CHAPTER III

TOPOLOGICAL VECTOR SPACES OVER THE QUATERNIONS

Definition 3.1 A topological vector space X over \mathbb{H} (abbreviated by TVS(\mathbb{H})) is a topological space and a vector space over \mathbb{H} such that the vector operations are continuous, that is the map(\mathbf{t} , \mathbf{x}) \to $\mathbf{t}\mathbf{x}$ and (\mathbf{x} , \mathbf{y}) \to \mathbf{x} + \mathbf{y} which carry \mathbb{H} xX and XxX to X respectively are continuous. If X is a vector space over \mathbb{H} , any topology T which makes (X, T) a TVS(\mathbb{H}) will be called a vector topology.

Example 3.2 Every paranormed space over [H is a TVS([H).

Proof: Let $(X, \|.\|)$ be a paranormed space over $[H. Since \{B(0; r) | r \in \mathbb{Q}^+\}]$ is a countable base of neighborhoods of 0 in X, X is first countable; hence sequences can be used. X has a natural pseudometric induced by its paranorm; it is defined by $d(x, y) = \|x - y\|$.

We must show that the map $(x, y) \to x + y$ is continuous. Let $(x, y) \in X \times X$. Let (x_n) , (y_n) be sequences in X such that $x_n \to x$ and $y_n \to y$. Then $d(x_n + y_n, x + y) = ||x_n - x + y_n - y|| \le ||x_n - x|| + ||y_n - y|| \to 0$ as $n \to \infty$. So $x_n + y_n \to x + y$. Hence the map $(x, y) \to x + y$ is continuous. By property (PN4) of a paranorm, the map $(x, y) \to x + y$ is continuous.

Notation The set of all neighborhoods of 0 in (X, T), a TVS([H]), will be denoted by N, N(X), N(T) or N(X, T). The set of all neighborhoods of a point x in (X, T), a TVS([H]), will be denoted by N.

Theorem 3.3 Let X be a TVS(\mathbb{H}), a \in X and G \subseteq X. Then G \in N_a if and only if G - a \in N(X). In other words a + U \in N_a if and only if U \in N(X).

Proof: Let X be a TVS(H), a \in X and G \subset X. Define $f: X \to X$ by f(x) = x + a. Clearly f is a bijection. We must show that f is continuous on X. Let b \in X be arbitrary. Let W be an open set containing b + a. We must show that there exists an open set $V \ni b$ such that $f(V) \subseteq W$. Since the map $(x, y) \not = x + y$ is continuous, there exists an open set $M \times N \ni (b, a)$ such that $(M \times N) \subseteq W$. Choose V = M. We must show that $f(V) \subseteq W$. Let $y \in f(V)$. Then y = f(c) for some $c \in V = M$. Hence $(c, a) \in M \times N$ so $\phi(c, a) = c + a \in W$. But f(c) = c + a = y therefore $y \in W$. so $f(V) \subseteq W$. Hence f is continuous at $f(V) \in W$. But f(C) = c + a = y therefore f is continuous on $f(V) \in W$. Hence f is continuous at $f(V) \in W$. Hence f is a homeomorphism of f onto itself.

Suppose that $G \in \mathbb{N}_a$. Then there exists an open set $U \ni a$ such that $U \subseteq G$. Since $a \in G$, $0 = a - a \in G - a = \{g - a \mid g \in G\}$ and $0 \in U - a$ also. Hence $f^{-1}(U) = U - a$ is open in X. But $0 \in U - a$ so $U - a \in \mathbb{N}$. Since $G - a \supseteq U - a \ni 0$, $G - a \in \mathbb{N}$. To prove the converse, we use a similar proof. #

Notation: Let X, Y be TVS(H)'s. Let B(X, Y) denote the set of all continuous linear maps from X into Y. If Y = H, B(X, Y) is denoted by X'; that is X'is the set of all continuous linear functionals on X; X' is called the dual space of X.

Theorem 3.4 If X and Y are seminormed spaces over [H, so is B(X, Y).

Moreover if Y is a normed space over [H, so is B(X, Y).

Proof: Let (X, p) and (Y, q) be seminormed spaces over \mathbb{H} .

Define a map $\|.\|: B(X, Y) \to \mathbb{R}$ by $\|T\| = \sup \{q(T(x)) | p(x) \le 1\}$, where $T \in B(X, Y)$. We must show that $\|.\|$ is a seminorm on B(X, Y). Let $T \in B(X, Y)$ and $\lambda \in \mathbb{H}$. Then

 $\lambda T = \sup \{ q((\lambda T)(x) | p(x) \le 1 \}$ $= \sup \{ q(\lambda T(x)) | p(x) \le 1 \}$ $= \sup \{ |\lambda| q(T(x)) | p(x) \le 1 \}$ $= |\lambda| \sup \{ q(T(x)) | p(x) \le 1 \}$ $= |\lambda| ||T||.$

Let T, T' \in B(X, Y). We must show that $||T + T|| \le ||T|| + ||T'||$. $||T + T'|| = \sup \{ q((T + T)(x)) | p(x) \le 1 \}$ $= \sup \{ q(T(x) + T(x)) | p(x) \le 1 \}$ $\le \sup \{ q(T(x)) + q(T(x)) | p(x) \le 1 \}$

 $\leq \sup \{ q(T(x)) | p(x) \leq 1 \} + \sup \{ q(T(x)) | p(x) \leq 1 \}$ = ||T|| + ||T'||.

Clearly, $\|0\| = 0$. Thus $\|\cdot\|$ is a seminorm on B(X, Y). Suppose (Y, q) is a normed space over $\|H$. We must show that B(X, Y) is also a normed space. We have shown that $\|\cdot\|$ is a seminorm on B(X, Y). We must show that $\|T\| = 0$ implies that T = 0. Let $T \in B(X, Y)$ be such that $\|T\| = 0$. We must show that T = 0. Let $T \in B(X, Y)$ be such that $\|T\| = 0$. We must show that T = 0. Let $T \in B(X, Y)$ be such since T = 0. Since T = 0 is a linear, T(0) = 0. Assume T = 0. Let $T \in B(X, Y)$ be such T = 0. Since T = 0 is a norm. Then T = 0 is a norm of T = 0. Hence T = 0 is a norm of T = 0. Hence T = 0 is a norm of T = 0. Hence T = 0 is a norm of T = 0. Hence T = 0 is a norm of T = 0. Hence T = 0 is a norm of T = 0.

Theorem 3.5 Let X be a seminormed space over [H] and $f \in S'$, where S is a vector subspace of X. Then f can be extended to $F \in X'$ such that ||F|| = ||f||.

Proof : Let (X, | . |) be a seminormed space over | H and let S be a subspace of X. Let f & S'. We must show that there exists an $F \in X'$ such that ||F|| = ||f|| and F = f on S. Define p : $X \to \mathbb{R}$ by p(x) = ||f|||x|| for $x \in X$. Since f is continuous on S, ||f| < \omega; hence p is well-defined. Claim that p is a seminorm on X. p(0) = ||f|||0|| = ||f||. 0 = 0. Let $x \in X$ and $\lambda \in H$. Then $p(\lambda x)$ $= \|f\| \|\lambda x\| = \|f\| \|\lambda\| \|x\| = |\lambda| \|f\| \|x\| = |\lambda| p(x). \text{ Let } x, y \in X.$ Then $p(x+y) = ||f|| ||x+y|| \le ||f|| (||x|| + ||y||) = ||f|| ||x|| + ||f|| ||y||$ = p(x) + p(y). So we have the claim. Since f is continuous on S, by Theorem 2.9 , $|f(x)| \le ||f|| ||x||$ for all x & S. Hence $|f(x)| \le p(x)$ for all x & S. By Theorem 2.7, f can be extended to F & X' such that $|F(x)| \le p(x)$ for all $x \in X$. We must show that ||F|| = ||f||. ||f|| = $\sup \{ |f(x)| | ||x|| \le 1, x \in S \} \le \sup \{ |F(x)| | ||x|| \le 1 \} = ||F||. So$ $||f|| \le ||F||$. $||F|| = \sup \{ |F(x)| | ||x|| \le 1 \} \le \sup \{ p(x) | ||x|| \le 1 \}$ = $\sup \{ \|f\| \|x\| \| \|x\| \le 1 \} \le \sup \{ \|f\| \|x\| \le 1 \} = \|f\|$. Hence ||F|| = ||f|| . #

Theorem 3.6 Let $(X, \|.\|)$ be a seminormed space over $\|$ 4 and let S be a subspace of X. Let $x_0 \in X \setminus \overline{S}$. Then there exists an $f \in X'$ with $f(x_0) = 1$, f = 0 on S and $\|f\| = \frac{1}{d(x_0, S)}$ where \overline{S} is the closure of S and $d(x_0, S)$ = inf $\{\|x_0 - s\|\| s \in S\}$.

 $\frac{\text{Proof}}{\text{Proof}}: \quad \text{Define g}: S + \langle x_0 \rangle \to \mathbb{H} \text{ by g}(s + tx_0) = t \text{ where}$ $s \in S \text{ and } t \in \mathbb{H}. \quad \text{We must show that g} \in (S + \langle x_0 \rangle)'. \quad \text{Let u, v} \in S + \langle x_0 \rangle$

and a, b \in \mathbb{H} . We must show that g(au + bv) = ag(u) + bg(v). Since $u, v \in S + \langle x_0 \rangle, u = s' + t' x_0, v = s' + t'' x_0$ for some s, s' \(S \) and $t', t'' \in H$. Then $g(au + bv) = g(a(s' + t' x_0) + b(s'' + t' x_0))$ $= g(as' + bs' + (at' + bt')x_0) = at' + bt'' = a(g(s' + t'x_0))$ + $bg(s'' + t'x_0) = ag(u) + bg(v)$. Hence g is a linear functional on $S + \langle x_0 \rangle$. Let $d = d(x_0, S)$. Since $x_0 \neq \bar{S}$, $d = d(x_0, S) > 0$. Let $z \in S + \langle x_0 \rangle$. Then $z = s + tx_0$ for some $s \in S$ and $t \in H$ so ||z|| = $\|s + tx_0\| = \|t(x_0 - (-s/t))\| = |t| \|x_0 - (-s/t)\| \ge |t| \inf \{ \|x_0 - y\| | y \in s \}$ = |t|d = |g(z)|d. Thus $||g|| = \sup \{ |g(z)| | ||z|| < 1 \} < ||z||d < 1/d$ so g is bounded on the unit disc. By Theorem 2.9, g is continuous on $S + \langle x_0 \rangle$ hence $g \in (S + \langle x_0 \rangle)'$. Let $s \in S$. Then $1 = g(x_0 - s)$ $\leq \|g\| \|x_0 - s\|$ so $1 \leq \inf \{\|g\| \|x_0 - s\| | s \in S \} = \|g\| \inf \|x_0 - s\| \|g\|$ ${ \|x_0 - s\| |s \in S \} = \|g\| d \text{ therefore } \|g\| \ge \frac{1}{d} \cdot \text{Hence } \|g\| = \frac{1}{d} \text{ so} }$ we have that $g \in (S + \langle x_0 \rangle)'$ is such that $g(x_0) = 1$, g = 0 on S and $\|g\| = \frac{1}{d}$. By Theorem 3.5, there exists $f \in X'$ such that f = g on $S + \langle x_0 \rangle$ and $||f|| = ||g|| \cdot ||f||$

Definition 3.7 A set S C X is called <u>fundamental</u> if the span of S is dense in X.

Theorem 3.8 Let X be a seminormed space, S \subseteq X. Suppose that for all f \in X', f = 0 on S implies that f = 0. Then S is fundamental. If S is a subspace of X then S is dense.

 $\frac{\text{Proof}}{\text{Proof}}: \text{ Let } < S > \text{ be the span of S. Let } x_0 \in X \setminus < S >. \text{ By}$ Theorem 3.6, there exists an $f \in X'$ such that $f(x_0) = 1$, f = 0 on < S > and $\|f\| = \frac{1}{d}$ where $d = d(x_0, < S >) = \inf \{ \|x_0 - m\| \|m \in < S > \}$. Since f = 0 on < S >, f = 0 on S >. By assumption, f = 0 on X,

so $f(x_0) = 0$, a contradiction. Hence $X \setminus \overline{S} = \emptyset$: that is $\overline{S} = X$. So S is fundamental.

Assume that S is a vector subspace of X. Suppose that $\overline{S} \neq X$. Let $x_0 \in X \setminus \overline{S}$. By Theorem 3.6, there exists an $f \in X$ such that $f(x_0) = 1, f = 0$ on S. By assumption, f = 0 on X; so $f(x_0) = 0$, a contradiction. Hence $X \setminus \overline{S} = \emptyset$. Then $\overline{S} = X$. Thus S is dense in X. #

Theorem 3.9 Let Φ be a collection of vector topologies for a vector space X over H. Let $v\Phi$ be the set of all unions of finite intersections of members in $\mathbf{U}\Phi$. Then $v\Phi$ is a vector topology for X and a net $x_{\delta} \to 0$ in $v\Phi$ if and only if $x_{\delta} \to 0$ in T, for each $T \in \Phi$.

- 1. Continuity of multiplication. Let $t \in \mathbb{H}$ and $x \in X$. Let $(t_{\delta})_{\delta \in D}$, $(x_{\delta})_{\delta \in D}$ be nets in X with respect to the same index set D such that $t_{\delta} \to t$ and $x_{\delta} \to a$ in v_{δ} . We must show that $t_{\delta}x_{\delta} \to tx$ in v_{δ} . Since $x_{\delta} \to x$ in v_{δ} , by Theorem 1.18, $x_{\delta} \to x$ in (x, T) for each $T \in \Phi$. But T is a vector topology and $t_{\delta}x_{\delta} \to tx$ in each (X, T) so by Theorem 1.18, $t_{\delta}x_{\delta} \to tx$ in v_{δ} . Hence the multiplication is continuous.
- Continuity of addition. The proof is similar so the proof of the continuity of multiplication. The rest of the proof follows easily from Theorem 1.18. #

Definition 3.10 Let P be a collection of paranorms on a vector space X over H. Then σ^p denotes v { $T_p|p \in P$ } where T_p is the topology induced by a paranorm p.

Theorem 3.11 Let X be a vector space over \mathbb{H} and let P be a collection of paranorms on X. Then σP is a vector topology for X. Moveover, a net $x_{\delta} \to 0$ in σP if and only if $p(x_{\delta}) \to 0$ for each $p \in P$.

Proof: It follows from Example 3.2 and Theorem 3.9 • #

Theorem 3.12 Let X be a vector space over IH. For each $\alpha \in I$, (I an index set) let Y_{α} be a TVS(H) and let $f_{\dot{\alpha}}: X \to Y_{\dot{\alpha}}$ be a linear map.

Let $F = \{ f_{\dot{\alpha}} | \alpha \in I \}$. Then wF is a vector topology. Moreover, a net $x_{\delta} \to 0$ in wF if and only if $f_{\dot{\alpha}}(x_{\dot{\delta}}) \to 0$ for each $\alpha \in I$.

Proof: Suppose that $F = \{f\}$ where $f: X \to Y$ is a linear map. Let $t \in H$ and $x \in X$. Let $(t_{\delta})_{\delta \in D}$ and $(x_{\delta})_{\delta \in D}$ be nets in H and X respectively with respect to the same index set D such that $t_{\delta} \to t$ and $x_{\delta} \to x$. We must show that $t_{\delta}x_{\delta} \to tx$. By Theorem 1.19, $f(x_{\delta}) \to f(x)$ in Y, so $f(t_{\delta}x_{\delta}) = t_{\delta}f(x_{\delta}) \to tf(x) = f(tx)$. By Theorem 1.19 again, $t_{\delta}x_{\delta} \to tx$. Hence the multiplication is continuous. Using a similar proof we can show that the addition is also continuous. Hence wF is a vector topology. The last property comes from Theorem 1.19 . #

Definition 3.13 Let X be a vector space over \mathbb{H} . We say that $\mathbb{A} \subseteq X$ has <u>finite codimension in X</u> if and only if there exists a finite dimensional subspace B of X such that $\mathbb{A} + \mathbb{B} = X$.

Theorem 3.14 Let X be a vector apace over |H| and let $F \subseteq X$. In (X, wF), a TVS(|H|), every $U \in N(X)$ includes a vector subspace of X of finite codimension.

 $\underline{\operatorname{Proof}}$: Let (X, wF) be a TVS(IH). Let $U \in N(X)$. We must show that there exists a vector subspace A of X such that A has finite

codimension and ACU. Since U & wF, there exists $V_i \in N(X, wf_i)$, $f_i \in F$, $i = 1, 2, \ldots$, n such that $\bigcap_{i=1}^n V_i \subseteq U$. Since $V_i \in N(X, wf_i)$ for all $i = 1, 2, \ldots$, n, $V_i \supseteq \{|x|||f_i(x)|| < \varepsilon_i\}$ for some $\varepsilon_i > 0$, $i = 1, 2, \ldots$, n. Let $A = \bigcap \{|kerf_i||i = 1, 2, \ldots, n\}$. Since $kerf_i$ is vector subspace of X for all $i = 1, 2, \ldots, n$, A is also a vector subspace of X. We must show that $A \subseteq U$. Let $x \in A$. Then $x \in kerf_i$ for all $i = 1, 2, \ldots, n$. Therfore, $f_i(x) = 0$ for all $i = 1, 2, \ldots, n$ so $x \in \bigcap_{i=1}^n \{|x|||f_i(x)|| < \varepsilon_i\} \subseteq \bigcap_{i=1}^n V_i \subseteq U$. Next, we must show that A has finite codimension, that is, there exists a finite chimensional . vector subspace C of X such that $A \in C \subseteq X$.

Case 1 X is finite dimensional. The result is clear.

Case 2 X is infinite dimensional. Claim that $A \neq \{0\}$. To prove this suppose not. Define $G': X \to \mathbb{H}^n$ by $G'(x) = (f_1(x), f_2(x), \ldots, f_n(x))$. Since f_i is a linear functional forall $i = 1, 2, \ldots, n$, G' is linear. Since $A = \{0\}$ $A = \{0\}$ $A = \{0\}$ for some $A = \{0\}$

Let B = X/A. Then B is a vector space over |H| with respect to the addition and scalar multiplication defined by $(x+A) + (y+A) = (x+y) + A \text{ and } t(x+A) = tx + A \text{ where } x, y \in A \text{ and } t \in [H].$ Define $G: B \to [H]^n$ as follows. Let $\alpha \in B$. Choose $x \in \alpha$.

Define $G(\alpha) = (f_1(x), f_2(x), \dots, f_n(x))$. We must show that G is welldifined. Choose $y \in \alpha$ also. Then $G(\alpha) = (f_1(y), f_2(y), ..., f_n(y))$. Since $y \in \alpha$, $x - y \in A$. Hence $f_i(x - y) = 0$ for all i = 1, 2, ..., n so $f_{i}(x) = f_{i}(y)$ for all i. Hence $(f_{i}(x), f_{2}(x), ..., f_{n}(x))$ = $(f_1(y), f_2(y), ..., f_n(y))$ so G is well-defined. To show that G is injective let α , $\alpha' \in B$ be such that $G(\alpha) = G(\alpha')$. We must show that $\alpha = \alpha'$. Choose $x \in \alpha$ and $y \in \alpha'$. Then $(f_1(x), f_2(x), \dots, f_n(x))$ = $(f_1(y), f_2(y), ... f_n(y))$. Since f_i is linear for all i = 1, 2, ..., n, $f_i(x-y) = 0$ for all i; hence $x-y \in A$. Thus $\alpha = \alpha'$ so G is injective. Hence $\dim B < \dim H^n = n < \infty$. Suppose that $\dim B = m$. Let $\{\alpha_1, \alpha_2, \ldots, \alpha_m\}$ be a basis of B. Choose $\beta_i \in \alpha_i$, $i = 1, 2, \ldots, m$. Let $\langle \beta_1, \beta_2, ..., \beta_m \rangle$ be the set of all linear combination of elements in $\{\beta_1,\beta_2,\ldots,\beta_m\}$. Claim that $\{\beta_1,\beta_2,\ldots\beta_m\}$ is linearly independent. Suppose that $\sum_{j=1}^{m} \lambda_j \beta_j = 0, \lambda_j \in \mathbb{H}, j = 1, 2, ..., n$. We must show that $\lambda_j = 0$ for all j. Since $\sum_{j=1}^{m} \lambda_j \beta_j = 0$, $[\sum_{j=1}^{m} \lambda_j \beta_j] = [0]$ so $\sum_{j=1}^{m} \lambda_j [\beta_j]$ = [0]. Hence $\sum_{j=1}^{m} \lambda_j \alpha_j = 0 \text{ (in B)}$. But $\{\alpha_1, \alpha_2, \dots, \alpha_m\}$ is linearly independent, so $\lambda_{j} = 0$ for all j = 1, 2, ...m and thus we have the claim. Hence $<\beta_1,\beta_2,\ldots,\beta_m>$ is a vector subspace of X with the basis { $\beta_1,\beta_2,\ldots,\beta_m$ } . We must show that A + < $\beta_1,\beta_2,\ldots,\beta_m$ > = X. Let $x \in X$. Then $x + A \in B$ so $x + A = \sum_{j=1}^{\infty} \lambda_j \beta_j$ for some $\lambda_j \in H$, j = 1, 2, ..., m. Hence $x + A = \sum_{j=1}^{m} \lambda_j (\beta_j + A) = \sum_{j=1}^{m} \lambda_j \beta_j + A$ therefore there exist a, b \in A such that $x + a = \sum_{j=1}^{\infty} \lambda_j \beta_j + b$. Hence $x = (b-a) + \sum_{j=1}^{m} \lambda_{j}^{\beta} \beta_{j}^{\beta} \beta_{j}^{\beta}$

and thus A has finite codimension. #

Definition 3.15 A collection F of subsets of vector space is called additive if and only if for each U & F_there exists V & F such that V+V C U.

Theorem 3.16 Let X be a vector space over \mathbb{H} and a topological space. Define $u: X \times X \to X$ by u(x, y) = x + y. Then u is continuous at 0 (=(0, 0) if and only if N(X) is additive.

(\Leftarrow) Let $U \in N(X)$. Since N(X) is additive, there exists a $V \in N(X)$ such that $V + V \subseteq U$. So $V \times V \in N(X \times X)$ and $u(V \times V)$ = $V + V \subseteq U$. Hence u is continuous at 0.

Theorem 3.17 Let X be a TVS(IH) and U \in N(X). Then tU \in N(X) for every t \neq 0.

<u>Proof</u>: Since Scalar multiplication is continuous, the map $x \to tx$ is continuous and bijective with inverse $x \to (\frac{1}{t})x$ which is also continuous and bijective. So the map $x \mapsto tx$ is a homeomorphism of X on itself and hence preserves open sets.

Theorem 3.18 Let X be a TVS(H). Then every neighborhood U of 0 in X is absorbing.

Proof: Let $U \in N(X)$. Let $X \in X$. Define u_X : $|H \to X$ by $u_X(t)$ = tx. Then u_X is continuous at 0 so there exists an $\varepsilon > 0$ such that $|t| < \varepsilon$ implies that $u_X(t) \in U$; that is, $tx \in U$. Hence U is absorbing . #

Theorem 3.19 Let X be a TVS(H). Then every $U \in N(X)$ includes a balanced neighborhood of 0.

Proof: Let U ∈ N(X). Since the map $u : |H \times X \to X \text{ given by } u(t, x) = tx \text{ is continuous, there exists a } W ∈ N(H \times X) \text{ such that } u(W) ⊆ U. Since W ∈ N(|H \times X), there exist P ∈ N(|H) and Q ∈ N(X) such that P × Q ⊆ W. Since P ∈ N(|H) then there exists an <math>\varepsilon > 0$ such that $P = \{t \mid t \mid \le \varepsilon\}$. Let $V = \bigcup \{tQ \mid t \mid \le \varepsilon\}$. We must show that V is balanced. Let $V \in V$ and $V \in V$ and $V \in V$ and the let $V \in V$ and $V \in V$ and

Theorem 3.21 Let X be a TVS(H). Then every U \in N(X) includes a closed balanced neighborhood of 0.

<u>Proof</u>: Let $U \in N(X)$. By Theorem 3.16, since addition is continuous, there exists a set $V \in N(X)$ such that $V + V \subseteq U$. By Theorem 3.19, there exists a balanced set $W \in N(X)$ such that $W \subseteq V$. Then $\overline{W} \subseteq W + V \subseteq V + V \subseteq U$. We must show that \overline{W} is balanced. Let $\overline{U} \in W$ be such that $|U| \leq 1$. Since the map $\overline{U} \in W$ is continuous, $\overline{U} \subseteq V$ is continuous, $\overline{U} \subseteq V$ is continuous, $\overline{U} \subseteq V$. Since $\overline{U} \subseteq V$ is balanced and $|U| \leq 1$, $|U| \subseteq W$. Hence $|U| \subseteq V$ is balanced. #

Theorem 3.22 Every TVS(|H) is a regular topological space. The following conditions on X, a TVS(|H), are equivalent:

- (a) X is a T3- space.
- (b) {0} is a closed set.
- (c) For each $x \neq 0$, there exists a $U \in N(X)$ such that $x \notin U$.

Proof: Let X be a TVS(\mathbb{H}). We must show that X is regular; that is, for all x \in X, U \in N_X contains a closed neighborhood of x. Let x \in X and U \in N_X. Then U = x + V for some V \in N(X). By Theorem 3.21 there exists a closed set W \in N(X) such that W \subseteq V. Then x+W is a closed neighborhood of x such that x+W \subseteq x+V = U. So X is regular.

To show that (a) \Rightarrow (b). Assume that X is T_3 . Since X is T_3 , X is T_2 ; hence every singleton is closed so $\{0\}$ is closed in X.

 $(b) \Longrightarrow (c). \text{ Assume that } \{0\} \text{ is closed. Let } x \neq 0.$ Since $\{0\}$ is closed and $x \neq 0$ then there exists $U \in N(X)$ such that $(x - U) \bigcap \{0\} = \emptyset. \text{ Then } x \notin U.$

(c) \Rightarrow (a). We have shown that X is regular. It remains to show that X is T_1 . Let x, $y \in X$ be such that $x \neq y$. Then $x - y \neq 0$. Hence there exists a set $U \in N(X)$ such that $x - y \notin U$.

Since $U \in N(X)$, by Theorem 3.19, U contains a balanced set $V \in N(X)$. Claim that Int(V) is balanced. Let $t \in H$ be such that |t| < 1. We shall show that t Int(V) = Int(tV). If t = 0 the result is. obvious. Assume $t \neq 0$. Define $f_t : X \rightarrow X$ by $f_t(x) = tx$. It is clear that f is a homeomorphism of X onto itself. So f preserves open sets. Let x & t Int(V). Then there exists a y & Int(V) such that x = ty. Since y 6 Int(V), there exists an open set W in X such that y & W C V. Hence ty & tW C tV. Since W is open and f is a homeomorphism, tW is open so $x = ty \in tW C tV$, therefore $x \in Int(tV)$. Conversely, let x 6 Int(tV). Then there exists an open set G in X such that $x \in G \subset tV$. Since $t \neq 0$, $(\frac{1}{t})x \in (\frac{1}{t})G \subseteq V$. Since f_t is a homeomorphism, $(\frac{1}{t})G$ is open so $(\frac{1}{t})x \in Int(V)$. Hence $\frac{x}{t} = y$ for some $y \in Int(V)$ so x = ty. Thus $x \in t$ Int(V) so we have the claim. Since V is balanced and $|t| \le 1$, $tInt(V) = Int(tV) \subseteq Int(V)$ so Int(V) is balanced. Let P = Int(V). Then P is open balanced set in N(X) such that P C U. Since $x-y \notin U$, $x-y \notin P$ therefore $x \notin y + P$ and $y \notin x + P$ Hence y + P is an open set containing y, and x + P is on open set containing x. Thus X is T_1 so X is T_1 and regular ; hence X is T_3 . #

<u>Definition 3.23</u> A TVS(H) is called <u>separated</u> if the three equivalent conditions of Theorem 3.22 hold. We also say that the topology is separated.

Theorem 3.24 Let X be a TVS([H), A, B, \subseteq X. Then $\overline{A} + \overline{B} \subseteq \overline{A + B}$.

 $\frac{\text{Proof}}{\text{Proof}}: \text{ Let } x \in \overline{A} + \overline{B}. \text{ Then } x = a+b \text{ for some } a \in \overline{A} \text{ and}$ b 6 \overline{B} . Hence there exist filter bases Q, P in A, B respectively such that Q \to a and P \to b. It is clear that Q + P is a filter base in A + B. Since Q \to a, P \to b and + is continuous, Q + P \to a + b = x

So x e A + B.

Theorem 3.25 Let X be a TVS(|H) and S C X. Then the following hold.

- (a) If S is a subspace of X, then so is \overline{S} .
- (b). If S is a convex set in X, then so is \overline{S} .
- (c) If S is a balanced in X, then so is S.

 $\frac{\text{Proof}}{\text{f(x)}} = \text{tx is continuous, } f(\overline{s}) \subseteq \overline{f(s)} \text{ ; that is } \overline{ts} \subseteq \overline{ts}. \text{ Let a,b } \in \mathbb{H}.$ Then $a\overline{s} + b\overline{s} \subseteq \overline{as + bs} \subseteq \overline{s} \text{ so } \overline{s} \text{ is a subspace. of } X.$

(b) Let a,b \in [0,1] be such that a+b = 1. Since \bar{S} is a vector subspace of X, $\bar{a}\bar{S} + b\bar{S}\bar{C}\bar{S}$.

(c) Let $x \in \overline{S}$ and $t \in [H]$ be such that $|t| \le 1$. Then there exists a filter Q in S such that $Q \to x$. Let $A \in Q$. So that C + C = C. Hence C = C is a filter base in C = C. Since scalar multiplication is continuous, C = C to the therefore C = C. Hence C = C is balanced. #

Theorem 3.26 Let X be a TVS((H)). Let β be an additive filterbase of balanced absorbing subsets of X. Then there exists a unique vector topology on X for which β is a local base of neighborhoods of O.

<u>Proof</u>: Let $T = \{G \subseteq X | G = \emptyset \text{ or for each } x \in G \text{ there exists} \ U \in \beta \text{ such that } x + U \subseteq G \}$. We must show that T is a topology on X. Let G_1 , $G_2 \in T$. To show that $G_1 \cap G_2 \in T$, suppose that $G_1 \cap G_2 \neq \emptyset$. Let $X \in G_1 \cap G_2$. Then there exist U_1 , $U_2 \in \beta$ such that $X + U_1 \subseteq G_1$ and $X + U_2 \subseteq G_2$. Since β is a filter base, there exists a $U \in \beta$ such that $U \subseteq U_1 \cap U_2$. Hence $X + U \subseteq (X + U_1) \cap (X + U_2) \subseteq G_1 \cap G_2$ so $G_1 \cap G_2 \in T$.

Let $\{G_{\alpha}\}_{\alpha \in I}$ be a family of open sets in T.: We must show that $\bigcup_{\alpha \in I} G_{\alpha} \in T$. Suppose that $\bigcup_{\alpha \in I} G_{\alpha} \neq \emptyset$. Let $x \in \bigcup_{\alpha \in I} G_{\alpha}$. Then $x \in G_{\alpha}$ for some $\alpha_0 \in I$. Since $G_{\alpha} \in T$, there exists a $U_{\alpha} \in \beta$ such that $x + U_{\alpha} \in G_{\alpha}$ and $G_{\alpha} \in G_{\alpha} \in G_{\alpha}$. Hence $\bigcup_{\alpha \in I} G_{\alpha} \in T$.

Let $x \in X$. Then $x + U \subseteq X$ for all $U \in \beta$ so $X \in T$. Hence T is a topology for X. Next, we must show that β is a local base of neighberhoods of 0. Let $U \in \beta$. Let $G = \{x \mid x + V \subseteq U \text{ for some } V \in \beta\}$. Since $0 + U \subseteq U$, $0 \in G$. Let $x \in G$. Then there exists a $V \in \beta$ such that $x + V \subseteq U$. Since V is absorbing, $0 \in V$; hence $x \in x + V \subseteq U$. So $G \subseteq U$. We must show that G is open. Let $x \in G$. Then there exists a $V \in \beta$ such that $x + V \subseteq U$. Let $V \in \beta$ be such that $V \in V$. Let $V \in \beta$ be such that $V \in C$ be so $V \in C$. Let $V \in C$ be so $V \in C$ be so $V \in C$. Hence $V \in C$ be so $V \in C$. Then there exists a $V \in C$ be such that $V \in C$ be so $V \in C$. Then there exists a $V \in C$ be such that $V \in C$ be such that

We must show that T is a vector topology.

1. Continuity of addition. Let a, b \in X. Let $(x_{\delta})_{\delta \in D}$ and $(y_{\delta})_{\delta \in D}$ be nets in X with respect to the directed set D such that $x_{\delta} \to a$ and $y_{\delta} \to b$. Let U \in N(X). Choose V \in B such that V + V \subseteq U. Since $x_{\delta} \to a$ and $y_{\delta} \to b$ then there exists a $\delta' \in$ D such that $\delta \geq \delta'$ implies that $x_{\delta} - a \in V$ and $y_{\delta} - b \in V$. Hence $x_{\delta} + y_{\delta} - a - b \in V + V$ \subseteq U; so $x_{\delta} + y_{\delta} \in a + b + U$ so $x_{\delta} + y_{\delta} \to a + b$ therefore the addition is continuous.

Definition 3.27 Let X be a TVS (|H|). Then S \subseteq X is called bounded if and only if every U \in N(X) there exists an $\epsilon > 0$ such that tS \subseteq U whenever $|t| < \epsilon$; that is S is absorbed by every neighborhood of 0.

Remark 3.28

- (a) Every singleton in a TVS(|H) is bounded.
- (b) The union of two bounded sets in a TVS(H) is bounded.

Theorem 3.29 The following are equivalent for a set S in X, a TVS(H):

- (a) S is bounded.
- (b) For every sequence $(x_n)_{n \in \mathbb{N}} \subseteq S$ and every sequence $(\varepsilon_n)_{n \in \mathbb{N}}$ of scalars in \mathbb{H} with $\varepsilon_n \to 0$ we have $\varepsilon_n x_n \to 0$.
 - (c) For every sequence $(x_n)_{n \in \mathbb{N}} \subseteq S$, $(\frac{1}{n})x_n \to 0$.

 $\frac{\text{Proof}}{\text{exists an }\epsilon} > 0 \text{ such that } t \, S \, C \, U \text{ for all } t \, \epsilon \, H \text{ such that } |t| < \epsilon.$ exists an $\epsilon > 0$, choose N' ϵ IN such that for all n > N', $|\epsilon_n| < \epsilon$. Let n ϵ N be such that n \geq N'. Then $|\epsilon_n| < \epsilon$; hence $\epsilon_n x_n \, \epsilon \, S \, C \, U$ so $\epsilon_n x_n \to 0$.

(b) ⇒(c). Obvious.

 $(c)\Rightarrow (a)$ Suppose S is not bounded. Then there exists a balanced set U \in N(X) such that for all $\epsilon > 0$ there exists a t \in IH such that $0 < |t| < \epsilon$ and ts \notin U. Since ts \notin U, there exists a y \in tS such that y \notin U. Now y = ts for some s \in S. Since $|\frac{t}{\epsilon}| < 1$ and U is balanced, $\frac{t}{\epsilon}$ U \in U. Since y = ts \notin U, y = ts \notin \notin U so ϵ s \notin U i.e ϵ S \notin U for all $\epsilon > 0$. In particular, $\frac{1}{n}$ S \notin U for all $\epsilon > 0$. Then $\frac{1}{n} \times n \notin$ U for all $\epsilon > 0$. Then $\frac{1}{n} \times n \notin$ U for all $\epsilon > 0$. Then $\frac{1}{n} \times n \notin$ U for all $\epsilon > 0$.

Definition 3.30 A map between TVS(|H) s which preserves bounded sets is called bounded.

Theorem 3.31 A continuous linear map between TVS(|H)'s is bounded.

Proof: Let X, Y be TVS(|H)'s. Let $u: X \to Y$ be a continuous linear map. We must show that u is bounded. Let S be a bounded set of X. Let $(y_n)_{n \in \mathbb{N}} \subseteq u(S)$. Then $y_n = u(x_n)$ for some $x_n \in S$, $n \in \mathbb{N}$. Hence $(\frac{1}{n})y_n = \frac{1}{n}u(x_n) = u(\frac{1}{n}x_n)$. Since $x_n \in S$ for all $n \in \mathbb{N}$ and S is bounded, $\frac{1}{n}x_n \to 0$ as $n \to \infty$. Since u is continuous and $\frac{1}{n}x_n \to 0$ as $n \to \infty$, u $(\frac{1}{n}x_n) \to u(0) = 0$ so u(S) is bounded by Theorem 3.29. #

Corollary 3.32 If T and T' are vector topologies for a vector space X over H and T'ZT, then each set which is bounded in (X, T') is bounded in (X, T).

 \underline{Proof} : Let S be a bounded set in (X, T'). Let i be the identity map from (X, T') into (X, T). Then i is a continuous linear map. By Theorem 3.31, i(S) = S is bounded in (X, T).

Theorem 3.33 Let Φ be a collection of vector topologies for a vector space X over IH and S \subset X. Then S is bounded in (X, $v\Phi$) if and only if it is bounded in (X, T) for each $T \in \Phi$.

<u>Proof</u>: (⇒) Suppose S is bounded in $(X, v\Phi)$. Since $v\Phi \supseteq T$ for each $T \in \Phi$, by Corollary 3.32, S is bounded in (X, T) for each $T \in \Phi$.

(\Leftarrow) Suppose S is bounded in (X, T) for each T $\in \Phi$.

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence of S. We must show that $(\frac{1}{n})x_n \to 0$ in $v\Phi$.

Since S is bounded in (X, T) for each T $\in \Phi$. By Theorem 3.29, $(\frac{1}{n})x_n \to 0$ in (X, T) for each T $\in \Phi$. By Theorem 1.18, $(\frac{1}{n})x_n \to 0$ in $v\Phi$. By Theorem 3.29, S is bounded in (X, $v\Phi$).

Definition 3.34 Let X be a vector space over |H|. B \subseteq X is called a bornivore if and only if for each bounded set S \subseteq X, there exists an $\varepsilon > 0$ such that tS \subseteq B for $|t| < \varepsilon$.

Remark 3.35 Let (X, d) be a pseudometric space. Then every bornivore is a neighborhood of 0.

 $\frac{\text{Proof}}{\text{root}}: \text{ Let B GN(X)}. \text{ Then nB } \notin \text{N(X)} \text{ for all n } \in \mathbb{N}. \text{ Choose}$ $x_n \text{ with } d(x_n, 0) < \frac{1}{n} \text{ and } x_n \notin \text{nB}. \text{ Let S} = (x_n)_{n \in \mathbb{N}}. \text{ We must show}$ that S is bounded. Let $(z_n)_{n \in \mathbb{N}}$ be a sequence in S.

We must show that $\frac{1}{n}z_n \to 0$. Let $\varepsilon < 0$ be given. Choose $n \in \mathbb{N}$ such that $\frac{1}{n^2} < \varepsilon$. Then $d(\frac{1}{n}z_n, 0) = \frac{1}{n}d(z_n, 0) < \frac{1}{n}\cdot\frac{1}{n} < \varepsilon$. Hence $\frac{1}{n}z_n \to 0$ so S is bounded. Since $x_n \notin nB$ for each n, $\frac{1}{n}S \notin B$ for all $n \in \mathbb{N}$; hence B does not absorb S so B is not a bornivore.

Lemma 3.36 Let X, Y be TVS(H)'s, $u : X \rightarrow Y$ a bounded linear map and B a bornivore in Y. Then $u^{-1}(B)$ is a bornivore in X.

<u>Proof</u>: Let S \subset X be bounded. Since u is bounded, u(S) is also bounded. Since B is bornivore in Y, there exists an $\epsilon > 0$ such that tu(S) \subset B for all t \in H such that $|t| < \epsilon$ so u(ts) \subseteq B therefore ts \subset u⁻¹(u(ts)) \subset u⁻¹(B). Hence u⁻¹(B) is bornivore in X.

Theorem 3.37 Let X be a TVS(|H) in which every bornivore is a neighborhood of 0. Then every bounded linear map u : X - Y, Y a TVS(|H) is continuous.

 $\frac{\text{Proof}}{\text{3.36, U is bornivore}} : \text{ Let U be an open neighberhood of 0 in Y. By Lemma} \\ 3.36, \text{ U is bornivore} : \text{ hence } u^{-1}(\text{U}) \in \text{N(X)}. \text{ Thus u is continuous at} \\ 0. \text{ Let } x \in \text{X}. \text{ Let } (x_{\delta})_{\delta \in \text{D}} \text{ be a net in X such that } x_{\delta} \to \text{x}. \text{ Then} \\ x_{\delta} - x \to 0. \text{ But u is continuous at 0 therefore } u(x_{\delta}) - u(x) \\ = u(x_{\delta} - x) \to u(0) = 0. \text{ Hence } u(x_{\delta}) \to u(x) \text{ so u is continuous at X} \\ \text{But x was arbitrarry, so u is continuous on X.} \\ \#$

Lemma 3.38 Let (X, T) be a TVS(IH), B a balanced convex absorbing set and p the gauge of B. Then the following hold:

- (a) If B is bounded then op 2 T.
- (b) If B is a neighberhood of 0 then op ⊆ T.

<u>Proof</u>: (a) Let $U \in N(X)$. Since B is bounded, there exists an $\varepsilon > 0$ such that $tB \subseteq U$ for all t such that $|t| < \varepsilon$. Hence there exists an $\varepsilon > 0$ such that $|\varepsilon'| < \varepsilon$ and $U \supseteq \varepsilon'B$. Since p is the qauge of B, $U \supseteq \varepsilon'B \supseteq \varepsilon' \{ x | p(x) < 1 \} = \{ x | p(x) < \varepsilon' \}$ which is open in σp . Hence U is a σp -neighborhood of 0 so $\sigma p \supseteq T$.

(b) Let U be a op-neighborhood of 0. Then there exists an $\epsilon > 0$ such that $U \supseteq \{ x | p(x) \le \epsilon \} = \epsilon \{ x | p(x) \le 1 \} \supseteq \epsilon B$. Thus $u \in N(T)$ therefore op $\supseteq T$. #

Theorem 3.39 Let X be a TVS(H). Then X is a seminormed space if and only if X has a bounded convex neighborhood U of 0.

Proof: (\Rightarrow) Suppose that X is a seminormed space with a seminorm p. Set $U = \{x \in X | p(x) \le 1\}$. To show that U is bounded, let $V \in N(X)$. Then there exists an r > 0 such that $V \supseteq B(0; r)$. Let $\epsilon > 0$ be such that $\epsilon < r$. Then if $|t| < \epsilon$ we get that tu $= \{x \in X | p(x) \le |t| \} \subseteq \{x \in X | p(x) < \epsilon \} \subseteq \{x \in X | p(x) < r\} = B(0, r)$ $\subseteq V$ so U is a bounded convex neighborhood of 0.

(←) Let U be a bounded convex neighberhood of 0.

Case 1: U is balanced. Then its gauge p_u gives the topology of X. By Lemma 3.38, $\sigma(p_u)$ = T, the topology of X. Hence X is a seminormed space.

Case 2: U is not balanced. By Theorem 3.19, there exists a balanced neighborhood V of 0 such that V \subseteq U. let CH(V) be the convex hull of V; that is CH(V) = { $\alpha x + \beta y \mid \alpha$, $\beta \in [0, 1], \alpha + \beta = 1$ and $x, y \in V$ }. Let $z \in CH(V)$. Then there exist α , $\beta \in [0, 1], \alpha + \beta = 1$ and there exist $x, y \in V$ such that $z = \alpha x + \beta y$. Let $t \in H$ be such

that $|t| \le 1$. Then $tz = \alpha(tx) + \beta(ty) \in CH(V)$. So CH(V) is balanced and convex. Since $CH(V) \supseteq V \ni 0$, $CH(V) \in N(X)$. Since $CH(V) \subseteq U$ and U is bounded, CH(V) is bounded. Hence the gauge of CH(V) is a seminorm on X so X is a seminormed space. #

Lemma 3.40 Let X be a vector space over [H and q a nonnegative real function defined on X. For x 6 X, set $\|x\| = \inf \left\{ \sum_{k=1}^{n} q(x_k - x_{k-1}) \middle| x_0 = 0 ; x_n = x \right\}$ where the set

 $(0, x_1, x_3, ..., x_{n-1}, x)$ is a chain ending at x. Then

- (1) $||x+y|| \le ||x|| + ||y||$ for all x, y $\in X$.
- (2) If q(0) = 0 then ||0|| = 0
- (4) If q(-x) = q(x) for all x then ||-x|| = ||x|| for all x.

Proof: Let x, y \in X. We must show that $||x+y|| \le ||x|| + ||y||$. Let $\epsilon > 0$ be given. Choose chains $(x_i)_{i=0}^n$, $(y_i)_{i=0}^m$ ending at x and y respectively with $\sum_{k=1}^n q(x_k - x_{k-1}) < ||x|| + \frac{c}{2}$ and $\sum_{k=1}^m q(y_k - y_{k-1}) < k=1$

 $\begin{aligned} & ||y|| + \frac{\varepsilon}{2}. \quad \text{Let } (z_i)_{i=0}^{m+n} \quad \text{be the chain } (0, x_1, x_2, \dots, x_{n-1}, x, x_n) \\ & x + y_1, x + y_2, \dots, x + y_{m-1}, x + y). \quad \text{Then } (z_i)_{i=0}^{m+n} \quad \text{is a chain ending at} \\ & x + y. \quad \text{Hence } ||x + y|| \le \sum_{k=1}^{m+n} q(z_k - z_{k-1}) = \sum_{k=1}^{n} q(x_k - x_{k-1}) \end{aligned}$

+ $\sum_{k=1}^{m} q(y_k - y_{k-1}) < ||x|| + ||y|| + \epsilon$. Since $\epsilon > 0$ was arbitrary,

 $\|x+y\| \le \|x\| + \|y\|$. Thus(2) holds. Suppose q(0) = 0. We must that $\|0\| = 0$. Let n = 1 in the definition of $\|0\|$.

Then $||0|| = \inf \{ q(x_1 - x_0) \} = \inf \{ q(0 - 0) \} = \inf \{ q(0) \} = \inf \{ 0 \} = 0$ so (3) holds. Suppose q(-x) = q(x) for all $x \in X$. We must show that Hence $\|-x\| = \inf \left\{ \sum_{k=1}^{n} q(x_k - x_{k-1}) \mid x_0 = 0 \text{ and } x_n = -x \right\}$ $= \inf \left\{ \sum_{k=1}^{n} q(y_k - y_{k-1}) \mid y_0 = 0, y_n = -x_n = x \right\}$ $= \|x\| \text{ thus (4) holds. } \#$

Lemma 3.41 Let X be a vector space over |H| and q a nonnegative real function on X satisfying q(0) = 0 and $q(x+y+z) \le 2max \{ q(x), q(y), q(z) \}$ for all $x,y,z \in X$. Then for any $x_1, x_2, \ldots, x_n \in X$, we have that $q(\sum_{i=1}^n x_i) \le 2 \sum_{i=1}^n q(x_i)$.

Proof: Let $x_1, x_2, \dots, x_n \in X$. Let $u = \sum_{i=1}^n q(x_i)$.

Case 1: u=0. Since $q\geq 0$, $q(x_i)=0$ for all $i=1,2,\ldots,n$. We must show that q ($\sum_{i=1}^{n}x_i$) = 0. It is true for n=1.

Suppose q $\begin{pmatrix} k \\ \sum x_i \end{pmatrix} = 0$ for $1 \le k < n$. We must show that i=1

 $< 2 \max \{ q(\sum_{i=1}^{k} x_i), q(x_{k+1}), q(0) \} = 2 \max \{ 0,0,0 \} = 2.0 = 0,$

we get that $q (\Sigma x_i) = 0$. By mathematical induction, we conclude i=1

that $q(\sum_{i=1}^{n} x_i) = 0$ therefore $q(\sum_{i=1}^{n} x_i) \le 2 \sum_{i=1}^{n} q(x_i)$.

Case 2: $u \neq 0$. So u > 0. We must show that $q (\sum_{i=1}^{n} x_i) \leq 2u$

It is trivial for n = 1,2,3. Let $n \in \mathbb{N}$ be such that $n \ge 4$. Suppose

that $q(\sum_{i=1}^{k} x_i) \le 2 \sum_{i=1}^{k} q(x_i)$ for $4 \le k < n$. We must show that

 $q (\sum_{i=1}^{n} x_i) \le 2 \sum_{i=1}^{n} q(x_i)$. Let m be the largest integer such that

 $\sum_{i=1}^{m} q(x_i) \le \frac{u}{2}$; if no such integer exists then let m = 0. Then, for

 $0 \le m < n$, $\sum_{i=1}^{m+1} q(x_i) > \frac{u}{2}$. Hence $\sum_{i=m+2}^{n} q(x_i) \le \frac{u}{2}$ (for m = n-1 let

 Σ $p(x_i) = 0$). Hence the sums of the left-hand side of the i=n+1

inequalities have fewer than n terms (or are 0; that is for m=0 and m=n-1) By the induction hypothesis, we have that

$$q \begin{pmatrix} x \\ \Sigma \\ i=1 \end{pmatrix} \leq 2 \begin{pmatrix} x \\ \Sigma \\ i=1 \end{pmatrix} q(x_i) \leq u,$$

$$q (\sum_{i=m+2}^{n} x_i) \le 2 \sum_{i=m+2}^{n} q(x_i) \le u$$
 and

$$q(x_{m+1}) \le \sum_{i=1}^{n} q(x_i) = u.$$

By assumption, $q \left(\sum_{i=1}^{n} x_i \right) = q \left(\sum_{i=1}^{m} x_i + x_{m+1} + \sum_{i=m+2}^{n} x_i \right)$

$$\leq 2 \max \{q (\sum_{i=1}^{m} x_{i}), q(x_{m+1}), q (\sum_{i=m+2}^{m} x_{i})\}$$
 $\leq 2 u = 2 \sum_{i=1}^{m} q(x_{i}).$

Theorem 3.42 Let (X, T) be a first countable TVS((H)). Then there exists a paranorm $\|.\|$ on X such that T = T $\|.\|$ where T $\|.\|$ is the topology induced by the paranorm $\|.\|$.

<u>Proof</u>: Let $\{0_n\}_{n \in \mathbb{N}}$ be a countable basis of N(X). Let $U_0 = X$. Choose a balanced neighborhood W_1 of 0 such that $W_1 + W_1 + W_1 \subseteq U_0$ and $W_1 \subseteq 0_1$. Let $W_1 = U_1$. Choose a balanced neighborhood W_2 of 0 such that $W_2 + W_2 + W_2 \subseteq U_1$, and $W_2 \subseteq 0_2$. Let $W_2 = U_2$. Continuing in this way choose a balanced set $W_n \in N(X)$ such that $W_n + W_n + W_n \subseteq U_{n-1}$. and $W_n \subseteq D_n$, Let $W_n = U_n$. Then $\{U_n\}_{n \in \mathbb{N}}$ is a base for N(X). define $q: X \to \mathbb{R}^+ \cup \{0\}$ by

 $q(x) = \begin{cases} 0 & \text{if } x \in \overline{\{0\}}, \\ 2^{-k(x)} & \text{if } x \notin \overline{\{0\}} \text{ and } k(x) \text{ is the largest integer} \end{cases}$ such that $x \in U_{k(x)}$.

Since k(x) is the unique integer such that $x \in U_{k(x)}$, q is welldefined.

Claim 1 For any sequence $(x_n)_{n \in \mathbb{N}} \subseteq X$, $x_n \to 0$ if and only if $q(x_n) \to 0$.

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X such that $x_n \to 0$ in X. We must show that $q(x_n) \to 0$. Let $\epsilon > 0$ be given. Then there exists an $m \in \mathbb{N}$ such that $2^{-m} < \epsilon$. Since $x_n \to 0$, there exists an $n_0 \in \mathbb{N}$ such that $n \ge n_0$ implies that $x_n \in \mathbb{U}_m$. For such an x_n , either $x_n \in \overline{\{0\}}$

or $k(x_n) \geq m$. If $x_n \in \overline{\{0\}}$ then $q(x_n) = 0 < \varepsilon$. If $k(x_n) \geq m$ then $q(x_n) < 2^{-m} < \varepsilon$ so $q(x_n) \to 0$. Conversely, suppose that $q(x_n) \to 0$. We must show that $x_n \to 0$ in X. Let $\ell \in \mathbb{N} \cup \{0\}$. We show that there exists an $n' \in \mathbb{N}$ such that $n \geq n'$ implies that $x_n \in \mathbb{U}_\ell$. Since $q(x_n) \to 0$, there exsists an $n' \in \mathbb{N}$ such that $n \geq n'$ implies that $q(x_n) < 2^{-\ell}$. For such an x_n , either $x_n \in \overline{\{0\}}$ or $x_n \notin \{0\}$. If $x_n \in \overline{\{0\}}$ then $x_n \in \mathbb{U}_\ell$. If $x_n \notin \overline{\{0\}}$, let $k = k(x_n)$. Then $q(x_n) = 2^{-k} < 2^{-\ell}$. So $x \in \mathbb{U}_k \subseteq \mathbb{U}_\ell$. Hence there exists an $n' \in \mathbb{N}$ such that $n \geq n'$ implies that $x_n \in \mathbb{U}_\ell$. But ℓ was arbitrary, $x_n \to 0$ in X so we have claim 1.

Claim 2: For any x, y, z \in X, $q(x+y+z) \le 2 \max \{g(x), g(y), g(z)\}$. Let x, y, z \in X. case 1: All x, y, z \in {0}. Since {0} is a vector subspace of X, $x+y+z \in$ {0}. Hence q(x+y+z) = 0 $\le 2 \max \{g(x), q(y), q(z)\}$. case 2: Not all x, y, z \in {0}. Suppose that $x \notin$ {0} and $q(x) = 2^{-k(x)} \ge q(y), q(z)$. Then x, y, z \in U_k. Since U_k + U_k + U_k \subseteq U_{k-1}, $x+y+z \in$ U_{k-1}. Thus $q(x+y+z) \le 2^{(-k(x)-1)}$ = 2.2^{-k(x)} = 2q(x) = 2 max {q(x), q(y), q(z)} so we have claim 2. Define $\|\cdot\|$: X \to R⁺ \cup {0} by $\|x\|$ = inf { $\sum_{k=1}^{\infty} q(x_k-x_{k-1})|x_0=0, x_n=x$ } where $(0, x_1, x_2, ..., x_n)$ is a chain ending at x.

 $\sum_{k=1}^{n} q(x_k - x_{k-1}) \ge \frac{1}{2} q \sum_{k=1}^{n} (x_k - x_{k-1}) = \frac{1}{2} g(x). \text{ Hence } ||x|| = \inf$ $\{ \sum_{k=1}^{n} q(x_k - x_{k-1}) | x_0 = 0, x_n = x \} \ge \frac{1}{2} q(x) \text{ so we have claim 3.}$

Let $x \in X$. We want to show that q(-x) = q(x).

Case 1 $x \in \{0\}$. Since $\{0\}$ is a vector subspace of X, $-x \in \{0\}$. Hence q(x) = 0 = q(-x).

Case 2 $x \notin \{0\}$. Then $q(x) = 2^{-k(x)}$ where k(x) is the largest integer such that $x \in U_{k(x)}$. But $U_{k(x)}$ is balanced therefore $-x \in U_{k(x)}$; hence $q(-x) = 2^{-k(x)} = q(x)$. We must show that $\|\cdot\|$ is a paranorm on x. We need only show that the multiplication is continuous...

Let $(t_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{H} such that $t_n \to t$ for some $t \in \mathbb{H}$ and let $(x_n)_{n \in \mathbb{N}}$ $\subset X$ be such that $\|x_n - x\| \to 0$. We must show that $\|t_n x_n - tx\| \to 0$.

$$\begin{split} \|t_nx_n-tx\|&\leq \|t_nx_n-t_nx\|+\|t_nx-tx\|=\|t_n\|\,\|x_n-x\|+\|t_n-t\|\|x\|\,\,. \end{split}$$
 Since $\|x_n-x\|\to 0$ and $|t_n-t|\to 0$ as $n\to \infty$, $\|t_nx_n-tx\|\to 0$ as $n\to \infty$ so the multiplication is continuous. Hence $\|.\|$ is a paranorm on X.

Thus the paranorm $\|\cdot\|$ induces a topolgy on X, say T. Let $\|\cdot\|$ i : $(X, T) \rightarrow (X, T)$ be the identity map. i is continuous. Hence for any sequence (x_n) in X, $x_n \rightarrow a$ in (x, T) if and only if $x_n \rightarrow a$ in (x, T) therefore T = T. #

Theorem 3.43 Every TVS(H) is a completely regular topological space.

 \underline{Proof} : Let (X, T) be a TVS(H). We must show that X is completely regular; that is, for each closed set F \underline{C} X and for each $x \notin F$ there is a continuous function f on X such that f = 0 on F and f(x) = 1.

Let F be a closed set and $x' \notin F$. Since F is closed, $X \setminus F$ is an open neighborhood of x'. Let (U_n) be a sequence of balanced neighborhoods of 0 such that $(x' + U_n) \cap F = \emptyset$ and $U_n + U_n \subseteq U_{n-1}$ for each n. Then $\{U_n\}_{n \in \mathbb{N}}$ is an additive filterbase of balanced absorbing sets so by Theorem 3.26, $\{U_n\}_{n \in \mathbb{N}}$ is a local base of neighborhoods of 0 for first countable vector topology T' of X. By Theorem 3.42, there exists a paranorm $\|.\|$ on X such that $T' = T_n \|.\|$ is the topology induced by $\|.\|$. Defined $d: X \times X \to \mathbb{R}^+ \cup \{0\}$ by $d(x,y) = \|x - y\|$ so d is a pseudometric on X. Define $f: X \to \mathbb{R}$ by $f(x) = \frac{d(x,F)}{d(x,F)}$. Then f is continuous on X and f(y) = 0 for all $y \in F$ and f(x) = 1. Since each U_n is a T-neighborhood of 0, $T \supseteq T'$ so f is T-continuous.

Definition 3.44 Let X be a TVS(H). Then X is called <u>locally bounded</u> if and only if X has a bounded neighborhood of 0.

Theorem 3.45 Every locally bounded TVS(|H) is a paranormed space.

Proof: Let X be a locally bounded TVS(IH). We must show that X is first countable. Let U be a bounded neighberhood of 0. Then for any set $V \in N(X)$, there exists a positive integer n such that $V \supseteq \frac{1}{n} U$. Thus $\{(\frac{1}{n})U\}$ is a countable local base of neighberhood of 0 so X is first countable. By Theorem 3.42, X is paranormed space. #

Theorem 3.46 Let X, Y be TVS(IH)'s and let $f: X \to Y$ be a linear map. Suppose that f(U) is bounded for some $U \in N(X)$. Then f is continuous. If Y is a locally bounded TVS(IH) and f is continuous

 \underline{Proof} : Let $V \in N(Y)$. Since f(U) is bounded, $tf(U) \subseteq V$ for some $t \neq 0$. Thus $f^{-1}(V) \supseteq tU$, a neighborhood of 0, so f is continuous.

then there exists a $U \in N(X)$ such that f(U) is bounded.

Suppose that Y is a locally bounded TVS(H) and f is continuous. Must show there exists a $U \in N(X)$ such that f(U) is bounded. Since Y is locally bounded, Y contains a bounded set $W \in N(Y)$. Since f is continuous. $f^{-1}(W) \in N(X)$. Choose $U = f^{-1}(W)$. Then $f(f^{-1}(W)) \subset W$ therefore $f(U) = f(f^{-1}(W))$ is bounded. #

Theorem 3.47 Let X be a TVS(\mathbb{H}), $f \in X$ #, and assume that ker f is closed. Then f is continuous.

Proof: Case 1 f = 0. obvious.

Case 2 f $\neq 0$. Suppose that f is not continuous. Let $x \in X$ and U a balanced neighborhood of 0. By Theorem 3.46, f is unbounded on U; that is f(U) is unbounded. Let $t \in IH$ be such that $|t| \leq 1$. Since U is balanced, $tf(U) = f(tU) \subseteq f(U)$. So f(U) is balanced. Claim that f(U) = IH. We must show that $IH \subseteq F(U)$. Let $h \in IH$. Case 1 h = 0. Since f(U) is balanced and |0| = 0 < 1, $0 \in 0 \cdot f(U) \subseteq f(U)$.

Case 2 h \(\psi \) 0. Since f(U) is unbounded, there exsits a $y \in U$ such that |f(y)| > |h| > 0 so $\frac{f(y)}{|f(y)|}$ and $\frac{x}{|x|} \in S$ where $S = \{ q \in |H| |q| = 1 \}$.

It is clear that $S = \{ q \in |H| |q| = 1 \}$ is a group with respect to multiplication. Hence there exsits a $Y \in S$ such that $\frac{V f(y)}{|f(y)|} = \frac{h}{|h|}$ so $h = \frac{V|h|}{|f(y)|}$. f(y). Since $|\frac{V|h|}{|f(y)|}| = \frac{|V||h|}{|f(y)|} < 1$ and f(U) is balanced, $h \in f(U)$. So we have the claim. Hence there exists a $u \in U$ such that f(u) + f(x) = 0. Then $x + u \in (\ker f) \cap (x + U)$ so $\ker f$ is dense in X. But $\ker f$ is closed, so $\ker f = X$. Hence f = 0 on X, a contradiction. Thus f is continuous. #

Corollary 3.48 Let X be a separated TVS(IH), $0 \neq y \in X$ and $f \in X^{\#}$. Let g(x) = f(x)y. Then if $g : X \to X$ is continuous, so is f.

 \underline{Proof} : It is clear that ker f = ker g. Since {0} is closed and g is continuous, ker g is closed; hence ker f is closed. By Theorem 3.47, f is continuous.

Completeness

Definition 3.49 Let X be a TVS(H). A net $(x_{\delta})_{\delta \in D}$ in X is called a Cauchy net if and only if for all U \in N(X) there exists a $\delta \in$ D such that $\alpha \geq \delta$ and $\beta \geq \delta$ imply that $x_{\alpha} - x_{\beta} \in$ U.

<u>Definition 3.50</u> Let X be a TVS(IH) and S C X. S is <u>complete</u> if and only if every cauchy net in S converges to a point in S and S is called <u>sequentially complete</u> if and only if every cauchy sequence in S converges to a point in S.

Theorem 3.51 Let $(X, \|.\|)$ be a paranormed space. If X is sequentially complete then X is complete.

 $\frac{\operatorname{Proof}}{\operatorname{cons}}: \text{ Let } (x_{\delta})_{\delta \in \mathbb{D}} \text{ be a cauchy net in } X. \text{ We must show that } x_{\delta} \to x_{0} \text{ for some } x_{0} \in X. \text{ Let } n \in \mathbb{N}. \text{ Since } (x_{\delta})_{\delta \in \mathbb{D}} \text{ is cauchy , there } exists a $\delta'_{n} \in \mathbb{D}$ such that $\alpha \geq \delta'_{n}$ and $\beta \geq \delta'_{n}$ imply that $\|x_{\alpha} - x_{\beta}\| < \frac{1}{n}$.}$ Let $\delta_{n} = \max \left\{ \delta'_{1}, \delta'_{2}, \ldots, \delta'_{n} \right\}$. Then $\delta_{n} \geq \delta_{n-1}$. Let $y_{n} = x_{\delta}$. Claim that (y_{n}) is a cauchy sequence in X. Let $\varepsilon > 0$ be given. Then there exists an $n \notin \mathbb{N}$ such that $\frac{1}{n}, < \varepsilon/_{2}$. Let $m, n \in \mathbb{N}$ such that m > n' and n > n'. Then $\|y_{m} - y_{n}\| \leq \|y_{m} - y_{n}\| + \|y_{n} - y_{n}\| < \frac{1}{n'} + \frac{1}{n'}$. $= \frac{2}{n} < \varepsilon \text{ so we have the claim. Since } X \text{ is sequentially complete,}$ $y_{n} \to x_{0}$ for some $x_{0} \in X$. We must show that $x_{\delta} \to x_{0}$. Let $\varepsilon > 0$ be given Choose $\ell \in \mathbb{N}$ such that $\frac{1}{\ell} < \frac{\varepsilon}{2}$ and $\|y_{\ell} - x_{0}\| < \varepsilon/_{2}$. Let $\delta \in \mathbb{D}$ be such that $\delta \geq \delta_{\ell}$. Then $\|x_{\delta} - x_{0}\| \leq \|x_{\delta} - y_{\ell}\| + \|y_{\ell} - x_{0}\| < \frac{1}{\ell} + \varepsilon/_{2} < \varepsilon/_{2} + \varepsilon/_{2} = \varepsilon$ so we have the claim. Hence X is complete. #

<u>Definition 3.52</u> Let X be a TVS(H) and S \subseteq X. P : X \rightarrow S is called a <u>topological projection</u> if and only if P is a continuous linear map from X onto S satisfying $P^2 = P \cdot (P^2 = P \circ P)$.

Lemma 3.53 Let X be a TVS(\mathbb{H}) and P: X - S a continuous projection onto a subspace S. Let A be a subset of S such that $P^{-1}(A)$ is complete. Then A is complete.

 $\frac{\text{Proof}}{\text{Proof}}: \text{ Let } x = (x_{\delta})_{\delta \in D} \text{ be a cauchy net in } A. \text{ Then } x \text{ is a}$ cauchy net in X. Claim that x is cauchy in $P^{-1}(A)$. Let $W \in N(P^{-1}(A))$.

Then there exists a U \in N(X) such that W = N \cap P⁻¹(A). Since x is Cauchy in A, there exists a $\delta \in$ D such that $\alpha \geq \delta$ and $\beta \geq \delta$ imply that $x_{\alpha} - x_{\beta} \in$ U \cap A. Since P is onto, A \subseteq S and P²($x_{\alpha} - x_{\beta}$) = P($x_{\alpha} - x_{\beta}$), P($x_{\alpha} - x_{\beta}$) = $x_{\alpha} - x_{\beta} \in$ A; hence $x_{\alpha} - x_{\beta} \in$ P⁻¹(A). Thus $x_{\alpha} - x_{\beta} \in$ U \cap P⁻¹(A) = W so we have the claim. Since P⁻¹(A) is complete, $x_{\alpha} - x_{\beta} \in$ U \cap P⁻¹(A) therefore $x_{\alpha} - x_{\beta} \in$ P($x_{\alpha} - x_{\beta} \in$ D \text{ A special case of Lemma 3.53 is that S is complete. #

Remark 3.54 A special case of Lemma 3.53 is that S is complete if X is.

Theorem 3.55 Let $\{X_{\alpha}\}_{\alpha \in I}$ be a collection of TVS(H)'s and A \subseteq X \subseteq for each $\alpha \in$ I. Then WA is complete if A is complete for all $\alpha \in$ I.

Proof: Let x be a Cauchy net in $\P A_{\alpha}$. Claim that $P_{\alpha}(x)$ is a Cauchy net in A_{α} for all $\alpha \in I$. Let $\alpha \in I$ be fixed and let $W_{\alpha} \in N(A_{\alpha})$. Then there exists a $U_{\alpha} \in N(X_{\alpha})$ such that $W_{\alpha} = U_{\alpha} \cap A_{\alpha}$. Since x is Cauchy in $\P A_{\alpha}$, there exists a $\delta \in I$ such that for all $Y \geq \delta$, $\beta \geq \delta$, $x_{\gamma} - x_{\beta} \in P_{\alpha}^{-1}(U_{\alpha}) \cap \P A_{\alpha}$. Now $P_{\alpha}(x_{\gamma} - x_{\beta}) = P_{\alpha}(x_{\gamma}) - P_{\alpha}(x_{\beta}) \in U_{\alpha} \cap A_{\alpha} = W_{\alpha}$ so we have the claim. Since A_{α} is complete, $P_{\alpha}(x) \to a_{\alpha}$ for some $A_{\alpha} \in A_{\alpha}$. Since $A_{\alpha} \in A_{\alpha} \in A_{\alpha}$ is complete. Conversely, therefore $A_{\alpha} \in A_{\alpha} \in A_{\alpha}$ is complete. We must show that $A_{\alpha} \in A_{\alpha} \in A_{\alpha} \in A_{\alpha} \in A_{\alpha} \in A_{\alpha} \in A_{\alpha}$. We must show that $A_{\alpha} \in A_{\alpha} \in$

Cauchy net in \P A_{β} . Let $U \in N(\P X_{\beta})$. Then U contains a basic open $\beta \in I$

set $P_{\beta_1}^{-1}(U_{\beta_1}) \cap \cdots \cap P_{\beta_n}^{-1}(U_{\beta_n})$ where U_{β_i} is open in A_{β_i} , $i = 1, 2, \dots, n$.

 $\frac{\text{Case 1}}{\text{that }} (x_{\beta}^{0}, x_{\alpha}^{\epsilon})_{\alpha \neq \beta} - (x_{\beta}^{0}, x_{\alpha}^{\gamma})_{\alpha \neq \beta} = (0, x_{\alpha}^{\epsilon} - x_{\alpha}^{\gamma})_{\beta \neq \alpha} \in U.$

Case 2 $\alpha = \beta_1$ for some i. Then there exists a $\delta \in D$ such that $\epsilon, \gamma \geq \delta$ implies that $x_{\alpha}^{\epsilon} - x_{\alpha}^{\gamma} \in U_{\alpha}$. Hence $(x_{\beta}^{0}, x_{\alpha}^{\epsilon})_{\alpha \neq \beta} - (x_{\beta}^{0}, x_{\alpha}^{\gamma})_{\alpha \neq \beta}$ ϵU so we have the claim.

Since $\prod_{\beta \in I} A_{\beta}$ is complete, y converges to some $a = (a_{\beta})_{\beta \in I}$ $A_{\beta} \cdot A_{\beta} \cdot A_{\beta} \cdot A_{\beta} = P_{\beta}(a)$ so $x = P_{\alpha}(y) \rightarrow P_{\alpha}(a) = A_{\alpha}$ therefore:

 $x \to a_{\alpha}$ so A_{α} is complete. Since $\alpha \in I$ was arbitrary, A_{α} is complete for all $\alpha \in I$.

Definition 3.56 Let X be a TVS(IH). X is called boundedly complete

(or quasicomplete) if and only if every bounded closed set is complete

Remark 3.57 Let X be a TVS(IH). Then the following are clear:

- (1) If X is complete then X must be boundedly complete.
- (2) If X is boundedly complete then X must be sequentially complete.

Definition 3.58 Let T, T' be vector topologies for a vector space X over H. We say that T' is F linked to T if and only if T' has a local base of neighborhoods of 0 each of which is T-closed.

Remark 3.59 If T'C T then T' is F linked to T.

Lemma 3.60 Let X be a vector space over \mathbb{H} and let T, T' be vector topologies with T' being F linked to T and $x = (x_{\delta})_{\delta \in D}$ a net in X. If x is a Cauchy net in (X, T') and $x \to a$ in (X, T) then $x \to a$ in (X, T').

Proof: Let U be a T' neighberhood of 0 which is T-closed. Since x is Cauchy in (X, T'). there exists a $\delta \in D$ such that $\alpha \geq \delta$, $\beta \geq \delta$ imply that $x_{\alpha} - x_{\beta} \in U$. Fix $\alpha \geq \delta$. We have that $x_{\alpha} - x_{\beta} \in U$ for all $\beta \geq \delta$. Since U is T-closed, x_{α} - a $\in U$. Since x_{α} - a $\in U$ for all $\alpha \geq \delta$ and the set of such U is a base for N(X, T'), $x \rightarrow a$ in (X, T'). #

Theorem 3.61 Let X be a vector space over H and let T, T' be vector topologies for X such that $T' \geq T$ and T' is F linked to T. Let $S \subset (X, T)$

topologies for X such that T'2T and T' is F linked to T. Let S C (X, T) be complete(sequentially complete). Then S is T' complete (sequentially complete).

Proof: Suppose that S is T-complete. We must show that S is T'-complete. Let $x = (x_{\delta})_{\delta \in D}$ be a Cauchy net in S with respect to T'. Claim that x is Cauchy in S C (X, T). Let U \in N(X, T) be closed. Then U \(\cap S \in N(S, T)\). Since T' is linked to T, U \in N(X, T') hence U \(\cap S \in N(S, T')\). Since x is Cauchy in (S, T'), there exists a $\delta \in$ D such that $\alpha \geq \delta$, $\beta \geq \delta$ imply that $x_{\alpha} - x_{\beta} \in$ U; hence x is Cauchy in (S, T) so we have the claim. Since (S, T) is complete and x is Cauchy in (S, T), x \(\to a\) a for some a \in (X, T). By Lemma 3.60, x \(\to a\) in (x, T') so S is T'-complete. We can use a similar proof in the case where S is T-sequentially complete. #

Theorem 3.62 Let (X, T) be a TVS(H) which is complete, boundedly complete, or sequentially complete. Let T' be a larger vector topology which is F linked to T. Then (X, T') is, respectively,

complete, boundedly complete, or sequentially complete.

Proof: The first and the third are special cases of Theorem 3.61 where S = X. Suppose that (X, T) is boundedly complete. We must show that (X, T') is boundedly complete. Let S be a bounded closed set in (X, T). Let \overline{S} be the T-closure of S. By Corollary 3.32, \overline{S} is a bounded set in (X, T) and hence \overline{S} is T-complete. By Theorem 3.61, \overline{S} is T-complete and S' is also T'-closed. Hence (X, T') is boundedly complete. #

Theorem 3.63 Let (X, T) be a separated TVS(H). Let A be a balanced, convex, bounded, sequentially complete set in X. Let Z be the span of A and p the gauge of A, defined on Z. Then (Z, p) is a Banach space over H.

 $\frac{\text{Proof}}{\text{Proof}}: \text{ Claim that A is absorbing in Z. Let } z \in \mathbb{Z}. \text{ If}$ $z = 0, \text{ the result is obvious. Assume } z \neq 0. \text{ Since Z is the span}$ of A, $z = \sum_{j=1}^{n} t_{j} \text{ for some } t_{j} \in \mathbb{H}, \text{ a}_{j} \in \mathbb{A}, \text{ } j = 1, 2, \ldots, n. \text{ Let}$ j = 1

 $\alpha = \sum_{j=1}^{n} |t_{j}| . \text{ Since } z \neq 0, \ \alpha > 0. \text{ Let } \epsilon = \frac{1}{\alpha} > 0. \text{ Let } t \in \mathbb{H} \text{ be such }$ that $|t| < \epsilon$. We must show that $tz \in A$. Since $|t| < \epsilon$, $|t| < \frac{1}{n}$; $\sum_{j=1}^{n} |t_{j}|$

hence $\sum_{j=1}^{n} |tt_{j}| < 1$. Now $tz = t(\sum_{j=1}^{n} t_{j}) = \sum_{j=1}^{n} (tt_{j})a_{j}$. Since $\sum_{j=1}^{n} |tt_{j}| \le 1$, A is balanced and convex,

 $tz = \sum_{j=1}^{n} (tt_j)a_j \in A$ so we have the claim. By Lemma 3.38, $\sigma p \ge T |z|$

where σ_p denotes the topology induced by the seminorm p and $T_{\mid Z}$ is the topology of X relative to Z. Since T is separated, σ_p is

separated; hence $(Z, \sigma p)$ is separated; that is, p is a norm. Claim that σp is F linked to $T|_Z$. Let $B = \{\varepsilon A | \varepsilon > 0\}$. We must show that B is a local neighberhood base of 0 in (Z, p); that is, for each $U \in N(Z)$, $U \supseteq \varepsilon A$ for some $\varepsilon > 0$. Let $U \in N(Z)$. There exists a $W \in N(X)$ such that $U = Z \cap W$. Since A is bounded in X, there exists an $\varepsilon ' > 0$ such that $tA \subseteq W$ all $t \in H$ such that $|t| < \varepsilon '$. Choose $\varepsilon = \frac{\varepsilon}{2} > 0$. Hence $\varepsilon A \subseteq W$. But Z is the span of A so $\varepsilon A \subseteq Z$; hence $\varepsilon A \subseteq Z \cap W = U$ so B is a local neighberhood base of 0 in (Z, p). We must show that εA is sequentially complete in X for all $\varepsilon > 0$. Let $\varepsilon > 0$ be given. Let $X = (x_n)$ be a Cauchy sequence in εA . Then $X = (\varepsilon y_n)$ where $y_n \in A$, $N \in \mathbb{N}$ so $X = \varepsilon (y_n')$. Since X is Cauchy in εA , $Y = (y_n')$ is Cauchy in $Y \in X$. Hence $Y \in X$ is requentially complete in $Y \in X$ and also sequentially complete in $Y \in X$ is sequentially closed in $Y \in X$. Thus $Y \in Y$ in $Y \in Y$ is $Y \in X$. Thus $Y \in Y$ is $Y \in X$ is sequentially closed in $Y \in X$. Thus $Y \in X$ is $Y \in X$ is sequentially closed in $Y \in X$. Thus $Y \in Y$ is $Y \in X$ is $Y \in X$ is sequentially closed in $Y \in X$. Thus $Y \in X$ is $Y \in X$ is $Y \in X$.

Since $\sigma p \supseteq T_{|Z|}$ and σp is F linked to $T_{|Z|}$, by Theorem 3.61, A is σp -sequentially complete. Thus $(Z, \sigma p)$ is a normed space with a sequentially complete neighborhood of 0. We must show that (Z, p) is sequentially complete. Let $x = (x_n)$ be a Cauchy sequence in Z. Then x is bounded and $x \in A$ for some $\epsilon > 0$. Hence $x \to x_0$ for some $x_0 \in Z$ so (Z, p) is sequentially complete therefore (Z, p) is complete. As a result (Z, p) is a Banach space. #

Quotients

Theorem 3.64 Let X be a TVS(H), Y a vector space over H, and $f:X \to Y$ a linear onto map. Let $\beta = \{ f(U) | U \text{ a balanced neighberhood of 0 in } X \}$. Then β is an additive filterbase of balanced absorbing sets.

Proof: We must show that β is a filterbase on Y. Since $U \neq \emptyset$ for all $U \in N(X)$, $f(U) \neq \emptyset$ for all $U \in N(X)$; hence $\emptyset \notin \beta$.

Let $U, V \in N(X)$ be balanced. Let $W = U \cap V$. Then W is a balanced neighborhood of 0 and $f(W) = f(U \cap V) \subseteq f(U) \cap f(V)$. Hence β is a filterbase on Y. Let $U \in N(X)$. Since N(X) is additive, there exists a $V \in N(X)$ such that $V + V \subseteq U$. Hence $f(V) + f(V) = f(V + V) \subseteq f(U)$ so β is an additive filter base on Y. Let $U \in N(X)$. We must show that f(U) is balanced and absorbing. Let $t \in H$ be such that $|t| \leq 1$. Since U is balanced, $t = f(U) \subseteq f(U) \subseteq f(U)$. To show that f(U) is absorbing, let $y \in Y$ be arbitrary. Then y = f(x) for some $x \in X$. Since U is absorbing, there exists an $\epsilon > 0$ such that $t \times \epsilon U$ for $|t| < \epsilon$. Hence $ty = tf(x) = f(tx) \in f(U)$ so f(U) is absorbing. Hence β is an additive filter base of balanced absorbing sets. #

Definition 3.65 Let X be a TVS(IH), Y a vector space over $[H \text{ and } f: X \rightarrow Y]$ a linear onto map. The quotient topology Q_f is the vector topology generated by β defined in Theorem 3.64

By Theorem 3.64, β is an additive filter base of balanced and absorbing sets, by Theorem 3.26, X has a unique vector topology such that β is a local base of neighborhoods of 0.

Theorem 3.66 Let X be a TVS(H) and (Y, Q_f) be the quotient of X with respect to f where f : X \rightarrow (Y, Q_f) is a linear onto map. Then f is

continuous and open. Moreover, Qf is the only topology which makes f continuous and open.

Proof: Let $V \in N(Y, Qf)$. Then $V \supseteq f(U)$ for some $U \in N(X)$ so $f^{-1}(V) \supseteq U$. Hence f is continuous at 0. Let $x \in X$ and $let(x_{\delta})_{\delta} \in D$ be anet in X such that $x_{\delta} \to x$. Then $x_{\delta} - x \to 0$. Since f is continuous at 0, $f(x_{\delta}) - f(x) = f(x_{\delta} - x) \to f(0) = 0$. So $f(x_{\delta}) \to f(x)$. Thus f is continuous at x. But $x \in X$ was arbitrary, therefore f is continuous on X. Let $U \in N(X)$ be open and balanced. Then $f(U) \in (Y, Qf)$ is open so f is open. Let T be a topology for Y which makes f continuous and open. We must show that T = Qf. Let $U \in T$. Since $f: X \to (Y, T)$ is continuous, $f^{-1}(U)$ is open in X. Since $f: X \to (Y, Qf)$ is open, $f(f^{-1}(U)) \in Qf$. Since f is onto, $U = f(f^{-1}(U)) \in Qf$. Hence $T \subseteq Qf$. Similarly, we can show that $Qf \subseteq T$; hence T = Qf. Thus Qf is the only topology which makes f continuous and open. #

Remark 3.67 The proof of theorem 3.64 shows that Qf is the largest topology making f continuous and the smallest topology making f open.

Definition 3.68 Let X, Y be TVS(\mathbb{H})'s. A linear onto map $q: X \to Y$ is said to be a quotient map if and only if Y has the quotient topology with respect to q. If Y has the quotient topology induced by some map, say q, we call Y a quotient of X with respect to q.

Theorem 3.69 Let X be a TVS(H) and let Y be a quotient of X with respect to the quotient map $q: X \to Y$ and let $f: Y \to Z$ be a linear map, Z a TVS(H). Then $f: Y \to Z$ is continuous if and only if

foq: x →z is continous.

Proof: (\Longrightarrow) This statement is obvious. (\Leftarrow) Let $U \in N(Z)$. Since fo q is continuous, there exists an open set $V \in N(X)$ such that $f(q(V)) \subseteq U$. Since q is open, $g(V) \in N(Y)$; hence f is continuous at 0 so f is continuous on X. #

Remark 3.70 Let X be a TVS(H) and S a vector subspace. Let $Y = \{x+S | x \in X\}$. Define the addition and scalar multiplication as follow:

- 1. (x+S) + (x'+S) = (x+x') + S, for all x, x' \(X.
- 2. t(x+S) = tx+S, for $x \in X$ and $t \in H$.

Then (Y, +, .) is a vector space over \mathbb{H} . Note that S is the zero of Y. Define $q: X \to Y$ by q(x) = x + S, for all $x \in X$. Then (Y, Qq) is the quotient of X by S, denoted by X_S' . Coversely, if $q: X \to Y$ is a quotient map, let $S = \ker q$. Clearly, S is a vector subspace of X. Define $q: Y \to X/S$ as follows: Let $y \in Y$. Then y = q(x) for some $x \in X$. Define g(y) = x + S. We will show g is well - defined. Suppose there exists an $x' \in X$ such that q(x') = y. Then $x - x' \in \ker q = S$. Hence x + S = x' + S so g is well - defined. Next, we will show that g is linear and one-to-one. Let $y_1, y_2 \in Y$. Then $y_1 = q(x_1), y_2 = q(x_2)$ for some $x_1, x_2 \in X$. Hence $g(y_1 + y_2) = g(q(x_1) + g(x_2) - x_1 + x_2 + S = (x_1 + S) + (x_2 + S) = g(y_1) + q(y_2)$. Let $t \in \mathbb{H}$ and $y \in Y$. Then y = q(x) for some $x \in X$ so g(ty) = g(tq(x)) = g(q(tx)) = tx + S = t(x + S) = tg(y). Hence g(t) = g(t) = S; hence f(t) = g(t) = S. Now f(t) = g(t) = S; hence f(t) = G(t) = G(t). Now f(t) = G(t) = G(t). So f(t) = G(t) = G(t). So f(t) = G(t). Hence f(t) = G(t). So f(t) = G(t). Hence f(t) = G(t). So f(t) = G(t). So f(t) = G(t). Hence f(t) = G(t). So f(t) = G(t). So

so ker $g = \{0\}$. Hence g is one-to-one. It is clear that g is onto. Let $Q: X \to X|_S$ be defined by Q(x) = x + S. Then $Q = g \circ q$ is continuous. By Theorem 3.62, g is continuous. Since $q = g^{-1} \circ Q$ is continuous, g^{-1} is continuous. So $g: Y \to X|_S$ is a linear homeomorphism. Thus there exists a subspace S of X such that $Y = X|_S$ up to linear homeomorphism.

Theorem 3.71 Let X be a TVS(H). If $q: X \rightarrow Y$ is a quotient map then Y is separated if and only if ker q is closed.

 $\underline{\text{Proof}}: (\Rightarrow) \text{ Since Y is separated, } \{0\} \text{ is closed. Since q}$ is continuous, $q^{-1}(\{0\})$ is closed in X.

 (\Leftarrow) Let $y \in Y \setminus \{0\}$. We must show that there exists a $W \in N(Y)$ such that $y \notin W$. Since q is surjective and $y \neq 0$, there exists an $x \in X \setminus \ker q$ such that y = q(x). Since $x \notin \ker q$ which is closed, there exists an open set $U \in N(X)$ such that $(x-U) \cap \ker q = \emptyset$ so $y \notin q(U)$. Since q is open and U is open, $q(U) \in N(Y)$ is an open set so Y is separated. #

Theorem 3.72 Let (X, ||.||) be a paranormed space over ||H. Then the quotient Y of X is a paranormed space over ||H.

arbitrary therefore $p(y+z) \leq p(y) + p(z)$. Let $y \in Y$. Then $p(-y) = \inf\{ \|x\| \| -y = q(x) \} = \inf\{ \|-x\| \| y = q(-x) \} = \inf\{ \|m\| \| y = q(m) \} = p(y)$. Define $d: Y \times Y \to \mathbb{R}$ by d(y,z) = p(y-z) for all $y,z \in Y$. Then d is a pseudometric on Y. We shall now show that d induces the quotient topology; hence the scalar multiplication and addition are continuous i.e. $t_n \to t$ and $p(y_n - y) \to 0$ implies that $p(t_n y_n - ty) \to 0$ as $n \to \infty$.

Claim that $q: X \to (Y, d)$ is continuous on X. Let $a \in X$ and let x be a net in X such that $x \to a$. Then d(q(x), q(a)) = p(q(x-a)) $\leq \|x-a\|$. But $\|x-a\| \to 0$; hence $q(x) \to q(a)$ so we have the claim. Next, we will show that $q: X \to (Y, d)$ is open. Let G be an open set is X. We must show that q(G) is open in Y. Let $y \in q(G)$. Then y = q(b) for some $b \in G$. Since G is open and $G \ni b$, there exists a $\delta > 0$ such that $\|x-a\| < \delta$ implies that $x \in G$. Let $z \in Y$ be such that $p(z-y) < \delta/2$. Let $w \in X$ be such that z - y = q(w) and $\|w\| < p(z-y) + \delta/2$. Then $\|w+b-b\| = \|w\| < p(z-y) + \delta/2 < \delta/2 + \delta/2 = \delta$; so $w+b \in G$.

Now $z = q(w) + y = q(w+b) \in q(G)$ so $p(z-y) < \delta/2$ which implies that $z \in q(G)$. Hence $y \in Int q(G)$ therefore q(G) is open so q is open. By Theorem 3.66, d induces the quotient topology. #

Theorem 3.73 Let $(X, \|.\|)$ be a seminormed space over \mathbb{H} . Then the quotient of X is also a seminormed space over \mathbb{H} .

<u>Proof</u>: Let Y be the quotient of X with respect to the quotient map q. For $y \in Y$, let $p(y) = \inf \{ ||x|| | | y = q(x), x \in X \}$. We have shown that p is paranorm on Y in the proof of Theorem 3.72. Hence we must show that p(ty) = |t|p(y) for all $t \in H$ and $y \in Y$.

Case 1 t = 0, in this case the result is obvious.

Case 2
$$t \neq 0$$
. $p(ty) = \inf \{ ||x|| | ty = q(x), x \in X \}$
 $= \inf \{ ||x|| | y = q(^{X}/t), x \in X \}$
 $= \inf \{ |t| || \frac{x}{t} || | y = q(^{X}/t), x \in X \}$
 $= |t| \inf \{ || ^{X}/t || | y = q(^{X}/t), x \in X \}$
 $= |t| p(y).$

Thus p is a seminorm on Y so (Y, p) is a seminormed space over H.

The proof that the topology coming the seminorm is the quotient topology is the same as the proof given in Theorem 3.72. #

Remark 3.74 From Theorems 3.71 and 3.73, it follows that X/S is a normed space over H if and only if X is a seminormed space over H and S is a closed subspace.

Finite dimensional spaces over IH

Theorem 3.75 Let X be an n-dimensional separated TVS(H), $n < \infty$. Then X is linearly homeomorphic with \mathbb{H}^n .

Proof : We shall prove it by induction on n.

Case 1 n = 0. Then $X = \{0\}$, so the result is true.

Case 2 $n \in \mathbb{N}$. Claim that every linear functional on X is continuous. Let f be a linear functional on X. Since $n = \dim X = \dim(\operatorname{Imf}) + \dim \ker f = 1 + \dim \ker f$, $\dim \ker f = n-1$. Hence $\ker f$ is an (n-1) dimensional subspace of X. By the induction hypothesis, kerf is linearly homeomorphic to \mathbb{H}^{n-1} . Since \mathbb{H}^{n-1} is complete, $\ker f$ is complete; hence $\ker f$ is closed. By Theorem 3.41, f is continuous so we have the claim. Let $\{b_1, b_2, \dots, b_n\}$ be a basis of X.

Define $u : \mathbb{H}^n \to X$ by $u(a) = \sum_{i=1}^n a_i b_i$ where $a = (a_1, a_2, \dots, a_n) \in \mathbb{H}^n$. It is clear that u is a linear bijection. For i { 1,2,...,n } , let $P_i(a) = a_i$ and $u_i(a) = a_i b_i$ where $a = (a_1, a_2, \dots, a_n) \in \mathbb{H}^n$. Then $u_i = P_i b_i$ for all i $\{1, 2, ..., n\}$. Since P_i is continuous for all i $b_i = 0$ for all i and X is separated, u_i is continuous for each i so $u = \sum_{i=1}^{n} u_i$ is also continuous. Claim that $P_i \circ U^{-1} \in X$. Let $x, y \in X$. Since u is surjective, there exist a, $b \in \mathbb{H}^n$ such x = u(a) and y = u(b)so x+y = u(a+b) therefore $P_i \circ u^{-1}(x+y) = P_i(u^{-1}(x+y)) = P_i(a+b)$ $= a_{i} + b_{i} = P_{i}(u^{-1}(x)) + P_{i}(u^{-1}(y)) = P_{i} \circ u^{-1}(x) + P_{i} \circ u^{-1}(y). \text{ Let}$ $\alpha \in \mathbb{H}$ and $x \in X$. Then x = u(a) for some $a \in \mathbb{H}^n$ so $u(\alpha a) = \alpha u(a) = \alpha x$. Hence $P_{i} \circ u^{-1}(\alpha x) = P_{i}(u^{-1}(\alpha x)) = P_{i}(\alpha a) = \alpha a_{i} = \alpha P_{i}(a) = \alpha P_{i}(u^{-1}(x))$ = $\alpha P_i \circ u^{-1}(x)$ so $P_i \circ u^{-1}$ is a linear functional on X therefore we. have the claim. By the claim, Pou-1 is continuous on X. By Theorem 3.69, u-1 is continuous so u is a linear homeomorphism from IH" onto X. #

Theorem 3.76 The sum of a closed and a finite-dimensional subspace of a TVS(IH) must be closed.

Proof: Let X be a TVS(H). Let A be closed and B a finite-dimensional subspace of X. We must show that A+B is closed in X: Let $q: X \to X/_A$ be the quotient map. Then $\ker q = A$ is closed. By Theorem 3.71, $X/_A$ is separated. We must show that q(B) is closed. Since B is finite dimensional, by Theorem 3.75, B is linearly homeomorphic to \mathbb{H}^n for some $n \in \mathbb{N}$ so B is complete. Let $y \in \overline{q(B)}$.

Then there exists a net $(b_{\delta})_{\delta \in D}$ in B such that $q(b_{\delta}) \to y$. Since X/A is separated, the limit is unique. Hence $b_{\delta} \to b$ for some $b \in B$ so $y = q(b) \in q(B)$ is closed. Since q is continuous, $q^{-1}(q(B))$ is closed. Claim that $A + B = q^{-1}(q(B))$. Let $z \in A + B$. Then z = a + b for some $a \in A$ and $b \in B$ so q(z) = q(a + b) = q(a) + q(b) = q(b). So $z \in q^{-1}(q(b))$ $C = q^{-1}(q(B))$. Conversely, let $z \in q^{-1}(q(B))$. Then $q(z) \in q(B)$. Hence q(z) = q(b) for some $b \in B$ therefore q(z) = q(a) + q(b) for some $a \in A$ so q(z) = q(a + b). Hence $a \in A$ so $a \in A$ so $a \in A$ is closed in $a \in A$ so $a \in A$ is closed in $a \in A$ so $a \in A$ is closed in $a \in A$ so $a \in A$ is closed in $a \in A$ so $a \in A$ is closed in $a \in A$ in $a \in A$ is closed in $a \in A$ in $a \in A$ in $a \in A$ is closed in $a \in A$ i

Lemma 3.77 Let X and Y be $TVS(\mathbb{H})$'s. Let $f: X \to Y$ be a linear map. If f takes some neighborhood U of 0 into a bounded set then f is continuous. If Y is locally bounded and f is continuous then f takes some neighborhood of 0 into a bounded set.

Proof: Suppose that f(U) is bounded for some $U \in N(X)$. We must show that f is continuous. Let $V \in N(Y)$. Since f(U) is bounded, there exists a $t \neq 0$ such that $tf(U) \subseteq V$ therefore $f^{-1}(V) \supseteq f^{-1}(f(tU))$ $\supseteq tU$. Since $tU \in N(X)$, $f^{-1}(V) \in N(X)$; hence f is continuous at 0. Since f is linear and continuous at 0, f is continuous everywhere. Let f be a locally bounded set. Let f is a bounded set. We must show that $f(f^{-1}(V))$ is bounded and $f^{-1}(V) \in N(X)$. Since f is continuous and f is continuous and f is bounded, there exists an f is a such that $f(f^{-1}(V)) \in N(X)$. Let f is bounded, there that f is an f is continuous and f is an f is such that f is an f is bounded and f is bounded.

Definition 3.78 Let X be a TVS(H). S C X is called totally bounded (or precompact) if for each neighborhood U of 0, there is a finite set F such that S C F+U.

Lemma 3.79 Let X be a TVS(H) and S C X. Then the following hold.

- (a) If S is compact then S is totally bounded.
- (b) If S is totally bounded then S is bounded.

<u>Proof</u>: (a) Suppose that S is compact. Let U be an open neighborhood of 0. Then $\{s+U | s \in S\}$ is an open cover of S. Since S is compact, there exist $s_1, s_2, \ldots, s_n \in S$ such that $S \subseteq \bigcup_{i=1}^n \{s_i + U\}$ i.e. $S \subseteq \bigcup_{i=1}^n \{s_i\} + U$. Let $F = \{s_1, s_2, \ldots, s_n\}$. Then $S \subseteq F + U$ so S is totally bounded.

(b) Suppose that S is totally bounded. Let U be a balanced neighberhood of 0. Let V be a balanced neighberhood of 0 such that $V+V \subseteq U$. Since S is totally bounded, there exists a finite $F \subseteq X$ such that $S \subseteq F+V$. Since F is bounded, there exists an $n_0 \ge 1$ such that $F \subseteq n_0 V$ so $S \subseteq F+V \subseteq n_0 V+V \subseteq n_0 V+n_0 V \subseteq n_0 (V+V) \subseteq n_0 U$. Let $t \in H$ be such that $|t| < \frac{1}{n_0}$. Then $t S \subseteq t(n_0 U) \subseteq \frac{1}{n_0}(n_0 U) = U$ so S is bounded. #

Theorem 3.80 Let X be a separated TVS(H) which has a totally bounded neighborhood U of 0. Then X is finite dimensional.

 $\underline{\operatorname{Proof}}: \text{ Let } U \in N(X) \text{ be a totally bounded set. Then there}$ exists a finite set $F' \subseteq X$ such that $U \subseteq F' + \frac{1}{2}U$. Let $F = \langle F' \rangle$. Then F is a finite dimensional subspace of X

so $U \subseteq F' + \frac{1}{2}U \subseteq F + \frac{1}{2}U \subseteq F + \frac{1}{2}(F + \frac{1}{2}U) = \frac{3}{2}F + \frac{1}{4}U \subseteq F + \frac{1}{4}U$.

Continuing in this way we get that $U \subseteq F + 2^{-n}U$ for all $n \in \mathbb{N}$. Set $B = \{ 2^{-n}U | n \in \mathbb{N} \}$. Let $V \in N(X)$. Since U is totally bounded, by Lemma 3.79, U is bounded; hence there exists an $\varepsilon > 0$ such that $U \subseteq V$ whenever $|t| < \varepsilon$. Choose $|t| \in \mathbb{N}$ such that $|t| \in \mathbb{N}$ such that $|t| \in \mathbb{N}$ whenever $|t| < \varepsilon$. Choose $|t| \in \mathbb{N}$ such that $|t| \in \mathbb{N}$ such therefore $|t| \in \mathbb{N}$ such that $|t| \in \mathbb{N}$ such that $|t| \in \mathbb{N}$ such therefore $|t| \in \mathbb{N}$ such that $|t| \in \mathbb{N}$ such therefore $|t| \in \mathbb{N}$ such that $|t| \in \mathbb{N}$ suc

Theorem 3.81 Let X, Y be TVS(IH)'s and let S \subset X be a totally bounded set. Let $f: X \to Y$ be a linear continuous mapping. Then f(S) is totally bounded.

<u>Proof</u>: Let $U \in N(Y)$. Since f is continuous, $f^{-1}(U) \in N(X)$ so $S \subseteq F + f^{-1}(U)$ for some finite set F. Hence $f(S) \subseteq f(F + f^{-1}(U))$ $\subseteq f(F) + f(f^{-1}(U)) \subseteq f(F) + U$. Since F is finite, f(F) is finite therefore f(S) is totally bounded. #

Definition 3.82 Let X be a TVS(IH), S C X, A C X. We say that Sais small of order A if and only if S-SCA where S-S = {s-t|s, tes}.

Theorem 3.83 Let X be a TVS(IH). Then S C X is totally bounded if and only if for each U ∈ N(X), S is a finite union of sets which are small of order U.

 $(\Leftarrow) \text{ Let } U \in N(X). \text{ By assumption, there exist}$ $s_1, s_2, \ldots, s_n \subseteq X \text{ which are small of order } U \text{ such that } S = \bigcup_{k=1}^n S_k.$ Suppose that $S_k \neq \emptyset$ for all $k \in \{1, 2, \ldots, n\}$. For each $k \in \{1, 2, \ldots, n\}$, let $x_k \in S_k$ and $F = \{x_1, x_2, \ldots, x_n\}$. Then $S_k - x_k \subseteq S_k - S_k \subseteq U$ for each k; hence $S_k \subseteq x_k + U$ for all $k \in \{1, 2, \ldots, n\}$. As a result, $S = \bigcup_{k=1}^n S_k \subseteq \bigcup_{k=1}^n \{x_k + U\} \subseteq F + U \text{ so } S \text{ is totally bounced.} \#$

Theorem 3.84 Let X be a vector space over \mathbb{H} , Y a TVS(\mathbb{H}), $f: X \to Y$ a linear map and S $\subseteq X$. Then S is of - totally bounded if and only if f(S) is toyally bounded.

 $\underline{\operatorname{Proof}}: (\Longrightarrow)$ We consider of to be the smallest topology on X making f continuous. Since S is of totally bounded, by Theorem 3.81, f(S) is totally bounded.

(←) Let U ∈ N(X, of). Then there exists a V ∈ N(Y) such that $U \supseteq f(V)$. Since f(S) is totally bounded, there exist A_1, A_2, \dots, A_n C Y such that A_k is small of order V for each $k \in \{1,2,...,n\}$ and $f(S) = \bigcup_{k=1}^{n} A_k$. Assume that $A_k \neq \emptyset$ for each k. Set $S_k = f^{-1}(A_k)$, k = 1, 2, ..., n. Claim that S_k is small of order U for each k. Let $k \in \{1, 2, ..., n\}$. Let $z \in S_k - S_k$. Then z = x - y for some $x,y \in S_k$ so $f(z) = f(x-y) = f(x) - f(y) \in A_k - A_k \subset V$; hence $z = x-y \in f^{-1}(V) \subset U$ thus we have the claim. We must show that $S \subset \bigcup_{k=1}^{n} S_k$. Let $s \in S$. Then $f(s) \in A_k$ for some $k \in \{1, 2, ..., n\}$ so $s \in f^{-1}(A_{k'}) = S_{k'} \subset \bigcup_{k=1}^{n} S_{k}$. Hence $S \subset \bigcup_{k=1}^{n} S_{k}$. For each k, let $S'_k = S_k \cap S$. Let m $\in S$. Then m $\in S_k / f$ for some $k \in \{1, 2, ..., n\}$ so $m \in S_k \cap S \subseteq \bigcup_{k=1}^n (S_k \cap S) = \bigcup_{k=1}^n S_k'$. Hence $S \subseteq \bigcup_{k=1}^n S_k'$ so $S = \bigcup_{k=1}^n S_k'$. Since Sk is small of order U for each k and Sk C Sk, Sk is small of order U. By Theorem 3,83, S is of - totally bounded.

Theorem 3.85 Let Φ be a collection of vector topologies an a vector space X over [H. Then S \subseteq X is $v\Phi$ totally bounded if and only if S is T - totally bounded for each $T \in \Phi$.

<u>Proof</u>: (\Longrightarrow) Suppose that S is v ϕ totally bounded. We must show that S is T - totally bounded for each T $\in \Phi$. Let T $\in \Phi$. Let i: (X, v ϕ) \to (X, T) be the inclusion map. Since T \subset v ϕ , i is con continuous and linear. By Therem 3.81, i(S) = S is T - totally bounded.

(←) Suppose S is T - totally bounded for each T € 0 . We must show that S is $v \Phi$ - totally bounded. Let $U \in N(X, V\Phi)$. There exist $T_1, T_2, \dots, T_n \in \Phi$ and $V_j \in N(X, T_j)$, $j = 1, 2, \dots, n$ such that $U \supseteq \bigcap_{j=1}^{n} V_{j}$. For each j = 1, 2, ..., n, let $S = \bigcup \{ S_{ij} | i = 1, 2, ..., m_{j} \}$ where each S_{ij} is small of order V_{ij} . Choose $i(j) \in \mathbb{N}$ such that $1 \le i(j) \le m_j$ and let $A_{i(j)} = \bigcap \{ s_{i(j)j} | j = 1,2,...,n \}$. Claim that $A_{i(j)}$ is small of order U. Let $z \in A_{i(j)} - A_{i(j)}$. Then z = x' - y' for some $x, y' \in A_{i(j)}$. Since $x, y' \in A_{i(j)}$, x', $y' \in S_{i(j)j}$ for each j; hence $z = x' - y' \in S_{i(j)j} - S_{i(j)j} \subseteq V_j$ for each j. Thus $z = x - y \in \bigcap_{i=1}^{n} V_{i} \subseteq U$ so we have the claim. Let $x \in S$. Then $x \in u \in S_{ij}$ $i = 1, 2, ..., m_j$, j = 1, 2, ..., n so $x \in S_{i_0 j}$ for some $i_0 \in \{1, 2, ..., m_j\}$ thus $S \subseteq \bigcup_{j=1}^{n} A_{i(j)}$. Let $A_{i(j)} = A_{i(j)} \cap S$. Then $S = \bigcup_{i(j)} A_{i(j)}$. Since $A'_{i(j)}$ is small of order U for each j and $A'_{i(j)} \subseteq A_{i(j)}$, $A'_{i(j)}$ is small of order U and $S = \bigcup_{j=1}^{n} A'_{i(j)}$ so S is $v\Phi$ - totally bounded. #

Corollary 3.86 Let X be a vector space over [H and F a set of linear maps { $f_{\alpha} | X \to Y_{f_{\alpha}}$, $\alpha \in I$ } where each $Y_{f_{\alpha}}$ is a TVS([H) and each $\alpha \in I$ an index set. Then S \subseteq (X, oF) is totally bounded if and only if f_{α} (S) is totally bounced for each, $\alpha \in I$.

<u>Proof</u>: Since $S \subseteq (X, v\Phi)$ where $\Phi = \{\sigma f_{\alpha} \mid \alpha \in I\}$ is totally bounded, S is σf_{α} - totally bounded by Theorem 3.85. Hence, by Theorem 3.84, $f_{\alpha}(S)$ is totally bounded for each $\alpha \in I$.

Suppose that $f_{\alpha}(S)$ is totally bounded for each $\alpha \in I$. By Theorem 3.84, S is σf_{α} - totally bounded for each $\alpha \in I$. By Theorem 3.85, S is $v \Phi$ - totally bounded where $\Phi = \{\sigma f_{\alpha} \mid \alpha \in I\}$. #

Corollary 3.87 Let $(X_{\alpha})_{\alpha \in I}$ be a collection of TVS(H)'s, $S \subseteq \P(X_{\alpha})$. Then S is totally bounded if and only if each of its projections is totally bounded. In particular, if $S_{\alpha} \subseteq X_{\alpha}$ is totally bounded for each $\alpha \in I$, $\P(S_{\alpha})$ is totally bounded in $\P(X_{\alpha})$.

Proof: (\Longrightarrow) Suppose that S is totally bounded. For each $\alpha \in I$, let $P_{\alpha}: \P X_{\beta} \to X_{\alpha}$ be the projection map. Since P_{α} is linear and continuous and $S \subseteq (\P X_{\beta}, \sigma F)$ where $F = \{P_{\alpha} | \alpha \in I\}$ is totally bounded, by Corollary3.86, $P_{\alpha}(S)$ is totally bounded for each $\alpha \in I$.

each projection map $P_{\alpha}: \P X_{\beta} \to X_{\alpha}$, $\alpha \in I$. By Corollary 3.86, $S \subseteq (\P X_{\alpha}, \sigma F)$ where $F = \{P_{\alpha} | \alpha \in I\}$ is totally bounded. For the rest of the proof, suppose that $S_{\alpha} \subseteq X_{\alpha}$ is totally bounded for each $\alpha \in I$. For each $\alpha \in I$, let $P_{\alpha}: \P X_{\beta} \to X_{\alpha}$ be the projection map. Then $P_{\alpha}(\P S_{\beta}) = S_{\alpha}$, for each α . Since S_{α} is totally bounded for each α , by the previous result, $\P S_{\beta}$ is totally bounded in $(\P X_{\beta}, \sigma F)$ where $F = \{P_{\alpha} | \alpha \in I\}$. #

Compact Sets

Definition 3.88 Let X be a TVS(IH). A filterbase F on X is called Cauchy if and only if for each $U \in N(X)$, there exists an $S \in F$ such that $S - S \subseteq U$. F is said to converge to x, denoted by $F \to x$ if and only if $F \supseteq N_X$ where F' is the filter generated by F and N_X is the set of all neighborhoods of x.

Remark 3.89 $F \rightarrow x$ if and only if for all $U \in N(X)$, $x+U \supseteq A$ for some $A \in F$.

Lemma 3.90 Let F be a Cauchy filter base on X, a TVS(\mathbb{H}), suppose $x \in \overline{A}$ for each $A \in F$. Then $F \to x$.

Proof: Let $U \in N(X)$. Choose a closed set $V \in N(X)$ such that $V \subseteq U$. Since F is Cauchy, there exists an $A \in F$ such that $A - A \subseteq V$. Then $A - X \subseteq \overline{A} - \overline{A} \subseteq \overline{A - A} \subseteq V \subseteq U$; hence $A \subseteq X + U$. By Remark 3.89, $F \to X$. #

Lemma 3.91 Let X be a TVS(H) and S C X a complete subset. Then each Cauchy filterbase F on S converges to a point in S.

<u>Definition 3.92</u> F is an ultrafilter if and only if F is a maximal filter; that is whenever F is a filter with $F' \supseteq F$, F' = F.

Lemma 3.93 Let S be a set and F an ultrafilter on S. Let A C S.

Then either A & F or S\A & F.

Proof : The proof is standard. #

Lemma 3.94 Let S be a set and F an ultrafilter on S. Suppose that $S = \bigcup_{k=1}^{n} S_k$ for some $n \in \mathbb{N}$. Then $S_k \in F$ for some $k \in \{1, 2, ..., n\}$.

Proof: The proof is standard. #

Lemma 3.95 'Let X be a TVS(H), S a totally bounded set in X and F an ultrafilter on S, Then F is Cauchy.

Proof : The proof is standard. #

Lemma 3.96 Let S be a set and B a collection of subsets of S with the finite intersection property; that is for any finite subset B' of B, say B' = $\{B_1, B_2, \ldots, B_n\}$, $\bigcap_{k=1}^n B_k \neq \emptyset$. Then there exists an ultrafilter F' on S such that B C F'.

so U/V & B . Hence B is a filter base on S. Let B be the filter

generated by B ; that is B = {C \subseteq S | there exists a D \in B such that D \subseteq C }. Then B \in P. Hence P \neq Ø. Partially order P by set in clusion. Let {C α } $\alpha \in$ I be a chain in P. Let C = \bigcup C . Then C \in P and C is upperbound of the chain {C α } $\alpha \in$ I. By Zorn's lemma, P contains a maximal element, say C'. Clearly C' is an ultrafilter and B \subseteq C'. #

Theorem 3.97 Let X be a TVS(IH). If K is a compact subset of X then K is complete.

<u>Proof</u>: Let $x = (x_{\alpha})_{\alpha \in D}$ be a Cauchy net in K. For each $\alpha \in D$, let $T_{\alpha} = \{x_{\delta} | \delta \ge \alpha\}$. Since $x_{\alpha} \in T_{\alpha}$ for each $\alpha \in D$, $T_{\alpha} \neq \emptyset$ for all α . Claim that for any finite subset J of D say $J = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$, $\bigcap_{i=1}^{n} T_{\alpha} = \emptyset. \text{ Since D is directed, reorder } \{\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}\} \text{ to be}$ $\{\beta_1, \beta_2, \dots, \beta_n\}$ where $\beta_1 \leq \beta_2 \leq \beta_3 \leq \dots \leq \beta_n$. Then $\bigcap_{i=1}^n T_{\alpha_i} = \bigcap_{i=1}^n T_{\beta_i}$ = $T_{\beta} \neq \emptyset$. So we have the claim. Next, we must show that $\bigcap_{\alpha \in D} \bar{T}_{\alpha} \neq \emptyset$. Suppose not. Then K $\subseteq \bigcup_{\alpha \in D} (\bar{T}_{\alpha})^{C} = X$. Since K is compact, there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in D$ such that $K \subseteq \bigcup_{j=1}^n (\bar{T}_{\alpha_j})^c$. Hence $K \subseteq (\bigcap_{j=1}^n \bar{T}_{\alpha_j})^c$ so $K \cap \left(\bigcap_{i=1}^{n} \bar{T}_{\alpha_{i}}\right) = \emptyset$, a contradiction. Let $k \in \bigcap_{\alpha \in D} \bar{T}_{\alpha}$. We must show that $x \to k$. Let $U \in N(X)$ and let $V \in N(X)$ be such that $V + V \subseteq U$. Since x is Cauchy in K and therefore in X, there exists an $\alpha > 0$ such that for all $\delta \geq \alpha$, $\delta' \geq \alpha$ implies that $x_{\delta} - x_{\delta'} \in V$. Since $k \in T_{\alpha'}$ $(k+V) \bigcap T_{\alpha} \neq \emptyset$. Let $x_{\delta} \in (k+V) \bigcap T_{\alpha}$ so $\delta \geq \alpha$. Let $\delta' \in D$ be such that $\delta' \ge \alpha$. Then $x_{\delta'} - k = (x_{\delta'} \times_{\delta}) + (x_{\delta} - k) \in V + V \subseteq U$. Hence $x \to k$ so K is complete. #

Theorem 3.98 Let X be a TVS(H). Then K C X is compact if and only if K is totally bounded amd complete.

Proof: (=>) Suppose that K is compact. By Theorem 3.97, K is complete. By Lemma 3.80, K is totally bounded.

Then C is a collection of closed sets in K with the finite intersection property. By Lemma 3.96, there exists an ultrafilter F on K such that $F \supseteq C$. By Lemma 3.95, since K is totally bounded and F is an ultrafiller on K, F is Cauchy. Since K is complete, by Lemma 3.91, $F \multimap k'$ for some $k' \in K$. Claim that $k' \in \bigcap C$. Let $\alpha \in D$ and let $U \in N(X)$. Since F is an ultrafilter on X, $k' + U \supseteq A$ for some $A \in F$. Since $K \setminus G_{\alpha} \in F$, $(k' + U) \bigcap (K \setminus G_{\alpha}) \neq \emptyset$; hence $k' \in Cl_X(K \setminus G_{\alpha})$. Then $k' \in Cl_X(K \setminus G_{\alpha})$ $\bigcap K = Cl_X(K \setminus G_{\alpha}) = K \setminus G_{\alpha}$ so $k' \in \bigcap C$ and we have the claim. Then $\bigcap_{\alpha \in D} \{K \setminus G_{\alpha}\} \neq \emptyset$ so $K \setminus G = K \setminus \bigcup_{\alpha \in D} G_{\alpha} = \bigcap_{\alpha \in D} (K \setminus G_{\alpha}) \neq \emptyset$ which

contradicts the fact that G is an open cover of K so K is compact. #

Definition 3.99 Let X be a TVS(|H) and S C X. H is called the balanced covex hull of S if and only if H is the smallest balanced convex set containing S.

Lemma 3.100 Lem X be a TVS(H) and let A, B be balanced convex compact sets. Then the balanced convex hull H of AUB is compact.

<u>Proof</u>: Let $D = \{ (z, w) \in |H^2|, |z| + |w| \le 1 \}$. Define $f : D \times A \times B \to X$ by f(z, w, a, b) = za + wb. Claim that $f(D \times A \times B) = H$ (the balanced convex hull of $A \cup B$). Let $h \in H$. Then

 $h = \sum_{i=1}^{n} t_i x_i \text{ where } \sum_{i=1}^{n} |t_i| \le 1, x_i \in A \cup B, \text{ say } x_1, x_2, \dots, x_k \in A \text{ and }$

 x_{k+1} , x_{k+2} ,..., $x_n \in B$. Let $z = \sum_{j=1}^{k} |t_j|$, $w = \sum_{i=k+1}^{n} |t_i|$,

 $a = \sum_{i=1}^{k} (\frac{1}{z})x_i$ and $b = \sum_{i=k+1}^{n} (\frac{t_i}{w})x_i$. Hence $a = \sum_{i=1}^{k} (\frac{t_i}{z})x_i \in A$

and b = $\sum_{i=k+1}^{n} \left(\frac{t_i}{w}\right) x_i \in B.$ Then $f(z, w, a, b) = za + wb = z \left(\sum_{i=1}^{k} \left(\frac{t_i}{z}\right) x_i\right)$

+ w $\left(\sum_{i=k+1}^{n} \left(\frac{t_i}{w} \right) x_i \right) = \sum_{i=1}^{n} t_i x_i = h \text{ so } f(D \times A \times B) = H.$ Clearly, f is

continuous. Since DxAxB is compact, f(DxAxB) is compact; hence
H is compact. #

าหาลงกรณ์มหาวิทยาลัย