CHAPTER III

TOPOLOGICAL VECTOR SPACES OVER THE QUATERNIONS

Definition 3.1 A topologig: (abbreviated by

vector space over |H such that the

ué the map(t, x) = tx and

I X respectively are continuous .

TVS(H)) is a topologis
vector operations #
(x, ¥) = x+vy
If X is a vect ) T which makes (X, T) a

TVS(IH) will

Example 3.2 His a TVS(H).

Proof : -;1,‘ tmed space over [H. Since

{B(0; r]|r I3 Q+} ise of neighberhoods of 0 in X, X

is first countable hénce sequet e gsed. X has a natural

pseudometric -1-,1‘ & b - ,;-vé

= lx-vll . m

A mdﬁ% b1 el
ROV NI P T AL

By property (PN4) of a paranorm, the map(t, x) - tx is continuous.#

defined by dix, y)

Notation The set of all neighberhoods of 0 in (X, T), a TVS(IH),will
be denoted by N, N(X), N(T) or N(X, T). The set of all neighberhoods

of a point x in (X, T),a TVS(H), will be denoted by N,
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Theorem 3.3 Lntxbaawsiﬁi}.aexandsgx. 'IhonGEHaifmd

only if G - a & N(X). In other words a + U Eﬂl if and only if U & N(X).

Proof : Let X be a TVS(H), a € X and G € X. Define £ : X = X
by £(x) = x+a. Clearly f is a bijection. We must show that f is

continuous on X. Let b € X be arbitrary. Let W be an open set

containing b + a. We must
such that £(V) € W."™sSince
exists an open st M % (Mx N) C W. Choose V = M.
We must show V ' Then y = f(c) for some

C eV =M Hepdl BEN.80 b (e, @) = c+a € W. But £(o) =

‘ e f is continuous at x = b.
But b ¢ X was ar@it ohtinuous on X. We can show
in a similarway X - a is also continuous.

Hence f is a home
ce exists an open set U a

such that U ‘;f === n{g—alg €Gland 0 €U -a

; _‘tueU-aan—aéN.

also. Hence f  [(U)

Since G - a2 u-.‘ 0, G-a & Nay To prove the converse, we use a

mﬂouﬂfmﬂmwmm
= AT N AN

contfnuous linear maps from X into Y. If Y = H, B(X, ¥) is denoted by
X’; that is X’is the set of all continuous linear functionals on X s

is called the dual space of X.

Theorem 3.4 If X and Y are seminormed spaces over [H, so is B(X, Y).

Moreover if Y is a normed space over IH, so is B(X, Y).
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Proof : Let (K.-p} and (Y, g) be seminormed spaces over H.
Define a map ||. || : B(X, ¥) “R by Tl = sup {q(T(x)) [p(x) <1}, where
T &€B(X, ¥). We must show that |. || is a seminorm on B(x, ). Let
T 6 B(X, Y) and A €H. Then

AT = sup { q(AT)(x)|p(x) < 1 }

Let T, T & B(X 2 _ p T‘H{ HTH"' IT‘H,
|]T+T'ﬂ ) (%! .

A p(x) <1}

} + sup { q(T(x)) [p(x) < 1}

Clearly, [0 w3 @on B(X, Y). Suppose

(Y, g} is a no: ' : 1 H- that B(X, ¥) is also a

normed space. We hava shown that | . ” is a seminorm on Bh, ¥). We

= B IRBN TN AG cro. = v

that ||| <4b. Hamustshowthat'rnﬂ. a1 125 S

 RARIRENTRINNA TN TR o

q(T(H)) < sup { q(T(x))|p(x) < 1} = |IT]l = 0 so q(T(x)) = 0. Since q

- P(x)
p(:-:] = plx)

g(T {pt y)) < sup {quty}}lp{y] <1} = ﬂ-r]l S Saren q{ﬂ_{___”

=1 80

is a norm. T(x) = 0. If p(x) > 1. Then p (

! = 0. Since q is a norm, Ttm}- 0 so ( "rp{x}l T{x)} = 0. But pix) > 1

therefore T(x) = 0 so T = 0. Hence I].." is a norm on B(X, Y).



23

Theorem 3.5 Let X be a seminormed space over Hand f € S°, where S is a

vector subspace of X. Then f can be extended to F € X* such thntﬂF!]

= £l -

-

Proof : Let (X, ". |] ) be a seminormed spatce over Hand let

S be a subspace of X. Let f ¢
F & X’ such that |F|| = |
Define p : X =R by Since f is continuous

on s, ||£]] < =; aimthatpisanm.muru

on X. p(0) = || "€ X and A € H. Then p(Ax)

= [lelllax|l = £

Then plx+y) =

P p(x). Let x, y €X.

Q‘ = Uell N+ Dell Dyl
= pi(x) + p(y). iinge f is continuous on S, by
Theorem 2.9 , £ (xMf< | Ffdmall % @s. Hence |£(x)|< plx) for
all x ¢ S. By Theorem 5 ":_,__,, D Rended o £ € X’ such that

 that [|IF|l = [l£]]. D£]| -

sup { |£c0 | |1 x € Eov (| U=l < 13 = el . so
Il < Iell - [i8 : , i@gsup{p:x}ll]legn

- sup {"fﬁ I IIHhsI:*-. 1) < swp el Bxll <1} =lell . sence

Il = Iz ﬂﬂﬂjwﬂqﬂi
—ﬂaﬁaﬁmmm gy o e e

a subbpace of X. Let x, € X\§. Then there exists an f€X withf(x,)=1,

ft-cxl|< pix) fo

f =0 on S and ﬂfl[ = where 5§ is the closure of S and d{xu, 5)

d{#u,sj

= inf { |x,- sl ses}

Proof : Define g : § + <x,> ~H by gis+ txﬁ} = t where

s &S and t € H. We must show that g & (,s+-:xu >) . Let u,v € S+<x, >
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and a, b € H. We must show that g(au + bv) = ag(u) + bglv). Since

# » ’ F g FAR
u,ves-rf.xu},u-s +t° x,v=s + t xnfnrsma,aism

. 5 &
- t?e H. Then glau + bv) = gla(s + t xu} + bl{s + t’ xn”
p # A 5
= glas + l:us:&r + tmi:."IF + bt lxn} = at‘+ bt” = alglis” + t xu}}

Hence g is a linear functional on

4 &
+ bg(s + t x,) = ag(u) + bg, v)

S +<xy> Letd=dl

zZ ES +<xu>.

uffé » d =dlxy, S) > 0. Let

a5 €5 and t €H so[lzfl =

- | =" > |t] inf { flx,-vll| y € s}

= |t|d = |g(z) @ dEAd) \ - |] <11} < "zu'd < Va

-l‘ n 2.9, g is continuous on

s+ <x_ > hencesd el dofe ST Aok B S8 Then 1 = glx,-8) .
lall lixg-s I ’ es )= |all int

( Ixp-sll |s € 5 } re || \ /4 . Hence |Ja]l = '/a so

mhammntgets’*z .‘ g(x,) =1, g=0on S and

'ﬂglf /s B r:-* . ists f € X* such that £ = g on

—

.‘__.-i A £ :
$+{xﬂ}and ‘}_'7 r— \.‘

| |
Definition 3.7 mA set 5§ € X is called fuent:al if the span of S

e o Y1 ANYNITNYINT %

Theorem 3.8 Let X be a geminormed gpace, S € X. qSuPpose that for

AW IATRNAY I VI HA o

If 5 15 a subspace of X then § is dense. -

Proof : Let <S> be the span of 5. Let x, & X\< 5>. By

Theorem 3.6, there exists an £ € X" such that f(xu} =1, f=0o0n<85>
and Hf" = 1";{! where d = d{xu, <8>) = inf { I[xn- m]” meg<S> }

Since f =0 on<5>, f =0 on S. By assumption, f = 0 on X,
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50 f{xu} = 0, a contradiction. Hence X\<5>=¢@ : that is <5> = X.
So S5 is fundamental.

Assume that S is a vector subspace of X. Suppose that § £ X.

i
Let x, € X\8 . By Theorem 3.6, there exists an f € X such that

f(x,) = 1,£ = 0 on S. By assumption, f=0o0n'X; so f(x,) =0, a
yle X. 'I'hus S is dense in X. "
L&cmr topologies for a vector

' unions of finite

"
contradiction. Hence X\ »-’

THeorem 3.9 Let

space X over H.

intersections is a vector topology for X

and a net Xg ™ i o ,1 @ in T, for each T€$ .

Proof : generated by U® and

v® 2 T for each vd is a vector topology

for X.

Y. .8 ’ LtAF ion. Let t €H and x € X. Let
{ta:'&c-n’ __-' £D : o the same index set D
such that t ‘ﬁ show that £t x_ - tx in

6 6

6 7
-xinvt.by'l‘heorml 18, % - x in (x, T) for each

vP . Since x

ﬂ UH’?‘nWW%ﬁﬁ in each (X, T) go by

Theorem 1.95, t - tx in ve . Henca the mult:.phcatiun is continuous.

blad &ﬁﬂ? W%J%T%«Mﬂ&ﬂm 20 the proot

of the continuity of multiplication. The rest of the proof follows

easily from Theorem 1.18. 4

Definition 3.10 Let P be a collection of paranorms on a vector space

X over H. Then oFf denotes v { Tplp € P} where TP is the topology

induced by a parancrm p.
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. Theorem 3.11 Let X be a vector space over Hand let P be a collection
of paranorms on X. Then oP is a vector topology for X. Moveover,

a net X, =0 in oP if and only if p{xﬁ} = 0 for each pe P.

-

Proof : It follows from Example 3.2 and Theorem 3.9 « #

Theorem 3.12 Let X be a space over IH. For each a ¢ I, (I an

index set) let Y_be | /&:x-ﬂz be a linear map.

topolog:.r Moreover, a net

xﬁ'*ﬂ in wF if \ 0 for eacha & I.
. Is pre £ X - Y is a linear

Proof

map. Let t € {4 xo -‘:"' .A d (xg) s op be mets in W

and X respective me index set D such that tﬁ e

and x, = x. We By Theorem 1.19, ffxﬁl = {x)

in ¥, Bo f{tﬁ ﬁ} = tx). By Theorem 1.19 again,

tﬁxﬂ - tx. Hence s continuous. Using a similar

= @ontinuous. Hence wF is
Y ) ;

-u-::lzl-k from Theorem 1.19 . #

R AT e e
Wﬁ"ﬁﬁiﬁfﬁ%"‘i’?ﬂ“ﬂﬁaﬂ

3.14 Let X be a vector apace over [Hand let F € X . 1In

(X, wF), a TVS(H), every U € N(X) includes a vector subspace of X of

finite codimension.

Proof : Let (X, wF) be a TVS(H). Let U € N(X) . We must show

that there exists a vector subspace A of X such that A has finite -
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codimension.and ACU. Since U & wF, there exists V, € N(X, wfi},
b

f & P, 1=1, 2, «.oy n'such that =} \ri:'u Since \l'ié N(X, 'ufil
i=1

for all i = 1, 2, «ov » ns ¥, D x||£.(x)] <e;] for some e >0,

$om58y sewty ns Lat A wifTY erE e 1522, o-- Bk Since

ker £, is vector subspaceof X 1i=1,2, ... »n, Aisalsoa

i
it A € U. Let x € A. Then

ore, f.(x] =0 for all i

” / . ., _'/'k
1-1, 2. s w 5 = ‘_' 111_1| 2, «=s 3 N BO
) . :
> Sy e B axt, we must show that A
i=1
has finite codimeg: 4 18, 'there e sta a finite .dimensiocnal .

vector subspace C ‘sugks thaid- €= X G

The result is clear.

Case 2 X is infin¥be dimenfional. Claim that A £ {0} . To
p_]"l:}\EE thiﬂ SUppCS : -8 L = o — ;'--r l G (H] = {f‘{x}jfztx]jolql
\J \

Q '[ir 141 =1,20..,0n; G is
linear. Since A = { 0} nl x|f (x) =01}

8o, x # tﬁnﬂﬂﬁéﬁig)wwwﬂﬁ,m Let x, y € X

be such thak xiy. Thernz; y 4 0. HencaG(xJ—Glyl:E[x y)

Q‘Wﬁ] afﬂ’ﬂﬁm y(ﬁﬂ’ﬂm"}tﬁ ﬁ: G'(x) 4 G ly),

Henl: G is injective so dim X < dml = n, a contradiction so we have

fn(x] }. Since

={0 } for somei = 1,2,...,n

the claim.

Lﬂtﬂ--xfa.

the addition and scalar multiplication defined by

Then B is a vector space over |[Hwith respect to

(x+A) + (y+A) = (x+y) + A and t(x+A) = tx + A where x, y € A and

t é€H. Define G : B "tHn as follows. Let a &B. Choose x €0 .
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Define Gla) = {f1 (x), fztx}..”.fn{xn. We must show that G is well-
difined. Choose y€a also. Then Gla) = {f1 (y), t'zl’yl,...,fntﬂh
Sinn&j"&u ¥ X—Y\ER. HB]‘I.E# fi{x—y] = ﬂfDl" ﬂlli ‘1,2---‘-"““

fi{xl = fi(y} for all i. Hence {fiixl. fztxl.....fn{x}l

= (£,(y),E,(y) 5.0 E (y) O ‘G is well-defined. To showthat Gis injective

leta , a” € B be such ‘). We must show that a = a”,

Choose x €& and y & {x},...,fn[x]]
- tf1 {y},fz[yj,... 2 wig _linear for all i = 1,2,...,n,

(x-y) =0 fo 2 i I'*"‘*- .3 fhus @ = @” so G is injective.

NN ... ..
QS*.\\.\\ 52 i=1200;M

(o wé. RRTL , ‘; \

Let < B sBys---5 tig sel all linear combination of elements

£

Hence ~dim B <

in {BysB,,.--sB. ) ...8_} is linearly independent..

Suppose that #= 1,2,...,n. We must show that

- A (B
il = E i
1"‘, lij] [0] so - Wi

: j:l
4

]

A4

« (o). ‘Hende 31 a; = 0(inB). But{ L } is linearly

=1
1ndapnndeﬂ u EJ '}mﬂm;’ﬁ Wﬂq nd‘ihus we have the claim.
Hence ':B ..,E > is a vdctor subspase of X withgthe basis

AN TGN, .

€ X. Then x + A €B sox + A = Elﬂjforsmljem-

i=1 :
m m
j=1,2,...,m. Hence x + A= L A.(B.+A)= I A.B. + A therefore
=1 3 j=1 j
m
there exist a, b € A such that x + a = ZA.B. +b. Hence
j=1
m
- - b
x = (b-a) + j_#jﬂj €A +<B1,E.-2.....ﬂm:- so X = A +4:5“52'__”|;m>
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and thus A has finite codimension. #

Definition 3.15 A collection F of subsets of vector space is called

additive if and only if for each U € F _there exists V € F such that

V+V C U
Theorem 3.16 /gatpr space over Hand a topological. space.
Define u : X x X — X &b ulx | } y. Then u is continuous at

0 (=(0, 0) if and

Proof : e u is continuous at 0, there

exists a W & N( nce W € N(Xx X), there

exist V

Vs € N Let V = \r.,r\vz. Then °

1

VeV EV 4V, €
e N(X) is additive, there

| s, ‘ e

exists a V € N(X) such tBat V- So VxV € N(Xx X) and u(VxV)

= V+V & U.

: ‘

Theorem 3.17 Then tU &€ N(X) for

every t 4 0.

il &llﬂﬂm&ﬂ&ﬂﬁmmm g

withs inverse u-]x which is also

Z;m,m'lﬁ"iai‘iﬁiiﬁimnm A

on’ itself and hence preserves open sets. 4

Theorem 3.18 Let X be a TVS([H). Then every neighberhood U of 0 in X

is absorbing.
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Proof : Let U € N(X). Let x & X. Define u : H =X by u (t)

= tx. Then uxia continuous at 0 so there exists an€> 0 such that

[t| < € implies that ux(t}_ €U ; that is, tx €U. Hence U is absorbing . $

Theorem 3.19 Let X be a TVS(H). Then every U € M(X) includes a

. R

balanced neighberhood of 0.l

Proof :
r——
u(t, .x) = txis thére eXists,a W € N(H x X) such that

u(W) € U. Sinc \thare xistiR. € N(H) and Q € N(X) such

that P x Q@ € W. [0 there ekists an € > 0 such that
P1{ t]|t] <= of| \\\ We must show that V is

balanced. Let v B |t] < 1. since v €V,

= sq for some q kv = ti(sg) = (tslg. But

ts| = |t]]|s] € 1+ Hence V is balanced.
lts| = |t]ls] < "

Theorem 3.20

,ﬁ en § =Nl s+ulu e N(xX)}
Y

D

x € Sand U & N(X). By Theorem 3. 19; there exists

e DY OB H v e

neighberh of x, (x+V)rys 4+ # . x £5=-V = $+\F. Since VC U

CAFARAT TP NYARE. o

let x ﬁs By Theorem 3.19, there ex.l.st.n a balanced set U € N(X) such

In particular, ‘y

that (x+ U)/\S = #. Hence X é S-U=5S+U so x éﬁ{ s+ UJU e N(X)}. &

U € N(X) includes a closed

Theorem 3.21 Let X be a TVS(H). Then eve

balanced neighberhood of 0.
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Proof : Let U & N(X). By Theorem 3.16, since addition is

continuous, there exists a set V & N(X) such that V + V € U. By
Theorem 3.19, there exists a balanced set W € N(X) such that W € V.
Then W €W + VEV +V € U. We must show that W is balanced. Let

t € H be such that [t| < 1. Since the map £ : X - X given by f(x) = tx

is continuous, f(W) C £(W) € tW. Since W is balanced and

|t] <1, tW € W. Hene ' ‘;”:_:ﬁ. Thus W is balanced. #
) :”-',, - J R 2 "‘

——

\\&\ pological space. The

™ ;;‘s are ivalent :

Thenrmn' 3.22

following condi

2 U € N(X) such that x £ U.

Proof : Letd% e a'must show that X is reqular ;
that is, for all X & !, s a closed neighberhood of x.
Let x ¢ X and ¥ V € N(X). By Theorem3.21
there exists a WEV. Then x+W is a

closed nm.ghbarhno? of x such that X+W € x+V =U. So X is regular.

T"ﬂ‘u ﬂg%ﬂimﬂﬁ . Since X is Ty,

X is T ; hencn every singléton is cloged so {0] isgglosed in X.

AANSUNR NN ..

Since {0} is closed and x # 0 then there exists U € N(X) such that

(x - Ulh{ﬂ} = @. Then x é u.

(c)=>(a). We have shown that X is reqular. It

remains to show that X is T Let x, y € X be such that x £ y. Then

1.
x -y # 0. Hence there exists a set U € N(X) such that :r:-yé u.
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Since U € N(X), by Theorem 3.19, U con-tains. a balanced set V € N(X).
Claim that Int(V) is balanced. Let t € IH be such that |t] < 1. e
shall show that t Int(V) = Int(tV). If t = 0 the result is.
obvious. Assume ¢t # 0. Define ft : X = X by ft{x} = tx. It is
clear that ft is a homeomorphism of X onto itself. So ft. preserves

Then there exists a y € Int(V) such

open sets. Let x €t Int(

that x = ty. Since j xists an open set W in X such

that y € W C V. ncewianpcnnndftian

c t.'i.l’, therefore x € Int(tV).
"%®xists an open set G in X

1 -
[E]G c V. Since ft is a

V). Hence %- y for some

y € Int(V) so 3 so we have the claim. Since

V is balanced = E(tv) € Int(V) so Int(V) is

balanced. Let P = "is open balanced set in N(X) such

that P C U. | rorax%y+?anﬂ-yéx+!’

Lo

Hence y+ P im/ 4 ‘ P is_on open set containing

x. Thus X iam so X is T, and regular. m-nence X is Ty- 3

nefinigﬁi H EI{ ’a %H)‘H ﬁwgﬂ@@ﬁ the three equivalent

AAMMIUNNININNY

Theorem 3.24 Let X be a TVS(HH),A,B, C X. Then A+B C A+B.

Proof : Let x ¢ A + B. Then x = a+b for some a € A and
b € B. Hence there exist filter bases Q, P in A, B respectively such
that Q = a and P - b. It is clear that Q + P is a filter base in

A + B. slincaﬁ-a. P —~b and + is continuous, Q + P *a+b = x
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S0 x & A+B. #

Theorem 3.25 Let X be a TVS(H) and § € X. Then the following hold.

(a) If S is a subspace of X,then so is 5.
(b)Y If S is a convex set in X, then so is S.

(¢) If S is a baldrked in. X, then so is S.

Proof : the map £ : X = X given by

f(x) = tx is hat is t5 C ts. Let a,b € M.

Then aS + bS pace . of X.

-—

ch that a+b = 1. Since B is

~a vector “subs

e such that Itl < 1. Then

there exists a fillt edch that @ — x. Let A € Q. So
e in S. Since scalar multiplis
fore txeS5. Hence 5 is balanced. #

' Theorem 3,2: /L 1"" additive filterbase of

balanced abso H subsets of X. Then r_m-a exists a unique vector

-\ FAMYMIREN T

LetT:JGL':XlG- or for each x &G there exists

aamaimm LR VI REIER Y « oo

2 Let G, G, €T. To show that G, r“w € T , suppose that t;pc;z{- [0}

Let % & G‘ﬁsz. Then there exist U,, uzﬁ-ﬁ such that x+ U, c G, and

x+U,¢cg Since B is a filter base, there exists a U€B such that

2 2°

UQU MU,. Hence x + U & (x + U )M(x + U, € 6, MG, so 6,MG,&eT.



Let {Gul aeq be a family ‘of open sets in T.. We must show that
) GGET. Suppose that UGH £ 07 . Let x EVGu . Then X€G
ael ael ael %

for some o _&I. Since G ;&T, there exists a U_ € B such that x + U
0 o uo a
0 [1]
cG. C UG‘. Hence \JG_e&T.
0 asl asl

Let x€X. Then x + U C j all UeB so X€T. Hence T is a topology

for X. Next, we must show thas #& a local base of neighberhoods of

0. Let UEB .

0 €EG. Let Xx66G. == auch that x+V € U.. Since V is

Let W € B be su W A WwieH.| Lethw€W. Then x+w+W C x+W+W
€ x+V CUsoXx+ie % s0 G is open and BEGEU.

Hence U & N(X) so B L : J if%). Then there exists a G&€T such

CUso0e

local base ui————

We mum‘n ¥ | i
AUBIRMBORPIAT: = oo =

be nets in X wifh respect o the directed set D such that .

JRIBIN U IDEA B vov .

Since Xg <@ and Yg = b then there exists a 6 & D such that 6 > 6"

show that T is a vector ﬂ:pﬂlogy.

implies that x, - a &V and Yg = b EV. Hence Xg + Y, - @ - bev + V
€U ; so X+ yg€a + b+ U s0x; +¥s —a+ b therefore the addition

is continuous.
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2. Continuity of multiplication. Let x &X and t € H. Let
UeB . Then tx+ U is a neighberhood.of tx. Hence there exists a

\Féﬂauchthat'.r+'if+v+'-r=u. Latnﬁ!lbesuchthat2>]t]
Choose We B such that W + W + ... +H cv (2" terms in the sum).
Since W is balanced, tW C 2™W € V. Since W is absorbing, 0 € W ;

hence W C 2" w cV; so [ 5 V is absorbing, there exists

.an € > 0 such that e : for |a] < € . Let P be the

£ - ﬁeighbe - We miE 7 that P{x+ W) Ctx+ U. Let
pePandy ¢ ' ‘ ] ot Y+ (p- t.)x+(p t)ily-x).

'- iy -x) € (p- t}h‘cﬂcv
.ty -x) € V so
mltiplication is continuous.

Since B generate e topology T is unigue. .

Definition 3.27 Let X'be a T¥S (lH). Then S € X is called bounded if

and only if eve £ > 0 such that t3 € U
whenever |t| _ : J\': neighberhood of 0.
Remark 3.28

a,um DUNTHENNT o

offtwo bounde@sysets in a TYS(H) is bounded.

’quﬁ\ﬂﬂ‘im AR1INBIRE

3 29 The following are equivalent for a set S in X, a TVS(H) :

(a) S5 is bounded.

{(b) For every sequence [xn}n ¢IN € S and every sequence (Enlmm

ﬂ 5 1 — ' =
f scalars in [H with € 0 we have € X, P.

; g b
(c) For every sequence {xn}n éINE s, tH}xn 0.

1192092980
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Proof : (a)=>(b). Let UEé& N(X). Since S is bounded, there
exists ane > 0 such that tSC U for all t & H such that |t| <E.
# .

Since e - 0, choose N'glIN such that for all n > N, |t:nl<£. Let e N be

-

such that n > N°. Then |en| < €; hence € x_ €F&S €U so g x = 0.

is not bounded. Then there
J

exists a balanc , ' such.that for all £ > 0 there exists

a t &lH such since tS t U, there exists

ay €tS such.d ome s € S. Sin=e|§|<1

and U is bala j Singe Yy = U;Yﬂt54§u59
1
ular, ;S i:u for all

B = 125568 = Then‘Exn+U for

) -
dich preserves bounded sets

is called bnun d ed .m

e LRSI T o e
ARSI TNY AT o

dear map. We must show that u is a bounded set

pefinition 3.48

of X. Let {yn}nﬁmgutsl. Then y_ -Iu!xn] for some x_ & S, neliN.
1 1 1
HE - - — 1
nce {n]yn Eu[xn] = u(“ xn]. Since xn_e S for all n€ N and S is
bounded , %- X~ 0 as n—= . Since u is continuous and %xn - 0 as

n== u(tx) ~u(0) =0 s uls) is bounded by Theorem 3.29.
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Corollary 3.32 1If T and T  are vector topologies for a vector space

X over H and T 2T, then each set which is bounded in (X, T') is

bounded in (X, T).

Proof : Let S be a bounded set in (X, T'). Let i be the

identity map from (X, T’) into (X, T). Then i is a continuous linear

map. By Theorem 3.31; q“ in (X, T). #

. 1 vector topologies for a.vector

Theorem 3.33

space X over [H --- ded in (X, v®) if and only

D

\ d in (X, v®). Since \rGaT

2% ‘ & bounded in (X, T) for each Te€ 9.

if it is bound

for each Te ¥

ded in (X, T) for each T&d .

GHet ‘ :
Let {xn]nil;ﬂ ba 54 We must show that {H]xn 0 in v® .

Since S is bounded: &0, By Theorem 3.29, {%1:-:; 0

in (X, T) fo V"-’ ‘-:-_I—an-—}ﬂ in v®. By Theorem

o 1y
neﬁnu_;ﬂﬁlii’gewﬁw %% %ﬂ‘ﬁm B €X is called a

hnrnivo if and only if ‘tm- each burunﬂed set 5 C x, there exists an

ARIRLAIRN WRIINAY

Remark 3.35 Let (X, d)bea pnaudomtn.r.: space. Then every bornivore

3.29, § is bmmﬂed in (X,

is a neighberhood of 0.

Proof : Let B GN(X). Then HB#HEJ{] for all nelN. Choose

1
xn with d{xn, 0) < = and xr#. nB. Let S = txn}n&tﬂ' We must show

that S is bounded. Let (2 ) be a sequence in S.

n EIN
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We must show that %.- z, = 0. Let € < 0 be given. Choose né& N such

1 1 1 11 1
that — < . Then d{-l-‘- z s o) = E-d{z.n, 0) < s <€ . Hence nzn*n

v
n

so0 S5 is bounded. Since xn¢ nB for each n, %5¢_B for all ne N ;

hence B does 'not absorb S so B is not a bornivore. ’

Lemma 3.36 Let X, ¥ .+ X.= ¥ a bounded linear map and

B a bornivore in ¥_ : g)rni.vnra in X.

Proof ' \ nce u is bounded, u(s) is
: e 4B 4 \\\ there exists ant >0 auc:h

also bounded. Si

\ \ < e soults)CB tharafora
\ N

8 bornivore in X.

that tu(s) C B fg

escu” (ults

Theorem 3.37 every bornivore is a

neighberhood éf 0. linear map u : X =Y, Y a TVS(H)
g

is continuous.

{' of 0 in Y. By Lemma

3.36, U i=s bo-’ vore ; hence u (U) € N()m. Thus u is continuous at
0. Let ﬂeﬂ'ifﬁ% Wﬁn ¥ such that Xg - %. Then
- x . ~Q. But u is cuntinunus at rﬂore u{x ) = ulx) :

ﬂ’w TNYT WW"TW’H‘W ﬁﬂonﬂnums at x

Butix was arbitrarry, so u is continuous on X. #

Lemma 3.38 Let (X, T) be a TVS(IH), B a balanced convex absorbing
set and p the gauge of B. Then the following hold :
(a) 1If B is bounded then op 2 T.

(b) If B is a neighberhood of 0 then op CT.
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Proof : (a) Let U € N(X). Since B is bounded, there exists
an €> 0 such that tBC U for all t such that |t] < e. Hence there
exists an €> 0 such that |e’|<eand UD e’B. Since p is the gauge
of B, UDe’B = c'{-x[p[x} <1} -{x|p(x} <e’ } which is opn-n in -

oPp. Hence U is a op-neighberhood of 0 sodp 2 T.

(b) Lek U% % ghberhoud of 0. Then there
exists ane > 0 suchwe ) -s{x|ptx1{ 112eB.

Thus u & N(T)

Theorem 3.39 s a seminormed space if

“eomvex, 1 hmd U of 0.
¥ .
: ‘ . sem:.nomad space with a

o show that U is bounded,

and only if X ha

seminorm p. Set F 'r ‘
let V & N(X). > 0 such that VD B(0 ; r).

' l{ we get that tu

={x & x[p(x} ;‘ x-lp[xl <rl= B(0, r)

Evsauisah@mﬂ { al=t no&&ﬂ

&= ) Let U be g sbounded convex neighberhood of 0.

- ANHAVEDINENDI, o oo i
AR A

sm:.anmad 5 ar:a

Case 2_: U is not balanced. By Theorem 3.19, there exists a
balanced neighberhood V of 0 such that \i'- C U. let CH(V) be the convex
. hull of V ; that is CH(V) ={ax +By|a, B €[0, 1),a + B =1 and
X, yeV }. Let z € CH(V). Then there exist a, B €(0, 1),a + B =1

and there exist x, y €V such that z = ox + By. Let t €H be such
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that |t] < 1. Then tz =a(tx)+6 (ty) € GH(V). So CH(V) is balanced
and convex. Since CH(V)D V>0, CH(V) € N(X). Since CH(V)C U and
U is bounded, CH(V) is bounded. Hence the gauge of CH(V) is a

‘seminorm on X so X is a seminormed space. ,

Lemma 3.40 Let X be a vector space over Hand g a nonnegative real

%

J|x&,= x } where the set

{0, )l.', x3:---; : A ch *?{ at x. Then

hen [1=<1l = 1I=l for all x.

show that ||x+y| < [Ix]| + [I¥]l -

Lete> 0 be given. Cho o tyi o ending at x and y
A/ i m
respact:.ve r i ' | # %anﬂ L aly,- Y1) <
ath | 59" Tyt L) ot

Iyl + 3 L@[z} - ain t@ AR R R
xw'jﬁ'u ﬂ?ﬂ'ﬂﬂw ﬁ’]ﬂ % is a chain ending at

X+Y. ﬂnca[x+yﬂ< qz-z {x-xk.l
Ic-‘l

ﬂ ;w;]yka ﬁ ﬂ jlw %Lm:] q YLEJ fl ﬂf.l arbitrary,

llx+yll < Ixll + llyl] - mus(2) holds. Suppose q(0) = 0. We must that
. [lo]] = 0. Let n =1 in the definition of flo]f -
Then ||0|| = inf { glx,- x;) } = inf{q(0-0)}= inf{q(0)}= inf{0}=20

so (3) holds. Suppose g(-x) = g(x) for all x & X. We must show that
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Jl-x]] = l|x|l for all x e X. Let x € X be arbitrary. Let

(0, Ko Xguenes xn} be a chain ending at x and let ¥ = - ¥,.. Then

n
;1 e Vyeq? = AW Vo) F Al = Y )+ ---+aly -y,

)

= gqlex 4+ x ) +ql=x +x ,)+...+ql-x+ x5)

= ql=x - x  )) +ql=(x ,=x .))...+q(=(x,=x,))

n=1

I,\ W:, J+...+ q{x - %, )
d

""ﬁ 5

Let |Hand q a nonnegative real

Lemma 3.41
function on X sa g(x+y+2z) < 2max { q(x), gly),

a(z) } for alTaGyEERT BYRY <5 ---» %, € X, we have

R )

qUEANENINNDS. .,

9 W;ﬁ\ifl‘ims&lﬂl? NYIALL. . n

Hnmatshowﬂ;mtqlz xil-:a. It is true for n = 1.
i=1

y k
Suppose q ( I xi} = 0 for1.<k<n. We must show that

i=1
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k

; k+1
we get that gq ( % X;) = 0. By mathematical induction, we conclude
i=]
ey n n
that q ( Z x, ) = 0 therefore q(Zx.) <2 I qlx;).
i=1 i=1 i=1
n
Case 2 must show that g ( Z :f.ij-r.‘.zu
2 S -
It is trivial fo 2 be such that n h- 4 . Suppose

We must show that

n

g3 x. ) argest integer such that

=1 r
- : -
L q(xi] <3 8\ then let m = 0. Then, for
i=1 \

m+1 !

0 <m<n, q(xi}ii (for m = n-1 let

n :

I g(x,) F ft-hand side of the
i=n+1 i’y S—

v A
inequalities hﬁs or ;ﬁ-e 0 ; that is for m = 0
and m = n-1) , e induction } t.haa.i.a, we have that
ﬂi-" i
i-m+2 ﬂ i-m+2
=0
q txm_i} <. I q{xi] = u,
i=1
n m n

By assumption, q { I xi‘.lnqtz T Exi}

i=1 i=1 i=m+2
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m n

< 2max{q ( Ixii valx ) a (2 X
i=1 i=m+2
n

< 2u = 2 I qix;}.

S P e

Theorem 3.42 Let (X, T) be a first countable TVS(IH). Then there

exists a paranorm |. || on % Eudgh that T = -Tl_"whure Tl_uia the

Proof : ble basis of N(X). Let
ud-x Choose “Ba e / \\\ ofﬂnuchthatw+w1+wicﬂn
and H1 c 01. ’\\\ ad neighberhood W, of 0
such that H2+ ' ‘ .U_ ﬁg; - : n' Hz- u,- Continui.ng in

this way choose /8  such that Hn+ wn+ Hn cu

n-1.

andﬂ'ni.'Dn, Let 'izin o) oen is a base for N(X).

define q : Xy

v,
glx) E ' @
{0} and"k(x) is the largest integer

ﬂummmwmm*“u AL

Since k(x%lis the unique integer such that x €Uy (. }, q is welldefined.

RRASVAEas ‘immg JIEER 8L 8)se b

if q{xnl = 1

=

—k{x]

Let {xl beaaaquanceinksuchﬂmtxn-ninx. We

nelN
must show that q{xn) = 0. Let € > 0 be given. Then there exists an

m € IN such that 2" < ¢ . Since x = 0, there exists an n;, € N such

that n > ng iniplian that xn [= Um‘ For such an xn, either xn e{o0}
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or k(x ) >m. If x € {0} then qlx ) =0 <e . If k(x) >m then
qlxﬂ] < 2™ < ¢ so q{xn} = 0. Conversely, suppoﬁa that q{xn} =0
We must show that x = 0 in X. Let £ &€ N\J{0} . We show that there

exists an n'eé IN such that n > n” implies that x € Ut.. Since q{xn}-‘ﬂ.

there exsists an n'e IN > n’ implies that q{xn.\ < -24'.

Foe such an x_, eithe - &{u}_ Ifxne{n}thanxng_ur

vﬁ = _2
' = 2 < 2 . SOX aukgul.

x+y+2z)<2 max {g(x),gly),
giz)} . Llet x, ALE X%, ¥, zém. Siqmm

is a vector subspafe gf-K ¢y [0} . Hence g(x+y+z)

= 0 < 2max{ g(x) ""-.- ‘ 7 : Not all x, y, z & {0} .
Suppose tha —— # » alz). Then x, y, zeU,
Since U+ U, + us qxsy45) < FREOM
TRt ﬁ W Wﬁ' we have claim 2.
Deﬁneﬂqu {0 Wﬂzﬁx‘:- k1]lx=ﬂ,x-¥}

ﬂW?ﬁﬂﬂiﬁJNm’lﬂﬂqﬂ e

Claim 3 :. For all x g X, iq{x] < [leE qgix). Let x gX.
n | . n q{xk 2
Since g(x) € { I q(x - M =0, x=x }, lIx]] = inf { Z = Sk
R e n U<l k=1

fxﬂ =0, X = x } < q(x). we must show that %- q(x) < ||x]l . Let

(0. x., x

10 Kgeeenn x;,l] be a chain ending at x. By Lemma 3.41,
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n n
zq(xk- xkqi ?_-?fq 4 '{:'c—xk1 n-;-g{xl'. Hence ||x“-.i.nf
k=1 k=1

n
{ zq{x-xk.l}fx =0, xn-:w.} :--i-q{xl nowahavaclmmz.
=1

Claim 4 For any sequence (x }ne N in X, x = 0 if and only

if x =0 Let (x_ LRl ence in X. Suppose that x_ = 0.

By claim 1. g(x_)"™™e. Sinc Zél ]]x Il <th}anﬂ alx ) =0,

“xn[] -0 asn-m= t len" = 0. Since

pce  1im q{x]}ﬂ Since

n—e

]:r.n| < qlx ),

1 i
3 ql’xn} < ﬂxn 0 so q[xn] 0. By claim 1,

Rn =0 so we havalcl

Let x €& X. t g(-x) = gix).

Case x&f0) * Since {0luis a vector subspace of X, -x€{0} .

Hence g(x) lvi,

Case zm ¢ (0} . Then q(x) = 2@“" where k(x) is the largest

integer ﬁ:w i%ﬂﬂ%ﬂiﬂ‘ )T fﬁnced therefore -x €U, 17

hence q(-%) th]. We must show that ||. H is a paranorm on X.

“TRTRINT B S9N 0 ey

Let tn}newbaasequence in IH such thatt = t for some t € H and

let -fx ) ne N € € X be such that llx - x|| = 0. We must show that

e x_ - ex]| = o.

e x. - exll < [le x - € x|[+ [t x - ex[[ = [ | ]Ix_ - x[] + [e - tlllx]] -
 Since Hxn- x|l =0 and|tn— t] ~0asn-=-=, [Itnxn— tx|]| = 0 as n = ® so

the multiplication is continuous. Hence ||.|| is a paranorm on X.



Thus the paranornm || .| induces a topolgy on X, say T - " Let

£ =X, T) = (X, 'Ih ﬂl' be the identity map. i is continuous.
Hence for any sequence {xnlinx, x —a in (x, T) if and only if X = a

in (x, TH | therefore T = T

) M/ etely reqular topological space.

We must show that X is

sed set F € X and for each

'\_ such thﬁt f=0o0on F and

3ince F is closed, X\ F is
an open neigq :; be a sequence of balanced

P iy < o '
neighberhoods of 0. sufh_that (X n} {YF = @ and lln+ u < Un—1 for

each n. ferbase of balanced

: nﬂm is a local bﬂsﬁ of

absorbing se t o-by

neighberhoods of‘-u for first co table vector topology T of X. By

ST HAETITTE (TP MR,
AHT é‘“ﬁiﬁzﬂﬁm Wi A z‘]:’:;i? o

d(x;F)

Then f is continuous on X and f(y) = 0 for all y ¢ F and f(x) = 1.

Since each U is a T-neighberhood of 0, T 2T  so f is T-continuous.

Definiticn 3.44 Let X be a TVS(H). Then X is called locally bounded

if and only if X has a bounded neighberhood of 0.

Theorem 3.45 Every locally bounded TVS(|H) is a paranormed space.
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Proof : Let X be a locally bounded TVS(HH). We must show
that X is first countable. Let U be a bounded neighberhood of 0.
Then for any set V & N(X)., there exists a positive integer n such that

vg;“- U. Thus { {-:;} U}is a countable local base of neighberhood of 0

so X is first countable. By Theorem 3.42, X is paranormed space. ¥

Theorem 3.46 Let X, and let £ : X =Y be a linear

map. Suppose some U ¢ N(X). Then f is

continuous. I S(IH) and £ is continuous

Must show there exists a b & #X) guch that £(U) is bounded. Since Y
is locally bounded, Y contains. bounded set W & N(Y). Since f is

Uw). Then £ (£ (W) cw

therefors f(UJs

Theorem 3.47 X be a TVS(HW, f € x » and assume that ker f is

cibses mmmmwmm
ﬂW%\ﬂﬁ%ﬁUﬁﬁ’?‘?ﬂﬂ’lﬂﬂ

Case 2 f 4 0. Suppose that f is not continuous.
Let x ¢ X and U a balanced neighberhood of 0. By Theorem 3.46, f is
unbounded on U ; that is £(U) is unbounded. Let t € IH be such that
|t| < 1. since U is balanced, tf(U) = £(tU) € £(U). So £(U) is

balanced. Claim that f(u) = |[H. We must show that IH L F(U). Let he¢ H.
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Case 1 h = 0. Since £(U) is balanced and [0| =0 < 1, 0 € 0-£(U) € £(U).

Case 2 h 4 0. Since f(U) is unbounded, there exsits a y € U such that

£6] € s=1{qe -1},
lety)] > |n] > 0 so O] and |"f S where g€ m| |qf
It is clear that § = {qﬂH”ql =1} is a -éroup with respect to

NGEY) R
ts :n €S such that If{y}l [hl

multiplication. Hence thie:
L v|ih

goc h = 1%‘-[ -
balanced, h € 7 Have ; ' dm. Hence there exists a ue U

such ﬂ.mt £ (urdl" L ‘ b\ \\

dense in X. ! = X. Hence f = 0 on X, a

< 1 and f(U) is

£\ (x+U) so ker. £ is

contradiction
ﬂ’: ¥ \
Corollary 3.48 Ry '& (IH), 0 +4yeXxand fe x#
f: '-.. .
Let g(x) = £(x)y. hen e x\ 5 cant:i.nunus, 50 ia_f.

= ker g. Since{ 0} is closed

and g is cun_ uous, ker g 1s closec 5' ker f is closed. By

Theorem 3.4?,Eia ontinuous. Iﬂ
ﬁﬂfﬁaﬁl?ﬂ d Wﬁ n EW 19 |
@g&g aea,nslmijmf;ﬁm TR

thatugaandﬂgﬁimplythatx—xaéu

Definition 3.50 Let X be a TVS(HH) and S €C X. 5 is complete if and

only if every cauchy net in S5 converges to'a_po.int in 5§ and 5§ is called

sequentially complete if and only if every cauchy sequence in S

converges to a point in S.
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Theorem 3.51 Let (X, ". H} be a paranormed space. If X is sequentially

complete then X is complete.

Proof : Let (xg)gepbe @ cauchy net in X. We must show that

"d,""u for some qu X. Let n € N. Since {"‘ﬁ]aen is cauchy_ -, there

: . 1
exlstnaﬁnensuchtha ’ 2 and B > 6° imply thatﬂx-xﬂu-t:;.

Let 6 = max { 26 - Let y = "5;1'
Claim that (y ) -n. . Lete> 0 be given. . Then

Let m, n € IN such that
1
yooll+ fly, -y ll< 2+ L0,
= %fﬁ € so we hay clazn 2y 18 sequentially complete,
y_ = x, for some g - ISt shi at x, = x,. Let € > 0 be given

Choose g ¢ W such xu“{ €/,. Let & € D be such

that 8 > 6, . —xu"-: z* /5 < &/yte/yme’
s0 we have ‘
Definition 3. 52‘ et X be a TV, I-I} and § C X. : X—= S is called

=Mﬂauww«mw mmmm G

from X ormo S satisfying R = P {P

AMNNTUIN VJ g1 —

onto a subspace S. Let A be a subset nf S such that P~ (A) is

complete. Then A is complete.

Proof : Let x = ‘“ﬁ’&en“ a cauchy net in A. Then x is a

cauchy net in X. Claim that x is cauchy in p! (A). Let W e N~ (a)).
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Then there exists a U & N(X) such that W = an_1 (A). Since x is
Cauchy in A, there exists a6 € D such that a >6and B > & imply that

A - r: 2 L L
Xy~ Xg € UMA . Since P is onto, A CS and P {xu xBJ = l“"[:t‘:I x;h

=1 £
Plx,- Xg) = x - %3 € A ; hence x - X, € P (A). Thus X xar-_- uMPp

—Hnawehnvethacla'"' )} is complete, x-sxﬂ for some

0 EP-1 (A) therefof® : by é. so A is complete. #

Theorem 3.55

of TZVS(H)'sand A € X
a- o
for each a e I.

Proof : A . Claim that P (x)
(] o

is a Cauchy net in A et @ 6I be fixed and let

W, € N(A ). e “exists a U’ such that W = u“ﬁaa.

Since x is V

,5;\“: that for all

T>E,B>&.x-x IEP I'.Ll]'!""‘l.‘lh. NwP(x—x]-P{x}-F{x]E

o PR A AT BT e o0 -,

for some a E A . Since P i# continuouByx =

AN M TN e

suppose that ﬂhu is complete. We must f.:hoﬁ that Au is complete for

each g &I. For each pel, let 1’& . “B - xB be the projection map.

Let a eI be arbitrary. Let x = [x:}&&n be a Cauchy net in A_. Given

0

BE€ I\[a}, fix xB =) aﬂ. Let ¥ = {x:, x:?n#B eﬂla. Claim that y' is a

. seD eIl .

i \ is complete for alle €I.*

T
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Cauchy net in % A,. Let U&N( 1 X ). Then U contains a basic open
ger ° Ber °

—1 —1 a
set PS; mhlﬁ'"ﬁPﬁn [Uﬂn] where Uai is open in Aﬂi, L R e

-

Case 1 a = Bi for all i. Then for all 6¢D, € ,y >6 implies

E 0 E_ T
that {xﬂ. %1 afB "~ {xB. x ) ‘(ﬂ, X quB*uEU.

=g, for som Then there exists a §&D such
- - 0 _¢ ey N
that e, > = & ESihence (0, x5 L, - G2, KDL

i \ BBET
\ )
(<3 | - \ a_ therefore: ;
Béxha % "8
%
x—~a soA is e arbitrary, is mnplata

for all a€I.

Definition 3.56 s called boundedly complete

(or quaaicnmp, =it —and-oniy—1i ”'-:i':r closed set is complete

i

Remark 3.57 um X be a T\rsﬁlﬂ. Then r.ham'nuowing are clear :

ﬁﬂ ed.l]r complete.
is bou v umplal:n than X must be seq'uentially

wﬂmmmmwnwmaa

aninitinn 3.58 Let T, T be vector topologies. for a vector gpace X

over H. We say that T" is F linked to T if and only if T° has a local

base of neighberhoods of 0 each of which is T-closed.

Remark 3.59 If T°C T then T° is F linked to T.
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Lemma 3.60 Let X be a vector space over Hand let T, T  be vector
topologies with T~ being F linked to T and x = {xﬁ}ﬁen" net in X.

If x is a Cauchy net in (X, T") and x = a in (X, T) then x = a in (X, T7).

T’ neighberhood of 0 which is T-closed.
w xists a 6&D such that o > 8;

i Hehave tha!:.x-xﬁ&ufnr

all B > &6. sSine i 4ed Since x - a €U for all

a > 6 and the se . ‘\\\ g(x, T'), = a in (X, TJ.#

Hand let T, T® be vector

Proof : Let U be

Since x is Cauchy in

B > 6 imply that

Theorem 3.61

F linked to T. Let S € (X, T)

p - an S is T complete

(sequentially complBtdfanirs ok

- - T # £
.“’ __"_,g_;;__; -7 &,

topologies for %

be complete(

2. We must show that

e ———————————— ;\. -
5 is T -complefe. Cawthy net in S with respect

to T'. Claim -"t x is Cauchy 1ﬁ's C (X,%). Let U &N(X, T) be

::ZZZ“‘;QWWEM Py LR P A
WA IR e

$, T) so we have the claim. Since (S, T) is complete and x is
Cauchy in (5, T), x - a for some a e(}t, T). By Lemma 3.60, x - a in
(x, T') so § is T -complete. We can use a similar proof in the case

where S is T-sequentially complete. #

Theorem 3.62 Let (X, T) be a TVS(H) which is complete, boundedly

complete, or sequentially complete. Let T be a larger vector

topology which is F linked to T. Then (X, T ) is, respectively,
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complete, boundedly complete, or sequentially complete.

Proof : The first and the third are special cases of

Theorem 3.61 where S5 = X. Suppose that (X, T) is boundedly complete.

We must show that (X, T") is boundedly complete. Let 5 be a bounded

closed set in (X, T ) . Pal the T-closure of 5. By Corollary
3.32, § is a boundsdygef &n hence 3 is T-complete. By

Theorem 3.61, § i5 also T -closed. Hence (X, T°)

is boundedly

Theorem 3.63 ' e ‘afiseparateéd TVS(H). Let A be a balanced,

convex, ' iallylcempleta’set in X. Let Z be the span ‘of

A and p the g i p &. “Then (Z, p) is a Banach space
over H.

Proof : aij _"_"' gorbing in 2. Letz €2. If
z = 0, the ngmil g obuious —fzj Since Z is the span
of A, z= I —tW | -P, 3= 1,2,.:.,0. Let

'WﬁTTM?“ k) e lslert
e, |

ama\mmumfmmm ! %

henBe E[tt|<1. Now tz = tf Etnj)- I(tt}aj Since

At j- jn'l jn'l
I |t t‘jl'f 1, A is balanced and convex,
j=1
n :
tz= I (tt.)a €A so we have the claim. By Lemma 3.38, ﬁpzTIE
j=1

where Op denotes the topolgy induced by the seminorm p and Tiz is

the topology of X relative to Z. Since T is separated, op is
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separated ; hence (Z, op) is separated ; that is, p is a norm.

Claim that op is F linked to le‘ Let B = {ehle}_ﬂ} . We must

L]

show that B is a local neigberhood base of 0 in (Z, p) ; that is,
for each. U€N(Z), UDeA for somee >0. Let U€EN(Z). There exists

a WEN(X) such that U = Z/MW. Since A is bounded in X, there exists

£ = -‘2->u. Hence

hencee A € ZNW = ighberhcod base of 0 in (Z, p).
e in X for alle> 0.

sequence in eA. Then

x = (ey ) wherefy feNEo| X € ‘- ince x is Cauchy in €A,
» s | | M
2% 0° A. Hence eA is -quuanti.ally

complete in X and alfio seguent omplete in (Z, le} so eA is

Yty ) is Cauch
sequentially closed ¢ op is F linked to sz 50 we

have the cla

| is Gp-aeéﬁ'twﬁ ngwmﬂTﬂmﬂ space with a

sequentially complete ne:.ghhar e must show that (2, p)

W‘Tﬁ\?ﬂ‘?ﬁ‘ﬁ WTANLPIR B ==

is bounded and x¢EA for some > 0. Hence x — x. for some

. .
linked 4 T|,, by Theorem 3.61, A

Xq € Zso (2, p) is sequentially complete therefore (Z, p) is complete.

As a result (Z, p) is a Banach space. #
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Quotients

Theorem 3.64 Let X be a TVS(H), ¥ a vector space over H, and f£:X —- ¥

a linear onto map. Let B = { f(u) |U a balanced nsighberhoed of 0 in

X L. Then B is an additive filterbase of balanced absorbing sets.

Proof : We must show ithat B is a filterbase on Y. Since

b4 § for all U eN(X) ul éf)u EN(X) ; hence F¢B .

Then W is a balannod

neighberhood of g\ mi WL Hence B is a

:.s additive, there exists

£(V) = £(V+ V)L £(U) so B .

N

filterbase on Y.

a V& N(X) such th
is an additive We must show that
£(U) is balanced’andffaigen pe such that [t]| < 1.

Since U is balanced, Vet £fU). To showthat f(U) .is

absorbing, let y € Y be mrbitrary en y = £f(x) for some x €X.
‘?J”J&‘!
i = ‘PJ . | g &
Since U is :‘b- : 3 ) gich that tx €U for
= — -
el 2 2. -y?{rﬁ'rﬁnﬁ \f ) is absorbing . Hence B

is an additive lmter base of balanced ahamﬁng sets. #

Dafinitiaﬁ %i H.Q %BE WW H G}ﬂrﬁwm over Handf : XY

a linear un map. The qur.r?iunt r.opulu Q.t' is th &ctar topology

&R A Bl %WW NEa N8

By Theorem 3.64, B is an additve filter base of balanced and

absorbing sets, by Theorem 3.26, X has a unique vector topology such

that B is a local base of neighberhoods of 0.

Theorem 3.66 Let X be a TVS(H) and (Y, Qf} be the guotient of X with

respect to f where f : X = (Y, QEJ is‘a linear onto map. Then f is
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continuous and open. Moreover, Qf is the only topology which makes

f continuous and open.

Proof : Let VE&N(Y,Qf). Then V 2 f(U) for some U €& N(X) so

£ (v) 2 U. Hence f is continuous at 0. Let x € X and J.ntixﬁlﬁen

en xﬂ' % = 0. Since f is continuous

/- 0. So fixg) = fi(x). Thus £
waswarbitrary, therefore f is continuous

be anet in X such that

at 0, f{xal—ﬂx %

is continuous atwssssBut x &
on X. Let U E
so f is open. : tol

By -

Then f(U) € (Y, Qf) is open

L3

\

| B0 ich makes f ° 3 z

d.
.\:_ Ny
\\\ = Qf. Let UET. Since

% Ny
] g epen in X. Since .

Since f is onto, U = f(f‘1 (u))

continuous and o
f:Xx= (¥, T is

£ : X~ (Y, Of) isffoplny

€Qf. Hence T C Q A larl9S e cap show that Qf € T ; hence
= dNaadiad - ) E
T =_Qf . Thus Qf is the eniy tepology which makes f continuous and

B
open. # 1) Ao \

54 smw that Qf is the largest

.

Remark 3.67 ﬁ

tupnlpgy:making'fmtinunua and ‘9:& smallest topology making f open.
{

T LT T i - B

e A Qs &

AR AT TN A1 VTR TRy BT oot
‘ ] ] 'I | ]

withqre ct 11.1, I e gquotient topology induced by some

map, say q, we call Y a quotient of X with respect to g.

Theorem 3.69 Let X be a TVS(H) and let Y be a quotient of X with

respect to the quotient map g : X—- Y and let f : ¥ - 2 be a linear

map, 2 a ﬂS{H}. Then £ : Y - Z is continuous if and only if
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fog : x—2z is continous.

Proof : (=) This statement is obvious. (&) Let U€N(Z).
Since foq is continuous , there exists an open set V g N(X) such that

f(q(v)) € U. sSince q is

(V) € N(Y) ; hence f is continuous at
0 so f is continuous ¢ i

Remark 3.70

a Tved ]Qnmr subspace. Let

ad scalar mlt::.pl:.cat:.nn as
for all x, x'€ X.

2. tdx+ _ {5 %or \ teH.
. : “ﬁ byer B ote that S is the zero of Y.

Then (Y, +,.) is

Y={x+s|xex} .

follow :

Define q : X = Y by all x€X. Then (Y, Qq) is the

quotient of X b Rated by XAS T Boversely, if q : X = Y is a

‘quotient map, hij “veutnr subspace of X.

'Daf.i.na [- s % as I : ﬁmn y = gi(x) for some
X €X. Define gly) s x ' +5. We widl show g is well - defined.

Suppose t@u&mammmm Then x-x ker g

:&Wﬁ\iﬁ ST EE

= q{xil for some x ,xzex. Hence g{y1+ yz} =g {th'} + g{le =

1

= Xg+ Xo+ 58 = (x‘+ 5) + {x2+ B) = g{y1] + q{yzl. Let t€Hand yeY.

Then y = q(x) for some xgX so gl(ty) = gltg(x)) = glg(tx)) = tx + 5
= t(x+S) = tg(y). Hence g is linear. Let y €Y be such that g(y) = 0.
Now y = q(x) for some x&X so x+S = gly) = S ; hence x ¢S therefore

y=qlx) =0
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so ker g ={0} . Hence g is one-to-one. It is clear that g is onto.

Let Q : X = X|. be defined by Q(x) = x+S. Then Q = goq is continuous.

By Theorem 3.62, g is continuous. Since q = g'1oq is continuous, g~

-

is continuous. So g : Y ~ X|. is a linear homeomorphism. Thus there

exists a subspace S of X such that Y = X| s UP to linear homeomorphism.

: X=-Y is a quotiaht map then

Proof : , {0} is closed. Since q

is ﬂuﬁtinunus, A
3 must show that there
exists a W & N(Y) is surjective and y 4§ 0,
there exists an x g(x). Since x ékarq which

is closed, there e

50 ¥y ¢q(ul. Since g ,f'-'*

g0 ¥ 13 HEP -:--:——— T

Theorem 3.72 X, 0
T Ff TSI hS

Proof 8bf : E.atq-x-‘!bathnquotiantmp. For y €Y, let

PRI GOSN A B e 2o

on Y Obviously, p(0) = 0 and p(y) >0 for all yeY. Let y,z gYbe

N(X) such that (x=U)M\kerq =§

open, q(U) € N(Y) is an open set
LY

anor&space over H. Then the

arbitrary. We must show that p(y+ z) < p(y)+p(z). Let € > 0 be given

Then there exist w, x €Xsuch that y = q(w), [w[l < pty) + ¢/, and
z = q{x) is such that ﬂx" < plz) + :é. Now y+2z = glw) + g(x) = gqlw+ x)

so ply+z) < “w+x" < Ilw[ + =]l < ply)+p(z)+e . But e > 0 was

—
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arbitrary therefore pl(y+ z) < ply) +p(z). Let yer Then p(-y)

= inf{ ][xl]-y = gi{x) } = inf { ]]-xl“y = q(-x) } = inf{ Inl l:,r = gtm)}
= p[y}. Define d : ¥x¥ - R by diy, z) = p{}r—z} for all y,z €¥. Then
d is a pseudcmetric on Y. We shall nn:r show that d induces the

quotient topology ; hence the scalar multiplication and addition are

( ; }"Bimplxenthatp{ty-ty}"ﬂ
- A,@nuﬂuﬂmx. Let a € X and

pAPat x ~a.™Then di{g(x), q(a)l_ = plg(x-a))

continuous i.e. tn =t a

as n = =

Claim

let x be a net in

< |lx-a]]. But | 7 hanca g q(a) so we have the claim..

_ "‘\\

for some b €G. Sifice t&e sfdand G @b, there exists a §> 0 such

Next, we will si Let G be am ocpen set _is

X. We must show gfhs Let ye q(G). Then y = g(b)

that ix-au <& et z € Y be such that p(z-y)
""'5{'2- Let w gX be such Ehat z =iyme q(w) and I]w“ < plz-y) + sz,
Thﬂn uﬂ'-}b— \.-:'I 1 r_": — W.','--’F""ww-a 2 = §& r 80 W+b € G.

Now z = gq(w) +E q plz - @ <6f which implies that

::: ﬁenca fiﬁﬂﬂeﬁﬁwiﬁlﬂ?n o q is open. By
A w&ﬂﬁm WW%{I ';}:acﬂr H. Then the

quot!ent: of X is also a seminormed space over H.

Proof : Let Y be the quotient of X with respect to the gquotient
map gq. For y €Y, let ply) = inf {ﬂx]“y = g{x),x € X} . We have shown
that p is paranorm on Y in the proof of Theorem 3.72. Hence we must

show that plty) = It!p{}f} for all telH andy € Y.
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Case 1 t = 0, in this case the result is obvious.

Case 2 t # 0. plty) = inf {[|x|[|ty = q(x), x€X }

inf.{]]x]” y = q(*/t), x €x }

inf { || Elfly = a*/8), xex }

[t ] ing (]| */¢t] | y = a®/t), %€k }

ply).

Thus p is a semin®m Y sg })4aaminoxmd1upumomﬂ.‘

. . i
The proof that-tN& t gy |cofing. the "Seminorm. is the quotient

topology is ' Theorem 3.72. #

Remark 3.74  F#bm ems 3, | and 3.73, it follows that X/S is a
normed space ove seminormed space over H

and S is a closedfs

Finite dime

Theorem 3.75 :- ated TVS(H), n < =,

2

U

Proof : He shall prova it by induction on n.

ﬂﬂﬂ%ﬂﬁ%ﬁwﬂimimuuma
m’m ISy -

dim(Imf) + dim kerf = 1 + dim kerf, dim kerf = n-1. Hence kerf is

-

Then X is 1i "S‘:

an (n-1) dimensional subspace of X. By the induction hypothesis,

: =] : it '
kerf is linearly homeomorphic to H" '. Since H™ s complete, kerf
is complete ; hence kerf is closed. By Theorem 3.41, f is continuous

so we have the claim. Let{ b, b bn} be a basis of X.

gr=ec3
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Define u : H" - X by ufa) = 1E1uihi where a = '{a1 'ﬂi""'an}ﬁ I-In.

It is clear that u is a linear bijection. For i &l 1,2,...,n}, let

Pi(u] =a;. and ui{a} = aihi where a = [51.,a2.:...nn} € II-I“. Then

n.}. Since P, is continuous for alli

u, = Fihi for all ie{ 1'2“."

is mntinuouh for each i so

™ ou'ex? et xyex.

bi-ﬂforalliand

n X
U = z 'ui is also
i=1 .

Since u is surije _ Such x = u(a) and y = u(b)

g0 X+y = ufa+ i{u {x+y.’l} = Pi{a+bl.

o -1
=a+ hi = Pi{u A (x) + Pin u (y). Let

wélHand x € X. Thegl (e ; 2 H" so u(ga) = gula) = ax.

Hence Piou"' (ax). = wa, = aP, (a) = uPi[u_1 (x))

-

= aPjo v lix) so B O u—-isrd ional on X therefore we ~

have the claim.} % By—the—ciaimy—t—ma— mntinmuﬂ on X. By

V.

s

Theorem 3.69, u_ 5

a 1%&: homeomorphism from

=" ontnx

eem AN G NN |01 e N,
*TRTDITUNNINY A

Let X be a TVS(H). Lut A be closed and B a finite- -
dimensional subspace of X. We must show that A+ B is clésed in X: Let

q: X -'xfh be the quotient map. Then karqu A is closed. By

Theorem 3.71, KKA is separated. We must show that g(B) is closed.
Since B is finite dimensional, by Theorem 3.75, B is linearly

homeomorhic to H" for some nelNso B is complete. Let y é q(B).
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Then there exists a net (bg) €D in B such that q{hﬁj - y. Since X/,

is separated, the limit is unique. Hence I:.'-‘5 - b for some b € B so
y = q(b)e gq(B) is closed. Sinceq is cantinu-:::ua,_q_1 {gqiB)) is closed.
Claim that A+B = q"{qml}. Let z €eA+B. Then z = a+b for some

a€Aand beBso qlz) = gla+b) = gla)+g(b) = g(b). So 2 e:q"1 (g(b})

a~'(q(B)). converselyidet! ket (a(B)). Then q(z) € q(B). Hence

glz) = g(b) for somé ) = gqla) + g(b) for some

aehso q(z) = q(a+ bjw—Hence Z z4.+ B 50 we have the claim. Since

: X =Y be a linear map..
bounded set then f is

continuous. If f is continuous then f takes

some neighberh

Proof : = bounded for some U € N(X). We

must show thal Since f(U) is bounded,

erafam el e geu)
i

W] &H{x} ; hence f is continuous at 0.

there exists a #i

':) tU. Since tU‘qH[x],

e « S B RERGIE G oo

Y be a lodd 1ly bounded sat Let 'JE N(Y.’! be a bnunded set. We must

AR G A LA —

and ¥ e N(Y), £ {'JJ &N(X). Let W &N(Y). Since V is bounded, there
exists an € > 0 such that tVC W wherever |t] <e. Let teHbe such
that |t | < €. Then tE(E7 (V) € £tV C W therefore £(£7 (v)) is bounded

and £ (vie N(x). #
] : :
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Definition 3.78 Let X be a TVS(H). S € X is called totally bounded

(or precompact) if for each neighberhood U of 0, there is a finite set

F such that s E F+U,

Lemma 3.79 Let X be a TVS(JH) and S € X. Then the following hold.

(a) If S is compact ‘ ig.totally bounded.
(b) If S5 is | : 5§ is bounded.

Proof : (a) _SuppSee that S'¥swcompact. Let U be an open -

——

neighberheod of 0

-

is compact, ther

n cover of. S. Since S

atSEU{ﬂ*U} i.e.
i=1

ch{a}+u. Then S £ F+U so S is

i=1
totally bounded.
s tntnlly bounded. Let U be

a balanced neighbe anced neighberhood of 0

:75'.':! there exists a finite

a«ﬂ there nxj.sts an ng> 1

| such that F ﬁnuﬂﬁﬁ t]w{wﬂhrﬂ? € ny(V+V) € nou.

Let t €H be s@¢ {—.mmtsct{nm:—[n Ul =Uso S

i “"W'ﬂﬂ\ﬂﬂifu UAIINA Y

Theorem 3.Bﬂ Let X be a separated TVS(H) which has a totally bounded

such that V4V '6{— —

F E_x such that S EP&»' .

neighberhood U of 0. Then X is finite dimensional.

Proof : Let U €N(X) be a totally bounded set. Then there

exists a finite set F” € X such that U € F’ + -;- U. Let F = <F >.

. Then F is a finite dimensional subspace of X
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1

MUEF +;-UCF+%U¢'.F+ =(F + L”:r F+-:I-‘-U1:F+-4-U.

Continuing in this way we get that U € F+ 27" U for all nelN. Set
B={2"ulneN}. Let Vé&N(X). Since U is totally bounded, by
Lemma 3.79, U is bounded ; hence there exists an ¢ > 0 such that

»

tUC V whenever |t| < e. Chmaa n‘eM such that 27" <e. Then B

is a local base of neighb \\ / 0. Claim that F =N\ F+W|Wwé&B }.

Let f ¢ Fand let W LA Mo jahced set U € N(X) such that

@m (E+U)N\F# #. Now

uc'.wr.h&n f+0

_Seneig

feF-U"=F + .\ emfnrefsr'\{nw]msn}.

Conversely, let / \:\ U € N(X) such that {f+lI )
‘M F=4g. since r.r _7- h\ ase of 0, U#Q 27" W for +

some n &M theresafe el % \ . }nF- # i hence

(f + 27"WNF=g nﬁﬂ% ~_ f{r‘\{h w|w € B} t'.hu.s we

have the cl;im- Hefice -_“ Y '} = F=F. Since F is a finite

dimensional subspace q,, >u o adl UEN(X),F=X. #

Theorem 3.81 | & C X be a totally

bounded set. Lg S ear c@tinmus mapping. Then

f(5) is totally bbunded.

ﬂUH’J‘V]EI‘V]‘ﬁWEI"]ﬂ‘i A

: Let U EH{Y} Since f is cuntinunua, i

ST T B

CE(R) + £(£  ()) C f(F) + U. sSince F is finite, f(F) is fJ.ru.ta

(U) & N(X)

therefore £(S) is tatally bounded. #

Definition 3.82 Let X be a TVS(H), S € X, ACX. We say that Sais

small of order A if snd only 5 -5CA where S-5 = {a - t'a. tes}h.
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Theorem 3.83 Let X be a TVS(H). Then S € X is totally bounded if

and only if for each U e N(X), S is a finite union of sets which are -

small of order U.

Proof : (=>) Let U €N(X). Choose V& N(x) such that V-VC U.

Since S is totally bounded, there exists a finite set F = [f1,f2....,fn}

.,n }. Then {fk+ V) - {fk+ V)

=V-VCEUso fk+ TSR ,, Sfer each k. Let slfk][ =
(f. + V)/\S. Thenss"= M) ¢ ",ajei =( _ uf, + V for each

ts which are mll of order’

- ‘v\\\ S

51,52.....sng}{wh1_ . .}_‘ U such mts:\_}sk.

4 !‘r i k=1
Suppose that Sk £ B‘ QF--8 -g":-* i"ﬁ*f-.' For each ke{1,2,...,n},
let xk&sk and | ‘_— ‘;.j_, c 51:" Sk cu for

each k ; hence Su xk-t- U for a el 1 2..mn} . As a 'rasulta :

& ﬂ%ﬂ*’ﬁ%ﬁlmﬂ‘ﬁ‘m"ﬁ”‘m‘"
—&mmﬂﬁmﬁmmww o

a linéar map and § € X. Then S is of - totally bounded if and only

if f(5) is toyally bounded.
\

Proof : (=>) We consider of to be the smallest topology on

X making f continuous. Since S is of totally bounded, by Theorem 3.81,

£(S) is totally bounded.
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(&) Let U &N(X, 0f). Then there exists a Vv eN(Y)
such that U2 f(V). Since f(S) is totally bounded, there exist

A, ',Az.'...,hﬁ C Y such that A, is small of order V for each

n
kef{1,2,...,n} and £(5) = \JA . S that A # f§ for each k.
k=1 :

Set's, = i, (A), k =1,2,. Claim that S,_ is small of order U

k
éz’ﬁs"* 5y - Then z-x-;{.fﬁr
— £
<~ -ﬁy:enk—akgv:hma

for each k. Let k

some X,Y & Ek s0

Z = X-y es (v A R We must show that
n

5 E Usk L= k"ﬁ [112,.--;“}
k=1 .

T (A) = ‘. enca S\c . For each k, let

i
me k €{1,2,...,n} so

- L ‘ n
masl(nsc U{s ns} - éas:l}is BBS-US
=1 k=1
Since S, <mJii of order i for each k an mes, ¢ S+ S, is small of

k *

order U. By 'I‘hﬁr i ot %r bounded. #
Py - iY‘ﬂW r) 131 i
space X oV s v¥ totally undadifandunly:.fs
“Q WTRWi'ﬁWW’]'}ﬂB'}ﬁ d

Proof : (=) Suppose that S is v0 totally bounded. We must
show that S is T - totally bounded for each T€0. Let T €9. Let
i: (% vé) = (X, T) be the inclusion map. Since T C v® , i is con

continuous and linear. By Therem 3.81, i(S) = S is T - totally

bounded .
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(=) Suppose § is T - totally bounded for each T€ 0 .
We must show that S is v& - totally bounded. Let Ueg N(X, W ). There

exisr.'T‘,Tz,...,Tnel and vjemx, Tjj. j=1,2,...,n such that
n -

Ugﬁvj. For each j = 1,2,...,n, let 8 =\ sijl'i' = 1,2,....:_:].}
j=1 : _ -

where each S, i
ij
151{115nja;ﬂ j-I‘Z,...,n }. claim that

Then

Bi(y) 10 small A PG

z = x-y for 5y % Y Esﬂjli

2 for each j. Thus

7 il
z-x-yféﬁ\f we ha pe cla Let x €5. Then xGu{S;.I
i 1 3 a o Y ]’.]
= '
Tt 2540 i ] a.._-._,_-.r 1 = ijr some iﬂ&{hz..,.,nj}
n
thus s ¢ Ua

A ) is amal y? Al{]} is small :

ilj ni{j

fa I.ﬁ j} E

of order U and. S= U"ﬂj; a v® - totally bounded. #
ﬂﬂﬂ?%ﬂﬂﬁWﬂﬁﬂﬁ
Cornllary Let X be & vector s Page over IH a set of linear

m@ﬁ'}ﬂ\ﬂ ﬂ%fﬂa%d%’m ﬂ%ﬂrﬂ&

an index aut. Then § € (X, OF) is totally bounded if and only if

£,(S) is totally bounced for each, a €1I.

Proof : Since S € (X, v®) where ¢ = {of |a €I} is totally

bounded, S is ﬁfu- totally bounded by Theorem 3.85. Hence, by

Theorem 3.84, fu{S] is totally bounded for each a &€ I.



(&) Suppose thatlfutsi is totally bounded for
each aeI. By Theorem 3.84, S is of - totally bounded for each aeI.

By Theorem 3.85, S is vé - totally bounded where ¢ = {ufﬂ[n el }. #

-

Corollary 3.87 Let {xu}e: ex P& @ collection of TVS(H) 's, s €1 Xo"

Then S is totally bounded

and only if each of its projections is

totally bounded.

‘each ael, s

L 8 is totally bounded. For

each a eI, let 2 ction map. Since Pu is

linear and con ere F ={ PuI“"I} is totally
o A _

bounded, by o .-*.\ ly bounded for each geI.

tha P (8) is totally bounded for
each projection maf €Il. By Corollary 3.86, '

sc mxu, oF) where_ totally bounded. For the rest

of the proo -& > that = ¢ _m ¥ bounded for each ael.

mnjaction S

map. Then P IIS } = 5 ; for uach a- Since S is totally bounﬂad

o o PP B 8 G s

(1%, , o where F ={P APTES PN

AWLANITY NW]’]V]EHQ d

Definition 3.88 Let X be a TVS(IH). A filterbase F on X is called

For each ael ‘

Cauchy if and only if for each U € N(X), there exists an S €F such that
§ -S CU. F is said to converge to x, denoted by F = x if and only
if FD N where F’ is the filter generated by F and N is the set of

all na‘ighﬁerhmﬂa of x.
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Remark 3.89 F - x if and only if fn;: all U g N(X), x+UDA for some

A GPF.

Lemma 3.90 Let F be a Cauchy filter base on X, a TVS(H), suppose

x €A for each A€F. Then F - x.

V € U. Since F is Cauchy, thefoftgists an A €F such that A-A cv.

Then A - x C A - A"OA= A g ci e A C x+U. By Remark 3.89,
F-=-x. # 7 |

Lemma 3.91 S{H) and S'C % a complete subset. Then
e e A :

each Cauchy fi i S,cofvarges Bo a point in S.

base on 5. Let A EF.

Then x is a net in S where F is
¥ i @ | !
directed by reverse ihclusion § $hat is, A > B if and only if ACB

_LTIRIIA

for all A,B &F thy in 8. Let U & N(X).

Since F is a| Cauchy filt & dxists a B &F such that

B-BEU(‘\SL‘E Let A,

HCBandJ\CB"ﬁ U. Since S is complete

RIS WA 25
3 RAATSH TRL L rnails

that xBQaq-E. Since F is a filter base, there exists a C € F such

7 &
"‘be such thﬂn'anndA::B. Then

that C € ANB ; hence Xo € s +U. Since xc'E.cr_: A, Ars+U) ¢ 7 so

seR, #
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Definition 3.92 F is an ultrafilter if and only if F is a maximal

filter ; that is whenever.F is a filter with F'DF, F’ = F.

Lemma 3.93 Let S be a set and F an ultrafilter on S. Let A C s,

Then either A€ For S\AEF.

ltrafilter on 5. Suppose that

some kK& { 1,2,...,n }.

. #

Lemma 3.96  set and B tion of subsets of S with the

finite interse ‘ finite subset B" of

B, say B" = {“m ....n .'
= “""ﬂ”‘l}ﬁ’l%ﬁlﬂ‘mﬂ’m‘i

Efmmmmﬁm’t gt

B is a filterbase on S. Since B has the f.i.n:l‘.te :.ntersnction propnrty,

g. 'mn there exists an ultrafilter

7 4
9¢8" . Let u, veB . manunﬂck an&v-("\n where C,, D& B
k=1 j=1

for k = 1,2,...,m and j = 1,2,...,n. Then UMV = (ﬁck)ﬁ(nbj)

& ¥ d o
so UM\WEB . Hence B :i:s a filter base on S. Let B be the filter
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] L &
generated by B ; that is B = {C C S|there exists a D€ B such that
L4
DEcC}. Then B € P. Hence P ¢ §. Partially order P by set in

clusion. Let{C_ } __ be a chain inP. Let C = \c. ThencCceéPp
IB'II ﬂEI a

By Zorn’s lemma, P

- and C is upperbound of the chain { cu}uﬁ-I'

contains a maximal element, say C” . Clearly C’ is an ultrafilter

and BCC' . #

Theorem 3.97 is a compact subset of X then

auchy net in K. For each
'y for eachaeD, Tu * g for

Jﬂg D say J 3'[“1]“2]-*-]““}]

{ By1Bys...sB Jwhere 8. 7 $iBgiCe... < B . Then ("11‘ /"]-r
S | | =1 % 31 B3
=T 4 ¥. £3 we have the claim. muat show that ﬁTJu g.
e .

m ®&D

Suppose not. Th.;m K¢ U (% J = X. Since K is compact, there

m,t,.ﬂyzlgmﬂmwmm H,,,mm
»Q«erﬂﬂ mmumfs ml’lﬁﬁl MLt

aeD

X =k. Let U€N(X)and let V € N(X) be such that V + V C U. Since
x is Cauchy in K and therefore in X, there exists ana> 0 such that

for all 6 > a, 6" > « implies that x . €V. Since kE—'i'u,

&~ *s
(k+'ﬂ("\Tﬂ + #. Let Xg € lk+ ‘-I'I.‘f"""|“l:::I sob>a. Let 6°€ED be such that

6> a. Then Xg~ k = (xﬁ;- xﬁj'q-txﬁ- k) €V +VC U, Hence x- k so K is

complete. #
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Theorem 3.98 Let X be a TVS(H). Then K € X ia'compact if and ouljr

if K is totally bounded amd complete.

Proof : (=)) Suppose that K is compact. By Theorem 3.97,

K is complete. By Lemma 3.80, K is totally bounded.

We must show that K i

that K is complete and totally bounded.

se not. Then there exists an

f k é :has no finite subcover of K

r._.#tshe any finito.silbee ya -{c (Lo L
\\ “2 %n

Then K \U{ c-{K\G fc&I} ;
\\\
\ with the finite intersection

j=1

open cover G = { G

Then C is a collgeti®
property. By Lemyg 3 ;_ :- E, ultrafilter F nnK such thnt.
FOC. By Lemma 3.9 _ i8 totally bounded and F is an ultrafiller
on K, F is Cauchy. . r mplete, by Lemma 3.91, F = k* for

| And let U €N(X). Since F

= A &F. Since K\G &F,

is an ultrafiTter on 3
) fﬂ' H henr:.ek EC]. (K

k" + Nk NG
Ta

- AN PR HGNEF| e o e,
A RTRS A AT Sy

contiradicts the fact that G is an open cover of K so K is compact. #

G] Then k'€ C1 HC\GJ

Definition 3.99 Let X be a TVS(IH) and § C X. H is called the

balanced covex hull of § if and only if H is the smallest balanced

convex set containing S.
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Lemma 3.100 Lem X be a TVS(H) and let A, B be balanced convex

compact sets. Then the balanced convex hull H of AUB is compact.

Proof : Let D = { (z, wen?l|z| + [w] < 1}. Define
f : DxAxB =X by f(2, w, a, b) = za+wb. Claim that f(DxAxB) = H

(the balanced convex hull of A\UB). Let h & H. Then

h = \UB, say xi,xz,...,xkeaand
z e,
» peeey W= z t ’
X1 k42 . ik i
k t.'l.'
as= a= I {—h:if-.'-n
i=1 ;
n , k £
and b = z Wi agub) = za +wbh = z ( 2{-;-1'::1}
i=k+1 . | \ i=1
n t |
+w i Z {-;-in.'l soRf (DxAxB) = H. Clearly, f is
i=k+1

continuous. Since Dx'Z f(DxAxB) is compact ; hence

H is cmpact‘ ?iﬁ"

§ —
Augineninens
AMIAINTANNINAY
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