Si_3N_4(s) + 3SiO_2(1) = 6SiO(g) + 4N_2(g)$					P _{SiO(g)}
T/ ΔGo	Si ₃ N ₄ (s)	SiO ₂ (l)	SiO(g)	$N_2(g)$	atm
1873	-26.922	-137.571	-59.935	0	0.030
1923	-22.054	-135.262	-60.491	0	0.064
1973	-16.807	-132.961	-61.043	0	0.132
2023	-12.347	-130.666	-61.593	0	0.255
2073	-7.124	-128.376	-62.139	0	0.491

Table 2.6 Calculated values of $\,P_{SiO(g)}\,\,$ at temperatures 1873-2073 K $\,$

 Δ Go in kcal/mole

.

Chapter 3

Results and discussion

3.1 Starting materials for specimens Set A and B:

Average particle sizes of all the employed powders are presented in Table 3.1, and their particle size distributions are shown in Fig. 3.1-3.2.

powder	Average particle size
	μm
A, 24 h milling	0.69
B,192 h milling	0.61
SN-E10	0.83
SN-7	3.40
SN-K05	1.68
AM-21	2.87
A-11	9.02
Fine SN-F2	2.22
Coarse SN-F2	21.71

Table 3.1 Particle size analysis

Fig 3.1 Particle size distributions of powders, Set A, SN-E10 and SN-7

Fig. 3.2 Particle size distributions of powders, Set B, SN-K05 and SN-F2

The results of particle size analysis show that, despite the longer milling time, the average particle size of powder B is not much different from that of A. However, they are much smaller than those of the packing powders of which SN-F2 is the largest.

Being the cheapest, packing powder SN-F2 was chosen for further sintering experiment The good packing powders must be inert to chemical reaction and can ensure an adequate $P_{siO(g)}$ in the system, and must also be quite resistant to glass forming resulted from oxidation. Melting glass will lead to agglomeration on cooling, hence resulting in difficulty in taking out the imbedded specimen. In this matter, the purity and size of the packing powder are critical. Therefore, the size of SN-F2 was classified into fractions by dry sieve method as presented in Fig. 3.3, and fractions of fine size, -45 μ m, and coarse size, -300 +75 μ m (Table 3.1) were chosen for the study together with the other packing powders. After sintering, the extents of agglomeration of all the packing powders mentioned in Tables 2.2-2.4 are observed and presented in Fig. 3.4.

Fig. 3.3 Cumulative wt% coarser than of SN-F2

Fig. 3.4 Photographs of the packing powders after sintering of specimens, Set B
a) SN-7 + BN, 1550°C, 2h at a heating rate of 5°C/min
b) SN-7 + BN, 1600°C, 2h at a heating rate of 5°C/min
c) SN-7 + BN, 1600°C, 2h at a heating rate of 10°C/min
d) SN-F2, 1700°C, 1 h at a heating rate of 10°C/min
e) SN-F2, 1700°C, 2 h at a heating rate of 10°C/min

SN-7+BN packing powder showed less agglomeration than SN-7 after sintering of specimens Set A at 1550°C but at higher temperatures (1600-1700°C), extensive glass layer formed on the surface of the packing bed due to the lower melting point of B_2O_3 which came from the oxidation of BN, and A-11 showed loose agglomeration. Due to their lower cost, SN-K05, SN-F2 and A-11 were used as packing powders in the sintering of specimens set B at 1650-1700°C. They all showed the same result, i.e. cracking of the packing bed at low temperatures and formation of thin layer of glass at 1700°C but only sparing agglomeration appeared in the case of +75 μ m SN-F2. Besides the purity and size of the packing powders, the fast heating rate could also reduce the extent of oxidation.

3.2 Oxygen contents in the Si₃N₄ powders:

O content in the employed powders, both for the specimens and for packing, is very important because it is a measure of the extent of oxidation before sintering, and is directly related to the oxidation product, SiO_2 . The sources of O_2 are mostly from the decomposition of the ethanol used as milling medium and sparingly from the atmosphere.

O contents in the powders employed were determined by chemical analysis performed by the Siam Research and Development Co., Ltd. The results are presented in Table 3.2.

Powder	Oxygen, wt% O
B, 192 h milling	7.06
A, 24 h milling	4.42
SN-F2 packing	1.18
powder	

Table 3.2 Oxygen contents in the powders

Based on the assumption that, under the normal condition (room temperature and 1 atm), Si_3N_4 contains about 1 wt% of O₂ as contamination⁴, and the theoretical densities of Si_3N_4 , SiO_2 , Y_2O_3 and Al_2O_3 are 3.22, 2.2, 4.84 and 4.0 g/cm3, respectively, the O contents in each green powder before milling are calculated. Those after milling are also calculated based on the determined values taken from Table 3.2. They are shown in Table 3.3 and 3.4, respectively. It is found that the increase in O content⁵ of powder B after milling is higher than that of powder A.

Table 3.3 Actual powder composition for Si₃N₄ specimens, Set A

powder	Formulated	Before mil	ling, wt%	After milli	ng, wt%
	composition	O content Actual		O content	actual
Si ₃ N ₄	92	-	90.27	-	88.34
SiO ₂	-	0.92	1.73	1.95	3.66
Y ₂ O ₃	5	1.06	5	1.06	5
Al_2O_3	3	1.41	3	1.41	3
Total	100	3.39	100	4.42	100

Table 3.4 Actual powder composition for Si₃N₄ specimens, Set B

Powder	Formulated	Before milling, wt%		After milling, wt%	
	composition	O content Actual		O content	Actual
Si ₃ N ₄	90	-	88.31	-	83.14
SiO ₂	-	0.9	1.69	3.65	6.90
Y_2O_3	5	1.06	5	1.06	5
Al_2O_3	5	2.35	5	2.35	5
Total	100	4.31	100	7.06	100

3.3 Sintered specimens:

Agglomeration of Si_3N_4 packing powder: The phenomena relating to packing powder after sintering are agglomeration, formation of surface layer and sticking of the lid to the body of the crucible. The degree of agglomeration depended on the sintering temperature and type of packing powder, i.e. purity, packing density (expressed as tap density) and particle size. Fig.3.4 shows the results of agglomeration. Low purity and fine SN-7 packing powder (high tap density) agglomerated strongly even at 1550°C while higher purity and finer E-10 and SN K-05 did not agglomerate so much even at 1700°C. Coarse packing powder, SN-F2, strongly agglomerated at over 1650°C but the large size SN-F2, prepared by selectively sieving the aspurchased (Fig. 3.3), slightly did. The tap densities are presented in Table 2.1, 2.2 and 2.3, and their effect on the agglomeration, in Fig. 3.4.

Agglomeration of Al_2O_3 filler: Without the Al_2O_3 filler in between the two crucibles, Si_3N_4 packing powder formed a thick block-like scrap under the lid. Therefore, Al_2O_3 filler was essential in the crucible setting. The degree of agglomeration of the Al_2O_3 filler also depended on sintering temperature and type of the Al_2O_3 as follows: AM-21>AW-100>A-11. After sintering at 1700°C for 2 h, A-11 could be de-agglomerated by hand and reused for several times. The data in Table 2.3 suggested coarse particle size and low tap density be the two important factors in suppressing the agglomeration of the Al_2O_3 filler.

Deterioration of Al_2O_3 crucible: The large crucible cracked after 7-8 times of usage at 1700°C. This might come from the thermal stress induced by the high heating rate (10 °C/min) employed. After usage, the color of the inner wall of the small crucible changed from white to grey and some bubbles were generated at over 1650°C. It also cracked after 3-4 reuses but, coating with Al_2O_3 slurry, the service could be extended to >5 times. However, it was estimated to be less than 10 times at 1700°C. XRD analysis suggested the formation of silicon oxy-nitride (Si₁₂Al₁₈O₃₉N₈), by the following reactions:

$$6SiO_{2}(s) + 2Si_{3}N_{4}(s) + 9Al_{2}O_{3}(s) = Si_{12}Al_{18}O_{39}N_{8}(s)$$
(1)
$$12SiO(g) + 9Al_{2}O_{3}(s) + 4N_{2}(g) = Si_{12}Al_{18}O_{39}N_{8}(s)$$
(2)

Since all the substances in reaction (1) were solid and the Si_3N_4 powder was loosely packed in the small crucible, high activation energy was required to initiate the reaction. Then reaction (1) was difficult to occur.

Effect of packing powder on relative density and mass change: Relative densities of powder Set A (Fig.3.5) increased with temperature, but did not reach full density at 1700°C. Surprisingly, the density and mass change were also affected by the type of packing powder (Table 3.5). The mass change, expressed as %wt loss, was mostly negative (Fig. 3.5 and 3.6) when using packing powder, E-10, but was mostly positive in the case of SN-7. Totally, the mass change went from positive to negative with increasing temperature. On the contrary, relative densities of powder, Set B (Fig. 3.7), reached almost full density at 1650°C. The relative densities of specimens sintered in SN-F2 packing powder was a little higher than those in SN-K05 and their mass change also went further into the negative side. The trend of mass change with temperature (Fig. 3.8 and 3.9) can be explained as follows: The mass gain (positive) is thought to be due to the oxidation of Si₃N₄⁶ during heating up. The mass loss (negative) comes from the reaction between Si_3N_4 and SiO_2^7 , and increases with temperature because the SiO(g) partial pressure becomes high with increasing temperature⁸. The mass loss reaction is affected by the ease of the SiO(g) diffusion through the packing powder and filler. When hard surface layer was formed in the case of SN-7, the diffusion of SiO(g) might be disturbed. As a result, mass changes were slightly positive. However, the reason why the relative density was affected by the type of packing powder in this experiment, can not be clarified. The rest of the experimental data on density and mass change are tabulated in Appendix 1.

Fig.3.5 Bulk densities of sintered specimens, Set A at various temperatures

Fig. 3.6 Bulk densities of Si₃N₄ specimens sintered in various packing powders

Packing powder	Sample	Mass change, wt%		
	No.	Coarse	Fine	
SN-F2	1	-0.78	-0.96	
	2	-0.67 -0.9		

Table 3.5 Mass change of SN-F2 packing powder at 1650°C

Fig. 3.7 Mass change of Si₃N₄ specimens, Set A, sintered in various packing powders

Fig.3.8 Mass change of Si₃N₄ specimens, Set B, sintered in various packing powders

Mechanical properties of Si3N4 specimens:

Vickers hardness, fracture toughness, and biaxial bending strength of the sintered specimens at 1700°C for 2 h are presented in Table 3.6 (additional details are included in Appendix 2 and 3). Although the values of Vickers hardness and fracture toughness are compatible with the commercial product (Toshiba, Appendix 3), the value of mechanical strength is not high enough. The rather low biaxial bending strength value comes from the residual α -Si₃N₄ (Fig. 3.12). The grain sizes of α -Si₃N₄ and β -Si₃N₄ shown in the SEM microstructure, Fig. 3.13 and 3.14, are smaller than 1 μ m while that of Si₂N₂O is about 5 μ m. However, better details of the grains are shown in Fig. 3.15 and 3.16.

Fig. 3.9 Indents of Si_3N_4 specimens sintered at 1700°C (a) 1 h soaking, (b) 2 h soaking

Table 3.6 Hv	$'$ and K_{1C} of	specimens	sintered a	at 1700	°C for	1 and 2 h
--------------	---------------------	-----------	------------	---------	--------	-----------

Soaking	K _{1C}	$(MPa.m^{1/2})$	I	Iv(GPa)	α -content	Bulk
Time, h	SEM	Microscope	SEM	Microscope	wt%	Density,
						g/cm ³
1	4.7	5.2	17.4	16.6	39	3.16
2	5.0	5.1	15.9	15.7	18	3.18

Fig. 3.10 Schematic diagram of cracks

Fig. 3.11 Weibull plots of bending strengths at 25°C

Fig. 3.19 and 3.10 are the examples of SEM micrographs of the indents and their schematic diagram used in the calculation of K_{1C} , respectively. Fig 3.11 is the curve of Weibull plot⁹ of bending strengths of sintered specimens according to the experimental data and equations given in Appendix 2.

Temperature (^OC)

Fig. 3.12 α -Si₃N₄ contents of sintered specimens, Set B

The α -Si₃N₄ contents of sintered specimens were calculated from the relative intensity between the α -Si₃N₄ and β -Si₃N₄ peaks in the XRD patterns (Appendix 1,Table A-1c and A-1d) as suggested by Gazzara and Messier¹⁰.

(a)

(b) Fig. 3.13 SEM micrographs of a fractured specimen, Set B (Lot 2), sintered at 1700°C with SN-F2 packing powder. (a) 1 h soaking, (b) 2 h soaking.

Fig. 3.14 SEM micrographs of polished and plasma etched specimen, Set B, sintered at 1700° with SN-F2 packing powder (1h soaking).

Analysing by XRD, the sintered specimens are composed of α -Si₃N₄, β -Si₃N₄ S₂N₂O and small amout of unknown phase. Revealing by SEM (Fig. 3.14), both α -Si₃N₄ (equiaxial grain) and β -Si₃N₄ (elongated or needle-like grain) grains are very small, < 0.5 μ m and the length of β -Si₃N₄ is ~1 μ m. Grains showing abnormal growth are thought to be S₂N₂O, about 1-2 μ m in diameter and 10 μ m in length.

Chapter 4

Conclusion

Si₃N₄ ceramic could be sintered to almost full density without serious oxidation and mass loss in air atmosphere furnace using alumina crucible, Si₃N₄ packing powder and Al₂O₃ filler. Considering the process cost, SN-F2 was the best candidate for packing powder and Al₂O₃ powder larger than 1 μ m did not agglomerate seriously even at 1700°C. On the contrary, Al₂O₃ crucible filled with Si₃N₄ packing powder deteriorated and cracked after only several usages. The specimens sintered at 1700°C for 2 h had the values of Vickers hardness and fracture toughness of about 16 GPa and 5 MPa.m^{1/2}, respectively, which were compatible with those of commercial product but their mechanical strength (420 MPa) was rather low due to residual α -Si₃N₄ from the incomplete $\alpha \rightarrow \beta$ transformation. However, with these properties, they may be used as media balls, cutting tools and wear-resistant applications.

Future suggestions:

Some more experiments should be carried out on the followings:

- 1. Improvement of the mechanical strength: by raising sintering temperature slightly beyond 1700°C which is at present the limitation of our furnace.
- 2. Improvement of the deterioration of the Al₂O₃ crucible: by finding a better material for crucible, for example mullite crucibles.
- 3. Improvement of the grinding and mixing methods to reduce the content of glass phase (SiO₂), for example by applying vacuum to get rid of any O₂ occurring during these processes.

References

- 1. Wada, S., Hattori, T. and Yokoyama, K., J. Ceram. Soc. Japan, 109, 281-83 (2001).
- 2. Wada, S., J. Ceram. Soc. Japan, 109, 803-08 (2001).
- 3. Wada, S., Material Integration, 14 (7), 7-11 (2001) (in Japanese).
- 4. Wada, S., Kondo, Y., Sudo, E., and Maki, Y., J. Ceram. Soc. Japan, 107, 611-14 (1999).
- 5. Wada, S., J. Ceram. Soc. Japan, 104, 1085-87 (1996).
- 6. Yokoyama, K., and Wada, S., J. Ceram. Soc. Japan, 108, 627-32 (2000).
- 7. Yokoyama, K., and Wada, S., J. Ceram. Soc. Japan, 108, 357-64 (2000).
- 8. Hattori, T., and Wada, S., J. Ceram. Soc. Japan, 109, 960-62 (2001).
- 9. Basoum, M.W. <u>Fundamentals of ceramics</u>. International Editions.Singapore: McGraw-Hill Companies Inc., 1997.
- 10. Gazzara, C.P.and Messier, D.R., J. Am. Ceram. Soc., 56, 777-80 (1977).

APPENDIX 1

	Conditions						Mass	Bulk	Pelative
	т	Rate	Soaking	Packin	g	Sample	change	density	density
	ÔC	^o C/min	h	powde	powders		(%)	(%)	(%)
	Ŭ	<i>C/</i> 11111		Si ₃ N ₄	Al_2O_3		(/ •)	()	
C1	1550	5	2	SN-7	AM-	1	0.71	2.49	75.91
				BN	21	2	0.75	2.52	76.73
C2	1550	5	2	SN-	AM-	1	-0.43	2.41	73.47
				E10	21	2	0.27	2.39	72.73
C3	1550	5	2	SN-7	A-11	1	-0.46	2.60	79.28
				BN		2	0.31	2.61	79.68
C4	1550	5	2	SN-	A-11	1	0.10	2.42	73.89
				E10		2	2.40	2.47	75.19
C5	1600	5	2	SN-7	A-11	1	0.61	2.76	84.28
				BN		2	0.75	2.77	84.44
C6	1600	5	2	SN-	A-11	1	-0.99	2.81	85.56
				E10		2	-0.38	2.76	84.15
C7	1600	10	2	SN-7	A-11	1	0.20	2.71	82.62
				BN		2	1.23	2.71	82.53
C8	1600	10	2	SN-	A-11	1	-0.92	2.83	86.18
				E10		2	-0.41	2.84	86.50
C9	1650	10	2	SN-7	A-11	1	0.24	2.86	86.59
	1050			BN		2	0.48	2.74	83.54
C10	1650	10	2	SN- E10	A-11	1 2	-0.74 -1.91	2.94 2.97	89.63 90.55
C11	1700	10	1	SN-7 BN	A-11	1 2	0.31 0.53	2.84 2.84	86.59 86.59
C12	1700	10	1	SN-	A-11	1	-0.32	2.94	89.63
				EIU	1	2	-1.09	2.96	90.24
C13	1700	10	2	SN-	A-11	1	-0.12	2.96	90.24
			-	E10		2	-0.68	3.02	92.07

Table A-1a Mass change, Bulk and relative densities of sintered specimens, Set A

5

	Conditi	ons		Lat	Mass	Bulk	Relative		
	Т	Rate	Soaking	Packing pov	vders	No	change	density	density
	°C	^o C/min	h	Si ₃ N ₄	Al_2O_3	INO.	(%)	(%)	(%)
E1	1650	10	2	SNKOS	A 11	1	-0.20	3.10	95.09
EI	1050	10	Z	SIN-KUJ	A-11	2	-0.72	3.08	94.48
ED	1650	10	2	SN E2		1	-1.56	3.15	96.63
EZ	1050	10	2	SN-FZ A-II	2	-1.49	3.15	96.63	
E3	1700	10	2	SN-KO5	A-11	1	-0.59	3.11	95.40
E4	1700	10	2	SN-F2	A-11	1	-0.52	3.12	95.71
E5	1700	10	2	SN-KO5	A-11	2	-0.28	3.12	95.71
E6	1700	10	2	SN-F2	A-11	2	-0.96	3.16	96.93
E7	1700	10	2	SN-KO5	A-11	1	-1.97	3.14	93.32
E8	1700	10	2	SN-F2	A-11	1	-1.44	3.16	93.93
E9	1700	10	2	SN-KO5	A-11	2	-0.95	3.15	96.93

Table A-1b Mass change, Bulk and relative densities of sintered specimens, Set B

Table A-1c Alpha content (%) in sintered specimens, Set A

Temperature	Alpha co SN-7+ 1	ontent (%) 0 wt % BN	Alpha content (%) SN-E10		
(*C)	5 °C/min	10 ^O C/min	5 ^O C/min	10 ^O C/min	
1550, 2 h	20.9	-	94.9	-	
1550, 2 h	-	92.4	-	78.3	
1600, 2 h	48.9	_	82.2	-	
1600, 2 h	-	60.6	-	71.8	
1650, 2 h	-	21.6	-	48.3	
1700, 1 h	-	30.1	_	34.9	
1700, 2 h	-	-	-	20.9	

,

Temperature	Alpha C SN	Content (%) V-KO5	Alpha Content (%) SN-F2		
(()	Lot 1	Lot 2	Lot 1	Lot 2	
1650, 2 h (10 ⁰ C/min)	48.5	-	34.3	30.5	
1700, 1 h (10 ⁰ C/min)	48.2	52.4	40.9	39.3	
1700, 2 h (10 ⁰ C/min)	25.8	25.2	14.5	18.5	

Table A-1d Alpha content (%) in sintered specimens, Set B

 α -Si₃N₄ content was calculated from the XRD pattern using the intensities of 7 peaks of α -Si₃N₄ and 4 peaks of β -Si₃N₄ as suggested by Gazzara and Messier¹⁰. Fig. A-1 is the examples of the XRD patterns of sintered Si₃N₄. Light blue = Si₂ON₂ Blue = α -Si₃N₄

Red = β -Si₃N₄

Fig. A-1 Example of XRD patterns of specimens and packing powders after sintering

30

APPENDIX 2

Conditions	Sample No.	с	A	K _{IC}	Hv
(Soaking time)	(Piece)	(µm)	(µm)	$(MPa .m^{1/2})$	(GPa)
	1	95.60	51.45	4.90	17.16
	2	88.20	52.95	5.18	16.22
1 h	3	126.50	50.00	4.33	18.18
	4	120.60	50.00	4.40	18.18
	5	123.50	51.45	4.50	17.16
Average				4.66	17.38
	1	102.90	54.40	5.05	15.35
	2	97.10	54.40	5.15	15.35
2 h	3	97.10	52.95	5.01	16.24
	4	105.90	52.95	4.87	16.24
	5	102.90	52.95	4.91	16.24
Average				5.00	15.88

Table A-2a Results of fracture toughness (K_{1C}) and Vickers hardness (Hv) of sintered specimens at 1700 ^oC. (Crack length was measured by SEM)

Table A-2b Results of fracture toughness (K_{1C}) and Vickers hardness (Hv) of sintered specimens at 1700 ^OC. (Crack length was measured by Optical microscope, OM)

Conditions	Sample No.	с	a	K _{IC}	Hv
(Soaking time)	(Piece)	(µm)	(µm)	$(MPa .m^{1/2})$	(GPa)
	1	93.20	51.40	5.29	17.21
	2	102.30	53.50	5.13	15.88
1 h	3	108.90	51.40	5.05	17.21
	4	90.40	52.30	5.40	16.62
	5	105.00	53.50	4.99	15.88
Average				5.17**	16.56*
	1	85.00	54.80	5.47	15.14
	2	93.70	54.30	4.90	15.42
2 h	3	96.40	53.60	5.07	15.82
	4	96.20	52.90	5.24	16.25
	5	97.40	53.20	5.01	16.06
Average				5.13**	15.74*

<u>Note</u>: Scale 1 mm = 20 μ m

** The average fracture toughness (K_{IC}) of both conditions is taken as ~ 5 MPa .m^{1/2} The equation of median crack is applied for the calculation of K_{IC} .

* The average Vickers hardness (Hv) of both conditions is taken as ~ 16 MPa

Lot of powder B	Sample No. (Piece)	Diameter, c (mm)	Thickness, d (mm)	P (N)	S (MPa)
	1	2.71	1.48	762.00	487.26
	2	2.71	1.48	715.80	457.72
	3	2.71	1.48	791.40	506.06
Lot 3	4	2.71	1.48	577.20	369.09
	5	2.71	1.48	542.60	346.97
	6	2.73	1.47	678.80	434.06
	7	2.71	1.46	608.10	388.85
Average					427.14*
	1	2.73	1.44	621.20	397.23
	2	2.71	1.48	740.20	473.32
	3	2.71	1.48	582.90	372.74
Lot 4	4	2.73	1.51	391.00	250.03
	5	2.71	1.49	730.50	467.12
	6	2.71	1.50	684.00	437.38
	7	2.70	1.49	530.60	339.29
Average					414.51*

Table A-2c Calculated results of biaxial bending strength, S

* The average flexural strength of 427.14 and 414.51 MPa = 420.83 MPa

S = -0.2387 P (X - Y)/d² ----(1) Where; S = maximum center tensile stress (MPa), P = total load causing fracture, (N), X = (1+v) ln (B/C)² + [(1-v)/2](B/C)², Y = (1+v)[1+ln (A/C)²] + (1-v)(A/C)² v = Poisson's ratio, 0.23, A = radius of support circle (12.5 mm), B = radius of loaded area or ram tip (2.5 mm), C = radius of specimen (13.5 mm), and

d = specimen thickness at fracture origin (1.5 mm).

 $\ln \ln 1/S = \min \sigma - \min \sigma_o - \dots - (2)$

where;

m = Weibull moldulus

 σ = Fracture strength

 σ_{o} = Normalizing parameter

S = Survival probability

APPENDIX 3

Properties of TOSHIBA's specimen (standard bar) 1.Chemical composition

	Compositio	on (mass %)	
Si ₃ N ₄	Y ₂ O ₃	Al ₂ O ₃	TiO ₂
89.5	4.5	5.0	1.0

2. Estimated real density (theoretical density):

 3.31 g/cm^3

The above value was obtained by calculation, assuming that 1 % of Si_3N_4 is oxygen. Then, the contents of Si_3N_4 and SiO_2 are 87.82 g and 1.67 g, respectively. Densities of SiO_2 , Y_2O_3 , Al_2O_3 , TiO_2 and Si_3N_4 are 2.20, 4.84, 4.00, 4.25 and 3.21 g/cm³, respectively.

- 3. Bulk density and relative density Measured bulk density was 3.19 g/cm³. Then, relative density is 96.4 %
- 4. Vickers' Hardness

16.0 GPa

From the values of P and a, the Value of Vickers hardness is calculated using equation:

Where $Hv = 1.8554 (P/(2a)^2)$ P = Load (Kg)a = diagonal distance (mm) of the indent

5. Fracture Toughness

Crack length was measured by optical microscope and K_{1C} was calculated by two equations.

Crack	K_{1C} (MPa.m ^{1/2})		
Median crack	5.0		
Palmqvist crack	5.9		

 $K_{1C} = 0.026 \{ (E^{1/2}.P^{1/2}.a.c^{-3/2}) \}$ for Median cracks $K_{1C} = 0.018 \text{ Hv}(a^{1/2})(E/\text{Hv}^{0.4}) \{ (c/a)-1 \}^{-1/2} \}$ for Palmqvist cracks

Where c = crack length (mm)E = Young's modulus, ~ 280 GPa

6. Flexural strength of the specimen, ~600-700 MPa.

รายงานการวิจัย

เรื่อง

การพัฒนาวัสดุทดแทนกระดูกสำหรับการผ่าตัดกระดูก Development of Bone-Substituted Bioimplant Materials

> ทุนอุดหนุนการวิจัยจากเงินงบประมาณแผ่นดิน ประจำปึงบประมาณ 2552 คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

> > โดย

สิทธิศักดิ์ หรรษาเวก

มีนาคม 2553