CHAPTER IV

SOME FURTHER REMARKS

First, we recall the following notation: Let X be a set and let

 B_{X} = the semigroup of binary relations on X,

 M_{X} = the transformation semigroup of all 1-1 transformations of X,

 O_{X} = the transformation semigroup of all onto transformations of X,

 AM_X = the transformation semigroup of all almost 1-1 transformations of X,

 AO_X = the transformation semigroup of all almost onto transformations of X and

 $A_{\alpha} = \{x \in X \mid \alpha \text{ is not 1-1 at } x\} \text{ for all } \alpha \in T_{X} \text{ (the full transformation semigroup on X).}$

It is unknown whether the transformation semigroups M_X , O_X , AM_X and AO_X are absolutely closed. The aim of this chapter is to show that M_X , O_X , AM_X and AO_X are closed in B_X . It follows that if $S = M_X$, O_X , AM_X or AO_X , then S is closed in every subsemigroup of B_X which contains S (see (iii) page 8). In particular, M_X , O_X , AM_X and AO_X are closed in T_X (the full transformation semigroup on X) and P_X (the partial transformation semigroup on X). We leave as an open problem whether M_X , O_X , AM_X and AO_X are absolutely closed for any set X.

The following lemma is required to show that for any set X, $M_{\tilde{X}}$ is closed in $B_{\tilde{X}}$.

Lemma 4.1. Let X be a set. If $\alpha \in B_X$ is such that $\alpha\beta \in M_X$ for some $\beta \in M_X$, then $\alpha \in M_X$.

 $\frac{\text{Proof:}}{\alpha\beta} = \gamma \quad \text{for some} \quad \gamma \in M_X. \quad \text{Since} \quad \beta \in M_X, \quad \text{the inverse map of } \beta, \quad \beta^{-1}, \quad \text{is}$ in I_X where I_X is the symmetric inverse semigroup on X. Then $\alpha = \gamma \beta^{-1} \in I_X. \quad \text{But} \quad \Delta \alpha \supseteq \Delta \alpha \beta = \Delta \gamma = X, \quad \text{so} \quad \alpha \in M_X. \quad \#$

Theorem 4.2. For any set X, M is closed in BX.

 $\frac{\text{Proof:}}{\alpha \in \text{Dom}(M_X,B_X)} = M_X, \text{ let}$ $\alpha \in \text{Dom}(M_X,B_X) = M_X, \text{ let}$ $\alpha \in \text{Dom}(M_X,B_X)$. Then by Corollary 1.2, there exist $\beta_0,\beta_1,\ldots,\beta_{2m} \in M_X, \gamma_1,\ldots,\gamma_m,\gamma_1,\ldots,\gamma_m,\gamma_1,\ldots,\gamma_m \in B_X$ such that

$$\alpha = \beta_0 \lambda_1, \ \beta_0 = \gamma_1 \beta_1,$$

$$\gamma_i \beta_{2i} = \gamma_{i+1} \beta_{2i+1},$$

$$\beta_{2i-1} \lambda_i = \beta_{2i} \lambda_{i+1} \quad (i=1, \dots, m-1),$$

$$\beta_{2m-1} \lambda_m = \beta_{2m}.$$

Then $\alpha = \gamma_m \beta_{2m}$. Since $\beta_1 \in M_X$ and $\gamma_1 \beta_1 = \beta_0 \in M_X$, by Lemma 4.1, $\gamma_1 \in M_X$. Since $\gamma_2 \beta_3 = \gamma_1 \beta_2 \in M_X$, by Lemma 4.1, $\gamma_2 \in M_X$. From $\gamma_{i+1} \beta_{2i+1} = \gamma_i \beta_{2i}$ for all $i \in \{1, \ldots, m-1\}$, it follows by Lemma 4.1 inductively that $\gamma_i \in M_X$ for all $i \in \{1, \ldots, m\}$. Then $\gamma_m \in M_X$. But $\alpha = \gamma_m \beta_{2m}$, so $\alpha \in M_X$. Hence $\text{Dom}(M_X, B_X) = M_X$. Therefore M_X is closed in B_X . #

To prove that for any set X, O_X and AO_X are closed in B_X , the following lemma is required.

Lemma 4.3. Let X be a set and U a subsemigroup of T_X . Assume that for each α ϵ U, β ϵ T_X , $\alpha\beta$ ϵ U implies β ϵ U. Then U is closed in B_X .

Proof: If $X = \emptyset$, then |U| = 1, so U is closed in B_X .

Assume that $X \neq \emptyset$. To show that $Dom(U, B_X) = U$, let $\alpha \in Dom(U, B_X)$.

By assumption, we have that $1_X \in U$. By Corollary 1.2, there exist $\beta_0, \beta_1, \dots, \beta_{2m} \in U$, $\gamma_1, \dots, \gamma_m, \lambda_1, \dots, \lambda_m \in B_X$ such that

$$\alpha = \beta_0 \lambda_1, \ \beta_0 = \gamma_1 \beta_1,$$

$$\gamma_i \beta_{2i} = \gamma_{i+1} \beta_{2i+1},$$

$$\beta_{2i-1} \lambda_i = \beta_{2i} \lambda_{i+1} \quad (i=1, \dots, m-1),$$

$$\beta_{2m-1} \lambda_m = \beta_{2m}.$$

Then $\alpha = \gamma_m \beta_{2m}$. Let $q \in X$ and $V = U \cup CT_X$. Since CT_X is an ideal of T_X , V is a subsemigroup of T_X containing CT_X . For each $\lambda \in B_X$, define $\phi_{\lambda} \in T_X$ as follows: For $p \in X$,

$$p\phi_{\lambda} \ = \left\{ \begin{array}{ll} p(X_{p}\lambda) & \text{if } X_{p}\lambda \in V, \\ \\ \\ q & \text{if } X_{p}\lambda \not \in V. \end{array} \right.$$

Then from $\beta_{2i-1}\lambda_i=\beta_{2i}\lambda_{i+1}$ (i = 1,...,m-1) and $\beta_{2m-1}\lambda_m=\beta_{2m}$, we have by Lemma 3.2 that

$$\begin{array}{lll} \beta_{2i-1}\phi_{\lambda_{\hat{\mathbf{1}}}} &=& \beta_{2i}\phi_{\lambda_{\hat{\mathbf{1}}+1}} & & & \\ \beta_{2m-1}\phi_{\lambda_{\hat{\mathbf{m}}}} &=& \beta_{2m} \,. & & & \\ \end{array} \label{eq:beta2i-1}$$

Now, we have the following system of equalities:

$$\begin{split} \beta_0 &= \gamma_1 \beta_1, \\ \gamma_i \beta_{2i} &= \gamma_{i+1} \beta_{2i+1}, \ \beta_{2i-1} \phi_{\lambda_i} = \beta_{2i} \phi_{\lambda_{i+1}} (i=1, \dots, m-1), \\ \beta_{2m-1} \phi_{\lambda_m} &= \beta_{2m} \ . \end{split}$$

Then by Lemma 3.1, $\beta_0 \phi_{\lambda_1} = \gamma_m \beta_{2m}$. From $\alpha = \gamma_m \beta_{2m}$, we have $\alpha = \beta_0 \phi_{\lambda_1}$. Since $\beta_{2m-1} \phi_{\lambda_m} = \beta_{2m}$, by assumption, $\phi_{\lambda_m} \in U$. Since $\beta_{2m-3} \phi_{\lambda_{m-1}} = \beta_{2m-2} \phi_{\lambda_m} \in U$, by assumption, $\phi_{\lambda_{m-1}} \in U$. From $\beta_{2i-1} \phi_{\lambda_i} = \beta_{2i} \phi_{\lambda_{i+1}}$ for all $i \in \{1, \dots, m-1\}$, it follows by assumption inductively that $\phi_{\lambda_i} \in U$ for all $i \in \{1, \dots, m\}$. Then $\phi_{\lambda_1} \in U$. But $\alpha = \beta_0 \phi_{\lambda_1}$, so $\alpha \in U$. This proves that $Dom(U, B_X) = U$. Therefore U is closed in B_X . #

Theorem 4.4. For any set X, O_X is closed in B_X .

<u>Proof</u>: Let X be a set. It is known that for $\alpha, \beta: X \to X$, if $\alpha\beta$ is onto, then β is onto. This implies that for $\alpha \in O_X$, $\beta \in T_X$, $\alpha\beta \in O_X$ implies $\beta \in O_X$. Then by Lemma 4.3, O_X is closed in B_X . #

Theorem 4.5. For any set X, AO_X is closed in B_X .

The next two lemmas are required to prove that for any set X, AM_X is closed in B_X .

Lemma 4.6. Let X be a set. If $\alpha \in B_X$ and $\beta \in T_X$ are such that $\alpha\beta \in T_X$, then for $x \in X \setminus A_{\alpha\beta}$, t, z $\in X$, (x,z), $(t,z) \in \alpha$ implies x = t.

- Lemma 4.7. Let X be a set and $\alpha \in B_X$. Suppose that $F \subseteq X$ which satisfies the following property: for $x \in X \setminus F$, $t, z \in X$, (x,z), $(t,z) \in \alpha$ implies x = t. Then the following statements hold:
- (1) If $\beta \in T_X$, then for $x \in X \setminus (F \cup A_\beta \alpha^{-1})$, $t, z \in X$, (x, z), $(t, z) \in \alpha \beta$ implies x = t, where $A_\beta \alpha^{-1} = \{w \in X \mid (w, y) \in \alpha \text{ for some } y \in A_\beta \}$.
- (2) If $\beta \in AM_X$ and F is finite, then $A_\beta \alpha^{-1}$ is finite, and hence $F \cup A_\beta \alpha^{-1}$ is finite.

<u>Proof:</u> To prove (1), let $\beta \in T_X$, $x \in X \setminus (F \cup A_\beta \alpha^{-1})$ and $t,z \in X$ be such that (x,z), $(t,z) \in \alpha\beta$. Then there exist $w,w' \in X$ such that (x,w), $(t,w') \in \alpha$ and (w,z), $(w',z) \in \beta$. Since $x \in X \setminus A_\beta \alpha^{-1}$ and $(x,w) \in \alpha$, it follows that $w \in X \setminus A_\beta$. But (w,z), $(w',z) \in \beta$, so w = w'. Therefore (x,w), $(t,w) \in \alpha$. Since $x \in X \setminus F$, by assumption, x = t.

To prove (2), assume that F is finite and $\beta \in AM_X$. For each $y \in X$, let $y\alpha^{-1} = \{x \in X \mid (x,y) \in \alpha\}$. Then $A_{\beta}\alpha^{-1} = \bigcup y\alpha^{-1}$. Claim $y \in A_{\beta}$ that for each $y \in X$, $y\alpha^{-1}$ is finite. To show the claim, let $y \in X$.

Case 1: $y\alpha^{-1} \cap (X \setminus F) \neq \emptyset$. Let $x \in y\alpha^{-1} \cap (X \setminus F)$. Then $(x,y) \in \alpha$ and $x \in X \setminus F$. If $w \in y\alpha^{-1}$, then $(w,y) \in \alpha$, so by assumption, x = w. Therefore $y\alpha^{-1} = \{x\}$.

Case 2: $y\alpha^{-1} \cap (X \setminus F) = \emptyset$. Then $y\alpha^{-1} = (y\alpha^{-1} \cap (X \setminus F)) \cup (y\alpha^{-1} \cap F) = y\alpha^{-1} \cap F$ and therefore $y\alpha^{-1} \subseteq F$. Since F is finite, $y\alpha^{-1}$ is finite.

Hence we have the claim. Since $\beta \in AM_X$, A_β is finite. Then we have by the claim that $\bigcup y\alpha^{-1}$ is finite. Hence $A_\beta\alpha^{-1}$ is finite. $\#y\in A_\beta$

Corollary 4.8. Let X be a set. Let α , $\beta \in T_X$ and γ , $\mu \in B_X$ be such that $\gamma \alpha = \mu \beta$. Suppose that $F \subseteq X$ which satisfies the following property: for $x \in X \setminus F$, $t, z \in X$, (x, z), $(t, z) \in \gamma$ implies x = t. Then for $x \in X \setminus (F \cup A_{\alpha}^{-1})$, $t, z \in X$, (x, z), $(t, z) \in \mu$ implies x = t.

<u>Proof</u>: Assume that the assumption holds. Let $x \in X \setminus (F \cup A_{\alpha} \gamma^{-1})$ and $t,z \in X$ be such that (x,z), $(t,z) \in \mu$. Then $(x,z\beta)$, $(t,z\beta) \in \mu\beta$. But $\gamma\alpha = \mu\beta$, so $(x,z\beta)$, $(t,z\beta) \in \gamma\alpha$. By Lemma 4.7(1), we get that x = t.

Theorem 4.9. For any set X, AM_X is closed in B_X .

$$\alpha = \beta_0 \lambda_1, \ \beta_0 = \gamma_1 \beta_1,$$

$$\gamma_{i}\beta_{2i} = \gamma_{i+1}\beta_{2i+1},$$

$$\beta_{2i-1}\lambda_{i} = \beta_{2i}\lambda_{i+1} \quad (i=1,...,m-1),$$

$$\beta_{2m-1}\lambda_{m} = \beta_{2m}.$$

Then $\alpha = \gamma_m \beta_{2m}$. Let $q \in X$ and $U = AM_X \cup CT_X$. Since CT_X is an ideal of T_X , U is a subsemigroup of T_X containing CT_X . For each $\lambda \in B_X$, define $\phi_\lambda \in T_X$ as follows: For $p \in X$,

$$p\phi_{\lambda} = \begin{cases} p(X_{p}\lambda) & \text{if } X_{p}\lambda \in U, \\ \\ q & \text{if } X_{p}\lambda \notin U. \end{cases}$$

Then from $\beta_{2i-1}\lambda_i=\beta_{2i}\lambda_{i+1}$ (i = 1,...,m-1) and $\beta_{2m-1}\lambda_m=\beta_{2m}$, we have by Lemma 3.2 that

$$\beta_{2i-1}\phi_{\lambda_{i}} = \beta_{2i}\phi_{\lambda_{i+1}} \qquad (i = 1,...;m-1),$$

$$\beta_{2m-1}\phi_{\lambda_{m}} = \beta_{2m}.$$

Now, we have the following system of equalities:

$$\beta_{0} = \gamma_{1}\beta_{1},$$

$$\gamma_{i}\beta_{2i} = \gamma_{i+1}\beta_{2i+1}, \beta_{2i-1}\phi_{\lambda_{i}} = \beta_{2i}\phi_{\lambda_{i+1}} \qquad (i=1,...,m-1),$$

$$\beta_{2m-1}\phi_{\lambda_{m}} = \beta_{2m},$$

so by Lemma 3.1, we get that $\beta_0 \phi_{\lambda_1} = \gamma_m \beta_{2m}$. Since $\alpha = \gamma_m \beta_{2m}$, $\alpha = \beta_0 \phi_{\lambda_1} \in T_X$.

Next, we shall show that A_{α} is finite. From $\gamma_1\beta_1=\beta_0\in AM_X$, it follows by Lemma 4.6 that for each $x\in X\setminus A_{\beta_0}$, $t,z\in X$, (x,z), $(t,z)\in \gamma_1$ implies x=t. Let $F_1=A_{\beta_0}$. Since $\beta_0\in AM_X$, F_1 is finite. Since $\gamma_1\beta_2=\gamma_2\beta_3$, by Corollary 4.8, we have that for each $x\in X\setminus (F_1\cup A_{\beta_2}\gamma_1^{-1})$, $t,z\in X$, (x,z), $(t,z)\in \gamma_2$ implies x=t. Let $F_2=F_1\cup A_{\beta_2}\gamma_1^{-1}$. Then we have by Lemma 4.7(2) that F_2 is finite since $\beta_2\in AM_X$. Since $\gamma_2\beta_4=\gamma_3\beta_5$, by Corollary 4.8, we have that

for each $x \in X \setminus (F_2 \cup A_{\beta_4} \gamma_2^{-1})$, $t,z \in X$, (x,z), $(t,z) \in \gamma_3$ implies x = t. Let $F_3 = F_2 \cup A_{\beta_4} \gamma_2^{-1}$. By Lemma 4.7(2), F_3 is finite. From $\gamma_i \beta_{2i} = \gamma_{i+1} \beta_{2i+1}$ for all $i \in \{1, \ldots, m-1\}$, it follows by Corollary 4.8 and Lemma 4.7(2) inductively that for each $i \in \{1, \ldots, m-1\}$, there exists a finite subset F_{i+1} of X such that for each $X \in X \setminus F_{i+1}$, (x,z), $(t,z) \in \gamma_{i+1}$ implies X = t. Hence there exists a finite subset F_m of X such that for each $X \in X \setminus F_m$, $t,z \in X$, (x,z), $(t,z) \in \gamma_m$ implies X = t. By Lemma 4.7(1), we have that for each $X \in X \setminus (F_m \cup A_{\beta_{2m}} \gamma_m^{-1})$, $f_i \in X$,

В_X. #

าง กาลงกรณ์มหาวิทยาลัย