RESULTS

Physical properties of strains used

Azotobacter spp.

To ascertain the right taxonomic classification of strains used, some growth properties of bacteria were verified, especially their specific capability to μ tilize certain types of organic compounds as the sole carbon source. As summarized in Tab.le 4, they were not auxotrophs because all strains could grow well in Burk's nitrogenfree medium. Interestingly, different ionic strengths of rich media could be a certain extent devide Azotobacter into two groups. A. vinelandii KT1 and A. paspali B should be complied in the same group, since they prefered rich medium of higher ionic strength, therefore they growed better in LB than RM. Whereas the rest, should belong to the second group, perfered rich medium of lower ionic strength, therefore they myltiplied better in RM than to LBo Furthermore, all strains showed their specific natures to use mannitol, rhamnose and starch as the sole carbon sounces under chitrogen f Wing condition. As judged by an observable turbidity of a culture ; A. paspali B failed to grow at all conditions mentioned whereas A.vinelandii gave cultures of visible cloudy in media having mannitol and rhamnose as the sole carbon sources. Azotobacter spp. NP also showed a similarity to Azotobacter chroococcum KT , then it should be classified into A. chroococcum. A. vinelandii KT2 showed clearly
that it was not similar to A. vinelandii KTl because growth patterns revealed very quite different. In short, all of them seemed to be appropriate strains for our further studies

Azospirillum spp.

Veiwed from the oxygen content required for growth, Azotobacter is classified as the obligatory areobic type whereas Azospirillum is only a semiaerophile. However, veiwed from ability to multiply in an higher ionic strength medium, Azotobacter showed more sensitivity than that of Azcspirillum as seen in the Table 5. Again, all strains used were not auxotrophs, since they all multiplied in nitrogen-free medium eventhough of different fixed turbidity.

An investigation of the presence of plasmid
Three conventional methods for a determination of a presence of plasmid in bacterium had been performed.

1. Modified Eckhardt Tysate electrophoresis

The protocol of this method is considered most gentle compared to those of the others. In principle, spheroplasts are prepared and are further lysate by SDS in gel slot at a constant voltage of 15 volt, the covalently closed circular plasmids then migrate through the pore of agarose gel without facing any drastic condition. That means the observedplasmids should be the intact forms of the plasmid.

All strains of being previously classified were analysed and the results obtained were summarized in figure 4, All Azotobacter spp. showed only the upper fuzzy band, which migrated over the 23.5 kb fragment of Hind III digested λ-DNA (figure 4A). However, the

Table 4. The growth properties of Azotobacter spp.

Bacteria	agar plate ${ }^{1}$			Burk's(N-free)+carbohydrate ${ }^{2}$		
	LB	Burk's(N -free)	RM	mannitol	rhamnose	starch
A. vinelandij KT1	+++	+	++	+	+	-
A. vinelandii KT2			+++	++	++	-
A. chroococcum K T			+++	+++	-	+++
Azotobacter spp.N.			+++	++	-	+++
A. paspali B				-	-	-

1 A single colony of pacteria was streaked on agar plate medium and then incubated at $30^{\circ} \mathrm{C}$ for 3 days.

2 A single colony of bacteria was inoculated into 25 ml
Erlenmeyer flask contajning 7 ml of Burk's medium which has 1 \% of rhamnose or mannitol as a sole carbon source and bromothymol blue as a pH indicator. The culture was incubated on rotary shaker at $30^{\circ} \mathrm{C}$ for 3 days. Growth was observed from the change of color from blue to yenow the abifity to use starch as a sole carbon source was tested Dy streak bacteria on Burk's agar plate containing 1% of sodubje starch? the colony was observed gfter fincubation at $30^{\circ} \mathrm{C}$
for 3 days.

- no growth or colonies size almost invisible with naked eyes.
+ slightly grow
++ grow well
+++ grow very well

Table 5. The growth properties of Azospirillum spp.

Bacteria	LB agar plate (1)	NF semi-solid medium (2)
Azospirillum brasilense Sp7		+++
Azospirillum brasilense $A 2$	+++	
Azospirillum lipoferum SpMRAT	+++	+
Azospirillum spp. Al2	+++	+

(1) : A single colony of bacteria was streaked on agar plate and then incubated at $30^{\circ} \mathrm{C}$ for 2 days.
(2) : One mililitre of starter culture was inoculated into $3 \times 20 \mathrm{~cm}$. test tube containing 30 ml of MF semi-solid medium. The culture was incubated in $30^{\circ} \mathrm{C}$ without shaking for 3 day.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย
reference strains, Escherichia coli HB101 (pBR322) and HB101 (containing pSA30) gave also the same level of fuzzy band (lane 2,3 and 4). Therefore, they should be interpreted as sheared chromosomal DNA or sheared chromosomal DNA comigrated with large plasmid. This results were found consistent eventhough the electrophoresis had been performed in a very long period of time.

In case of Azospirillum, there were three strains that gave some extra bands in addition of those fuzzy bands, the similar bands to those of Azotobacter Spp. (Figure 4 B$)$. Therefore, these extra sharp bands should be interpreted as plasmid bands. The molecular size of the Azospirillum plasmid was estimated by comparing the mobility to the standard plasmids pBR322 (4.36 kb), pSA30 (10.9 kb) and pRD1 (86 kb). Four bands of plasmid were detected in Azospirillum spp. A12 (Figure 4B and 4C) three dominated bands which migrated near the band of $\mathrm{PRD1}$ represented the high molecular weight plasmid, approximately 70,80 and 90 kb in size, and one very weak band which migrated near the 9.7 kb fragment of $\lambda /$ HindII Iand pSA30 $\overline{\text { plasmic represented the }}$ small plasmid, approximately 11 kb in size. Two bands of plasmid were found in A. brasilense Sp7 (1ane 8 incfigure $4 B$), the molecular sizes were approximately 75 and 100 kb . Whereas A. lipoferum SpMRAI contained one smas plasmid approximately 9 kb in size. CIn A. brasilense A2, any bands of plasmid could not be found. Although period of electrophoresis were varied, no plasmid could be detected in these strains of Azospirillum spp.

Figure 4. Ethidium bromide staining patterns of plasmid profiles of five strains of Azotobacter and four strains of Azospirillum by Modified Eckhardt lysate electrophoresis.
A. The gel was 0.6% agarose and electrophoresis was performed at constant voltage of 15 volt for 2 h , then at 80 volt for 3 h .
lane $1, \lambda$-DNA digested with Hind III as a DNA marker
lane 2, E.coli HB101 (pBR322)
lane 3, E.coli HB101 (DSA3O)
lane 4, E.coli K12 JC5466 (pRD1)
lane 5, Azotobacter vinelandii KT1
lane 6, Azotobacter vinelandij KT2
lane 7, Azotobacter chroococcum KT
lane 8, Azotobacter paspali B
lane 9, Azotobacter chroococcum NP
B. The gel was 0.6% agarose and electrophoresis was performed at constant voltage of 15 volt for 2 h , then at 80 volt for $4 \frac{1}{2} \mathrm{~h}$.
lane $1, \lambda /$ Hind III as a DNA marker

lane 3, VE coli C 600

lane 5, Azospirillum lipoferum SpMRAI
lane 6, Azospirillum brasilense A2
lane 7, Azospirillum spp. A12
lane 8, Azospirillum brasilense Sp7

C. The ge1 was 0.6% agarose and electrophoresis was performed at constant voltage of 15 volt for 2 h , then at 80 volt for 4 h .
lane $1, \quad \lambda /$ Hind III
lane 2, E.coli HB101 (pBR322)
lane 3, E.coli HB101 (pSA30)
lane 4, E.coli K12 JC54.66 (pRD1)
lane 5, E.coli C 600
lane 6, Azospirillum brasilense A2
lane 7, Azospirillum lipoferum SpMRA1
lane 8, Azospirillum spp. Al2

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

2. Large plasmid isolation's method (Hensen and'Olsen, 1978)

This method requires more reagents and time when compared to that of the modified Eckhardt's method. The principle of the method is spheroplasts that are generated after lysozyme treatment will be lysed by SDS and heat treatment. The extracted plasmid analyzed are shown in figure 5, a11 Azotobacter spp (1ane6-10) showed only the upper fuzzy band, represented the sheared chromosomal DNA. The lower two molecular weight bands might be ribosomal RNA which contaminated in the preparation because they could be eliminated by digestion with RNase (data not shown). No bands of plasmid was found in five strains of Azotobacter spp.

In case of Azospirilium, the results are similar to those obtained from the first method. But in the case of Azospirillum spp. A12 and A. brasilense Sp7, the largest plasmid found from the first method could not be clearly demonstrated in this experiment. Although, the amount of plasmid DNA sample was increased three times, the high smear background was observed (data not shown).
3. Rapid alkaline extraction

The last method of plasmid detection was rapid alkaline extraction This method requires lysozyme to generate spheroplast $^{\text {th }}$ and lysis of the spheroplast by SDS in alkaline condition. The chromosomal LNA and the plasmid are denatured by alkali in this step. Upon neutralization with sodium acetate, pH 4.8 , the chromosomal DNA forms an insoluble net work while the plasmid is remained doublestranded.

The contents of plasmid of Azotobacter spp. could be confirmed by using this method. Plasmid profiles are shown in figure 6. The
results are identical to those obtained from the previous methods, no plasmid band was detected in all strains of Azotobacter spp. However, plasmid bands were observed in E. coli which harbours plasmid (lane $2-4)$. The yeild of extracted plasmid from this method was higher than the others ($60-100 \mathrm{ng} / \mathrm{ml}$ culture) and only small amount of chromosomal DNA and ribosomal RNA were present in this preparation. This method is seemed to be the suitable method for large scale preparation of plasmid.

The plasmid content of nine bacterial strains of Azotobacter spp. and Azospirillum spp. are summarized in Table 6.

Preparation of chromosomal DNA and digestion with restriction endonuclease

Chromosomal DNA weresextracted from nine strains of nitrogen fixing bacteria using modified method of Rodriquez (1983). The modification was only that the ethanol precipitation was performed in the presence of 2.5 M . ammonium. acetate instead of $0.2 \mathrm{M} . \mathrm{NaCl}$. The extracted DNA was free from protein and RNA since the ratio of $0 D_{260} / O D_{280}$ of various samples of extracted DNA was always in the range of 1.8-1.9. Furthermore, the extracted DNA was in the form of high molecular weight DNA since RNA and small fragmented DNA were not present in this preparation. Very sharp-band was obtained as analyzed by agarose gel electrophoresis (Figure 7).

From the study of restriction endonuclease digestion of Azotobacter chromosomal DNA, it was found that chromosomal DNA extracted from Azotobacter which were grown in Burk's N-free medium could not be cut by every test of restriction endonucleases. But, when Azotobacter were grown in rich medium (RM), the isolated

Figure 5. Ethidium bromide/staining patterns of plasmid profile extracted from various species and strains of Azotobacter and Azospirillum which were prepared by method of Hansen and 01sen (1978).

The extracted plasmid DNA (400 ng) were loaded on 0.7% agarose gel and electrophoresis in Tris-borate buffer, pH 8.3.

After staining with ethidium bromide, photograph was taken under UVFight. lane 1, plasmid PRD1
lane, 2, Azospirillum spp. A12
lane 3,0 azospinillum brasilense sp7
lane 4, Azospirillum lipoferum SpMRA
Tane 5 , Azospipiflum brasilense A2
lane 6, Azotobacter vinelandij KT1
lane 7, Azotobacter vinelandii KT2
lane 8, Azotobacter chroococcum KT
lane 9, Azotobacter paspali B
lane 10, Azotobacter chroococcum NP

Figure 6. Ethidium bromide staining patterns of plasmid profile extracted from various species and strains, of Azotobacter by rapid alkaline extraction procedure:

The extracted plasmid. DNA were loaded on 0.7% agarcse gel and electrophoresed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, the photograph was taken under UV light.
lane 1, λ-DNA digested with Hind III
lane 2, pBR322

laneqA, PCK3

lane 7, Azotobacter vinelandii KT2
lane 8, Azotobacter chroococcum KT
lane 9, Azotobacter paspali B
lane 10, Azotobacter chroococcum NP

Table 6. Plasmids in Azotobacter spp. and Azospirillum spp. : number and sizes

Strains

Number of plasmids

Azotobacter vinelandii KT1
Azotobacter vinelandii ${ }^{K T 2}$
Azotobacter chroococcum KT
Azotobacter chroococcum NP
Azotobacter paspali
Azospirillum brasilense Sp 7
Azospirillum lipoferum SpMRAI
Azospirillum brasilense A2
Azospirillum spp. A1/

note :-, not found any plasmid.

$$
\begin{aligned}
& \text { ศูนย์วิทยทรัพยากร } \\
& \text { จุหาลงกรณ์มหาวิทยาลัย }
\end{aligned}
$$

(approximate in kb)
chromosomal DNA could be. cut by restriction endonuclease, However, Azotobacter and Azospirillum chromosomal DNA extracted according to the method of Rodriquez (1983) can not be completly cut by restriction endonuclease. The digestion could not be improved eventhough as high as 10 units of restriction enzymes were used per 1 ug of extracted chromosomal DNA. The chromosomal DNA extracted from the same organism using modified method of Rodriquez (1983) in which ethanol precipitation was performed in the presence of 2.5 M ammonium acetate instead of 0.2 M NaCl were completely digested with restriction endonuclease. The example of the digestion was shown in figure 8. From this result clearly showed that ethano 1 precipitation of DNA in the presence of 2.5 M ammonium acetate was more effecting for eliminating the inhibitors of restriction endonuclease digestions from precipitated DNA. These inhibitors may be detergents and other undefined contaminate.

Various strains of Azotobacter and Azospirillum were digested with suitable amount of restriction endonuclease. The suitable smount of restriction enzymes are the smallest amount of enzyme that digests the chromosomal DNA into complete as analyzes by the constant reproduce restriction pattern upon the addition of the enzyme). Ethidiumbromine banding patterns of extracted chromosomal DNA from various species and strains of Azotobacter and Azospirillum after digestion with SmaI, cBglII, ECORI, PstI, BamHI, HindIII and HaellI are shown in figure 9-17. After digestion, DNA fragments with heterogeneous molecular sizes were obtained. SmaI, and EcoRI digestion of Azotobacter and Azosipirillum DNA generated wide range of fragment sizes (Figure 9 and 10). Moreover, the digestion patterns among various species and strains of Azotobacter and Azospirillum
show many differences.

Mainly large fragments were obtained by digestion of Azotobacter and Azospirillum DNA with BgIII (Figure 11). Most strains gave similar but not identical restriction patterns. Surprisingly, Azospirillum brasilense A2 DNA could not be cut by Bglil (lane 10). Digestion patterns show many difference among various species and strains of Azotabacter and Azospirillum after digestion of their chromosomal DNA with PStI (figure 12 and 13). Small fragments ($<10 \mathrm{~kb}$ in size) were obtained from Azotobacter paspali B chromosomal DNA digestion (Figure 12, 1ane 5). Ethidium bromide banding patterns of extracted chromosomal DNA from various species and strains of Azotobacter and Azospirillum after digestion with BamHI or HindIII showed many differences. Wide range of fragment sizes were obtained (figure 14, /15 and 16).

When chromosomal DNA of Azotobacter or Azospirillum DNA were digested with HaeIII, which is four-base recognition endonuclease (Figure 17). Mainty small fragments (< 1 kb) were obtained. Two strains of AzospiriMlum, SpMRA1 and A2 (1ane 9 and 10), gave the larger HaeIII ρ digested fragments than the others $\%$

As mentioned earlier, the recombinant plasmid pSA30 was constructed by insertion of nif structural genes from Klebsiella pneumoniae at EcoRI site of pACYC184 and the transformants containing pSA30 were tetracycline resistance (Cannon et al., 1979). In this study, pSA30 was used as a DNA probe in hybridization experiments. Therefore, large scale preparation of pSA30 was required. Prior to

Figure 7. Ethidium bromide staining patterns of extracted chromosomal DNA from various species and strains of Azotobacter and Azospirilum

One mierogram of extracted DNA was loaded in each well of 0.7 \% agarose gel and electrophoresed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, the photograph of the giel was taken under UVolight. \rceil / ∂
lane 1, 500 ng of λ-DNA digested with Hinld III

lane 3, Azotobacter vinelandii KT2
lane 4, Azotobacter chroococcum KT
lane 5, Azotobacter paspali B
lane 6, Azotobacter chroococcum NP
lane 7, Azospirillum brasilense Sp 7
lane 8, Azospirillum lipoferum SpMRAI
lane 9, Azospirillum brasilense A2
lane 10, Azospirillum spp. Al2

Figure 8. Ethidium bromide staining pattern of chromosomal DNA digested with restriction endonuclease on agarose gel.

Digestion of chromosomal DNA of Azotobacter vinelandii KT1 which prepared by the method of Rodriquez (1983) and the modified method as ammonium acetate precipitation were loaded on 0.7% agarose gel, then electrophoresed in Tris-borate buffer, pH 8.3. After staining with ethidiym bromide, photograph was taken under

lane 1, Bam HI digested DNA which prepared by Rodriquez's method lane 2, Bam HI digested DNA which prepared by the modified Rodroquez's mothod.
lane 3, EcoRI digested DNA which prepared by Rodriquez's method lane 4, EcoRI digested DNA which prepared by the modified Rodriquez's method.

Figure 9. Ethidium bromide istaining patterns of SmaI digested fragments of chromosomal DNA from five strains of Azotobacter and four strains of Azospiriflum.

Four microgram of chromosomal DNA were digested with 50 units of SmaI and then were loaded on 0.8% agarose gel. Electrophoresis was performed in Tris-borate buffer, PH 8.3. After staining with ethidium bromide, photograph was taken under UV light..
lane 1, $\quad \lambda$-DNA digested with Hind III, as a size marker

lane 4, Azotobacter chroococcum KT
lane 6, Azotobacter chroococcum NP
lane 7, Azospirillum brasilense Sp 7
lane 8, Azospirillum spp. Al2
lane 9, Azospirillum lipoferum SpMRA1
lane 10, Azospirillum brasilense A2

Figure 10. Ethidium bromide Staining patterns of BglII digested fragments of chromosomal DA from five strains of Azotobacter and four strains of Azospiril]um.

Four microgram of chromosomal DNA were digested with 40 units of Bgl If and then were loaded on 0.8% agarose gel. Electrophoresis was performed in Tris-borate Juffer, pH 8.3. After staining with ethidium bromide, photograph was taken under UV light.

lane 5, Azotobacter paspali B
lane 6, Azotobacter chroococcum NP
lane 7, Azospirillum brasilense Sp7
lane 8, Azospirillum spp. Al2
lane 9, Azospirillum lipoferum SpMRA1
lane 10 , Azpspirillum brasilense A2

Figure 11. Ethidium bromide staining patterns of EcoRI digested fragments of chromosomal DNA from Azotobacter Spp. and Azospirillum spp.

Six-microgram of chromosomal DNA were digested with 100 units of EcoRI and then were loaded on 0.8% agarose gel. Electrophoresis was performed in Tris-borate buffer, pH 8.3. After staining with Cothidium bromidde, phoqograph was taken under uV light.

Thane $1, \quad \lambda /$ Hind III

lane 4, Azotobacter chroococcum KT
lane 5, Azotobacter paspali B
lane 6, Azotobacter chroococcum NP
lane 7, Azospirillum brasilense Sp7
lane 8, Azospirillum spp. A. 12
Tane 9, Azospirillum lipoferum SpMRA1
lane 10, Azospirillum brasilense A2

Figure 12. Ethidium bromide staining patterns of Pst I digested fragments of chromosomal DNA from five strains of Azotobacter on agarose gel.

Four microgram of chromosomal DNA were digested with 80 units Pst I and then were loaded on 0.7% agarose ge1. Electrophoresis was performed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, photograph of the gel was taken under UV light.
lane $1, \quad \lambda /$ Hind II
lane 4, Azotobacter chroococcum KT
lane 5, Azotobacter paspali B
lane 6, Azotobacter chroococcum NP.
lane 7, \therefore /EcoRI
lane 8, $\lambda /$ Pst I

Figure 13. Ethidium bromidestã̉ning patterns of Pst I degested fragments of chromosomal DNAFCom four strains of Azospirillum on agarose gel.

Four microgram of chromosomal DNA Were digested with 80 units of Pst I/ and then were loaded on 0.8% agarose gel. Electrophoresis was performed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, photograph was taken under UV light.

qlane 2, $\lambda /$ EcoRI

lane 5, Azospirillum brasilense Sp 7
lane 6, Azospirillum brasilense A2
lane 7, Azospirillum spp. Al2

Figure 14. Ethidium bromides Staining patterns of BamHI digested fragments of chromosomal QNA from five strain of Azotobacter.

Three microgram of chromosomal DNA were digested with 24 unit of BamHI and then were loaded on 0.7% agarose ge1. Electrophoresis was performed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, photograph of the gel was taken under UV light.

Aane. 1\% Hind IHI digested fragments of a DHA
Qane 2, Azotobacter vinelandii KT1

lane 5, Azotobacter paspali B
lane 6, Azotobacter chroococcum NP

Figure 15. Ethidium bromide staining patterns of restriction endonuclease digested fragments of chromosomal DNA from four strains of Azospirillum on agarose get.

Four microgram of chromosomal DNA were digested with 80 units of Bam HI or 250 units of Hind III, and then were ioaded on 0.8% agarose ge7. Electrophoresis was performed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, photograph was taken under UV light.

Panes, 2 -DNA-digested with Hind IM as a size marker
lane 2, Azospirillum lipoferum SpMRA1/Hind III
lane 4, Azospirillum brosilense A2/Hind III
lane 5, Azospirillum spp. Al2/Hind III
lane 6, Azospirillum lipoferum SpMRAI/Bam HI
lane 7, Azospirillum brasilense Sp7/Bam HI
lane 8 , Azospirillum brasilense A2/Bam HiI
lane 9, Azospirillum spp. Al2/Bam HI

Figure 16. Ethidium bromidestaining patterns of Hind III-digested fragments of chromosomal DNA from five strains of Azotobacter in agarose gel.

Four microgram of chromosomal DNA were digested with 250 units of Hind III and then were loaded on 0.8% agarose gel. Electrophoresis was performed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, photograph was taken under UV light.

Pane 1,2 BNA diges ted with Hind III
rane 2, Azotobacter vinelandij KTI

lane 6, Azotobacter chroococcum NP

Figure 17. Ethidium bromide staining patterns of Hae III digested fragments of chromosomal DNA from Azotobacter spp. and Azospirillum spp

Four microgram of chromosomal DNA were digested with 50 units of Hae III and then were loaded on 0.8% agarose ge1. Electrophoresis was performed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, photograph was taken under UV light.
Phane 12 , Qzotobacter vinelandii kTi \hat{d}
lane 3, Azotobacter vinelandii KT2

lane 6, Azotobacter chroococcum NP
lane 7, Azospirillum brasilense Sp7
lane 8, Azospirillum spp. Al2
lane 9, Azospirillum lipoferum SpMRAI
lane 10, Azospirillum brasilense A2
plasmid purification, it was essential to characterize its restriction map that would be used as the marker of the preparation.

Large scale preparation of pSA30 was performed by rapid al kaline extraction from tetracycline resistant culture of E.coli HB101 (pSA30). The extracted plasmid was analyzed by agarose gel electrophoresis, Figure 18 clearly show that/ size of the extracted plasmid is larger than pBR322 $(4.36 \mathrm{~kb})$

The restriction map of the suspected PSA 30 was determined by digestion with BamHI, HindIII, ECORI and SalI. The restriction fragments were resolved on 0.7% agarose gel electrophoresis. According to the pSA30 restriction map reported by Cannon (1979) and Krol (1982) as shown in figure 2, 3.7 nand 7.2 kb fragments would be obtained by BamHI digestion, 5.0 and 5.9 kb fragments must be obtained by HindIII digestion, 4.0 and 6.9 kb fragments would be obtained by EcoRI digestion whereas SalI digestion generates three linear DNA fragments of $1.6,3.6$ and 5.7 kb .

The result of digestion of the suspected pSA30 with BamHI, HindIII, EcoRI and Sall are shown in figure 19. The fragment sizes were calibrated using λ Hind Il I fragments as a standard molecular size. The calibration curve is shown in Appendix 1. DNA fragments obtained from BamHI, Hindigis ecori or Sald of DSA30 Corresponded to the expected fragments size calculated from the restriction map of pSA30. The results from this experiment clearly show that the extracted plasmid is pSA30.

Purification of pSA30 plasmid

Plasmid obtained from rapid alkaline extraction is always contaminated with residual small molecular weight RNAs sometimes with

Figure 18. Ethidium bromide staining pattern of pSA30 plasmid extracted by rapid alkafine extraction-procedure.

The extracted pSA30 plasmid was loaded on 0.7% agarose gel and electrophoresed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, the photograph was taken under UV Gight.

Tane 2, PBR322

$S=$ supercoil form
$R=$ relaxed form

Figure 19. Ethidium bromide staining patterns of the plasmid and the restriction fragments on agarose gel.

Plasmid DNA and dioested plasmid DNA were loaded on 0.7% agarose gel and electrophoresed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, photograph was taken under uy 1 fight
lane 1, λ DNA digested with Hind III as molecular weight

lane 4, Hind III digested PSA30
lane 5, EcoRI digested pSA30
lane 6 , Sal I digested pSA30
lane 7 , undigested pSA30
lane 8 , size marker of λ /Hind III fragments
high molecular weight DNA. Purification step is necessary for DNA which will be used as a probe in hybridization experiment.

The purification of the pSA30 was performed to recover only supercoiled plasmid using agarose gel. The purified supercoiled pSA30 is shown in lane 3 of figure 20. The recovery of supercoiled plasmid after this purification step was in the range of $20-30 \%$.

Preparation and purification of DNA fragments from pSA30

1. pACYC184 the DNA vector

After digestion of PSA 30 with ECORI, 4 kb fragment of lineared pACYCl 84 and 6.9 kb fragment of nif structural genes of Klebsiella pneumoniae were obtained. The ethidium bromide banding pattern of purified pACYC184 fragment is shown in 1 lane 2 of figure 21.
2. The nif fragment AA (part of nif K), nif fragment A2
(part of nif D) and nif fragment A3 (nif H and part of nif D).
According to the restriction map of $\operatorname{PSA} 30$ (figure 2 and 3), three linear molecules of nif fragment AT (5.76 kb$)$ which carries part of nif K, nif fragment $A 2$ (1.44 kb) which carries part of nif D and nif fragment $A 3(3.0 \mathrm{~kb})$ which carries nif H and part of nif D from Klebsiella pneumoniae would be obtained after digestion of pSA30 with BamHI and Hind IID. Then, the three fragments were purified by recovery from low-melting agarose gel as described in Materials and Methods. The ethidium bromide banding pattern of the purified fragments are shown in figure 22. The recovery of linear DNA fragments using this purification procedure (recovery from low-melting agarose gel) was in the range of $70-80 \%$.

Figure 20. Ethidium bromide staining patterns of crude and purified supercoiled pSA30 plasmid on agarose gel.

The crude extracted and purified MSA30 were load on 0.7% agarose gel and electrophoresed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, the photograph was taken under UV light.
Pane i, Hind fit fragments of $\hat{\lambda}$ DNA
Glane 2, 300 ng of crude extracted pSA30

Figure 21. Ethidium bromide staining pattern of pACYC184 fragments. After pSA30 was digested wi th EcoRI, the 4.0 kb fragments of pACYe184 part was purified by fow-melting agarose gel then electrophoresed on 0.7% agarose ge7. After staining with ethidium bromide, the photograph of the gel was taken under UV light. 6 a
 Gane 2, pACYC184 fragment

Figure 22. Ethidium bromide staining patterns of plasmid and purified nif fragments on agarose get.

The several nif framents were prepared from the pSA3O. Electrophoresis was performed in Tris-borate buffer, pH 8.3. After staining with ethidium bromide, the photograph was

lane 2 , crude PSSA3O

lane 4 , purified nif fragment A1 ($5.76-\mathrm{kb}$)
lane 5, purified nit fragment A2 (1.44-kb)

Labelling of DNA by nick translation

Plasmid and DNA fragments were labelled by nick translation using ${ }^{32}$ P-dATP as described in Materials and Methods. An example of the kinetic of nick translation was shown in figure 23. The specific activity of the labelled probe obtained was $2-7 \times 10^{7} \mathrm{cpm} / \mathrm{ug}$ DNA. Usually, the incroporation of the labelled nucleotide into purified pSA30 was about $40-50 \%$, whereas for the linear DNA fragments were in the range of $50-80 \%$.

Characterization of the 1 abelled plasmid

The labelled plasmids obtained from nick translation were confirmed to be pSA30 by comparing the electrophoretic mobility of the labelled plasmid with nonlabelfed pSA30.

After electrophoresis 0 f abelled plasmid on 1% agarose gel, the gel was dried and exposed on x-ray film. The position of band on autoradiogram was compared to ethidium bromide banding pattern An example of characterization of labelled pSA30. is shown in figure 24. From the figure, the band on autoradiogram was found to be at the same position as the stained band of pSA30. This indicated that the labelled DNA was PSA30.

Qocal ization of nif structural genes by bluclêt acid

 hybridizationPrincipally, DNA-DNA hybridization will be used to verify the relatedness of particular organisms. Because, when mixed singlestranded DNA, carrying specific nucleotide sequences in common, will anneal at the regions of genetic homology to form duplexes.

Figure 23. The kinetics of nick translation reaction.
The pSA30 (200 ng) was labellet with $50 \mu \mathrm{Ci}\left(\alpha-{ }^{32} p\right)$ dATP in 50 mM Tris-HCl, pH 7.5 at 15 C . The reaction mixture also contained $10 \mathrm{mM} \mathrm{MgCl}_{2}, 50, \mathrm{gg} / \mathrm{ml}$ BSA, 1 mM DTT, 10 ull dNTPs (d CTP, d GTP and d TTP), 1 pg DNase and 3 unit of ODPAA polymerase I! The\% incorporation of ($\alpha-32$ p)-dATP into QDNA was plotted verus the incubation time.

จุฬาลงกรณ์มหาวิทยาลัย

Figure 24. The electrophoretic mobility of ${ }^{32}$ p-labelled pSA3O and native pSA3O on agarose get.

The ${ }^{32}$ p-labelled pSA30 and native pSA30 were subjected to electrophoresis on 1% agarose gel in Tris-borate buffer pH 8.3 , and then the marker gel was stained with ethidium bromide the photograph Of the gel was taken under UV light whereas the dagarose gel contain labelled pSA30 was dried and exposed to X-ray film at $-70^{\circ} \mathrm{C}$ for 2 h .
B) Autoradiograph of ${ }^{32} \mathrm{p}$-labelled of purified pSA30 on dried agarose gel.

Further, the ability to form DNA-DNA hybrid molecules can be exploited to locate particular genes in a given fragment of nucleic acid. Thus, two techniquces of nucleic acid hybridization were used in this studies.

1. Southern blot hybridization

In principle of Southern blot hybridization is that, DNA fragments that have been electrophoretically separated on agarose gel are transfered to a nitrocellulose filter via capillary action prior to hybridization. DNAS are fixed onto nitrocellulose filter in the exact replicas of their gel separations.

1.1 Condition for Southern blot transfer

This experiment was designed to test for appropriate condition of transfer by usjng sheared calf thymus DNA as a control. Concentration of 1 to 25 ug of sheared calf thymus DNA were electrophoresed on 0.7% agarose gel (figure 25A). After they were transfered to nitrocellulose filter by Southern blotting method as described in Materials and Methods, the remained DNA on the gel was checked by ethidium bromide stainjng (figurle $25 B$). $\%$ \& $\cap \bigcap \uparrow$

This result indicates that small DNA fragments could be transfered to nitroce puose fitter inhigher efficiency than targe DNA fragments. Yield of transfer is approximately 50% or more in this condition.
1.2 Detection of nif structural genes on plasmid of

Azospirillum spp.
In the present study, we attampted to find the answer wheather nif structural genes are on plasmid of Azospirillum
spp. So, the homology between nif structural gene of Klebsiella pneumoniae on PSA30 and Azospirillum plasmids were studied by Southern blot hybridization experiment.

Plasmids were isolated from three strains of Azospirillum spp. by the method of Hansen and 01sen (1978). It purity is shown in figure 26 A and the autoradiogram of hybridized DNA is shown in figure 26B. The pRDI plasmid which carry nif operon of Klebsiella pneumoniae (Dixon et al. , 1976) was used as positive control as well as a molecular weight size marker. To prevent from over hybridization of positive control, the mitrocellulose filter containing pRDI was cut and the hybridization was performed in separated bag with ten-fold of labelled probe less than the hybridization of Azospirillum plasmids. From figure 26B, the hybridization could not be observed in the plasmid of Azospirillum whereas one predominant hybridization band was found in pRD1 position (lane 2).

This result suggested that the nif structural genes of Azospirillum spp., might not locate on the plasmid. Therefore, it is likely that the $\frac{\text { nif }}{6}$ structural genes of A.brasilense $S p 7$, A. lipoferum SpMRAI and Azospiridlum spp A2olocated on their chromosomes, which are simijar to \underline{A}. brasilense A2 and five strains of Azotobacter

1.3 Detection of nif structural genes on restriction fragments of chromosomal DNA.

This experiment was performed to investigate restriction fragments of various chromosomal DNA from Azotobacter and Azospirillum which showed homology to Kelbsiella pneumoniae nif

Figure 25. Ethidium bromide staining pattern of sheared calf thymus DNA on agarose get.

Calf thymus DNA was sheared by pass through a $26 \mathrm{G} \times 1 / 2$ needle for several times and then were load on 0.7% agarose gel. Electrophoresis was performed in Tris-borate buffer, pH 8.3 . After staining withoethidium bromide, the photograph was taken-under UV light (A), and then Southern blot was performed for 12 h . GThe gel was stained with ethidium bromide Q 9 and protograph was taken ünder uv liaht acaing (B).

Lane (1) and (10) are $1 \mu \mathrm{~g}$ of λ DNA digested with Hind III. Lane (2) to (9) are sheared calf thymus DNA, concentration of $1,3,5,7,10,15,20$ and $25 \mu \mathrm{~g}$, respectively.

Figure 26 A. Ethidium bromide stainine pattern of plasmid on agarose gel.
The extracted plasmid of Azospirillum were prepared by the method of Hansen and 01sen. After electrophoresed on 0.7% agarose gel, the gel was stained with ethidium bromide then photograph was taken under UV light.

Lane 1 is λ /Hind III; lane 2 is pRD1; lane 3 is flank; lane 4 and lane 7 are Azospiritlum Spp. Al2 plasmid; lane 5 and lane 8 are Azospirillum brasilense Sp7 plasmid; lane 6 is
Azospirillum lipoferum SDMRAI plasmid.
Figure 26 B. Autoradiograph of the nitrocellulose filter containing plasmids of Azospirillum after hybridized with ${ }^{32}$ p-labelled pSA30.

The gel in figure 26 A was/iransferred onto nitrocellulose filter and then was hybridized with ${ }^{32} \mathrm{p}$-labelled pSA30 (specific activity of $3 \times 10^{7} \mathrm{cpm} / \mu \mathrm{g}$ DNA and $3 \times 10^{6} \mathrm{cpm}$ was added) at $42^{\circ} \mathrm{C}$ for 48 h . The filter was washed at 50 C then exposed to X -ray film at $-70^{\circ} \mathrm{C}$ for 14 days with intensifying screens.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

structural genes by Southern hybridization techniquees., using the ${ }^{32} \mathrm{p}$ labelled pSA30 as a probe.

After digestion of chromosomal DNA with various restriction endonuclease, the restriction fragments were size fractionated by electrophoresis on agarose gel and then transferred onto nitrocellulose filters. These filters were hybridized with ${ }^{32}$ p-labelled pSA30.

Southern hybridization of restriction endonuclease digested Azotobacter and Azospirillum chromosomal DNA were showed in figure 27-32. Linear black bands jhy the position of gel slot on the autoradiograme are inteppreted to hybridization bands, and they were interpreted to contain DNA representing sequences which have homologous to nif structural genes of Klebsiella pneumoniae. The size of hybridization bands were calculated from the mobility curves of standard molecular size marker on each gel were summarized in Table 7. The smallest size of DNA fragments could be presented on the gel is 500 base pair for 0.7% agarose gel and 300 base pair for 0.8% agarose get in this electrophoretic condition. From table 7, for example, the results showed that homology detected between the Klebsiella pneumoniae probe and A. Vinelandii KTLDNA was limited to a 5 kb HindIfif fragment, a larger 30 kb BglII fragment and three

The results illustrated the ability of nif structural genes from K. pneumoniae to hybridize with some restriction fragments of chromosomal DNA from all strains studied. Thus, these results also clearly show that the nif structural genes of all Azotobacter and Azospirillum strains locate on their chromosomes. In addition, the hybridization patterns of their nif structural genes showed difference among the species and strains.

Figure 27. Autoradiograph of mitrocellulose filter containing the Sma Idigested fragments of various species and strains of Azotobacter and Azospirillum after hybridized with ${ }^{32}$ P-1abelled PSA3O.

The gel in figure 9 was transferred onto nitrocellulose filter and then was hybridized with ${ }^{32}$ p-labelled pSA3O (specific activity of $2.3 \times 10^{7} \mathrm{cpm} / \mu \mathrm{g}$ DNA and $6 \times 10^{6} \mathrm{cpm}$ was added). The hybridization was performed at 42 C for 48 h . The filter was washed at $50^{\circ} \mathrm{C}$ and exposed to X-ray film at $-70^{\circ} \mathrm{C}$ for 14 days with intensifying screens.

Pand: 2 PNA digested with Hind IIf
1ahe 2, Azotobacter vinelandii KT1

lane 5 , Azotobacter paspali B
lane 6, Azotobacter chroococcum NP
lane 7, Azospirillum brasilense Sp7
lane 8, Azospirillum spp. Al2
lane 9, Azospirillum lipoferum SpMRA1
lane 10, Azospirillum brasilense A2

Figure 28. Autoradiograph of nitrocellulose filter containing the Bgl II-digested fragments of various species and strains of Azotobacter and Azospiriflum after hybridized with ${ }^{32} \mathrm{P}$-labelled pSA30.

The gel in figure 10 was transferred onto nitrocellulose filter and then was hybridized with ${ }^{32}$ p-labelled pSA30 (specific activity of $2.5 \times 10^{7} \mathrm{cpm} / \mu \mathrm{g}$ DNA and $6.5 \times 10^{6} \mathrm{cpm}$ was added). The hybridization was performed at $42^{\circ} \mathrm{C}$ for 48 h . The filter was washed at $50^{\circ} \mathrm{C}$ and exposed to X-ray film at $-70^{\circ} \mathrm{C}$ for 14 days with intensifying screens Gane $f, \partial^{2} / \mathrm{DNA}$ digested with Hind IfI
lane 2, Azotobacter vinelandii KT1

lane 5, Azotobacter paspali B
Tane 6, Azotobacter chroococcum NP
lane 7, Azospirillum brasilense Sp7
lane 8, Azospirillum spp. Al2
lane 9, Azospirillum lipoferum SpMRA1
lane 10, Azospirillum brasilense A2

Figure 29. Autoradiograph of the nitrocellulose filter containing the EcoRI-digested fragments of various species and strains of Azotobacter and Azospirikium after hybridized with ${ }^{32} \mathrm{p}$-labelled pSA30.

The EcoRI-digested fragments of Azotobacter spp. and Azospiri$11 u m$ spp. were fixed onto nitrocellulose filter and then was hybridized with ${ }^{32}$ P-labelled $\mathrm{PSA} \mathrm{P}_{30}$. (specific activity of 2.5×10^{7} $\mathrm{cpm} / \mu \mathrm{g} \mathrm{DNA}$ and $6.5 \times 10^{6} \mathrm{cpm}$ was added). The hybridization was performed at $42^{\circ} \mathrm{C}$ for 48 h . The filter was washed at $50^{\circ} \mathrm{C}$ and exposed to X-ray/fincat $70 / 0$ for 14 days with intensifying screens.

lane 3, Azotobacter vinelandii KT2
lane 4, Azotobacter chroococcum KT
lane 5, Azotobacter paspali B
lane 6, Azospirillum brasilense $5 p 7$
lane 7, Azospirillum spD. Al2
lane 8, Azospirillum lipoferum SpMRA1
lane 9, Azospirillum brasilense A2

Figure 30 A . Ethidium bromide staining pattern of restriction fragments of chromosomal DNA from Azotobacter.

Four $\mu \mathrm{g}$ of DNA were digested with 100 units of Bam HI or 35 units of Hind III or 50 units of Sal I, then electrophoresed on 0.8% agarose ge1. After staining with ethidium bromide, photograph was taken under UV light.
lane $1, \lambda /$ Hind $I I I$
lane 2, Azotobacter vinelandii KT1/Hind III
lane 3, Azotobacter vinelandii KT2/Hind III -
lane 4, Azotobacter chroococcum KT/Hind III
lane 5, Azotobacter paspali B/Hind III
lane 6, Azotobacter vinelandii KTI/Bam HI
lane 7, Azotobacter vinelandi $\mathrm{KT} 2 / \mathrm{Bam} \mathrm{HI}$
lane 8, Azotobacter chroococcum KT/Bam HI
lane 9, Azotobacter paspali $B /$ Bam H
Figure $30 . \mathrm{B}$. Autoradiograph of the nitrocellulose filter containing the restriction fragments of chromosomal DNA after hybridized with 3^{32} p-labelled pSA30.

The get in frigure A was transferred onto nitrocellulose filter and then were hybridized with ${ }^{32} \mathrm{p}$ - jabelted pSA30 (specific activity $2.5 \times 10^{7} \mathrm{cpm} / \mu \mathrm{g}$ DNA and $6.5 \times 10^{6 / \mathrm{cpm}}$ was added). The hybridization was performed at $42^{\circ} \mathrm{C}$ for 48 h . The filter was washed at $50^{\circ} \mathrm{C}$ and exposed to X-ray film at $-70^{\circ} \mathrm{C}$ for 14 days with intensifying screens.

Figure 31 A . Ethidium bromide staining pattern of restriction fragments of chromosomal DNA from Azospirillum.

Four μg of DNA were digested with 100 units of Bam HI or 350 units of Hind III then electrophoresed on 0.8% agarose gel. After staining with ethidium bromide, photograph was taken under UV light.
lane 1 , /Hind IIt
lane 2, Azospirilfum brasilense Sp7/Bam HI
lane 3, Azospipillum spp. A12/Bam HI
Tane 4, Azospirillum lipoferum SpMRA1/Bam HI
lane 5, Azospirillum brasilense A2/Bam HI
lane 6, Azospirilfum brasilense $\mathrm{Sp} 7 /$ Hind III
lane 7, Azospiriplum spp. Al2/Hind III
lane 8, Azospirillum lipoferum SpMRA1/Hind III
iane 9, Azospirillum brasilense A2/Hind III
Figure 31 B. Autoradiograph of the nitrocellutose filter containing the restriction fragments of chromosomal DNA after hybridized with 32 p-labelled pSA30.
Pthe gel in figure 31 A was trans ferred onto nitrocellulose filter and then were hybridized with ${ }^{32} p$-labelled pSA30 (spedific activity of $2.5 \times 10^{7} \mathrm{cpm} / \mu \mathrm{g}$ bNA and $\frac{9 .}{6} .5 \times 10^{6} \mathrm{cpm}$ was added). The hybridization was performed at 42 C for 48 h . The filter was washed at $50^{\circ} \mathrm{C}$ and exposed to X-ray film at $-70^{\circ} \mathrm{C}$ for 14 days with intensifying screens.

Figure 32 A. Ethidium bromide staining pattern of Pst I digested fragments of chromosomal DNA from Azospirillum.

Four $\mu \mathrm{g}$ of DNA were digested with 80 units of PSt I were electrophoresed on 0.8% agarose gel. After staining with ethidium bromide, photograph was taken under UV light.

Figure 32 B. Autoradiograph of the nitrocellulose filter containing the restriction fragments of chromosomal DNA after hybridized with 32 p
p-labelled pSA30.
The gel in figure 32 A was transferred onto nitrocellulose filter and then were hybridized with ${ }^{32}$ p-labelled pSA30 (specific activity of $2.5 \times 10^{7} \mathrm{cpm} / \mathrm{ug}$ DNA and $6.5 \times 10^{6} \mathrm{cpm}$ was added). The hybridization was performed at $42^{\circ} \mathrm{C}$ for 48 h . The filter was washed at $50^{\circ} \mathrm{C}$ and exposed to X-ray film at Q 90, 90 och for 14 days with intensifying screens.

Table 7. Restriction analysis of nif structural genes of Azotobacer SDD. and Azospirillum SDD. by Southern hybridization when use nif structural genes of Klebsiella pneumoniae on PSA30 as a hybridization probe.

2. Dot blot hybridization of Azotobacter and Azospirillum chromosomal DNA and pSA30 with labelled pACYC184

In order to assure that hybridization in this study was the property of nif structural genes inserted pSA30. Thus, the homology between the vector DNA (pACYCl 84) and variety of DNA were tested by dot blot hybridization. The denatured chromosomal DNA of Azotobacter and Azospirillum were fixed onto nitrocellulose filter then was prehybridized and hybridized with labelled pACYC184. After the filter was washed to remove the non-hybridized probe. The hybrid formed was detected autoradiography. Calf thymus DNA and pSA30 plasmid were used as negative and positive control respectively. The photographic picture of autoradiogram is shown in figure 33.

Determination of nif structural genes fragments homology by dot blot hybridization

In an attempt to determine the homology between various fragments of nif structural genes from Klebsiella pneumoniae which carry on pSA30 (figure 3) and nif structural genes on chromosomal DNA of Azotobacter or Azospirillum, dot blot hybridization technique

Two hundred and fifty nanograms and 500 nanograms of denatured chromosomat DNA from five strains of Azotobacter and fourstrains of Azospirillum were bound to nitrocellulose filters and hybridized with 3^{32} P-labelled of nif fragment A1 (part of nif K) or nif fragment A2 (part of nif D) or nif fragment A3 (nif H and part of nif D). One sheet of nitrocellulose filter which carry chromosomal DNA from five strains of Azotobacter and the other sheet carry chromosomal DNA from four strains of Azospirillum were hybridized in the same bag with
each labelled probe.

Twenty five nanograms of DNA from Klebsiella pneumoniae and 500 ng of calf thymus DNA were used as positive and negative control in these experiments, respectively.

After washing, the filters were autoradiographed and the autoradiograms are shown in figure 34. Then the nitrocellulose filters were cut into even pieces of $|x| \mathrm{in}^{2}$. The piece of nitrocellulose was immersed in a viaz containing 5 ml of Bray's solution and counted for radioactivity, The backgrounw radioactivity was obtained from counting the nitrocellulose filters without DNA which traeted exactly the same condition.

Dot blot hybridization kinetic curves and the autoradiograms when used nif fragment $A 1$, niffragment $A 2$ and nif fragment $A 3$ as a hybridization probes are shown in figure 35,36 and 37 , respectively. The results showed that when increasing amount of chromosomal DNA were hybridized with a constant amount of ${ }^{32} \mathrm{P}=$ labelled probes, the linear relationship at first order of the kinetic curves and some maximum hybridization were obtained. These indicated that the homology could be determine by companing $\Delta \mathrm{cpm} / \Delta \mathrm{ng}$ DNA at the first order to $\triangle \mathrm{cpm} / \triangle \mathrm{ng}$ DNA which obtained from hybridization curve of Klebsiella pheumoniae chromosome. Thus the homology was calculated and summarized in Table 8.

Table 8 shows that the degree of homology between nif K of Klebsiella pneumoniae (nif fragment A1) and four strains of Azospirillum chromosomal DNA was very low (1.7-2.0 \%). This evidence is not observed from Azotobacter chromosomal DNA since the homology of nif K in these organism was in the range of $5 \cdot 0-9.6 \%$. By using
the nif fragment A2 (part of nif D) of Klebsiella pneumoniae as a hybridization probe, high degree of homology of nif D was observed in Azotobacter vinelandii KT2 (15.9\%), Azotobacter chroococcum KT (13.3%) and Azospirillum brasilense $\mathrm{Sp7}$ (14.4%) whereas low degree of homology was obtained from Azotobacter vinelandii KTI (3.4 \%) and Azospirillum spp. A12 (3%). The high degree of homology between nif fragment A3 carrying nif H and part of nif D of Klebsiella penumoniae and Azotobacter or Azospirillum chromosomal DNA was observed from Azotobacter vinelandi KT2 (17.9 \%) and Azospirillum brasilense $\operatorname{Sp7}(8 \%)$. The low/degree of homology was seen in Azotobacter vinelandii $\mathrm{KT1}(3.4 \%)$ and Azospirillum lipoferum SpMRA1 (3.1 \%) .

Furthermore, the homology among the labelled probes (nif fragment A1, A2 and A3) were determined in term of ug of hybridized probe/kb of genome. Two factors; the specific activity and size of the labelled probes are used for calculation (see appendix). The result was summarized in table 9. The result showed that the nif fragment A2 which contains the region of nif \bar{D} of Klebsiella pneumoniae hybridized to the chromosomal DNA from three strains of Azotobacter Spp. $9(\mathrm{KF} 2$, KT and NP $)$ in higher degree of homology (7.9: $20.7 \times 10^{-8} \mu \mathrm{~g}$ of probe/kb of genome) than the nif fragment A3 which carrying nifi H abd part of हif D (rangeing from 5.2-84. $6 \times 10^{-8} \mu \mathrm{~g}$ of probe/kb of genome). The nif fragment Al which carrying nif K gave the lowest degree of homology $\left(4.5-8.3 \times 10^{-8} \mu \mathrm{~g}\right.$ of probe/kb of genome): In Azotobacter paspaliB, the highest degree of homology $\left(8.5 \times 10^{-8} \mu \mathrm{~g}\right.$ of probe/kb of genome) obtained from the hybridization when the nif fragment AI (nif K) was used as probe. Whereas difference of degree of homology among the three fragments of nif structural genes is not
seen in Azotobacter vinelandii KT1. All strains of Azospirillum spp. showed that very low degree of homology (ranging from $1.5-1.8 \times 10^{-8}$ $\mu \mathrm{g}$ of probe/kb of genome) was found in the region of nif K (nif fragment Al) whereas the high degree of homology (ranging from 3.9-18.7x $10^{-8} \mu \mathrm{~g}$ of probe/kb of genome) was seen in the region of nif D (nif fragment A2)

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 33. Autoradiograph of dot biot filter containing chromosomal DNA of Azotobacter, AzospiniiJum and PSA30 after hybridized with 32 P-läbelled pACYC184 fragment.

The filter was hybridized with ${ }^{32}$ p-labelled pACYC184 fragment (specific activity of $4.2 \times 10^{7} \mathrm{cpm} / \mathrm{mg}$ DNA was added). Hybridization was performed at $42^{\circ} \mathrm{C}$ for 48 h and washed at $50^{\circ} \mathrm{C}$. Then the filter was exposed to X-ray film at $-70^{\circ} \mathrm{C}$ for 24 h with intensifying screens.
$(a, 1) 500 \mathrm{ng}$ of K. pneumoniae M5a 1 DNA
$(\mathrm{a}, 2) 500 \mathrm{ng}$ of calf thymus DNA

$(a, 5)$
$(b, 3) 500 \mathrm{ng}$ of Azospirillum spp. A12-DNA
$(b, 4) \quad 500 \mathrm{ng}$ of A. lipoferum SpMRAI-DNA
$(b, 5) \quad 500 \mathrm{ng}$ of A. brasilense A2-DNA
$(c, 1) \quad 500 \mathrm{ng}$ of A. vinelandii $\mathrm{KT1}$
$(c, 2) 500 \mathrm{ng}$ of A. vinelandii KT2
$(c, 3) \quad 500 \mathrm{ng}$ of A. chroococcum KT
$(c, 4) 500 \mathrm{ng}$ of A. paspali B
$(c, 5)$. 500 ng of A . chroococcum NP

Figu're 34. Autoradiographs cf dot blot filter containing chromosomal DNA of Azotobacter (X) and Azospirillum (Y) after hybridized with ${ }^{32} \mathrm{P}$-labelled nif fragment $A 1$, nif fragment $A 2$ and nif fragment $A 3$.

The filter X and filter Y were hybridized in the same bag with ${ }^{32}$ p-labelled nif fragment Al (specific activity $=2.9 \times 10^{7}$ $\mathrm{cpm} /$ ug DUA), nif fragment $A 2$ (specific activity $=1.5 \times 10^{8} \mathrm{cpm}$ $/ \mathrm{gg}$ DNA) and nif fragment $A 3$ (specific activity $=3.6 \times 10^{7} \mathrm{cpm}$. /ug DNA). Hybridization were performed at $42^{\circ} \mathrm{C}$ for 48 h and washed at $50^{\circ} \mathrm{C}$. Then the filters were exposed to X -ray film at $-70^{\circ} \mathrm{C}$ for 48 h with intensifying screens.
(X) $(a, 1), 25 \mathrm{ng}$ of K. pneumoniae MJal $\operatorname{MNA}(\mathrm{V})(\mathrm{a}, 1) \cdot 25 \mathrm{ng}$ of. K. pneumoniae M5al $(\mathrm{a}, 2), 500 \mathrm{ng}$ of calf thymus DNA ($a, 3$), blank $(a, 3)$ blank
$(a, 4)$, and $(a, 5)$ $(a, 4)$ -
$(b, 1), 250 \mathrm{ng}$ of A. vinelandii KT1-DNA (b,1) 250 ng of A.brasilense Sp7-DNA $(b, 2), 250 \mathrm{ng}$ of A.vinelandii KT2-DNA (b,2) 250 ng of Azospirillum spp. $(b, 3), 250 \mathrm{ng}$ of A.chroococcum KT-DNA A12-DNA ($b, 4$), 250 ng of Apaspali $B=0 N A \cap(b, 3) 250 \mathrm{ng}$ of A. 1 ipoferum SpMRAI $(b, 5), 250 \mathrm{ng}$ of A. chroococcum NP-DNA $(b, 4) 250 \mathrm{ng}$ of A.brasilense A2-DNA $(c, 1), 500 \mathrm{ng}$ of A vinelandia KT1-QNA 198 (c, , 500 ng of A.brasilense Sp7-DNA $(c, 2), 500 \mathrm{ng}$ of A. vinelandii $\mathrm{KT2}-\mathrm{DNA} /(\mathrm{c}, 29500 \mathrm{ng}$ of Azospirillum spp. Al2 $(c, 3), 500 \mathrm{ng}$ of A. chroococcum KT-DNA $(c, 3) 500 \mathrm{ng}$ of A. 1 ipoferum SpMRAI $(c, 4), 500 \mathrm{ng}$ of A. paspali B-DNA $(c, 4) 500 \mathrm{ng}$ of A.brasilense $A 2$ $(c, 5), 500 \mathrm{ng}$ of A. chroococcum NP-DNA

Figure 34.

Labelled probes

s

Labelled probes
nif fragment Al (part of nif K)
nif fragment $A 2$ (part of nif D)
(x)

Azotóbacter
(Y)

Azospirillum

nif fragment $A 3$ (nif H and part of nif D)

Figure 35.0 Kinetics of dot blot chybridization of chrombsomal DNA of AzotoBacter spp. Oor Azospirillum spp. with ${ }^{32} p=1$ abelled nif fragment Al (part of nif K).

Variable amounts of chromosomal DNA of Azotobacter and Azospirillum were fixed onto nitrocellulose filters and then hybridized in the same bag with ${ }^{32} \mathrm{P}-1$ abelled nif fragment Al (specific activity $=2.9 \times 10^{7} \mathrm{cpm} / \mu \mathrm{g} D N A$).

Qfigure 36.9 Kinetics of dot blot hypridization of chromosomal DNA of Azotobacter spp. or Azospirillum spp. With ${ }^{32}$ p-labelled nif fragment A2 (part of nif D).

Variable amounts of chromosomal DNA of Azotobacter and Azospirillum were fixed onto nitrocellulose filters and then hybridized in the same bag with ${ }^{32} \mathrm{P}-1$ abelled nif fragment A2 (specific activity $=1.5 \times 10^{8} \mathrm{cpm} / \mu \mathrm{g}$ DNA).

Figure 37. 9 Kinetjcs of dot blot hypridization of chromosomal DNA of Azotobacter spp or Azospirillum spp. with ${ }^{32}$ P-labelled nif Q $99 \cap^{\text {fragment }} \mathrm{AB}$ (nif H and part of nif D) $Q 1$ Azospirillum were fixed onto nitrocellulose filters and then hybridized in the same bag with ${ }^{32} \mathrm{P}-1$ abelled nif fragment $A 3$ (specific activity $=3.6 \times 10^{7} \mathrm{cpm} / \mu \mathrm{g}$ DNA).

Table 8. The relative homology of nif structural genes fragments between Klebsiella pneumoniae and Azotobacter spp. or Azospirillum spp.

The denatured chromosomal DNA from Azotobacter and Azospirillum were bound to nitrocellulose filter by dot blot method and hybridized with ${ }^{32} \mathrm{P}$-labelled of nif fragment A1, A2 and A3. After washing, the nitrocellulose filters were cut into even pieces and counted for radioactivity in Bray's solution. The homology were determined by comparing $\Delta_{c p m} / \Delta^{n}$ g DNA value at/the first order of hybridization kinetic curve to $4 \mathrm{cpm} /$ ang DNA value which obtained from hybridization kinetic curve of Klebsiella pneumoniae chromosomal DNA.

Table 9. The relative homology of nif structural genes fragments between Klebsiella pneumoniae and Azotobacter spp. or Azospirillum spp. (inx10 ${ }^{-8}$ ug of probe per kb of genome).

