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 Audio recognition is defined as the task of recognizing a particular piece of audio 

(could be music, ring-tone, speech and singing as well, from a given sample set of audio 

tracks. The field of audio recognition tries to emulate this behavior by using concepts from 

Biological modeling, signal processing theory and pattern recognition theory.  Several 

techniques have been proposed to solve the problem of audio recognition. Most of the 

proposed methods are divided into two processing steps: feature extraction and 

classification. This research proposes a Background Noise Independence Sound Recognition 

algorithm that is able to automatically recognize a piece of audio with background by using 

the concept of spectrogram pattern matching.  Each signal is analyzed and generated to its 

spectrogram that is used to train data for the classifier. Several classification functions are 

used, such as feed-forward neural network and k-Nearest Neighbor. This research applies a 

concept of matching of spectrogram pattern with various audio problem singing voice 

recognition and the environment sound recognition. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Music Inf$ormation Retrieval (MIR) 

Music Inform$ation- Retrieval (MIR) is an interdis $ciplinary rese$arch 

area whi$ch -appeared in rec$ently. It converge -Com$puter Science, -Infor$mation 

Retrieval, Engi$neering, Signal Processing, Musicology and Music Theory. The term 

MIR -enco$mpasses a number of different -res$earch that have the comm $on -denomin$ator 

of being rel$ated to music acc$ess. 

-De$spite its na$me, MIR is not only -ab$out retri$eving inf$ormation -from 

mu$sic -but to full users' mu$sic informat$ion, -amuse$ment or tra$$ining -needs. A$nd as these 

needs are more -aim$$ed at music -retrie$val that music -infor$mation retr$ieval, so are the 

con$sequent -appr$oaches. Also, th$e term "-re$trieval" -has a broa$der sense since it 

enco$mp$asses -tasks such as -fil$tering, clas$sification, -iden$tification, --in$d$exing -and 

visua$l$ization -that- bec$ome -increasingly -useful -for the -final users [1]. 

-Mo$st of the -research wo$rks on -MIR, of the -prop$osed techni$ques, and 

of the dev$eloped systems are co$ntent-based. The m$ain idea -unde$rlying conte$nt-based 

approa$ches is that a -docu$ment can be des$cribed by a -set of featu$res -that are direc$tly 

comp$uted from its co$ntent [1]. In the case of MI$R, the con$tent is the -imp$licit and 

explicit inform$ation -related to a sound or a pie$ce of m$usic and that is em$bedded in th$e 

sig$nal itself. The -met$hodologies of MIR are bas$ed on -Info$mation Retrieval, Thus 

techn$iques of statis $tics and -probab$ility the$ory are u$sed to desc$ribe the unde$rlying 

models. -So$me of the to$pics MIR in$clu-de are: 

 -Comp -utational -methods for classif$ication, cluste$ring, and mod-eling 

 Musical fe-ature extraction for -monoph-onic and polyp-honic audio 

 Simil -arity and pat-tern matching 

 Music identif-ication and rec-ognition 

 Filt -ering for music and m-usic queries, query lang-uages, stand-ards and 

other met-adata or protocols for mus -ic information handling and retrieval  

 Software for m -usic information retriev-al, human-computer intera-ction and 

interfaces, -mobile applications, user behavior 

 M-usic per-ception, cognition, an af-fect and emo-tions 
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 Music sim $ilarity met$rics$, syntactical para$meters, semantic par$ameters, 

musical fo$rms, structures, styles and genres, 

 Music anno$t$ation metho$dologies, 

 Music automatic summ $arization, analysis and knowledge repre$sentation, 

down$grading, trans$formation, form$al models of music, digital scores and 

repr$esenta$tions, 

 Mus$ic indexing and met$adata 

 Music arch$ives and dig$ital collect$ions 

 Intell$e$ctual pr$operty rights, national and inter$n$ational intellect$ual pro$perty 

right issues, digital rights management, iden$tification and traceability, 

 Soc$iology and eco$nomy of music, 

 

1.2 Singing Voice vs. Speech 

Although singi$ng voice and speech sounds h $ave ma$ny properties 

becaus$e they ori$ginate from the same appa$ratus, there are se $ver$al differ$ences [2] , [3]: 

 Dur$ation of voiced sounds 

 Loud$ness 

 Pitch 

 Vibrato 

 Formants 

 Rhythm 

 Rh$yme 

 

1.3 Related Works 

In addi$tion to vision, sound is one of hum $an being important sense. It 

is the sense most used to gather information about the environm $ent. Despite this, 

comparatively little resear$ch has been done the field of environmental sound 

classi$fication. The research that has been done mainly centered on the reco $gnition of 

spe$ech and music. 
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The voice reco$gnition has been most popular as the ot $her is to 

recognize the human voice. There are many problems related to the management of 

musical data that have not yet been solved. They are now being extensively 

considered in the field of Music Information Retrieval (MIR) [4]. In this research, we 

are interested singing voice recognition in polyphonic recordings of popular music. 

Our assumption is that, for any song, it is unnecessary to filter the instrumental 

background from the singing voice to recognize the singing words. By following this 

direction, we expected to achieve high recognition accuracy. Singing voice 

recognition is very different from Automatic Speech Recognition (ASR) because of 

the differences between speech and singing voice such as duration of voice sound, 

loudness, pitch, vibrato, formant, rhythm and rhyme [5] [6] [7] [8]. To make the 

problem realistic and feasible, we considered singing voices in polyphonic audio 

signal sampled from commercial compact disc (CD) recordings of popular music. In 

addition, various music genres for popular music, such as Rock, hard rock, soft rock, 

dance, hip-pop, soul, R&B, folk, and acoustic were concerned. All music genres have 

a man and woman singers. The type of songs emphasized in this study is Thai songs. 

The study of Thai singing word recognition is rather few and Thai words have special 

characteristics due to their intonation patterns. Different intonations have different 

meanings. The intonation of a Thai word may be changed during the singing, 

depending on the rhythm. 

 Several techniques concerning the English words was proposed for to 

solve the problem of audio recognition [9] [10] [11] [12] [13] [14] [15] [16] [17]. 

Most of the proposed methods were divided into two processing steps: feature 

extraction and classification. In the first step, feature exaction, the redundant 

information contai$ned in the signal was transformed into descriptors used as the input 

of a classifier. In the second step, classi $fication, the singing voice was recognized. 

Shenoy [18] used the amplitude variation over time in each sub-band and a thres$hold 

met$hod on the ene$rgy funct$ion such as the propor$tion of fra$mes clas$sified as voc$als to 

be equiva$lent to the propo$rtion of the singi$ng in the en$tire song. Nwe [19] used 

Harm$onic At$tenuated LFPCs with H$idden Markov Model (HMM) models based on 

three par$ameters, e.g. section type (intro, verse, chor $us, bri$dge and outro), tempo, and 

lou$dness. Tsai [20] used Mel-Fr$equency Cepstral Coefficient s (MFCCs) andGMM 

mo$dels to classify vocal from non-vocal signals. Berenzweig and Ellis [21] used 

vector of posterior prob$ability as a feature and HMM frame $work w$ith two states, 

"singing" and "non-singing". Chou and Gu [22] used 4 Hz modul $ation energy, 

harmonic coefficient, 4Hz harmo$nic coefficient, delta M$FCC and d$elta log en$ergy as 

feat$ures and GMM model to de$tect singing voice. Berenzw$eig [23] applied 13 PLPCs 

and MLP. Ma$ddage [24] consi $dered LPC, LPC derived cepst $rums (LPCC), MFCC, 

spect$ral po$wer (SP), sho$rt time en$e$rgy (S$TE), and ZC$R as fea$ures and a multi-layer 

neural netw$ork,  SVM and  GMM for classific$ation. SVM was found to outper$form 

the other classif$iers. Maddage  [25] latter tried Twice Iterated C $omposite Fourier 

Transform (TICFT) to each audio frame. Ro $camora and Herrera [26] used di $fferent 

sets of featu$res such as MFC $Cs and th$eir de$ltas, L$FPC their de$ltas and do$uble deltas, 

PLPC$s an$d their delt$as, HC and pitch and different classifiers such as a S $VM, a back 

prop$agation NN, a decis $ion tree classi$fier, and two diff$erent K-nearest neighbors. 

Tzanetakis [27] used sp$ectral shape feature, MFCCs, mean and devi $ation of pitch , 

centr$oid and LPCs for fe$ature extraction and a naive bayes netw $ork, nea$rest neighbor 
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algorit$hms, back-propag$ation AN$N, a decis$ion tree classifier ba$sed on the C4.5 

alg$orithm, a SVM classifiers. Kim [28] use $d a har$monic mea$sure, defined as the ra$tio 

of the tot$al signal en$ergy to the maximally harm$onically atten$uated signal and 

thre$shold meth$od on the harmonic meas$ure to classify the segment. 

As compared to other areas in audio such as speech or music, research 

on general unstructured audio-based scene recognition has received little attention. To 

the best of our knowledge, only a few systems (and frameworks) have been proposed 

to investigate of singing voice recognition with raw audio. Most of investigations of 

singing voice recognition deal with recognition phoneme first and use a speech 

recognizer for lyrics recognition. Sasou [29] tested an Auto Regressive HMM with 

pure singing voice signals from the RWC database. These studies presumed pure 

monophonic singing voices without accompaniment, posing additional difficulties for 

practicable use with musical audio signals like CD recordings. Suzuki [30] combined 

both the me$lody and the lyrics of the use $r's singing voice to retri$eve a song fro$m a 

data$base. The aut$hors us$ed a large vocab$ulary spee$ch recog$nition syste$m with a 

H$MM as the acou$stic model adap$ted to the si$nging voi$ce using the speaker ada$ptation 

technology. 

W$ong [31] prop$osed a sy$stem for real-time alig$nment of Can$tonese 

music, whi$ch is a particu$lar tone lan$guage. Th$e mea$ning of a w$ord ch$anges wh$en 

prono$unced wi$th a di$fferent pi$tch. A MLP was used to segreg$ate the vocal fr$om the 

non-vo$cal segm$ents tak$ing as inp$ut the spec$tral flux, the H$C, the Z$CR, the M$FCCs, 

the ampl$itude level an$d the 4Hz modulat $ion energy. DTW alg$orithm was u$sed to 

align the t$wo sequ$ences. How$ever, this me$thod is no$t con$sistently effe$ctive bec$ause 

the d$urations of uttered p$honemes are bas$ed on loca$tion, even thou$gh they are the 

same phon$emes. 

Kan [32] is probably the first English lyrics sentence level alignment 

system for aligning the lyrics to the music signals for a specific structure of songs. 

Gruhne [33] implem$ented a system that perform $ed autom$atic classific$ation of 15 

voiced sung ph$onemes in pol$yphonic audio. Their procedure w$as based on harmonics 

extra$ction and re-syn $thesis of a nu$mber of parti$als as a pr$eprocessing step, in ord$er to 

reduce influ$ences from accompa$nying sou$nds. Then, low-lev$el fea$tures w$ere 

extra$cted from the audio and clas$sified using different cla$ssification techni$ques like 

SVM, GMM and MLP. Fujihara Gruhne [34] pe$rformed aut$omatic synchroni$zation 

bet$ween lyri$cs and po$lyphonic m$usic signals for Japan CD rec$ordings. Their 

proposed sys$tem inc$luded dete$ction of vocal segm $ents, segrega$tion of vo$cals and 

adap$tation of a spe$ech recognizer to the seg$regated vocal signals. Duri $ng the first 

step, har$monics extra$ction and re-synt$hesis was perfo$rmed as in Gruhne [33]. A 

simple HMM was use$d in orde$r to k$eep only the vo$cal regions and remo$ve the non-

voca$l sections. Last, featu$res were extrac$ted from the a$udio (MFCCs, d$elta MFCCs, 

and delta p$ower) and the Vit $erbi algo$rithm was u$sed to align the segm $ented vocal 

parts with corresp$onding lyrics. Pawel [35] prese$nted an auto$matic singing voice 

reco$gnition using neural network and rough sets. The method also required and 

combined many type of fe$ature vector for classification m$ethod. Annamaria [36] 

studied the use of n-gram language models in recognizing phonemes and words in 

mo$nophonic and polyphonic m $usic. They considered uni-, bi-, and tri-gram language 
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models for pho$nemes and bi- and tri-grams for words. In the rec$ognition, a Hidden 

Markov Model based phonetic recognizer was adapted to singing voice. The word 

recognition system achieved only 24% correct recognition rate, where the first 

retrieved in Figure 1.1 was an approach used in previous research. 

 

 

 

Figure 1.1 Comparison of our propose and another work. 

 

An algor$ithm for audio recognition can be applied to new problems, 

such as other environment sound recognition. We consi $dered the task of classifying 

the environment sounds to under$stand the scene surrounding the audio sensor. By 

auditory scenes, we referred to a location with different acoustic characteristics such 

as a str$eets, restaurants, offices, homes, and cars. In this research, we proposed a 

system of classifying a unstruct $ured environ$mental sound in polyphonic audio signal 

sampled from com$mercial compact-disc (CD) recordings of popular database 

including various types of environm$ental sounds in this research such as car engine, 

construction, crowd applause, crow clamor, fire, helicopter, office, outdoor sounds-

forest, outdoor sounds-road, restaurant stores, transportat$ion-mo$torcycle, 

transportation-train, water, weather - rain, weather-thunder, household, air plane, 

water(ocean), chicken farm, and auto racing.  

Similar to the above problems, Most of the proposed methods were 

divided into two processing steps [37], [38], [39], [40], [41] [42] are feature extraction 

and classification. In feature exaction step, the redundant information contained in the 

signal was transformed into descriptors used as the inputs of a classifier. Malkin and 

Waibel [43] extrac$ted sixty-four dimensional MF$CC and the spectral centroid, at a 

rate of 100 frames per second. They intr $oduced linear auto encoding ne$ural netw$orks 
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for classifying the envir$onment. A hybrid auto-enco$der and GMM were us$ed in their 

experiments and 80.05% average a$ccuracy was obtained. However, they selected only 

those seg$ments that were quieter than the average power in an au $dio file for the 

experiments. 

Wang et al. [44] used three MPEG-7 audio low-level descriptors 

spec$trum centroid, spec$trum spread, and spectrum flatness are used as features in their 

study on environmental sound classification. They propo$sed a hybrid SVM an $d k-NN 

class$ifier in their study. For SVM, they used three differ $ent types of kernel functions: 

linear kernel, polynomial kernel and radial basis kernel. The system with 3 M$PEG-7 

features achieved 85.1% acc$uracy averaged over 12 classes.  

Kra$etzer et al. [45] developed a method to detect the used microphone 

and the background environments of audio re$cordings. Kraetzer extracted 63 

stati$stical feat$ures from au$dio signals. Seven of the features were in time domain, i.e. 

em$pirical variance, covariance, entropy, LSB ratio, LSB flipping rate, mean of 

samples and medi$an of samples. Besides these temporal featur$es, they used 28 mel-

cepstral features and 18 filtered mel-cepstral features. For classification, the data 

mining tool WEKA with K-me$ans as a clustering and Naive Bayes as a classification 

technique were applied with the goal to evaluate their class$ification in regard to the 

classific$ation accuracy on known audio features. For the evaluation of h$ypothesis I, 

i.e. the classifica$tion of the microphones for all rooms and a fixed num$ber of vectors 

per file, the best results for the B$ayesian clas$sification achieved 75.99% and K-means 

clustering achieved 41.57%. For the evaluation of hypothesis II, i.e. the room 

classification, the results showed less impressive accuracy than the microphone 

classif$ication ev$aluated in hypothesis I. The best result here was found with 41.54% 

accuracy in the case of Bayesian classification, the Headset and 100 vectors computed 

per file. The clustering with K-means resulted generally in worse accuracies than 

Bay$es classification (about 15% worse in the maximum case). 

Ntalampiras et al. [46] used MFCC along with MPEG-7 features to 

clas$sify urban environme$nts. They exploi$ted a full use of MPEG-7 low level 

descriptors, namely audio$ waveform, audio power, audio spectrum centr $oid, audio 

spectrum spread, au$dio spectrum flatn$ess, harmonic ration, upper limit of harmonics, 

and audio fundam$ental frequency. This work was based on a Hidden Markov Model 

(HMM) classification frame$ork. 

Toyoda [47] used a multi-layered perception neural system for 

environmental sound recognition. The input data were the combination of 

instantaneous spectrum at power peak and the power pattern in time domain. Since for 

almost environmental sounds, their spectrum changes were not remarked when being 

compared with speech or voice, the combination of power and frequency pattern 

would reserve the major features of environmental sounds but with drastically reduced 

data. The recognition rate for 45 data types kinds of environmental sound was about 

90%.  

Eronen et al. [48], identified time and frequency domain features, as 

well as stochastic features, to classify various everyday outdoor and indoor scenes. 
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Eronen used Zero-crossing rate (ZCR), Mel- Frequency Cepstral Coefficients 

(MFCC), Mel-Frequency Delta Cepstral Coefficients (MFCCs), Band-energy, 

Spectral roll-off, Linear Prediction Coefficients (LPCs)and Linear Prediction Cepstral 

Coefficients(LPCC) for features. They employed k-nearest neighbor (k-NN) and the 

one-state Hidden Markov Model (HMM) as classifiers, and applied Principal 

Component Analysis (PCA) and Independent Component Analysis (ICA) for feature 

transformation. They reported that, by using Mel-Frequency Cepstral Coefficients 

(MFCCs) and Hidden Ma$rkov Models (HMMs), they were able to achieve a 

recog$nition accur$acy of up to 88%. The recognition accuracy as a function of the 

length of testing sequence converged after about 30-60 s. in$terestingly, they reported 

that human's recognition accuracy of the same data set was 82% with an average 

reaction time of 14 s. 

Wang et al. [49] applied signal enhanc$ement prior to recog$nition, and 

divided the rec$ognition procedure into enviro$nmental sound classification and speech 

recognition. For signal enhancement, they used the perceptual wavelet analysis 

filterbank and the Karhunen-Loeve Transform (KLT). These approaches achieved 

satisfactory results, when combined with tra $ditional features and classif$ication 

methodologies. 

Byeong-jun Han and Eenjun Hwang [50] considered three types of 

features, i.e. Traditional Features (TFs), Change Detection Features (CDFs), and 

Acoustic Texture Features (ATFs). To mitigate this problem of high dimension of the 

feature data, they used no-negative matrix factorization (NMF) and employed Support 

Vector Machine (SVM) as a classifier. Experimental results showed that the 

combination of these features with traditional features can achieve 86.09% of the 

maximum accuracy in environmental sound classification when compared with 

74.35% of the maximum accuracy under traditional features. 

Lozano [51] et. al. presented a short paper on a method for classifying 

audio sounds. The presented techniques in this research can be used as input to parse 

audio to make sure the alternative text is correctly describing the audio content. The 

following acoustic parameters were extracted from the data: Mel Frequency Cepstrum 

Coefficients, Zero Crossing Rate, Centroid and Roll- Off Pint. The feature extraction 

included a multi-resolution analysis technique with multiple windows of different 

sizes, instead of the traditional fixed length window. This gave a more number of 

parameters which would worsen the performance of the classifier. However, this was 

compensated by a heuristic selection of parameters to reduce the size of the feature 

array. The classification algorithm applied was the Gaussian Mixture Model. The 

experimental results were based on 60% training data and 40% testing data. The 

windows sizes ranged from 20 to 80 milliseconds. With the most preferable 

configuration, the classified reached an accuracy of 92.44%. The results also showed 

that using multi-resolution analysis outperformed the use of single-windows. 
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Figure 1.2 Comparison of our propose and another work. 
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The analysis of sound environments in Selina Chu, [52] [53], which is 

closest to our work, presented Matching Pursuit (MP) as features. Chu introduced the 

Matching Pursuit (MP) technique in environmental sounds recognition. MP provides a 

way to extract features that can describe sounds where other audio feature such as 

MFCC fails. In their MP technique, they used Gabor function based time-frequency 

dictionaries. It was claimed that features with Gabor properties could provide a 

flexible representation of time and frequency localization of unstructured sounds in 

the background environment. They applied KNN (k = 1) and GMM with 5 mixtures to 

recognize fourteen types of environmental noise events. 

Jonathan [54] presented a novel feature extraction method for sound 

event classification, based on the visual signature extracted from the sound’s time-

frequency representation. The motivation stems from the fact that spectrograms form 

recognizable images, which can be identified by a human reader, with perception 

enhanced by pseudo-coloration of the image. All the four step process as follows. 1) 

The spectrogram is normalized into greyscale with a fixed range. 2) The dynamic 

range is quantized into regions, each of which is then mapped to form a monochrome 

image. 3) The monochrome images are partitioned into blocks, and the distribution 

statistics in each block are extracted to form the feature. The proposed method comes 

from the fact that the noise is normally more diffuse than the signal and therefore the 

effect of the noise is limited to a particular quantization region, leaving the other 

regions less changed. The method is tested on a database of 60 sound classes 

containing a mixture of collision, action and characteristic sounds and shows a 

significant improvement over other methods in mismatched conditions, without the 

need for noise reduction. In Figure 1.2 is an approached used in previous research. 

1.4 Objective 

 To classify a singing word in a singing voice signal with background 

music especially a singing word pronounced similarly. 

 To classify a type of environment sound. 

 To find the optimal windows size used to create a spectrogram for 

classification. 

 To compare performance of the proposed method with Mel-Frequency 

Cepstral Coecients (MFCCs), Linear Predictive Coding (LPC) and other 

Features extraction method in optimal parameters. 

1.5 Scope and Limitations 

In this dissertation, the scope of work is constrained as follows:  

 This proposed algorithm is tested with the Thai and English music 5000 

albums. Sample files were coded in stereo of frequency 44.2 kHz with 

128/s bit rate manually captured.  
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 The BBC Sound Effects Library, The Warner Bros Sound Effects Library, 

56 TV-series, 356 DVD Movie. Sample files were coded in stereo of 

frequency 44.2 kHz with 128/s bit rate manually captured. 

 The result of this approach is compared with the other Features extraction 

method such as Linear Predictive Coding(LPC), Mel-Frequency Cepstral 

Coecients (MFCC)) 

 

1.6 Dissertation Organization 

This thesis is organized as follows. The next chapter, this thesis 

provides theoretical preliminary on grasping which is used subsequently in the 

remaining of the dissertation. The remaining chapters describe algorithms to solve the 

problem in each setting. Chapter 2 gives brief introduction and literature reviews. 

Chapter 3 describes algorithms and data collection. The results and discussion are 

given in Chapter 4. Finally, Chapter 5 concludes our work and describes future 

extension. 
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CHAPTER II 

 

 RELATED BACKGROUND 

 

This chapter provides the necessary background for audio 

classification. We first discuss methods for feature extraction and classification, and 

conclude with a section summarizing relevant research on these fields. 

 

2.1 Audio Classification. 

Audio signal proc$essing, sometimes referred to as audio proce $ssing, is 

the inten$tional alteration of auditory signals, or sou $nd. As audio sign$als may be 

electronically represented in either digital or analog format, signal proce$ssing may 

occur in either do$main. Analog pro$cessors operate directly on the electrical signal, 

while d$igital processors operate ma$thematically on the digital represen $tation of that 

signal. Most audio recognition and classification problems are implemented using the 

following two-stage process. 

  Feature Extraction. 

  Classification. 

The sequence of recognition and classification problems is shown in 

Figure 2. Generally, a computer represents sounds in a digital format. First, an audio 

signal is analyzed and calculated to generate a feature. After that, a classifier such as 

Feed-Forward neural network and k Nearest Neighbors (k-NN) are used for 

classification. 

 

 

Figure 2.1 Traditional Classification Sequence. 

 

2.2 Audio Feature Extraction 

Feature extraction is the pro$cess of computing a compact num $erical 

represent$ation that characterizes a segment of audio. The design of descriptive feature 
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for a specific application is the main challenge in building pattern recognition 

systems. Here, we examine some of the commonly used audio signal features. 

 

2.2.1 Fast Fourier Transform 

A fast Fourier tran$sform (FFT) is an algorithm to co $mpute the dis$crete 

Fo$urier transform (DFT) and its in$verse. There are many distinct FFT algorithms 

involving a wide range of math $ematics, from si$mple complex-number arith$metic to 

gro$up theory and number theory; this article gives an over $view of the available 

techniques and so$me of their general properties, while the specific algorithms are 

desc$ribed in sub$sidiary articles lin$ked below. 

A DFT dec$omposes a sequence of values into com $ponents of different 

frequencies. This ope$ration is useful in many fields but com $puting it directly from the 

defin$ition is often too slow to be pra$ctical. An FFT is a way to com $pute the same 

result more quickly: computing a DFT of N points in the naive way, using the 

definit$ion, takes       arithm$etical oper$ations, while an FFT can com $pute the same 

result in only O(NlogN) operations. The differ$ence in speed can be subs$tantial, 

especially for long data sets where N may be in the thousands or mill $ions in practice, 

the com$putation time can be re$duced by several orders of magnitu $de in such cases, 

and the impr$ovement is roughly propo$rtional to N/log(N). This$ huge improvem$ent 

made many DF$T-based algorithms practical; FFTs are of great importance to a wide 

variety of applica$tions, from digital signal proc$essing and solving partial diff$erential 

equat$ions to algorithms for quick mul$tiplication of large integers. 

The most well-known FFT algorithms depend upon the factorization of 

N, but there are FFTs with O(NlogN) complexity for all N, even for prime N. Many 

FFT algorithms only depend on the fact that   
   

  is an N th primitive root of unity, 

and thus can be applied to analogous transforms over any finite field, such as number-

theoretic transforms. Since the inverse DFT is the same as the DFT, but with the 

opposite sign in the exponent and a 1/N factor, any FFT algorithm can easily be 

adapted for it. 

An FFT computes the DFT and produces exactly the same result as 

evaluating the DFT definition directly. The only difference is that an FFT is much 

faster. In the presence of round-off error, many FFT algorithms are also much more 

accurate than evaluating the DFT definition directly, as discussed below. 

Let            be complex numbers. The DFT is defined by the 

formula 
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Figure 2.2 Diagram illustration of spectrogram. 
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2.2.2 Spectrogram (Power Spectrum) 

A spectrogram is a visual representation of the distribution of acoustic 

energy across frequencies and over time. The horizontal axis of a spectrogram 

typically represents time. The vertical axis represents the discrete frequency steps. 

The strength of power detected is represented as the intensity at each time-frequency 

point. 

First, the input audio signal x(n) of each singing word is sliced into a 

number of small windows or frames equal to a power of two. Each signal window is 

calculated by using the short-time Fourier transform (STFT) defined as follows. 

 

For             where k corresponds to the frequency      

 (
   

 
);     is the sampling frequency in Hertz and w(n) is Hamming time-window 

given by 

 

The power of each X(k), denoted by P(k), is computed by following 

equation. 

 

Each P(k) is plotted against time step to form a power spectrogram of 

each singing word. Figure 2.2 shows an example of how a power spectrogram is 

created. 

 

2.3 Classification Basics 

Classific$ation is the task of assig$ning obj$ects to on$e of sev$eral 

prede$fined cate$gories. Espe$cially, a clas$sifier takes as inp$ut d$ata a colle$ction of 

rec$ords  that are char$acterized by a tuple (x,y), wh$ere x is the attri$bute set a$nd y is the 

cla$ss label. The att $ribute set inclu$des sever $al fe$atures or prop$erties of the inst$ance and 

can be either di $screte or conti$nuous. On the other han$d, the c$lass label m$ust be a 

disc$rete att$ribute and t$his dis$tinguishes classifi$cation from regression. Thus, 

classif$ication is the ta$sk of learn$ing a target func$tion f th$at m$aps each at$tribute set x to 
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one of the prede$fined class labels y. This target function is also known as 

classific$ation model. A classi $fication tech$nique (or classifier) is a system $atic 

appr$oach to build class$ification models fr$om a given data set.  

Exam$ples of clas$sifiers are dec$ision trees, neu$ral netw$orks, sup$port 

ve$ctor ma$chines, logistic m$odels etc. Each techni$que empl$oys a learn$ing algor$ithm in 

or$der to bu$ild a mod$el that best fits the r$elationship between the att $ribute set an$d the 

class lab$el of the data. This mo$del should apa$rt fro$m fit well in$put data, co$rrectly 

pred$ict the class lab$els of insta$nces it has nev$er seen be$fore. The i$nput data co$nsist 

the trai$ning set, wh$ile the unk$nown re$cords consist the te$sting set. In order to measure 

the performa$nce o$f a model, the nu$mber of corre$ctly and inco$rrectly predi$cted test 

reco$rds is meas$ured. These m$easures are usually prese$nted in a tabular form, known 

as a confusion ma$trix: 

 

Actural Class 
Predicted Class 

Class1 Class2 

Cl$ass1 True Po$sitive False Positive 

Cla$ss2 False Pos$itive True Positive 

 

In order to co$mpare the perform$ance of differ$ent models met$rics such 

as accu $racy and error rat$e are widely used: 

 

 

2.3.1 K-nearest neighbor method 

KNN method is simplest methods for general, non-parametric 

classification and based on supervised learning [55]. The aim is to find nearest k 

sample from the exist $ing training data when a new sample appears and classify the 

appeared sample according to most similar class [56]. Generally closeness is defined 

with Euclidean distance. Mitchell (1997) had explained Eucli$dean distan$ce precisely 

with a formula. An arb$itrary instan$ce x be described by the feature vector 
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Where       denotes the value of nth attribute of instance x. Then the 

distance between two instances    and     is defined to be             as follows 

 

In general the following steps are performed for KNN algorithm: 

1. Choo$se of k value: k value is completely up to user. Generally after 

some trials a k value is chosen according to results. 

2. Dista$nce calculation: Any distance measurem$ent can be used for this 

step. Generally most kn$own distance measu$rements like Euclidean and Man $hattan 

distances are preferred.  

3. Distance sort in ascendi$ng order: Chosen k value is also imp$ortant in 

this step. Found dist $ances are sorted in ascending order and k of minim $um distances 

are taken. 

4. Classification of neare$st neighbors: Classes of k nearest neighbor are 

identified. 

5. Finding domin$ant class: In the last step, queried data is classified 

according to class of identified k nearest neighbor by utilizing maximum ratio. This 

ratio is calcul$ated for each class of k nearest neighbor with the number of data owned 

by that class over k. Let               is the set of k nearest neighbor probabilities 

for each class where n is number of class. Maximum ratio is calculated as in Eq. 

 

 

2.3.2 Artificial Neural Networks 

Artificial neural networks (ANN) has originated from the studies on 

how animal brains work, he$nce one has to study brain to understand fundamentals of 

ANNs. The brain is an extremely com $plex, non$linear and parallel co$mputer, which 

has the ability of orga$nizing neur$ons to perform certain compu$tations like pattern 

recognition, perception. Artificial neural networks born after McCulloc and Pitts 

introduced a set of simplified neuro$ns in 1943. These ne$urons were represented as 

models of biological networks into conceptual com $ponents for circuits that could 

perform com$putational tasks. The basic model of the artificial neuron is foun$ded upon 
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the fun$ctionality of the biological neuron. By defin $ition, “Neur$ons are basic signaling 

units of the nervous system of a living being in which each neuron is a discrete cell 

whose several processes are from its cell body”  

 

The bio$logical ne$uron has four main regions to its structure. The cell 

body, or soma, has two offshoots from it. The dendrites and the axon end in pre-

synaptic terminals. The cell body is the heart of the cell. It $contains the nucleolus and 

maintains protein synthesis. A neuron has many den $drites, which look like a tree 

structure, recei$ves signals from other neurons. The electrical signals are generated by 

the membrane potential which is based on d $ifferences in concentration of sodium and 

potassium ions and outside the cell membrane. 

Conseq$uently, a crude analogy betw $een an art$ificial and a biological 

neuron can be made: den$drites of other neur$ons refer to input signals, syn$apses are the 

connection weights and activity in the cell body is represented by an activ $ation 

function [46]. Illustr$ation of such an artificial neur$on is displayed in Figure 2.3.   

 

 

 

Figure 2.3 an illustration of an artificial neuron 

 

From this model the interval activity of the neuron can be shown to be: 

 

The output of the neuron,   , would therefore be the outcome of some 

activation function on the value of   . 
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The activation function defines a mapping between the output of a 

neuron and its inputs. Figure 2.4 demonstrates three basic types of activation 

functions. 

 

 
Figure 2.4 Different activation functions used in neural networks. 

 

Emerging from the studies on how animal brains work, ANNs are 

composed of layers of neurons gathered in a parallel architecture with a high degree of 

interconnection between them. Although each neuron performs linear discrimination, 

ANNs can solve most of the real-world (often non-linear) problems thanks to their 

parallel structure. Researchers have provided numerous ANN algorithms with 

different architectures, learning paradigms or parameters in the literature. It is 

extremely arduous to cover all available ANNs due to this diversity and 

numerousness. Consequently, we selected several ANNs from different architectures 

to be used in this work. The following subsections present these ANNs with basic 

explanations. Please note that these explanations do not cover aspects of learning 

process; like learning methods, learning rate adaptation, weights update, and 

convergence. 

 

2.3.3 Feed-forward Networks 

In a feed-forwa$rd network data propagates in the forward (from input 

layer to output layer) direction, thus its neurons has only unid$irectional connec$tions 

(no feedb$ack or same layer ne$uron to- neuron connections). Figure 2.5 displays an 

example of such a netwo$rk. 
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Figure 2.5 Architecture of a feed-forward neural network. 

 

2.3.4 Multi-Layer Perceptron (MLP) 

ML$Ps are also known as feed-forward netwo$rks, beca$use input signals 

propagate layer-by-layer through the network in forward direction. MLP performs 

back propagation learning, where tw $o pa$sses of signals through the net$work are 

emplo$yed. Forward pass: In$put signals are propagated in forward dire$ction, while 

weights at each layer are fi $xed and actual output of the net $work is produced. Error 

between the actual output and the desired output (label) is calculated. In backward 

pass, th$is error signal is propagated backward and weig$hts are ada$pted a seco$nd time. 

Therefore, this algori$thm is also known as errorback - propagation. 

 

2.4 Audio Time Scale Modification (TSM) 

Since each sou$nd was captured from diff$erent songs. Therefore, the 

time interval of each sound is not equal, depending on a singer. For this reason we 

apply time-scale modification algorithm (TSM) to scale the time interval of each 

sound beco$me equal. Time Scale Modif$ication (TSM) refers to the process of 

speeding up or slowing down a sound without changing the pitch of any tonal 

components. For example, TSM of speech should sound like the speaker is talking at a 

slower or faster rate. The idea of time-scale mo$dification of a audio signal is used not 

to change the spea$king rate of a signal, but to reconstruct the signal segment which is 

lost or delayed.  

Wave$form Similarity Overlap-and-Add (WSOLA) techni $que were 

used in the time-scale modificat$ion of audio signals. The WSOLA time-scale 

modification (TSM) tech$nique is capable of generati $ng an output signal with the same 

pitch peri$od from the signal pro$vided to the alg$orithm. This tech$nique also mi$nimizes 

disconti$nuities at the boundaries between good packets and rec$onstructed packets. It is 

possible to use the WSOLA time-scale mod$ification tech$nique on the residual signal 

in the same way it is used on the origi$nal signal. 
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2.4.1 Waveform Similarity Based Overlap-Add (WSOLA) 

The Waveform Similarity Overlap-Add (WSOLA) algori$thm propo$sed 

in [57] is a robust and computationally efficient algorithm used for hig$h quality time-

scale modification of speech. Ti $mescale modification techn$iques aim to change only 

the apparent speaking rate, while preserving other perceived aspects of spe$ech such as 

timbre, voice quality, and pitch. The basic idea of WSOLA is to deco$mpose the input 

into overlapping segments of equal length, which are then realig$ned and 

super$imposed with fixed overlap to form the output. The realignment leads to an 

increase or decrease in the output length. Specifically, WSOLA produces a synthetic 

waveform, y(k), that maintains maximal local similarity to the original waveform, 

x(n), in the neighborhoods of all sample indices given by the mapping,       , 
where      is the transformation fu$nction defined as        , being the time-

scaling factor.  If      , the output speech is stretched, and if      , the output 

speech is compressed. 

The WSOLA algorithm operates entirely in the time domain. The 

algorithm works by segmenting the input audio waveform into blocks of equal length. 

Audio blocks in the input waveform are selected and overlap-added to produce the 

output audio. If the source blocks were taken at regular intervals in the original 

waveform, the output file would be of poor quality as the pitch pulses are not equally 

spaced. Thus, the selection of similar source blocks in the input to use for overlap-add 

is critical to achieving high output quality. 

 

 

Figure 2.6 WSOLA compression at    = 0.6 
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Figure 2.7  WSOLA compression at    = 1.6 

 

Figure 2.6 and 2.7 illustrates the basic operation of the WSOLA 

algorithm. The algorithm iteratively constructs the output waveform, block by block. 

In Figure 2.6, source block A is copied to the destination block A. Template block B 

is the block following source block A with 50% overlap. WSOLA now needs to find a 

block to copy to destination block B to overlap-add with destination block A. 

Therefore, source block B is desired to closely resemble template block B. 

The reverse transformation,         
 

 
  gives the center of the search 

region in which to look for source block B. A measure of waveform similarity is 

computed between template block B and blocks in the search region. The source block 

with the greatest similarity is then copied to destination block B. The template block 

for the next iteration will be the block right after source block B with 50% overlap. 

For a given iteration, the source block follows the template block in WSOLA 

compression, and it precedes the template block in WSOLA expansion, as shown in 

Figure 2.6 and 2.7, respectively. 

Once the positions of the template block and the search region are 

known, a series of correlations is computed between the template block and blocks in 

the search region. Each source block in the search region is shifted by  , where 
  

 
   

 

 
  , and L is the length of the search region. The similarity measure used 

in this work is the cross-correlation coefficient, 

 

 

where N is the length of a block. The weighting window used in this 

work for the overlapadd operation is the Hamming time-window w(n),      
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  , with 50% overlap. The window size is set to be the length of a 

block, N. Based on our experimental setup, we use a window of 512 points for length 

of a block N. 

The speech quality and algorithm computation time are affected by the 

block size and the length of the search region for the source block. Larger blocks 

contain more pitch periods so the correlations will give a better measure of the 

waveform similarity between template and source blocks. However, if the block size 

is too large, artifacts such as echoes and tinny sounds will be introduced into the 

output. A larger search region results in more correlations being computed, thus it is 

computationally more expensive. Nevertheless, a better match with higher correlation 

between template and source block may be found within a larger search region. 
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CHAPTER III 
 

PROPOSED METHODOLOGY 

 

3.1 Concept of Proposed Solution 

The singing style and duration of sing voice make it difficult to define 

effectively the number of states in Hidden Markov Model to recognize those singing 

words. Moreover, separately eliminating the instrumental background signal under 

uncontrollable loudness, pitch, vibrato, formant, and rhythm is not simple. In our 

solution, the instrumental background signal will not be filtered from the singing word 

signal. 

Both signals are considered as one entity and this 2-dimensional signal 

is transformed into a 2-dimensional in spectrum domain to magnify the features of 

singing words. Then, the image of spectrogram is used as an input for a classifier to 

recognize the singing words. 

 

 

Figure 3.1: Examples of four singing words represented in forms of spectrograms. (A) 

Word A. (B) Word B. (C) Word C. (D) Word D. 

The examples of spectrogram for four singing words are presented in 

Figure 3.1. Each spectrogram is shown in Figure 3.1. It can be seen that each vertical 

band of frequency magnitude in the spectrogram can be viewed as a vertical image 

whose color of each pixel implies the magnitude of the corresponding frequency. This 
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vertical band is called a spectrogram image. Each row of Figure 3.1 presents the same 

word sang from different people and time. The characteristics of a spectrogram of 

same word obtained from different people are very similar. Then, this thesis apples 

the concept of recognition like image recognition, such as hand-written digit 

recognition and fingerprint identification. 

 

Figure 3.2: The spectrogram of each sound type. (A) car engine. (B) construction. (C) 

crowd Applause. (D) crow clamor. (E) cire. (F) celicopter. (G) office. (H) outdoor 

sounds - forest. (I) outdoor sounds - road. (J) restaurant stores. (K) transportation-

motorcycle. (L) transportation-train. (M) water. (N) weather-rain. (O) weather-

thunder. (P) household. (Q) airplane. (R) water(Ocean). (S) chicken farm. (T) auto 

racing. 

With techniques discussed above, it is possible to apply the concept to 

other problems. The examples of spectrogram of each environmental sound type are 

presented in Figure 3.2. It can be seen that each spectrogram clearly displayed 

different characteristics. Based on different characteristics of the spectrogram 

displayed, this thesis can use a different characteristic of spectrogram for 

classification. 

 

3.2 Singing Word Recognition Problem 

The purpose of our research is to recognize a singing voice with 

instrumental interference. Our system take polyphonic music audio signal as input, 

which was sampled from music CD recording and different music genres are included 

in the experiments such as rock ,hard rock, soft rock , dance , hip-pop, soul, r&b ,folk 

and acoustic. The files are all from different artists. the following two issues are : 
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 Singing voice different from speech because of the differences between 

speech and singing voice such as duration of voice sound, loudness, pitch, 

vibrato, formant, rhythm and rhyme [58]. It is difficult to use algorithm of 

speech recognition to solve this problem. 

 In polyphonic music recordings, the instrumental interference is treated as 

the noise source that causes degradation to the intelligibility of the singing 

voice signal. 

The goal of this research is to solve singing voice recognition without 

using any method to separate music in environment. Especially, the audio music with 

instrumental interference is treated as the noise source degraded the performance of 

recognition system. 

 

3.2.1 Methodology 

Figure 3.3 shows a diagram of singing voice recognition algorithm. 

Start by reading the audio file. Since each sound was captured from different songs. 

Therefore, the time interval of each sound is not equal, depending on a singer.  

For this reason this research applies time-scale modification algorithm 

to make the time interval of each sound to be equal. An audio signal is analyzed and 

calculated with the short-time Fourier transform (STFT), to generate a spectrogram. 

After that a classifier, such as Feed-Forward neural network and K nearest neighbors 

(KNN) are experimentally chosen. 

 

Figure 3.3 Flowchart of the singing voice recognition algorithm. 

 

A spectrogram of each word is viewed as a matrix that describes the 

time waveform energy distribution in the joint time-frequency domain. Because a 
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spectrogram of each singing word is a 2D array, a spectrogram of each singing word 

is arranged to a feature vector before classification method , as shown in Figure 3.4. 

 
 
 

Figure 3.4: The method to convert a spectrogram images matrix to a spectrogram images 

vector by using row data spectrogram. 

 

3.2.2 Data Collection 

First, we investigated the performance of a spectrogram of audio 

features to solve the problem of singing voice recognition and provide an empirical 

evaluation on two data sets. The first database, denoted as DB-THS, is a collection of 

songs randomly chosen from Thai popular music CDs. It contains over 1500 Albums. 

DB-THS consists of 12 Thai One syllable singing word, 7200 sound samples, and 600 

for each words. The singing words were selected from the most frequently in the all 

song. The considered singing words are shown in Table 3.1. 

Table 3.1 DATABASES DB-THS USED IN EXPERIMENTS 

Class. Singing word Time duration(min-max) Pronunciation (in Thai) 
 
1 

 
"คน" 

 
0.65s-2.95s 

 
"kon" 

2 "ความ" 0.26s-0.60s "kwarm" 

3 "เคย" 0.33s-0.62s "koey" 

4 "ใคร" 0.33s-0.70s "krai" 

5 "ใจ" 0.44s-1.38s "jai" 

6 "ฉนั" 0.26s-1.23s "chan" 

7 "ท่ี" 0.26s-0.54s "tee" 

8 "เธอ" 0.23s-0.78s "ther" 

9 "มี" 0.28s-0.86s "mee" 

10 "รัก" 0.18s-1.48s "rug" 

11 "รู้" 0.28s-0.47s "roo" 

12 "เรา" 0.26s-0.73s "rao" 



27 

 

The second database, denoted as DB-TH-ENG. DB-TH-ENG, is a collection 

of songs randomly chosen from English and Thai popular music CDs.  For the second 

dataset that consisting of two or more words. DB-TH-ENG consists 12 singing word. 

We used five words in English and seven words in Thai. DB-TH-ENG that contains 

7200 sound samples, 600 for each word. The singing word was selected from the most 

frequently in the all song. The 12 considered singing words are showing in Table 3.2. 

 

Table 3.2 DATABASES DB-THS USED IN EXPERIMENTS 

Class. Singing word Time duration(min-

max) 

Pronunciation (in 

Thai)  
1 

 
I love you 

 
0.65s-2.95s  

2 Love you 0.57s-2.92s  

3 Together 1.04s-2.11s  

4 Tomorrow 1.07s-6.63s  

5 Yesterday 0.81s-5.90s  

6 "ความรัก" 0.52s-3.65s "kwarm-luck" 

7 "คิดถึง" 0.88s-1.11s "kit-thun" 

8 "ใครสกัคน" 0.99s-4.62s "krai-sak-kon" 

9 "ไม่เคย" 0.41s-1.99s "mai-koey " 

10 "ไม่มี" 0.57s-1.17s "mai-mee" 

11 "รักเธอ" 0.47s-1.93s "ruk-ther" 

12 "หวัใจ" 0.73s-1.46s "hua-jai" 

 

All sample files in DB-THS and DB-TH-ENG were coded in stereo of 

frequency 44.2 kHz with 128/s bit rate.  All audio signals were converted to mono and 

down-sampling types at rate of 8,000 Hz.  

The following comparisons are conducted. The objective of the experiments is 

to investigate which features, i.e. (1) Mel Frequency Delta Cepstral Coefficients 

(MFCC); and (2) Linear Prediction Coefficients (LPC); and classifier, i.e. feed 

forward neural network and k-nearest neighbor network (KNN). 

 

 The average accuracy based on spectrogram, MFCC, and LPC features 

versus a feed forward neural network. 

 The average accuracy based on spectrogram, MFCC, and LPC features 

versus a KNN. 
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 The average accuracy between the feed forward neural network and the 

KNN with spectrogram, MFCC, LPC, and MP features. 

 The average accuracy based on spectrogram, MFCC, and LPC features 

versus a feed forward neural network with different window sizes. 

 The average accuracy based on spectrogram, MFCC, and LPC features 

versus a KNN with different window sizes. 

 Computational Speed Tests on Spectrogram Features. 

 Experiment dimension reduction on Spectrogram Features. 

 

3.3 Environmental sound Recognition Problem 

This research considers the task of classifying the environment sounds to 

understand the scene surrounding the audio. 

3.3.1 Methodology 

Fig 3.5 shows a diagram of Environment sound recognition algorithm.  

An audio signal is analyzed and calculated with the short-time Fourier transform 

(STFT) to generate a spectrogram. In Environment sound recognition, we send each 

column of spectrogram to classifier. After that a classifier, such as Feed-Forward 

neural network and k Nearest Neighbors (k-NN) are experimentally chosen. 

 

 

Figure 3.5 Flowchart of the Environment sound recognition algorithm. 

 

3.3.2 Data Collection 

The third database denoted as DB-ENG was a collection of 20 different types 

of environmental sounds. As summarized in Table 4.1, the natural sound clips are 

obtained from famous sound database such as the BBC [23] and Sound Ideas - The 

General Series 6000. The sounds were recorded in wav format to avoid introducing 

artifacts in our data. All audio signals were converted to mono and down- sampled 

from the CD sampling rate of 44.1 kHz to 16 kHz. The environment sound types were 

chosen so that they are made up of non-speech and non-music sounds. 
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The experiment consisted of the test on 20 different types of unstructured 

environmental sound which are: Car engine, Construction, Crowd Applause, Crow 

Cheering, Fire, Helicopter, Office, Out- door Sounds - Forest, Outdoor Sounds - 

Road, Restaurant Stores, Transportation - Motorcycle (start and idle), Transportation-

Train, Water, Weather - Wind, Weather - Rain and Thunder, Household, Airplane, 

Water(Ocean), Chicken Farm, Auto Racing. The length of each sound is listed in the 

last column of Table 3.3. 

 
Table 3.3 The length and class of 20 different types of unstructured environmental 
sound. 

 

 

Class Type of Environmental Sound Time (Minutes) 

 

1 

 

Car engine 

 

14.5 

2 Construction 12.1 

3 Crowd Applause 13.8 

4 Crowd Clamor 15.7 

5 Fire 13.5 

6 Helicopter 14.2 

7 Office 15.2 

8 Outdoor Sounds - Forest 15.8 

9 Outdoor Sounds - Road 15.9 

10 Restaurant Stores 15.9 

11 Transportation - Motorcycle 13.8 

12 Transportation - Train 14.1 

13 Water 15.8 

14 Weather - Wind 15.7 

15 Weather - Rain and Thunder 12.8 

16 Household 16.6 

17 Airplane 12.2 

18 Water(Ocean) 20.0 

19 Chicken Farm 22.3 

20 Auto Racing 23.2 

 

The following comparisons are conducted. The objective of the 

experiments is to investigate which features, i.e. (1) Mel Frequency Delta Cepstral 

Coefficients (MFCC); (2) Linear Prediction Co-efficients (LPC); and (3) Matching 

Pursuit (MP), and classifier, i.e. feed forward neural network and k-nearest neighbor 

network (KNN), are suitable for recognizing the environmental sounds. Since the 
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details of extracted features depend upon the sampling rate, following comparison of 

different sampling is also investigated.  

 

 The average accuracy based on spectrogram features versus a feed forward 

neural network. 

 The average accuracy based on spectrogram, MFCC, LPC, and MP 

features versus a feed forward neural network. 

 The average accuracy based on spectrogram features versus a feed forward 

neural network. 

 The average accuracy based on spectrogram, MFCC, LPC, and MP 

features versus a feed forward neural network. 

 The average accuracy spectrogram features versus a KNN. 

 The average accuracy based on spectrogram, MFCC, LPC, and MP 

features versus a KNN. 

 The average accuracy between the feed forward neural network and the 

KNN with spectrogram, MFCC, LPC, and MP features. 

 The average accuracy based on spectrogram, MFCC, LPC, and MP 

features versus a feed forward neural network with different window sizes. 

The average accuracy based on spectrogram, MFCC, LPC, and MP 

features versus a KNN with different window sizes. 

 The average accuracy based on spectrogram, MFCC, LPC, and MP 

features versus a feed forward neural network with different sampling 

rates. 

 The average accuracy based on spectrogram, MFCC, LPC, and MP 

features versus a KNN with different sampling rates. 
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CHAPTER IV 
 

RESULTS AND DISCUSSION 

 

The experimental environment is Dell OptiPlex 755 Desktop, Intel 

Core 2 Duo E6750 Processor operating at 2.66-GHz and 6 GB total memory, running 

Microsoft Windows 7 64bit. All data sets were divided into four groups of equal sizes. 

Then, arbitrarily selected three groups were used for training and the rest is used for 

testing. For cross-validation procedure, the same process was repeated 50 times with 

the different training and test sets, to ensure that all samples are included at least once 

in the test set. The experimental results are shown in the following sections. 

 

4.1 Singing Word Recognition Problem 

For Singing Word Recognition Problem, Each environmental in DB-

THS and DB-TH-ENG in table 3.1 and 3.2 was segmented into several sub-signals. 

These sub-signals were randomly divided into four groups of equal sizes. Then, 

arbitrarily selected three groups were used for training and the rest is used for testing. 

In each experiment, we performed 50 runs on each classifier to obtain statistically 

reliable results. The mean recognition rate was calculated based on the error average 

for one run on test set. The following classification techniques are commonly used for 

speech/speaker recognition or have, in the past, been used for this application domain. 

They are: 

  K nearest neighbor method 

  Artificial Neural Networks 

  Minimum least square linear 

  Normal densities based linear 

 Naive Bayes 

  Parzen 

  Radial basis neural network 

  Decision tree 
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4.1.1 Experimental on DB-THS Dataset 

Based on our experimental setup, we use a window of 512 points with 

a 25% overlap. This corresponds to the window size used for all feature extractions. 

First, we applied Waveform Similarity Based Overlap-Add (WSOLA) for time-scale 

modification in each signing word audio data was applied to equalize to the lengths of 

all samples. A time of interval of each singing word equal 0.5 seconds.  

The overall recognition accuracy from K nearest neighbor method, 

Artificial Neural Networks, Minimum least square linear, Normal densities based 

linear, Naive Bayes, Parzen, Radial basis neural network and Decision tree are 

summarized in figure 4.1. 

 

Figure 4.1: Overall recognition rate comparing 8 classifier using spectrogram as 

features on DB-THS dataset. 

 

As shown in this figure, K nearest neighbor and Artificial Neural 

Networks performed better than another classification technique. As a result of this 

experiment, we will consider the use of K nearest neighbor method and Artificial 

Neural Networks as the most powerful. These researches examine the results from 

varying the number of neighbors and using the same for each environment type. The 

By using feed forward neural network (ANN) with spectrogram 

feature, this research examines the results from verity number of hidden neural unit 

and using the same for each singing word. The overall recognition rates by varying 

are given in Fig 4.2. The highest recognition rates were obtained using 20 hidden 

neural units, with the average accuracy of 78.60%. 
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Figure 4.2: Preliminary experiments to obtain the candidate number of hidden neurons 

based on the features of Spectrogram, MFCC, and lpc on DB-THS of hidden neural = 

20. 

 

 

Figure 4.3: Overall recognition rate (ANN) comparing 12 classes using Spectrogram, 

LPC, and MFCC as features with DB-THS data set. 

 

An interesting benchmark is showing in figure 4.3 when ran the same 

experiments using all feature, including MFCC and lpc. In lpc feature, this research 
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use 13 order of the prediction filter polynomial. MFCC feature, this research use 13 

number of cepstra to return, 0.6 for exponent for liftering,0.97 for apply pre-emphasis 

filter, lowest band edge of mel filters 133.3 Hz, highest band edge of mel filters 

8000Hz, 40 numbers of warped spectral bands to use. The frequency warping scale 

used for filter spacing in MFCC is the Mel (Melody) scale.  

This research compares the overall recognition accuracy using 

Spectrogram, MFCC, and LPC for 12 classes of sounds using feed forward neural 

network (ANN) with 20 hidden neural units in Fig. 4.3. As shown in this figure, 

Spectrogram features demonstrate the ability to better. They perform better than 

MFCC features in 11 of the examined classes while producing poor results in the case 

of 1 other class. Compared with the LPC features, Spectrogram feature were better in 

every class. The having the highest recognition rate at 97.08% in class 4 (Pronounced 

"krai"). 

 

Figure 4.4: Preliminary experiments to obtain the candidate number of K nearest 

neighbors based on the features of Spectrogram, MFCC, and lpc. on DB-THS. 

For completeness, this research examines the classification by using K-

nearest neighbors (KNN) with spectrogram. These researches examine the result from 

verity number of K by using same windows size 512 and same data in Feed Forward 

Neural Network. Figure 4.4 was showing overall recognition accuracy using K-

nearest neighbors (KNN) with a verity number of K for each singing word. The 

overall recognition rate was obtained using K=1 with average accuracy of 66.0%. The 

performance is not high compared with Feed Forward Neural Network. 

This research compares the overall recognition accuracy using 

Spectrogram, MFCC, and LPC for 12 classes of sounds using K-nearest neighbors 

(KNN) using K=1 in Fig 4.5. As shown in figure 4.4 and Fig. 4.5, Spectrogram a 

feature in recognition performance is not much higher than MFCC. They perform 

better than MFCC features in 6 of the examined classes while producing poor results 

for 6 other classes. Compare with the LPC features, Spectrogram feature were better 
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in every class. By using K-nearest neighbors (KNN) with spectrogram feature, the 

highest recognition rate was 78.77% in class 6 (Pronounced "chan"). 

 

 

Figure 4.5: Overall recognition rate (KNN) comparing 12 classes using Spectrogram, 

LPC, and MFCC as features with a DB-THS. 

 

4.1.2 Experimental on DB-TH-ENG Dataset 

Singing voice recognition experiments were conducted using Longer 

term and cross language. The data in this section can be used to handle English and 

Thai music data. Using the same experiment settings associated with section 4.1.1. 

This research obtained the accuracies of this section. 

This research compares the overall recognition accuracy K nearest 

neighbor method, Artificial Neural Networks, Minimum least square linear, Normal 

densities based linear, Naive Bayes, Parzen, Radial basis neural network and Decision 

tree in figure 4.1.  

As shown in this figure, K nearest neighbor and Artificial Neural 

Networks perform better than classification techniques. As a result of this experiment, 

we will consider the use of K nearest neighbor method and Artificial Neural Networks 

as the most powerful. 

Using the same experiment settings associated with 4.1.1 this research 

examines the classification by using feed forward neural network (ANN) with 

spectrogram. This research examines the results from verity number of hidden neural 

unit and using the same for each environment type. The overall recognition rates by 

varying are given in Fig. 4.7. The highest recognition rate was obtained using 45 

hidden neural units, with an average accuracy of 92.93%. In this Experiment, 

spectrogram feature show a higher performance when used longer term data than the 
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others. An interesting benchmark is show in Figure 4.8 when ran the same 

experiments using all feature, including MFCC and lpc. This research compares the 

overall recognition accuracy using Spectrogram, MFCC, and LPC for 12 classes of 

sounds using feed forward neural network (ANN) with 45 hidden neural units in 

Figure 4.8. As shown in this figure, Spectrogram features demonstrate the ability to 

better. They perform better than MFCC features in 7 of the examined classes while 

producing poor results in the case of 5 other classes. Compared with the LPC features, 

Spectrogram feature were better in every class. The having highest recognition rate at 

96.12% in class 4 (Pronounced ""mai-mee""). Especially, in figure 4.8spectrogram 

feature can recognize Cross-Language Music Data. 

 

 

Figure 4.6: Overall recognition rate comparing 8 classifier using spectrogram as 

features on DBTHS-ENG dataset. 

 

Figure 4.7: Preliminary experiments to obtain the candidate number of hidden neurons 

based on the features of Spectrogram, MFCC, and lpc on DB-TH-ENG dataset of 

hidden neural = 45. 
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Figure 4.8: Overall recognition rate (ANN) comparing 12 classes using Spectrogram, 

LPC, and MFCC as features with a DB-TH-ENG dataset. 

For completeness, this research examines the classification by using K-

nearest neighbors (KNN) with spectrogram. This research examines the result from 

verity number of K by using same windows size 512 and same data in Feed Forward 

Neural Network. Figure 4.9 was showing overall recognition accuracy using K-

nearest neighbors (KNN) with a verity number of K for each singing word. The 

overall recognition rate was obtained using K=1 with accuracy of 82.67%. The 

performance is not high compared with Feed Forward Neural Network.  

 

 

Figure 4.9: Preliminary experiments to obtain the candidate number of 

K nearest neighbors based on the features of Spectrogram, MFCC, and lpc. on DB-

TH-ENG dataset 

This research compares the overall recognition accuracy using 

Spectrogram, MFCC, and LPC for 12 classes of sounds using K-nearest neighbors 

(KNN) using K=1 in Fig. 4.10. As shown in figure 4.9 and Fig 4.10, Spectrogram 

features in recognition performance are not much higher than MFCC. They perform 

better than MFCC features in 7 of the examined classes while producing poor results 
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in the case of 5 other classes. Compared with the LPC features, Spectrogram feature 

were better in every class. The having the highest recognition rate was 95.09% in 

class 3 (Pronounced "Together"). 

 

 

Figure 4.10: Overall recognition rate (KNN) comparing 12 classes using Spectrogram, 

LPC, and MFCC as features with a DB-TH-ENG dataset. 

 

Figure 4.11: Example of spectrogram obtained from different sizes of windowed 

segment a) 64, b) 128, c) 256, d) 512, e) 1024, f) 2048, g) 4096, h) 8192. 
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4.1.2 Experiment on different sizes of windowed segment on DB-TH-

ENG and DB-THS 

A spectrogram can be obtained from different sizes of windowed 

segment. Figure 4.11 show a spectrogram obtained from different sizes of windowed 

segment. From the figure this research can see a different characteristic of a 

spectrogram obtained from different sizes of windowed segment. This research 

wanted to find out the effect in classification performance of different sizes of 

windowed segment and size of windowed segment that gives the best accuracy rate in 

classification for the data set. 

This experiment used the same data in Table 3.1 and Table 3.2. The 

following window sizes were experimented: 4096, 2048, 1024, 512 and 256 .  All 

window sizes were used overlapping at 25%. 

Figure 4.12 and 4.13, show the average accuracy obtained from 

different classifier with a different size of windows segment by using k-nearest 

neighbors (KNN) with K=1 and feed forward neural network with 20 hidden neural 

units on DB-THS. As showing Figure 4.12 and 4.13 and, a spectrogram that created 

from a large size of windows segment gives better classification accuracy than a 

spectrogram that created from a small size of windows segment.  For another feature, 

by using feed forward a spectrogram perform better than MFCC and lpc in all sizes of 

windows segment. Comparing to the results from Figs 6 and 4.12, these results are 

interesting. When increasing a window size of 512 to 4096 in the spectrogram feature. 

The Average recognition accuracy increased from 78.60% to 82.17%. 

Figure 4.14 show the details of each group.  As shown in this figure, 

Spectrogram features demonstrate the ability to better.  They perform better than 

MFCC features in 12 of the examined classes. Compared with the LPC features, 

Spectrogram feature were better in every class. Compared to the results from Figure 7. 

When using a window size of 512 for spectrogram feature, the recognition 

performance than MFCC only 11 class. For K -nearest neighbor network, when 

window size is 256, MFCC provides higher accuracy than spectrogram. However, in 

other sizes, the results of spectrogram are better than MFCC. When this research used 

the same data in Table 3.2. The following window sizes were experimented: 4096, 

2048, 1024, 512 and 256. All window sizes were used overlapping at 25%. Figure 

4.16 and 4.17, show the average accuracy obtained from different classifier with a 

different size of windows segment by using feed forward neural network with 45 

hidden neuron units and k-nearest neighbors (KNN) with K=1.  

In case of feed forward network, similar results in DB-THS dataset a 

large window size achieves higher accuracy than a small window size for spectrogram 

features. The DB-TH-ENG dataset is the same effect. By using windows size 512, the 

highest average recognition rate was 89.43%. When the window size is change to 

4096.  The highest average recognition rate was 90.30%. Compared with other feature 

in the spectrogram, it also provides higher performance anyway. Figure 4.17 show the 

details of each group. As shown in this figure, Spectrogram features demonstrate the 

ability to better. They perform better than MFCC features in 12 of the examined 
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classes. Compared with the LPC features, Spectrogram feature were better in every 

class. Compared to the results from Figure 4.5.  When using a window size of 512 for 

spectrogram feature, the recognition performance than MFCC only 7 class. 

 

Figure 4.12: Average recognition performance of Feed-Forward Neural Networks on 

a spectrogram MFCC and lpc obtained from different sizes of windowed segment on 

DBTHS data set. 

 

 

Figure 4.13:  The comparison of recognition accuracy for different window sizes 

based on K = 1 nearest neighbor network and different features on DBTHS data set. 
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Figure 4.14:  Overall recognition rate (ANN) comparing 12 classes using 

Spectrogram, LPC, and MFCC as features with a DBTHS data set on Windows Size 

4096. 

 

Figure 4.15:  Overall recognition rate (KNN) comparing 12 classes using 

Spectrogram, LPC, and MFCC as features with a DB-THS dataset by using windows 

size 4096. 
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Figure 4.16: Average recognition performance of Feed-Forward Neural Networks on 

a spectrogram MFCC and lpc obtained from different sizes of windowed segment on 

DB-TH-ENG data set. 

 

 
 

Figure 4.17: Overall recognition rate (ANN) comparing 12 classes using Spectrogram, LPC, 

and MFCC as features with a DB-TH-ENG dataset by using windows size 4096. 
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Figure 4.18:  The comparison of recognition accuracy for different window sizes 

based on K = 1 nearest neighbour network and different features on DB-TH-ENG data 

set. 

 

 

 
 

 

Figure 4.19: Overall recognition rate (KNN) comparing 12 classes using Spectrogram, 

LPC, and MFCC as features with a DB-TH-ENG dataset by using windows size 4096. 

 

Figure 4.18, For K -nearest neighbor network, when window size is 

256, MFCC provides higher accuracy than spectrogram. However, in other sizes, the 

results of spectrogram are better than MFCC. Similar to neural feed forward network, 

a large window is better than a small window size. At maximum window size of 4096, 

the recognition rate is up to 85.16% for DB-TH-ENG dataset. 
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4.1.4   Experiment Dimension Reduction on Spectrogram Features. 

However, the use of Spectrogram is also limited.  When converting 

from Audio Signal to a Spectrogram. A dimension of Spectrogram is higher than other 

feature. Therefore, Spectrogram was using more memory more than the other types 

feature vector in same windows size. As compared to using the MFCC feature 

performance close to the Spectrogram. When used a same size of Windows to create 

spectrogram and MFCC feature. MFCC was used 13 numbers.  

The spectrogram feature usually has a high dimensionality. The size of 

a spectrogram of each singing word can be calculated from: 

 

Where N is the length of a input signal x(n), M is length of windows 

w(n) and Q is hop size. For example, this research created a spectrogram from short 

input signal.  Time duration of input signal is 0.5s with 8000 H z sample rate.  The 

sampling rate defines the number of samples per unit of time (usually seconds).  This 

signal sampling rates are 8000 Hz and time duration is 0.5s. Therefore, the length of 

input signal is 8000/2 = 4000. If spectrogram used windows size 256 and overlap 

25%.  This research can be calculated from the sample below.  A size of spectrogram 

equal 2560. A dimension of spectrogram feature is very high; its dimensionality needs 

to be reduced. Dimensionality reduction is the transformation of high-dimensional 

data into a meaningful representation of reduced dimensionality. 

This research apply 6 dimension reduction technique in this section for 

reduce spectrogram feature dimensions. 

• Diffusion maps ('DiffusionMaps'). 

• Linear Local Tangent Space Alignment ('LLTSA') 

• Principal Component Analysis('PCA'). 

• Stochastic Neighbor Embedding ('SNE') 

• Symmetric Stochastic Neighbor Embedding ('SymSNE') 

• t-Distributed Stochastic Neighbor Embedding ('tSNE') 

 

First, the research performs an estimation of the intrinsic 

dimensionality of both dataset based on the method specified by method.  Possible 

values for method are maximum likelihood estimator (MLE). In our experiments, this 

research set neighborhood range k1 and k2 in maximum likelihood estimator (MLE) 

to 6 and 20.  After that, this research run dimension reduction technique on same data 

in Table 3.1 and Table 3.2. 

Two classifiers, i.e. feed forward neural network and K-nearest 

neighbour (kNN), are deployed in this experiment. In section 4.1.3, a spectrogram that 

create from window of 4096 points with a 25% overlap show the highest average 

recognition rate.  Then, this section used that window of 4096 points for spectrogram 
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feature. The research compare the overall recognition accuracy using Spectrogram 

and their combination for 6 dimension reduction technique in Fig. 4.20 , 4.21 , 4.22 

and 4.23, After this research apply dimension reduction technique for reduce 

spectrogram feature dimension. 

In Figure 4.20, this research listed the accuracies achieved with 

spectrogram, MFCC, LPC and spectrogram with dimension reduction technique for 

the testing data. This research can see from Figure 4.20 that spectrogram feature with 

dimension reduction technique recede the accuracies noticeably, compared to the 

results obtained from spectrogram feature without dimension reduction technique. 

By using Feed forward neural network (ANN) with spectrogram 

feature with dimension reduction technique. The recognition performance is greatly 

reduced. Especially when singing word is short as show in figure 4.20 and 4.23. 

However, we compared with K-nearest neighbour (kNN) with 

spectrogram feature with dimension reduction technique. Recognition performance 

was not reduced as much as the using Feed forward neural network (ANN)as show in 

figure 4.21 and 4.23. In particular, t-Distributed Stochastic Neighbor Embedding 

('tSNE') techniques can provide performance equivalent to the spectrogram feature 

without dimension reduction technique. 

 

 
 

Figure 4.20: Overall recognition rate (KNN) comparing 12 classes using Spectrogram, 

LPC, and MFCC as features with a DB-THS dataset. 
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Figure 4.21: Overall recognition rate (KNN) comparing 12 classes using Spectrogram, 

LPC, and MFCC as features with a DB-THS dataset. 

 

 

 
 

 

Figure 4.22: Overall recognition rate (KNN) comparing 12 classes using 

Spectrogram, LPC , and MFCC as features with a DB-TH-ENG dataset. 
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Figure 4.23: Overall recognition rate (KNN) comparing 12 classes using 

Spectrogram, LPC , and  MFCC as features with a DB-TH-ENG dataset. 

 

 

 

4.1.5   Computational Speed Tests 

In this section this research show the execution time of the algorithm. 

The experimental en- vironment is Dell OptiPlex 755 Desktop , Intel Core 2 Duo 

E6750 Processor operating at 2.66-GHz and 6 GB total memory, running Microsoft 

Windows 7 64bit with Matlab 2011b 64bit. The programs were tested on 2 data sets 

acquired from Table 3.1 and Table 3.2. 

The execution time report in this section, Our timing of the experiment 

in section   The 12 considered singing word that contains 7200 sound samples, 600 

for each word.  Each singing words are randomly divided into four groups of equal 

sizes. Each group contains 150 sounds for each word. Then, arbitrarily selected three 

groups are used for training and the rest is used for testing. For cross-validation 

procedure, the same process is repeated 50 times. The average retrieval time with 50 

times of a test set report in Table 4.1.  By using feed forward n which has a 

computational time between 0.376s 0.526s for each singing word. However, when 

using knn computation time increases slightly. By using KNN which has a 

computational time between 0.485s 0.576s for each singing word. 
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Table 4.2 and 4.3 show a computational time by using MFCC and 

LPC feature.  By using MFCC feature will take to process an average of 25% slower 

than the spectrogram feature. However, when compared with LPC feature. The time it 

takes to process up to 60% faster than spectrogram feature. 
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4.2 Environmental sound Recognition Problem 

For Singing Word Recognition Problem, Each environmental in DB-

ENG in table 3.3 were segmented into several sub-signals. These sub-signals were 

randomly divided into five groups of equal sizes. Then, arbitrarily selected four 

groups were used for training and the rest is used for testing. In each experiment, we 

performed 50 runs on each classifier to obtain statistically reliable results. The mean 

recognition rate was calculated based on the error average for one run on test set. The 

following comparisons are conducted. The objective of the experiments is to 

investigate which features, i.e. (1) Mel Frequency Delta Cepstral Coefficients 

(MFCC); (2) Linear Prediction Coefficients (LPC); and (3) Matching Pursuit (MP), 

and classifier, i.e. feed forward neural network and k-nearest neighbour network 

(KNN), are suitable for recognizing the environmental sounds. Since the details of 

extracted features depend upon the sampling rate, the comparison of different 

sampling is also investigated. 

1.The average accuracy based on spectrogram features versus a feed forward 

neural network. 

2.The average accuracy based on spectrogram, MFCC, LPC, and MP features 

versus a feed forward neural network. 

3.The average accuracy spectrogram features versus a KNN. 

4.The average accuracy based on spectrogram, MFCC, LPC, and MP features 

versus a KNN. 

5.The average accuracy between the feed forward neural network and the KNN 

with spectrogram, MFCC, LPC, and MP features. 

6.The average accuracy based on spectrogram, MFCC, LPC, and MP features 

versus a feed forward neural network with different window sizes. 

7.The average accuracy based on spectrogram, MFCC, LPC, and MP features 

versus a KNN with different window sizes. 

8.The average accuracy based on spectrogram, MFCC, LPC, and MP features 

versus a feed forward neural network with different sampling rates. 

9.The average accuracy based on spectrogram, MFCC, LPC, and MP features 

versus a KNN with different sampling rates. 
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Figure 4.24: Classification accuracy obtained with Spectrogram features and Feed-

Forward Neural Network. 

 

4.2.1 Various Features with Feed-Forward Neural Network 

This experiment is to test the feasibility of spectrogram feature on the 

accuracy of classification realized by a neural network. Each spectrogram is computed 

from a window of size 256 sampling points. There are 30 hidden neurons used in this 

experiment. Figure 4.24 summarizes the accuracy of each sound type. It can be seen 

that 12 sound types, i.e. Construction, Crowd Applause, Crow Clamor, Fire, 

Helicopter, Outdoor Forest, Transportation-Moto, Weather-Wind, Weather-Rain and 

Thunder, Aviation, Chicken Farm, and Auto Racing, achieve more than 90% accuracy 

rate. Another four sound types, i.e. Car Engine, Restaurant Stores, Transportation 

Train , and Water(Ocean) achieve between 75-60% accuracy rate. But the rest of 

sound types, i.e. Office, Outdoor-Road, Water, and Household, achieve rather poor 

accuracy. 

Although the accuracy based on spectrogram feature is acceptable up 

to some certain degree, it is not conclusive that spectrogram feature is the most 

suitable feature for this recognition. Three other features, namely MFCC, LPC, and 

MP, are tested against spectrogram feature. For MFCC, the parameters are the 

following: number of cestrum’s is 13; exponent for littering is 0.6; highest band edge 

of Mel filters is 4000 Hz; number of warped spectral bands is 40. The frequency 

warping scale used for filter spacing in MFCC is the Mel (Melody) scale.  For MP, the 

signal is decomposed by using Gabor dictionary of 1120 atoms with dyadic scales 
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from 2 to 256 samples and translations in 0, 64, 128, and 192. In each atom, 35 

different exponentially distributed modulation frequencies are considered. 

Anyhow, from the MP decomposition of the segment, only the first 5 

atoms are concerned. From these atoms, a four-dimensional feature vector from the 

mean, standard deviations of the modulation frequencies, and scales of the 5 atoms is 

formed. The classification results for the spectrogram, MP, MFCC, and LPC features 

by using feed forward neural network with 30 hidden neural are shown in Figure 4.25. 

The number of hidden neurons is also another relevant factor affecting 

the accuracy. However, theoretically estimating this number is rather difficult. Several 

numbers of hidden neurons are tested. The accuracy based on the number of hidden 

neurons for each feature type is summarized in Figure 4.26. The highest accuracy is 

achieved when the number of hidden neurons is set to 30. But when this number is 

increased, the accuracy is gradually decreased. This may be due to the over fitting 

effect during the neural training process. 

 

 
 

Figure 4.25: Classification accuracy obtained with different features and Feed- 

Forward Neural Network. 
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Figure 4.26: Classification performance of Feed-Forward Neural Network with 

varying number of hidden neural unit. 

 

4.2.2 Various Features with K-Nearest Neighbours (KNN) 

A similar experiment is conducted with a k-nearest neighbour classifier 

(KNN). The number of nearest neighbours is set to 10. The rationale of setting this 

number will be discussed later. Firstly, the spectrogram feature of each sound type is 

extracted and trained with a KNN. The testing result of each sound type is 

summarized in Figure 4.27. It can be seen that 13 sound types, i.e. Car Engine, 

Construction, Crowd Applause, Fire, Helicopter, Office, Outdoor-Forest, 

Transportation-Moto, Wa- ter, Weather-Wind, Weather-Rain and Thunder, 

Household, and Auto Racing, achieve the accuracy range of 92.66%-99.88%. Five 

sound types, i.e.  Crow Clamor, Outdoor-Road, Restaurant Stores, Transportation-

Train, and Chicken Farm, are in the accuracy range of 76.12%-89.37%. The other two 

sound types, i.e. Aviation and Water (Ocean), have the accuracy in between 56.85%-

66.24%. By average, the KNN classifier with spectrogram feature performs much 

better than the neural classifier. 

The effectiveness of different features, i.e. spectrogram, MFCC, LPC, 

and MP, with a KNN classifier is also investigated in this experiment.  Figure 4.28 

shows the result of this experiment. Obviously, over all classification accuracy using 

KNN classifier is better than a neural network. The spectrogram feature indicates the 

best classification accuracy of more than 90%.  This accuracy is higher than the 

results based on MFCC, LPC, and MP features in 12 classes, i.e. Car engine, 

Construction, Construction, Office, Restaurant Stores, Transportation-Train, Weather 

Wind, Weather-Rain and Thunder, Household, Water(Ocean), Chicken Farm and 

Auto Racing. But spectrogram feature results less accuracy than MFCC feature for the 

sound of Outdoor-Forest and MP for the sounds of Construction, Crow Clamor, 

Outdoor Sounds-Road, Transportation-Moto, Water, and Aviation. 
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Different numbers of nearest neighbours are tested by varying the 

values of K from 10 to 20 to achieve the maximum accuracy. Figure 4.29 summarizes 

the accuracy under different numbers of nearest neighbours. The maximum accuracy 

of94.43% occurs when K is equal to 15. 

 

 
 

 

Figure 4.27 Classification accuracy obtained with spectrogram features using the KNN 

classifier. 
 

 

 
 

 

Figure 4.28: Average classification performance of KNN with k = 10 on 

spectrogram, MP, MFCC and LPC features. 
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Figure 4.29:  Average classification performance of KNN with different numbers of 

nearest neighbours, spectrogram, MP, MFCC, and LPC features. 

 

4.2.3    Comparison of Neural Network and KNN Performances 

To conclude which classifiers, namely neural network and KNN 

classifiers performs best on environmental sound recognition, the average accuracy of 

all sound types based each feature and each classifier is computed.  Figure 4.30 

summarizes the comparison.  The first two vertical bars are the performances of 

neural network and KNN classifiers with spectrogram feature.  The second vertical 

bars are of MPCC feature.  The third vertical bars are of LPC feature and the last ones 

are of MP feature.  Obviously, KNN classifier performs significantly better than 

neural network classifier in all features. 

4.2.4    Effect of Different Window Sizes 

A spectrogram can be obtained from different sizes of windowed 

segment.   Note that the amount information of any sound wave represented in forms 

of spectrogram depends upon the window size. However, predicting an appropriate 

window size for each sound type is not simple.  What should be a feasible window 

size that can be applied to every sound type to possibly achieve the maximum 

classification accuracy? To answer this problem, the following set of window sizes 

{64, 128,256, 512, 1024, 2048, 4096, and 8192} with neural and KNN classifiers are 

experimented.  Based on spectrogram, MFCC, LPC, and MP with different window 

sizes, Figures 4.31 illustrates the average neural classification accuracy and Figure 

4.32 illustrates the average KNN classification accuracy. The same configurations of 

neural classifier and KNN classifier discussed in the previous section are deployed in 

this experiment. 
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Figure 4.30: Average Classification accuracy obtained with KNN and Feed-forward 

Neural Network on a variety features. 

 

It is interesting to note that, regardless of neural as well as KNN 

classifiers and window sizes, spectrogram feature provides the highest accuracy 

among the other features, MFCC, LPC, and MP. The maximum average accuracy 

occurs when the window size is equal to 8192. This is because a large window 

contains more classifiable feature information than a small window size. However, for 

MFCC, LPC, and MP features, the average accuracy with different window sizes is 

not conclusive. For example, with window size of 512, LPC performs better than MP 

by neural classifier but MP performs better than LPC by KNN classifier. 

 

Figure 4.31: Average classification performance of a feed forward 

neural network with spectrogram, MP, MFCC, LPC features and different window 

sizes. 
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Figure 4.32:  Average classification performance of KNN with spectrogram, MP, MFCC and 

LPC feature using different window sizes. 

 

4.2.5    Effect of Different Sampling Rates 

A digital audio signal can be collected from different sampling rates. 

Many different sampling rates are used in current digital signal processing 

applications.  Telephone systems sample speech at 8 kHz, 11.025 kHz is used for 

AM-radio quality audio, and 44.1 kHz is the standard for CD quality digital music.  A 

spectrogram feature computed from a digital audio signal by different sampling rates 

contains different amounts of information which obviously affect the accuracy. The 

interesting problem is which sampling rate is most suitable for classifying 

environmental sound types.  Since it is very difficult to reach the theoretical 

conclusion on the best sampling rate for this problem, an empirical study on different 

sampling rates versus classification accuracy is conducted. The following sampling 

rates are tested against the classification accuracy, i.e.  5500 Hz, 6000Hz, 7333 Hz, 

8000 Hz, 11025 Hz, 16000 Hz, 22050 Hz, 32000 Hz, and 44100 Hz. 

In this experiment, the sampling rate of 44100 Hz with 128 KB/s bit-

rates is originally applied to the audio signals. Then, the obtained signals are down 

sampled to 5500Hz, 6000Hz, 7333Hz, 8000 Hz, 11025 Hz, 16000 Hz, 22050 Hz and 

32000 Hz with mono channel, respectively.  In addition to different sampling rates, 

different window sizes in each sampling rate are also involved. The following window 

sizes are concerned for each sampling rate, i.e.  128, 256, 512, 1024, 2048, 4096 and 

8192 with 25% overlap. 
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Figure 4.33, 4.34, 4.35, 4.36, 4.37,4.38, and 4.39 show the average 

classification rates by using feed-forward  neural network with 30 hidden neural on 

spectrogram, MFCC, LPC and MP features. It can be seen that, in case of the feed 

forward neural network, spectrogram feature provides better performances than those 

from MFCC, LPC and MP features in all sampling rates. The performance of 

spectrogram feature does not change much when changing the sampling rate but 

MFCC, LPC and MP features significantly change a lot.  In all sampling rates, it was 

found that, regardless of the feature types used, a large window size will provide 

better performance than a small window size. 

Figure 4.40, 4.41, 4.42, 4.43, 4.44, 4.45, and 4.46 show the 

performances of spectrogram, MFCC, LPC, and MP features with a KNN for 10 

nearest neighbours under different sampling rates. Similar to the previous experiment, 

the same conclusion on the performance of each feature type as well as the window 

sizes can be drawn. Remarkably, the performance of spectrogram feature, however, 

remains to be relatively high and even very stable for different sampling rates. This 

verifies that spectrogram is very robust to use for environmental sound classification. 

 

Figure 4.33:  Average classification performance of feed forward neural network 

having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using 

different sampling rates on Window Sizes 8192. 
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Figure 4.34:  Average classification performance of feed forward 

neural network having 30 hidden neurons with spectrogram, MP, MFCC and LPC 

feature using different sampling rates on Window Sizes 4096. 

 

 
 

Figure 4.35:  Average classification performance of feed forward neural network 

having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using 

different sampling rates on Window Sizes 2048. 
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Figure 4.36:  Average classification performance of feed forward neural network 

having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using 

different sampling rates on Window Sizes 1024. 

 

 
 

Figure 4.37:  Average classification performance of feed forward neural network 

having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using 

different sampling rates on Window Sizes 512. 
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Figure 4.38:  Average classification performance of feed forward neural network 

having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using 

different sampling rates on Window Sizes 256. 

 

 
 

Figure 4.39:  Average classification performance of feed forward neural network 

having 30 hidden neurons with spectrogram, MP, MFCC and LPC feature using 

different sampling rates on Window Sizes 128. 
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Figure 4.40:  Average classification performance of K-nearest neighbour forK10 with 

spectrogram, MP, MFCC and LPC feature using different sampling rates on Window 

Sizes 8192. 

 

 

Figure 4.41:  Average classification performance of K-nearest neighbour forK10 with 

spectrogram, MP, MFCC and LPC feature using different sampling rates on Window 

Sizes 4096. 
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Figure 4.42:  Average classification performance of K-nearest neighbour forK10 with 

spectrogram, MP, MFCC and LPC feature using different sampling rates on Window 

Sizes 2048. 

 

 

Figure 4.43:  Average classification performance of K-nearest 

neighbour forK10 with spectrogram, MP, MFCC and LPC feature using different 

sampling rates on Window Sizes 1024. 



63 

 

 

Figure 4.44:  Average classification performance of K-nearest neighbour forK10 with 

spectrogram, MP, MFCC and LPC feature using different sampling rates on Window 

Sizes 512. 

 

 

Figure 4.45:  Average classification performance of K-nearest neighbour forK10 with 

spectrogram, MP, MFCC and LPC feature using different sampling rates on Window 

Sizes 256. 
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Figure 4.46:  Average classification performance of K-nearest 

neighbour forK10 with spectrogram, MP, MFCC and LPC feature using different 

sampling rates on Window Sizes 128. 

 

4.2.6  Classifying Short Duration Sounds 

The work by Selina Chu [22] performed a listening test to study human 

recognition capability on these environmental sounds.  The duration of the studied 

audio clips varied between 2, 4, and 6 seconds.  The test consisted of 140 audio clips 

from 14 categories, with ten clips in each class.  The study concluded that a longer 

duration increases the chance that a listener can correctly identify the sounds in each 

clip.  However, this conclusion may not be true if an interested sound is recognized by 

a machine. To confirm this hypothesis, our technique is deployed to different duration 

sounds as follows. 

Our algorithms are tested with the audio clips summarized in Table 4.4 

for various time periods between 1 to 6 seconds.  Some these periods are shorter than 

those of Selina Chu's experimental times [22]. Our experiments consist of 5-fold cross 

validation and the average accuracy is measured. In each fold, the data in each of the 

audio clip are partitioned into five sections.  Four out of five sections are for training 

and the rest is for testing.  The duration of each clip in minutes is given in Table 4.4. 

The audio data in the training set are converted into a set of spectrograms by using a 

window of size 8196 and 4096 with 25% overlapping sampled points for feature 

extraction. A feed- forward neuron network with 30 hidden neurons and 20 outputs is 

applied for classification.  For KNN, the value of K is set to 10 for classification. 

The audio data in test set are chopped into a set of short audio clips. A 

duration of each clip varied between 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6 seconds. 
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This research used each window in each audio clip to test the accuracy. The accuracy 

rate is computed by analyzing the maximum output value observed from cumulative 

frequency. 

Fig 4.47 shows the results of the experiments. By using a feed-forward 

neural network with spectrogram for the duration of one second, the classification 

accuracy ranges from 85.66% to 90.57% for the window size of 8196 and 81.19% to 

84.93% for the window size of 4096. Obviously, the accuracy increases when the 

duration is lengthened. The accuracy of each duration is summarized in Tables 4.5 

and 4.6. Nine best classification scenes are Car engine, Crowd Applause, Crowd 

Clamor, Fire, Outdoor Sounds - Forest, Outdoor Sounds - Road, Water, Household, 

and Chicken Farm. All nine classes achieve more than 90% of classification rate. 

 

Table 4.4 Duration of training and testing sets. 

Audio Clips Training (min) Testing (min) 

Car engine 

Construction 

Crowd Applause 

Crow Cheering 

Fire 

Helicopter 

Office 

Forest 

Road, Restaurant Stores 

Transportation - Motorcycle 

Transportation-Train 

Water, Weather - Wind 

Weather - Rain and Thunder 

Household 

Airplane 

Water(Ocean) 

Chicken Farm 

and Auto Racing 

11.6 

9.68 

11 

12 

10 

11.36 

12.16 

12.64 

12.02 

12.72 

11.04 

12.56 

10.24 

13.28 

9.76 

16 

17.84 

18.56  

3 

2.5 

3 

4 

3.7 

3.08 

3.24 

3.6 

3.8 

3.58 

3.2 

3.54 

3.56 

3.32 

2.44 

4.8 

4.45 

4.64 
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Figure 4.47: Classification accuracy obtained from different time duration. 

 

 

By KNN using with spectrogram windows of sizes 8192 and 4096, 

the classification accuracy ranges from 84.11% to 87.09% for the window of size 

8196, and 78.29% to 86.10% for the window size of 4096. 

Tables 4.7 and 4.8 show the overall classification rates by using KNN 

with K 10 on spectrogram with different time duration.   For window size of 8192, the 

following eight classes, i.e.  Car engine,  Crowd  Applause,  Fire,  Outdoor  Sounds  - 

Forest,  Outdoor  Sounds  - Road,  Transportation - Train, Household, and Auto 

Racing,  achieve  the accuracy  rate more than  90%.   From  these  experiments,  

when  the duration  of audio  clip is short,  the results  from  the feed-forward neural  

network outperform the results from KNN. In addition, the accuracy rate depends 

upon the length of the audio clips. 
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Table 4.5 The average accuracy of all classes from feed-forward 30 hidden neurons with spectrogram using window size of 4096 in 

different time duration. 

Window Sizes 4096 1s 1.5s 2s 2.5s 3s 3.5s 4s 4.5s 5s 5.5s 6s 

Class1 94.63 96.09 97.56 99.39 100.00 100.00 100.00 99.63 100.00 100.00 100.00 

Class2 68.60 68.97 70.54 70.68 68.92 70.09 68.72 71.57 72.48 76.23 74.33 

Class3 88.58 87.87 88.27 89.79 93.23 93.09 92.11 89.80 90.00 91.86 91.06 

Class4 95.45 95.99 95.74 97.92 96.58 98.00 98.67 97.34 96.67 96.65 98.88 

Class5 90.89 90.13 92.05 90.63 92.91 90.76 92.35 92.26 91.43 93.95 94.59 

Class6 75.41 79.22 79.38 82.25 82.95 82.98 83.00 81.22 84.13 85.21 85.10 

Class7 68.91 70.71 72.55 73.72 73.83 72.43 74.91 76.40 76.65 75.58 77.53 

Class8 96.75 96.27 98.45 100.00 98.19 98.85 100.00 99.68 99.55 99.44 100.00 

Class9 77.00 85.62 81.09 81.47 86.00 86.08 89.15 87.83 92.65 88.00 91.80 

Class10 76.00 77.46 79.04 80.26 78.23 79.65 79.75 80.08 80.79 80.69 82.36 

Class11 78.17 82.75 81.49 84.46 82.90 84.50 86.78 85.33 89.01 90.57 92.77 

Class12 72.00 75.62 75.09 76.47 77.00 79.08 82.15 80.83 82.65 82.00 84.80 

Class13 97.98 98.65 100.66 99.43 100.00 100.00 99.86 100.00 100.00 100.00 100.00 

Class14 70.20 71.06 71.03 70.70 70.62 72.43 71.53 70.68 74.09 70.81 72.75 

Class15 67.25 68.27 70.04 69.88 69.57 73.19 70.64 72.71 73.66 75.22 76.79 

Class16 96.57 98.03 97.19 98.75 99.44 98.10 99.39 99.21 100.00 100.00 100.00 

Class17 60.16 61.27 61.39 61.45 62.04 63.04 64.60 63.61 64.73 64.77 65.22 

Class18 87.05 86.33 88.17 89.50 89.49 89.10 90.29 89.12 88.96 90.41 90.61 

Class19 93.71 96.42 98.06 98.33 99.89 99.81 99.67 100.00 100.00 100.00 100.00 

Class20 68.54 68.67 68.80 70.54 71.45 74.50 73.38 75.68 75.56 74.75 76.68 

Average 81.19 82.77 83.33 84.28 84.66 85.28 85.85 85.65 86.65 86.81 87.76 
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Table 4.6 The average accuracy of all classes from feed-forward 30 hidden neurons with spectrogram using window size of 8192 in 

different time duration. 

Window Sizes 8192 1s 1.5s 2s 2.5s 3s 3.5s 4s 4.5s 5s 5.5s 6s 

Class1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Class2 81.10 80.00 81.11 83.33 82.61 83.87 82.14 86.27 85.11 86.09 85.37 

Class3 98.90 96.00 98.44 100.00 97.96 97.73 100.00 100.00 100.00 100.00 100.00 

Class4 93.33 93.33 92.19 94.55 93.88 93.18 97.50 100.00 96.97 96.77 96.43 

Class5 95.61 95.74 95.06 95.71 96.77 98.21 98.00 95.65 97.62 94.87 97.22 

Class6 82.00 81.93 84.51 83.87 83.64 85.71 86.36 90.00 86.49 88.24 87.50 

Class7 74.64 74.78 75.51 77.65 76.32 79.41 78.69 78.57 78.85 79.17 81.82 

Class8 96.43 97.10 100.00 98.04 97.78 100.00 100.00 96.97 100.00 100.00 100.00 

Class9 99.01 100.00 98.59 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Class10 77.50 77.27 77.19 81.63 79.07 79.49 80.00 81.25 82.76 81.48 84.00 

Class11 82.61 80.52 83.08 87.72 86.00 84.44 85.37 91.89 97.06 97.55 97.10 

Class12 71.01 73.84 75.51 72.87 72.81 74.51 74.19 75.29 75.64 76.39 73.13 

Class13 98.86 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Class14 71.01 73.84 75.51 72.87 72.81 74.51 74.19 75.29 75.64 76.39 73.13 

Class15 79.76 83.45 86.55 85.58 86.96 85.54 85.33 86.76 88.89 86.21 92.59 

Class16 98.39 98.04 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Class17 73.98 77.45 75.86 76.32 77.61 78.33 80.00 76.00 73.91 76.19 76.92 

Class18 83.78 83.70 82.28 82.35 85.25 87.04 83.67 86.67 90.24 90.84 90.71 

Class19 89.47 93.65 94.34 93.48 92.68 91.89 90.91 93.33 96.43 96.00 96.67 

Class20 65.71 68.97 68.92 69.23 73.68 74.51 73.91 76.19 79.49 75.00 78.79 

Average 85.66 86.48 87.23 87.76 87.79 88.42 88.51 89.51 90.25 90.06 90.57 
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Table 4.7 The average accuracy of all classes from 10-nearest neighbour network with spectrogram using window size of 4096 in 

Different time duration. 

Window Sizes 4096 1s 1.5s 2s 2.5s 3s 3.5s 4s 4.5s 5s 5.5s 6s 

Class1 78.00 82.92 69.29 77.38 71.48 79.58 82.68 74.78 84.88 88.98 84.08 

Class2 71.27 76.39 68.00 79.19 78.80 76.13 79.03 74.93 85.83 72.73 78.63 

Class3 87.25 92.15 88.04 94.55 89.59 91.94 99.72 92.49 101.27 96.04 99.82 

Class4 73.53 74.49 80.73 75.19 73.93 77.82 75.92 77.02 75.12 84.22 71.32 

Class5 71.97 79.70 83.13 81.15 78.71 76.92 76.21 85.50 81.80 82.09 77.38 

Class6 95.21 96.04 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Class7 70.86 70.65 67.09 68.11 65.37 72.81 74.95 73.09 73.24 79.38 79.52 

Class8 92.11 87.39 85.59 92.41 88.15 93.61 97.89 101.17 99.45 100.00 100.00 

Class9 86.35 85.48 85.72 83.79 92.56 95.52 94.94 96.36 90.78 91.20 88.61 

Class10 53.84 61.07 65.00 66.16 66.84 68.51 61.93 73.35 64.77 70.19 77.61 

Class11 75.00 77.92 74.29 75.38 76.48 78.58 81.68 79.78 81.88 83.98 84.08 

Class12 72.27 73.39 72.00 74.19 73.80 74.13 74.03 75.93 80.83 77.73 82.63 

Class13 91.25 93.15 91.04 93.55 92.59 94.94 97.72 96.49 98.27 98.04 98.82 

Class14 75.53 78.49 76.73 76.19 76.93 78.82 77.92 80.02 80.12 79.22 76.32 

Class15 76.97 77.70 78.13 78.15 78.71 80.92 77.21 80.50 80.80 82.09 78.38 

Class16 98.21 98.04 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Class17 67.86 67.65 68.09 70.11 70.37 70.81 72.95 74.09 74.24 75.38 79.52 

Class18 89.11 92.39 90.59 92.41 93.15 95.61 97.89 98.17 96.45 99.74 100.00 

Class19 82.35 85.48 87.72 86.79 88.56 91.52 89.94 91.36 87.78 89.20 88.61 

Class20 56.84 62.07 60.00 62.16 62.84 63.51 65.93 70.35 69.77 69.19 73.61 

Average 78.00 82.92 69.29 77.38 71.48 79.58 82.68 74.78 84.88 88.98 84.08 
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Table 4.8 The average accuracy of all classes from 10-nearest neighbour network with spectrogram using window size of 8192 in 

Different time duration. 

Window Sizes 4096 1s 1.5s 2s 2.5s 3s 3.5s 4s 4.5s 5s 5.5s 6s 

Class1 99.02 95.55 99.00 99.01 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Class2 74.21 73.23 77.14 71.11 75.64 75.36 79.03 75.00 78.43 78.72 75.00 

Class3 96.54 92.81 97.37 96.70 96.00 96.88 98.21 93.88 97.73 97.50 97.22 

Class4 85.59 78.29 87.61 81.11 85.33 84.38 85.45 83.67 86.36 85.00 86.11 

Class5 96.88 95.29 95.80 95.61 94.68 95.06 95.71 95.16 92.86 94.00 95.65 

Class6 73.23 70.41 72.22 71.00 73.49 71.83 72.58 69.09 73.47 72.73 75.00 

Class7 68.53 71.68 70.29 72.17 71.43 76.47 73.68 76.47 73.77 75.00 75.00 

Class8 88.65 90.48 90.48 89.86 89.83 92.16 91.11 90.24 91.89 93.94 93.55 

Class9 92.94 94.49 93.07 95.24 97.18 93.55 96.36 95.92 95.56 95.12 97.30 

Class10 58.52 70.30 60.00 68.18 61.40 65.31 65.12 69.23 68.57 68.75 65.52 

Class11 68.59 74.14 72.83 72.73 69.23 71.93 74.00 73.33 73.17 72.97 76.47 

Class12 92.94 94.49 93.07 93.63 93.69 93.76 93.82 93.88 93.95 94.01 94.08 

Class13 88.59 90.09 88.64 87.67 88.71 87.04 87.50 88.37 87.18 88.57 87.50 

Class14 78.39 83.08 80.68 83.14 78.23 81.40 78.95 83.33 81.72 80.00 79.49 

Class15 82.38 79.17 82.73 80.67 83.65 84.78 83.13 84.00 83.82 82.54 84.48 

Class16 97.44 96.77 98.04 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Class17 67.53 67.48 69.61 71.26 72.30 73.63 74.97 76.30 77.63 78.96 80.30 

Class18 88.49 82.88 86.96 83.54 85.12 85.45 85.78 86.11 86.45 86.78 87.11 

Class19 86.32 82.89 83.02 88.89 87.24 88.02 88.81 89.59 90.38 91.16 91.95 

Class20 97.42 89.81 92.11 93.92 96.77 101.75 97.93 97.11 95.29 100.00 100.00 

Average 99.02 95.55 99.00 99.01 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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CHAPTER V 
 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

In this dissertation propose an algorithm for Thai singing voice 

recognition in monaural poly- phonic music based on the time-frequency domain 

feature technique of power spectrogram with neural classifier and classification 

algorithms. The advantage of spectrogram is its ability to magnify and represent the 

relevant information of an audio signal captured under a defined window segment. 

This approach is simpler than the existing methods which used MFCC and LPC as 

features. Our approach achieved higher accuracy than the other techniques. However, 

the performance depends on several factors such as window size.  The experiment 

showed that feed-forward network performed better than accuracy rate more K-

nearest neighbor network than 94%. . Especially, this algorithm can recognize Cross-

Language Music Data. 

We also presented the result of time-frequency domain feature 

technique for unstructured environmental sound classification by using spectrogram 

pattern. All possible relevant factors such as sampling rates, window sizes, and 

different features are thoroughly studied to conclude which factors actually define the 

acceptable classification performance. The experimental results show a promising 

performance in classifying 20 different audio environmental. Both KNN and feed-

forward neural network can effectively classify unstructured environmental sound. In 

particular, feed-forward neural network gives the best result in this experiment.  A 

longer duration was increase classification accuracy within each sound clip. 

However, the use of spectrogram is also limited. When converting 

from audio signal to a spectrogram. A dimension of Spectrogram is higher than other 

feature. Therefore, Spectrogram was using more memory than the other types feature 

vector in same windows size. As compared to using the MFCC feature performance 

close to the Spectrogram. When used a same size of Windows to create spectrogram 

and MFCC feature. This research apply dimension reduction technique for reduce 

spectrogram feature dimension. This research found, by using feed forward neural 

network (ANN) with spectrogram feature with dimension reduction technique. The 

recognition performance is greatly reduced. However, when compared with K-nearest 

neighbour (kNN) and spectrogram feature with dimension reduction technique. 

Recognition performance was not reduced as much as the using feed forward neural 

network (ANN). 
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