CHAPTER IV

RESULTS AND DISCUSSIONS

The Study of Swimming Pool Primary Data

The swimming pool primary data were obtained by questionnaires. One hundred and four pool staffs were interviewed. The sampling sites were randomly selected from every district in Bangkok area. The details of data are described in Appendix C and the summary of the obtained data is presented below:

1. Location of Swimming Pools

Nearly all of the swimmingepools were outdoor pools. There was only one indoor pool. The indoor and outdoóswimming pools would be exposed to sunlight differently. Since the occurrence of halogenated hydrocrbons in swimming pool resulted from photochemical reaction and therefore, the amounts of halogenated hydrocarbons in indoor and outdoor swimming pools may be difference. However, the results from this study showed that the amounts of halogenated hydrocarbon found in indoor swimming pool was not difference due to there was only one registered indoor swimming pool in this study. 9 \&
2. Size and Shape of Swimming pools
Size and shape of the poolswere varied. Most of the pools were rectangular with few were round or oval. The standard size was 12.5×25 metres. Width of walkway around swimming pool is between 0.5-5 metres. Refering to the standard rule of swimming pool described in Appendix C, it was indicated that 1.92% of the swimming pools were below the standard criteria, since the criteria of width of walkway is 1 metre.

3. Source of Water Used in Swimming Pools

Most of the pools were filled with tap water which was treated by chlorination before filled in the pool.

4. Type of Water Circulation System

Water circulation system was classified into five types as described in Appendix B. The most popular one was the fourth type that the water flows into the pool through the pipes setting around the bottom of a pool and flows out through the overflow channel around a pool. The wate should be replaced by clean water derived from the pool's bottom. Meanwhile, the wastewater, mostly at the water surface will be eliminated within a short time and should not be mixed with most of the pool's water. The frequency distribution of each types are shown in Figure 4.1.

5. Type of Water Filter

Generally, there were iwoctypes of filter used; sand filter and diatomaceous earth filter. Twenty eight of poolsisised the sand filter and seventy one pools used diatomaceous earth filter. Two of the pool samples used both types. Both of water filter types were used to remove turbidity of water. Selection of water filter type depends on many factors such as area of setting fifter, budget, cost of maintenance etc.

6. Cleaning of Swimming Pools

The ffequency of swhmming pool cleaning and water filter cleaning were varied. Most of them was one time per day. Summary of the obtained data are presented in Table 41.9
The frequency of filte cleaning depended on
Th

The frequency of filter cleaning depended on the accumutation of insoluble deposit on the prepared mat which has produced a pressure drop across the filter of sufficient magnitude to prevent the proper distribution of the filtered water to the various pool inlets. When this occurs the filter must be cleaned by backwash to flush the accumulated deposits to drain out. Data obtained from questionnaires were different. They are described in Table 4.2.

Table 4.1 Frequency of swimming pool cleaning.

Frequency of swimming pool cleaning	Number of pools
1 time/day	91
2 times/day	
1 time/2 days	
$1-2$ times/week	
not indicated	3
7. Duration of Water Circulation	
Water is circulated by using the filter plant and circulation pump. Circulation	
rates are proportioned to the sanitation load of the various pools. Data of water	
recirculation are shown in Table 4.3.	

Table 4.2 Duration between each water filter cleaning

It should be noted that 43.27% of all swimming pools did not provide data about the period of water circulation. The staff of these swimming pools did not indicate the period of water circulation. This showed that these pools may have or may have not circulated water in the period according to the standard set by Bangkok Metropolitan Administration.

8. Period of Drainage of Swimming Pools

As shown in Table 4.4, 36.54 \% of pools were drained every year and57.69\% indicated that period of drainage was uncertain, depending on the water quality.

Table 4.4 Period of drainage of swimming pools.
Period of drainage of water
$>1-6-12$ months
$>12-18$ months
$>18-24$ months
$>24-36$ months
uncertain
9. Physical Check for swimming users
Physical check up of anf users/before using swimming pools is one of the

10. Disinfection Methods

From the data obtained, there were many kinds of chemical used as disinfection such as chlorine, phosphoric acid and ozone. Disinfection by chlorine was most often used in the following forms;

1) Calcium hypochlorite available as a granular powder and in tablet forms contains 70 percent available chlorine.
2) Sodium hypochlorite available as colorless, clear solution contains 10-15 percent available chlorine.
3) Sodium dichloroisocyamurate contains 60 percent available chlorine.
4) Chlorine gas and
5) Trichloroisocyanuric acid contains 90 percent available chlorine.

It was found that itrichloroisocyanuric acid was the most widely used chemical in disinfection. Some swimming pools used only one type of chlorine and some swimming pools used more than one type. Figure 4.2 summarizes the disinfection methods used by the swimming poolsin this study.

The frequency of chlorine used was varied, depending on the water quality. Most of them always used chlorine everyday and added chlorine after closing the pool each day. Dosages used for each pool yaried from pool to pool in different sampling sites due to many factors influencing chemicals demand. There were two methods in applying chlorine, One was manual operation by scattering chlorine by hand over the water or placing it in the skimmer. The other was using an automatic feeder. In this study it was found that 14.42 percent of the pools used the automatic feeders and 85.58 percent used the manual operation $\partial 9 \mathrm{NQ} ?\}$

 9From the data obtained, chemicals were widely used in algae and pH control.

Caustic soda or soda ash was used to rise up the pH in pool water and hydrochloric acid or sodium acid sulfate was used to decrease pH . If algae growth occurs, Algaes generally destroyed by applying an over dose of chlorine, or using algaecide or copper sulfate. Types of algalcide were varied by trade name such as Swim chem Algae-rid, Swimtrin Plus, black Algetrine etc.

Figure 4.1 Types of water circulation system used by the swimming pools in this study.

Figure 4.2 Types of chemical used in disinfection by the swimming pools in this study.
sulfate. Types of algalcide were varied by trade name such as Swim chem Algae-rid, Swimtrin Plus, black Algetrine etc.

In general, pH of the swimming pool water is affected by ; 1) the source of water; 2) the body secretions of the swimmer; 3) the application of chlorination agent to destroy pollution; 4) the application of coagulation agent. The optimum pH range for a swimming pool water is 7.2 to 7.8 . The change of pH value always due to the use of chlorine agent. When the disinfection is used with chlorine gas, the pH will be fallen below 7.2. On the contrary, if the disinfection used is sodium hypochlorite or calcium hypochlorite the pH will rise up above 78 .

Algae problem in swimming pools caused by spores and seeds of algae from the air. Algae flourish in the absence of sunlight, growths can develop rapidly on cloudy or rainy days or at night if the chlorine residual is allowed to fall off.(Swimming pool Annual Data\&Reference, 1964)

12. Water Quality Determination

The standard of water quality determination determined by Bangkok Metropolitan Administration is at least 1 time/week and every day for biological check, chlorine residual and pH respectively. As shown in Table 4.5, there was only one pool that upto the standard-of biologieal eheek. For ehiorine residual and pH check, there were 70 pools that meet standard regulation.

This finding was conformed with the previous study of Matana et al.(1988) showed that the pools within criteria was/only 27 /percent|In this case, most of the swimming pools had not done biological check weekly. It is speculated that chlorination dose must be increase to guarantee disinfection. So, the trend of number of pools that over standard of chlorine residual should be inereased of|c||c|c

Table 4.5 Water quality check in the swimming pools in this study.

Frequency	Biological check	Cl residual and pH .check
$1-6$ times/week	1	17
$7-14$ times/week	-	53
$15-21$ times/week	-	6
22-28 times/week	-	1
$1-2$ times/month	18	2
$1-2$ times/year	4	-
uncertain	78	2
not check		
no data		

The Study of Standaxd Calibration Curve

The calibration curves of methylene chloride, chloroform, 1,1,1trichloroethane, carbon tetrachloride and trichioroethylene, are shown in Figure 4.34.8. The chromatogram of the standard mixture in methanol is shown in Figure 4.9.

The Study of Water Quality in the Swimming Pools

1. The Study of Water Quality

The subjects of this study were thirty six swimming pools. They were classified into four groups as follow: $9 \cap \approx 9 / \& \cap ? \tau$ gtoup A : hotel swimming pools

group D : public swimming pools
The results of water quality analysis in this study are shown in Table 4.6-4.9.

Figure 4.3 The calibration curve of methylene chloride in methanol using HP-5 capillary column with ECD as a detector.

Figure 4.4 The calibration curve of chloroform (low concentration) in methanol using HP-5 capillary column witin ECD as a detector.

Figure 4.5 The calibration curve of chtoroform (high concentration) in methanol using HP-5 capillary column with ECD as a detector.

Figure 4.6 The calibration curve of 1,1,1-trichloroethane in methanol using HP-5 capillary column with ECD as a detector.

Figure 4.7 The calibration curve of carbon tetrachloride in methanol using HP-5 capillary column with ECD as a detector.

Figure 4.8 The calibration curve of trichloroethylene in methanol using HP-5 capillary column with ECD as a detector.

1.1 Chlorine Residual

According to the water quality standard of Bangkok Metropolitan Administration, chlorine residual in swimming pool is between $0.6-1.0 \mathrm{mg} / \mathrm{l}$. In this study, it was found that only 8.33 percent $(\mathrm{n}=3)$ of total samples was upto the standard. Fifty percent($\mathrm{n}=18$) and 41.67 percent $(\mathrm{n}=15)$ were under the standard and over the standard respectively. As in previous study carried out by the Environmental Health Division(1988), percent of the pbols upto the standard was lower than the ones out of standard. The present results are shown in Table 4.10.The hotel swimming pool was the only one type that water quality was up to the standard. The others were out of the standard.

1.2 pH

The pH of most swimming pools in this study were in the standard range of 7.2-8.4. It was found that $69.44 \%(n=25)$ were upto standard and 30.56% ($\mathrm{n}=11$) were under the standard. The result are showed in Table 4.10. The over standard pool was not found in any type of the pools.

From the data obtained, there was a small variation in the range of pH because of the direct effect that pH has upon the quality of swimming pool water. When the pH drops below 7.0, the water irritates to swimmers, may corrode metals and may damage other-pool materials. At pH above $8 . \theta$, the water is likely to appear cloudy and to cause formation of scale in the pool plumbing system. Of even great importance, the alkaline water/sharply reduces thereffectiveness of chlorine as a disinfecting and oxidizing agent, so, pH must be controled up to the standard (Schuler, 1974)

1.3 Temperature

The temperature of all water samples were between $29-37^{\circ} \mathrm{C}$. The fluctuated value depended on many factors such as being outdoor or indoor pool, light intensity, time of the day, the weather etc.

Table 4.6 Water quality in the Hotel swimming pools in this study.

Sampling Site	parameter						Concentration(ppb)							
	Cl residual (mg / l)	pH	Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$	Light Intensity (Lux)	$\mathrm { CH } _ { 2 } \mathrm { Cl } _ { 2 } \longdiv { \mathrm { CHCl } _ { 3 } }$		shallow			deep				
							$\mathrm{CH}_{3} \mathrm{CCl}_{3}$	CCl_{4}	CHCCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	CHCl_{3}	$\mathrm{CH}_{3} \mathrm{CCl}_{3}$	CCl_{4}	CHCCl_{3}
A1	2.5	7.8	31	56000		96	NL	0.2	ND	ND	88	ND	0.2	ND
A2	0.2	7.8	37	26500		72	ND	0.19	ND	ND	72	ND	0.21	ND
A3	3	7.8	31	18500			ND	0.24	ND	ND	74	ND	0.23	ND
A4	3	7	34	19400		113	ND	ND	ND	ND	119	ND	ND	ND
A5	0.2	7.6	34	15300		1.67	$1 / \mathrm{ND}$	ND	ND	ND	59	ND	ND	ND
A6	1	7.8	27	8860		35	ND	ND	ND	ND	25	ND	ND	ND
A7	1	7.8	30	78700	ND	25	ND	ND	ND	ND	54	ND	ND	ND
A8	0	7.8	29.5	32700	ND	19	ND	0.45	ND	ND	75	ND	0.4	ND
A9	1	7.8	30.5	27500	ND	17	ND	0.42	ND	ND	25	ND	0.44	ND
A10	2	7.8	31	$31000 \quad 6$	ND	30	ND	0.4	ND	ND	25	ND	0.43	ND
AVERAGE	1.39	7.7	31.5	31446	d 9	-53.4	d,	0.3167	1 d		61.6		0.3183	
SD (\pm)	1.15	0.25	2.8	20979.28		33.57		0.12		U	30.76		0.11	

Table 4.7 Water quality in the academic swimming pools in this study.

Sampling Site	parameter				Concentiation(ppb)									
	Cl residual (mg/l)	pH	Temp ($\left.{ }^{\circ} \mathrm{C}\right)$	Light Intensity (Lux)			Shallow			deep				
					CH_{2}	CHCl_{3}	$\mathrm{CH}_{3} \mathrm{CCl}_{3}$	CCl_{4}	CHCCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	CHCl_{3}	$\mathrm{CH}_{3} \mathrm{CCl}_{3}$	CCl_{4}	CHCCl_{3}
B1	3	7.8	32.5	12960		15	ND	ND	ND	ND	17	ND	ND	ND
B2	0.2	7.8	29	7060		6	ND	ND	ND	ND	40	ND	ND	ND
B3	1.5	7.8	31	3210			ND	0.49	ND	ND	8	ND	0.5	ND
B4	3	7.8	29	55200		《. 9 m	ND	0.45	ND	ND	12	ND	0.45	ND
B5	0.2	7.8	31	31300		21.12	$\triangle \mathrm{ND}$	0.48	ND	ND	17	ND	0.4	ND
B6	3	6.8	29.5	14,080		2	ND	0.47	ND	ND	24	ND	0.45	ND
B7	0.2	6.8	29.5	17700		7	ND	0.48	ND	ND	13	ND	0.32	ND
B8	0	6.8	30	68500	ND	30	ND	0.3	ND	ND	14	ND	0.43	ND
B9	0.1	7.5	29	6970	ND	155	ND	0.29	ND	ND	135	ND	0.28	ND
B10	0	7.8	29	100000	ND	12	$0^{\text {ND }}$	0.39	ND	ND	16	ND	0.37	ND
AVERAGE	1.12	7.34	29.95	031698 ?	19	25.4	911	0.419	18		29.6		0.4	
$\mathrm{SD}(\pm)$	1.37	0.47	1.19	32420.11		46.18	\bigcirc	0.083			38.07		0.07	

Table 4.8 Water quality in the club swimming pools in this study.

Table 4.9 Water quality in the public swimming pools in this study

1.4 Concentration of Halogenated Hydrocarbons in Swimming Pools

Thirty-six samples of swimming pool water were studied for halogenated hydrocarbons. All samples produced a chromatogram of chloroform and fifteen samples also produced a chromatogram of carbon tetrachloride, but methylene chloride, 1,1,1-trichloroethane and trichloroethylene were not detected in any samples. The chromatogram of some samples are shown in the Figure 4.10 and Figure 4.11 and the results of the analyses are shown in Table 4.6-4.9.

Table 4.10 summarizes the average amount of chloroform and carbon tetrachloride found in the four groups of the swimming pools and graphic representation of chloroform leyels in all types of the swimming pools can be seen in Figure 4.12-4.15.

1.5 Chloroform Levels in the Swimming Pools

In support to the previous research (Beech et al., 1980; Aggazzotti, 1986; Chambon et al., 1983; Coast 19912 etc.), this study found that chloroform concentrations were presented in of the samples. The concentrations varied among all types of the swimming pools.

As shown in Table 4.6, the concentrations of chloroform in the hotel swimming pool water in shallow area(the depth of surface of water to the bottom of swimming pool $\leq 1.5 \mathrm{~m}$) were between $17-113 \mathrm{ppb}$ and the mean value was 53.4 ppb . In deep area(the depth or surface of watertg the bottom of swimming pool $>1.5 \mathrm{~m}$) chloroform levels were in the range of $25-199 \mathrm{ppb}$ and the mean value was 61.6 ppb .

For the academic pools, chloroform concentrations were detected between $2-155 \mathrm{ppb}$ with the mean value of 25.4 ppb in shallow area, while in deep area, chloroform level was between $8-135 \mathrm{ppb}$ with a mean value of 29.6 ppb .

Table 4.8 displays chloroform levels in the club pools. The concentration of chloroform fluctuated between $26-254 \mathrm{ppb}$ with a mean value of 84.88 ppb in the shallow area and found in the range of $15-220 \mathrm{ppb}$ with a mean value of 74.38 ppb in the deep area.

Figure 4.12 Chloroform levels in the hotel swimming pools

Figure 4.13 Chloroform levels in the academic swimming pools

Figure 4.14 Chloroform levels in the club swimming pools

Figure 4.15 Chloroform levels in the public swimming pools

Table 4.10 Summary of water quality in the swimminng pools in this study.

$\mathrm{A}=$ Hotel swimming pool $\quad \mathrm{B}=$ Academic swimming pool
 จุหาลงกรณ์มหาวิทยาลัย

The chloroform levels found in the public pools were in the range of 15-126 $\mathrm{ppb}($ mean $=52.25$) and $13-136 \mathrm{ppb}$ (mean=55.88) in the shallow and the deep area, respectively. The details are shown in Table 4.9.The water source used in swimming pools could be one of the factors affecting the concentrations of chloroform in the samples. Since all swimming pools in this study were supplied with tap water, which already contained chloroform from chlorination in the plant,(29.58-31.86 ppb of chloroform in tap water.Wutichai, 1992 and $16.8-100 \mathrm{ppb}$ of THM. NEB, 1984) the chloroform levels in the swimming pool water were usualy high because of rechlorination.

The high concentration of chloroform found in water samples might resulted from the follow reasons

1) The water in swimming pool was reused several times, it was treated and then chlorine was add every time
2) The more people in the swimming pools would lead to increase more organic matters in it and
3) The high content of chlorine in swimming pool is to make sure it would kill all the germ.

Statistical analysis was eafried out on the data obtained and it was found that there was no signifieant differences in the chloroform levels of all types of the swimming pools studied ($\mathrm{F}=0.11$).
 range of $0.19-0.42 \mathrm{ppb}$ in the shallow area and $0.20-0.45 \mathrm{ppb}$ in the deep area.

- As shown an Table 4.6, carbon tetfachloride levels in the hotel swimming pool water were in the range of $0.19-0.45 \mathrm{ppb}$ in shallow area and in the range of $0.20-0.44 \mathrm{ppb}$ in the deep area.

Table 4.7 shows carbon tetrachloride level in the academic swimming pools. The level were between $0.29-0.49 \mathrm{ppb}$ in the shallow area and 0.28 0.45 ppb in the deep area.

In the club swimming pools, it was not found carbon tetrachloride in all samples and there was only one public swimming pool that carbon tetrachloride was detected.

1.7 Unexpected Peak

It should be noted that a peak at the retention time 14.12 minutes was found in the chromatograms of all samples. The representative chromatograms are shown in Figure 4.10 and Figure 4.11. This peak was not in the scope of this study, but it's peak area is the highest. Confirmation with GC-MS technique was carried out and it was found to be tetrachloroethane. Mass spectrum was matched with the standard library Wiley138 at 95\% confidence/level. The details are shown in Appendix D

Concentration of \Rightarrow tetrachloroethane in drinking water is recommended by EPA and WHO not to exceed $0.8 \mu \mathrm{~g} / \mathrm{L}$ and $10 \mu \mathrm{~g} / \mathrm{L}$, respectively. WHO report showed that tetrachforoethane is remarkable persistent in water. Survey of drinking water in 100 cities in the Federal Republic of Germany,1977, found that the maximum of tetrachloroethane was $35.3 \mu \mathrm{~g} / \mathrm{L}$ and the average was $0.6 \mu \mathrm{~g} / \mathrm{L}$. Tetrachloroethane was found to be carcinogen for mice but not for rats. Evidence from epidemiological studies is insufficient for a conclusion that exposure to tetrachloroethane causes cancer in human being(WHO, 1984).

Since this peak was found in all samples, it could be concluded that tetrachloroethane is the most stable form in water. The peak abundance of tetrachloroethane shows intensively high. It might not be related to its concentration but due to the gature of the compound. Since tetrachloroethane has four chlorine atoms so its detector response should be high. Therefore, it is interesting to study concentration of tetrachloroethane in chlorinated water in the future.

2 The Study of Factor Affecting the Occurrence of Halogenated Hydrocarbons in swimming Pools

The samples in this study were four swimming pools selected from four types of swimming pools. The study was carried out by collecting water samples every three
hours. The results are shown in Table 4.11-4.14. Graphic representation of chloroform levels are shown in Figure 4.16-4.23.

1.Comparison between Chloroform Level in Shallow and Deep Area

Comparison of chloroform levels have no significant difference between the shallow and the deep area at 95% confidence. The detail are shown in Table 4.15.
2. Comparison between chloroforinlevels in 20 cm and 60 cm depth

Statistical analysis was carried out The data obtained (Table 4.16) showed that there was a significant difference in the 20 cm and 60 cm water depth in chloroform levels.

Table 4.15 Mean comparison tested by analysis of t-test on chloroform levels in shallow and deep area.

sample	number of data 	mean of CHCl_{3}	t-value	p -value
shallow area	36	52.36 a	0.63	0.53
deep area	36	54.28 a	0.63	0.53

The difference atphabet on the mean of CHCl_{3} means there is significant difference at 95% confidence.

Table 4.16 Mean comparison tested by analysis of it-fest on chloproform levels in 20 cm and 60 cm depth.

20 cm	40	219.53a	-2.54	0.015
60 cm	40	195.68b	-2.54	0.015

The difference alphabet on the mean of CHCl_{3} means there is significant difference at 95% confidence.

Table 4.11 Water quality in sampling site A (Hotel swimming pool)

Sampling Site	parameter				Concentration(ppb)									
	$\begin{gathered} \mathrm{Cl} \text { residual } \\ (\mathrm{mg} / \mathrm{l}) \end{gathered}$	pH	Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$	Light Intensity (Lux)						60 cm .				
					$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	CHCl_{3}	$\mathrm{CH}_{3} \mathrm{CCl}_{3}$	CCl_{4}	CHCCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	CHCl_{3}	$\mathrm{CH}_{3} \mathrm{CCl}_{3}$	CCl_{4}	CHCCl_{3}
Site A-Day1														
6.00	3	7.8	28	4450		139	ND	0.33	ND	ND	50	ND	0.32	ND
9.00	3	7.8	28	8780		88	ND	0.37	ND	ND	73	ND	0.37	ND
12.00	3	7.8	29	43400		100	ND	0.39	ND	ND	56	ND	0.44	ND
15.00	2.5	7.8	29	44700	ND	-124	ND	0.37	ND	ND	156	ND	0.36	ND
18.00	2.5	7.8	28.5	3400	ND	66	ND	0.47	ND	ND	84	ND	0.47	ND
Site A-Day2					average	103.4	17	0.586		average	83.8		0392	
6.00	3	8.2	29	7300	ND	480	ND	ND	ND	ND	350	ND	ND	ND
9.00	3	8.2	29	16640	ND	340	ND	ND	ND	ND	305	ND	ND	ND
12.00	3	8.2	29.5	7580	ND	350	ND	ND	ND	ND	315	ND	ND	ND
15.00	3	8.2	29	2280	ND	350	ND	ND	ND	ND	255	ND	ND	ND
18.00	3	8.2	29	7010	ND	430	ND	ND	ND	ND	350	ND	ND	ND
					verage	390	C			average	315			

Table 4.12 Water quality in sampling site B(Academic swimming pool)

Table 4.13 Water quality in sampling site C (Club swimming pool)

Sampling Site	parameter				Concentration(ppb)									
	$\begin{gathered} \text { Cl residual } \\ (\mathrm{mg} / \mathrm{l}) \end{gathered}$	pH	Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$	Light Intensity (Lux)	\square		20 cm			20 cm .				
						CHCl_{3}	$\mathrm{CH}_{3} \mathrm{CCl}_{3}$	CCl_{4}	CHCCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	CHCl_{3}	$\mathrm{CH}_{3} \mathrm{ClH}_{3}$	CCl_{4}	CHCCl_{3}
Site C-Day 1														
6.00	3	7.8	30	4840		520	ND	ND	ND	ND	424	ND	ND	ND
9.00	3	7.8	31	65300			ND	ND	ND	ND	405	ND	ND	ND
12.00	3	7.8	32	113900		330	ND	ND	ND	ND	300	ND	ND	ND
15.00	3	7.8	32	65100		1455	ND	ND	ND	ND	287	ND	ND	ND
18.00	3	7.8	32	3240		308	ND	ND	ND	ND	426	ND	ND	ND
Site C-Day 2					averag	428.6				average	368.4			
6.00	3	7.8	29.5	5600	ND	275	Ni	ND	ND	ND	207	ND	ND	ND
9.00	3	7.8	30	12680	ND	243	ND	ND	ND	ND	220	ND	ND	ND
12.00	3	7.8	30.5	116900	ND	207	ND	ND	ND	ND	211	ND	ND	ND
15.00	3	7.8	31.5	84500	ND	254^	$\bigcirc \mathrm{ND}$	ND	ND	ND	220	ND	ND	ND
18.00	3	7.8	31	1300	ND	222	ND	ND	$\begin{array}{r} 0 \\ \mathrm{ND} \\ \hline \end{array}$	ND	187	ND	ND	ND
				-	avera	2402	\sim			average	209			

Table 4.14 Water quality in sampling site D (Public swimming pool)

Figure 4.16 Chloroform levels in sampling site A.Dayl

Figure 4.17 Chloroform levels in sampling site A-Day2

Figure 4.18 Chloroform levels in sampling site B-Dayl

Figure 4.19 Chloroform levels in sampling site B-Day2

Figure 4.20 Chloroform levels in sampling site C-Day1

Figure 4.21 Chloroform levels in sampling site C-Day2

Figure 4.22 Chloroform levelin sampling site D-day!

Figure 4.23 Chloroform levels in sampling site D-Day2

3. Comparison by the time

The result showed that the chloroform levels in the swimming pools during 6.00 a.m. to 9.00 p.m. fluctuated. Most of the sampling sites were found to have chloroform level dropped at noon and increased in the afternoon until the evening. It was speculated that because there were less swimmers and more sun ray than the afternoon. This result is conformed with the previous study by Lalh (1981) which indicated that contamination with organics as precursors of THM (chloroform is in THM group) production and increase by the number of swimmers.

The differences in chloroform levels at various time of the day may be related to the formation and evaporation of chloroform. The chloroform values are the results from continuous formation and continuous surface evaporation. Continuous formation of chloroform would be expected from interaction of the chlorine added regularly, and organic material that enter the pool via user, the environment and make-up water. (Beech, 1980)

4. Chlorine residual, pH , temperature and light intensity

After the statistical analysis using correlation, the results showed that p-value of all correlation coefficients among factors are more than $0.05(\mathrm{p}>0.05)$. The result was not conformed with the previous study of Reiches and Wilkins(1983) in term of positive correlation among THM entities and raw water, temperature and free chlorine residual. It might be related to some factors such as water circulation system and duration of wate circulating Generally, if water inthe swimming pool is not circulated through filter, organic matter from swimmers may accumulate and interact with chlorine residual quite easier than in the properly circulated Water. Therefore, the correlation of the factors affecting chloroform concentration in the swimming pool were not correlated.

