

THEORETICAL INVESTIGATION OF GAS-SENSING PROPERTIES OF ZnO NANOSHEETS

Thesis Title

By

Field of study
Thesis Advisor

THEORETICAL INVESTIGATION OF GASSENSING PROPERTIES OF ZnO NANOSHEETS

Miss Benjawan Kaewruksa
Chemistry
Associate Professor Vithaya Ruangpornvisuti, Dr.rer.nat.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE
........ntion Chowinim..............Chairman
(Assistant Professor Warinthorn Chavasiri, Ph.D.)

(Associate Professor Vithaya Ruangpornvisuti, Dr.rer.nat.)

Associate Professor Pornthep Sompormisat, PhD.)

เบญุจวรรณ แก้วรักษา : การตรวจสอบทางทฤษฎีของสมบัติการรับรู้แก๊กของแผ่น นาโนชิงก์ออกไซด์. (THEORETICAL INVESTIGATION OF GAS-SENSING PROPERTIES OF ZnO NANOSHEETS) อ. ที่ปร็กษาวิทยานิพนธ์หลัก: รศ. ดร.วิทยา เรืองพรวิสุทธิ์, 87 หน้า.

ศึกษาทุกโครงรูปที่เหมาะสมของการดูดซับโมเลุุลแก๊กได้แก่ ออกซิเจน คาร์บอนมอนอกไซด์ ไนตริกออกไซด์ ไนโตรเจนไดออกไซด์ ไนตรัสออกไซด์ แอมโมเนีย ไฮโดรเจน และน้ำ ที่ถูกดูดซับบนชิงก์ออกไซด์นาาโนคตัตักตอร์ (ZnONC) ได้แก่ ชนิดคล้าย แอโรแมติก (AL-ZnONC) แนฟทาลีน (NLL-ZnOxO) สทรื่น (PRL-ZnONC) และแผ่นนาโนชิงก์ ออกไซด์ชนิดคล้ายกราไีน (ZnOGLNS)ไต้แกก โคโลนีน (CNL ZnONS) และเซอคัมโคโรนีน (CCL-ZnONS) โดยการคำนวอเร็้ B3LYP/LanL2DZ รายงานค่าพลังงานการดูดซับของ โมเลุุลกก็สเหล่านี้บน AL-ZnONC NLL-ZnONC PRL-ZnONC CNL-ZnOGLNS และ CCL-ZnOGLNSS พบว่ออกริเคนเทำมันนที่ถกกดคซับทางเคมีด้วยอะตอมไฮไดรด์ของ
 โมเลกุลออกซิเจนเท่าน้้นที่กุคคดซับบมระนนมของ Znocinss เนื่องจากค่าช่องว่างพลังงาน ของ ZnOGLNSs มีค่าลคลงมากหดูจงขวกดดดดซับโมเลคุล ออกซิเจน ไนตริกออกไซด์ หรือ ไนโตรเจนไดออกไซด์ ดังน้้น Zต๐ต1 NSS สามมรดนำไปเป็นวัสดุรับรู้แก๊สเหล่านี้ได้ พบว่า การดดคซับ คาร์บอนมอนอกไซด้ ไรโดรชจน น้ำ แอมโมเนีย และไนตรัสออกไซด์บน ZnOGLNSS ค่อนข้าวอ่อน ดังนั้น ZnOGLNSS เหล่านี้รับรูแก๊สตังกล่าวได้ยาก

ศูนย์วิทยทรัพยากร

 จุหาลงกรณ์มหาวิทยาลัย สาขาวิชา....เคมี. \qquad ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัค... เร ปีการศึกษา $\ldots 253$ \qquad
\# \# 5272393023: MAJOR CHEMISTRY
KEYWORDS: ZnO-NANOCLUSTERS/ ZnO-NANOSHEETS/ DFT/ GASSENSING/ ADSORPTION

BENJAWAN KAEWRUKSA: THEORETICAL INVESTIGATION OF GAS-SENSING PROPERTIES OF ZnO NANOSHEETS. ADVISOR: ASSOC. PROF. VITHAYA RUANGPORNVISUTI, Dr.rer.nat. , 87 pp.

The structure optimizations of ail cenfigurations of gaseous $\mathrm{O}_{2}, \mathrm{CO}, \mathrm{NO}$, $\mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ molecules adsorbed on ZnO nanoclusters (ZnONCs), aromatic-like (AL-ZnONe), naphthalene-like (NLL-ZnONC), pyrene-like (PRL-ZnONC) and ZnO graphene-like nanosheets (ZnOGLNSs), coronene-like (CNL-ZnONS) and circumcoronene-like (CCL-ZnONS) were carried out using the B3LYP/LanL2DZ calculations. Adsorption energies of these gases on AL$\mathrm{ZnONC}, \mathrm{NLL}-\mathrm{ZnONC}, \mathrm{PRL}-\mathrm{ZnONC}, \mathrm{CNL}-\mathrm{ZnOGLNS}$ and CCL-ZnOGLNS were reported. It was found that onfy O_{2} was chemically adsorbed via the hydride atoms of zinc-hydride in the ZnONCs and ZnOGLNSs whereas the other gases are not. In terms of physisorptions, only O_{2} molecule was adsorbed over the plane of ZnOGLNSs. As the energy gaps of ZnOGLNSs were largely reduced after adsorption of $\mathrm{O}_{2}, \mathrm{NO}$ or NO_{2}, these ZnOGLNS - vere therefore be the sensing materials for there-gases. It was found that adsorptien of $\mathrm{CO}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ and $\mathrm{N}_{2} \mathrm{O}$ on ZnOGLNSs were somewhat weak, and thus these ZnOGLNSs were hardly
 จุหาลงกรณ์มหาวิทยาลัย

Department: Chemistry
Field of Study: Chemistry
Academic Year: 2010

ACKNOWLEDGEMENTS

This study was carried out at the Chemistry, Faculty of Science, Chulalongkorn University. I would like to express my sincere thank to advisor Associate Professor Dr. Vithaya Ruangpornvisuti for his very useful guidance, understanding, and constant support throughout the course of this research.

I would like to really thank Assist. Prof. Dr. Warinthorn Chavasiri, Associate Professor Dr. Pornthep Sompornpisut and Dr. Banchob Wannoand for kindly serving on my thesis committee. Their sincere/suggestions are definitely imperative for accomplishing my thesis.

Special thanks to all members in Supramolecular Chemistry Research Unit for their kind help. I also would like thank all teaching staff and my friends for all their good suggestions, friendship and continuous encouragement.

Finally, I would like to thank my favorite family; my father and mother, my aunt, my grandmother, my sisters and my brother for their infinite love and for always supporting and trusting in my decisions. I am very proud to be a part of this beloved family.

CONTENTS

Page

ABSTRACTIN THAI iv
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES X
LIST OF FIGURES xiii
LIST OF ABBREVIATIONS AND SYMBOLS. xix
CHAPTER I INTRODUCTION 1
1.1 Background 1
1.2 Fundamentals of the zinc oxide structure. 1
1.3 Literature reviews 3
1.4 Objective 5
CHAPTER II THEORETICAI BACKGROUND 6
2.1 Ab Initio method. 6
2.1.1 The Hartree-Fock method 6
2.2 Density functional theory 9
2.2.1 The Kohn-Sham energy and thee Kohn-Sham equations 10
2.2.1.1 The Kohn-Sham energy 10
Q2:2.1.2 The kohn-sham equations.............e........? 12
2.2.2 Hybrid methods 14
2.3 Gaussian basis sets 15
2.3.1 Minimal basis sets 17
2.3.2 Split-valence basis sets 17
2.3.3 Polarized basis sets 18
2.3.4 Basis sets incorporating diffuse functions potentials 19
2.3.5 Effective core potentials 19

Page

CHAPTER III DETAILS OF THE CALCULATIONS 20
3.1 Computational method 20
CHAPTER IV RESULTS AND DISCUSSION 23
4.1 The optimized structures and $\mathrm{Zn}-\mathrm{O}$ bond strength. 23
4.2 Adsorption of molecule gaseous on ZnO nanoclusters and ZnO nanosheets 24
4.2.1 Adsorption of oxygen molecule 24
4.2.1.1 Atomic charge distribution 28
4.2.1.2 Energy gap. 29
4.2.2 Adsorption of carbon monoxide molecule. 30
4.2.2.1 Adsorption energies of CO pointing with C-end 30
4.2.2.2 Adsorption energies of CO pointing with O -end 35
4.2.2.3 Bond types and maximum numbers of CO adsorption 36
4.2.2.4 Energy gap. 37
4.2.3 Adsorption of water molecule. 41
4.2.3.1 Adsorption energies of $\mathrm{H}_{2} \mathrm{O}$. 41
4.2.4 Adsorption of ammonia molecule. 47
4.2.4.1 Adsorption energies of NH_{3}. 47
4.2.5 Adsorption of hydrogen molecule 50
4.2.5.1 Adsorption energies of H_{2}. 50
4.2.6 Adsoption of nitric oxide molecule.................... 54
4.2.6.1Adsorption energies of NO pointing with N -end 54
24:2:6.2 Adsorption energies of NOpointing witho-end. 6. 60
4.2.6.3 Energy gap 62
4.2.7 Adsorption of nitrous oxide molecule 63
4.2.7.1 Adsorption energies of $\mathrm{N}_{2} \mathrm{O}$ pointing with N -end 63
4.2.7.2 Adsorption energies of $\mathrm{N}_{2} \mathrm{O}$ pointing with O -end 69
4.2.8 Adsorption of nitrogen dioxide molecule 71
4.2.8.1 Adsorption energies of NO_{2} pointing with N -end 71
4.2.8.2 Adsorption energies of NO_{2} pointing with O -end. 77

Page

CHAPTER V CONCLUSIONS 80

5.1 Conclusions 80
5.2 Suggestion for future work 80
REFERENCES 81
APPENDIX 85
APPENDIX A $\ldots \ldots \ldots$ 86
VITAE 87

LIST OF TABLES

Table Page
4.1 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of O_{2} on ZnONCs and ZnOGLNSs, and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs, ZnOGLNSs, and their O_{2} adsorption complexes, computed at the B3LYP/LanL2DZ level of theory 26
4.2 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of CO pointing its C-end toward surfaces of ZnONCs and ZnOGLNSs and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONGs, ZnOGLNSs and their CO adsorption complexes, computed at the B3LYP/LanL2DZ level of theory 34
4.3 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of CO pointing its O -end toward surfaces of ZnONGs and ZnOGLNS and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs , ZnOGLNSs, computed at the B3LYP/LanL2DZ leyel of theory 37
4.4 Bond distances (in \AA) between CO atoms and atoms of adsorption sites 39
4.5 Maximum number of CO adsorbed on ZnOGLNSs and their formulae 40
4.6 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of $\mathrm{H}_{2} \mathrm{O}$ on ZnONCs andZnOGLNSs, and energy gaps ($\Delta E_{\text {GAP }}$ in eV) of bare ZnONCs andZnOGLNSs and their $\mathrm{H}_{2} \mathrm{O}$ adsorption complexes, computed at theB3LYP/LanL2Dz level of theory...................45
4.7 Bond distances between oxygen atom of $\mathrm{H}_{2} \mathrm{O}$ and Zn , atom of 4650 ZnOGLNSs, and energy gaps (ΔE_{GAP} in eV) of the bare surfaces of ZnONCs, ZnOGLNSs, and their H_{2} adsorption complexes, computed
Table Page
at the B3LYP/LanL2DZ level of theory. 53
4.10 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of NO pointing its N -end toward surfaces of ZnONCs and ZnOGLNS and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs, ZnOGLNSs and their NO adsorption complexes, computed at the B3LYP/LanL2DZ level of theory 59
4.11 Bond distances (in \AA) between NO atoms and atoms of adsorption sites. 60
4.12 Adsorption energies ($\Delta E_{\text {ads }}$ in kcal/mol) of NO pointing its O-end toward surfaces of ZnONCs and ZnOGLNS and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs , ZnOGLNSs and their NO adsorption complexes, computed at the B3LYP/LanL2DZ level of theory 63
4.13 Adsorption energies ($\Delta E_{\text {ads }} \overline{i n k c a l} / \mathrm{mol}$) of $\mathrm{N}_{2} \mathrm{O}$ pointing its N -end toward surfaces of ZnONCs and ZnOGLNS s and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs , ZnOGLNSs and their $\mathrm{N}_{2} \mathrm{O}$ adsorption complexes, computed at the B3LYP/LanL2DZ level of theory 68
4.14 Bond distances (in \AA) between $\mathrm{N}_{2} \mathrm{O}$ atoms and atoms of adsorption sites. 69
4.15 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of $\mathrm{N}_{2} \mathrm{O}$ pointing its O -end toward surfaces of ZnONCs and ZnOGLNS and energy gaps $\left(\Delta E_{\mathrm{GAP}}\right.$ in eb) of bare surfaces of ZnONEs, ZnOGENSs and their $\mathrm{N}_{2} \mathrm{O}$ adsorption complexes, computed at the B3LYP/LanL2DZ
4.16 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of NO_{2} pointing its N -endtoward surfaces of ZnONCs and ZnOGLNSs and energy gaps(ΔE_{GAP} in eV) of bare surfaces of ZnONCs, ZnOGLNSs and theirNO_{2} adsorption complexes, computed at the B3LYP/LanL2DZlevel of theory
4.17 Bond distances (in \AA) between NO_{2} atoms and atoms of adsorption sites. 77

Table

Page
4.18 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of NO_{2} pointing its O -end toward surfaces of ZnONCs and ZnOGLNS and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs , ZnOGLNSs and their NO_{2} adsorption complexes, computed at the B3LYP/LanL2DZ level of theory

LIST OF FIGURES

Figure

Page

1.1 Stick-and-ball representation of ZnO crystal structures: (a) rocksalt, (b) zinc blende and (c) wurtzite. Gray and black balls
denote Zn and O atoms, respectively
4.3 Plots of oxygen molecules as minimum energy structures of their adsorptions on (a) CNL-ZnONS $\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ and (b) CCL$\mathrm{ZnONS}\left(\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}\right)$ as minimum energy structures. The molecules labeled with numbers represent the oxygen molecule interacting with ZnONCs as representative of molecular symmetry of CNLZnONS ($C_{3 \mathrm{~h}}$) and CCL-ZnONS ($C_{3 \mathrm{~h}}$). Adsorption energies in $\mathrm{kcal} / \mathrm{mol}$ were presented

Figure
Page
4.4 NBO charges (e) of oxygen and zinc atoms on the (a) AL-ZnONC, (b) NLL-ZnONC and (c) PRL-ZnONC.28

4.5 NBO charges (e) of oxygen and zinc atoms on the (a) CNL
ZnONS and (b) CCL-ZnONS
4.6 Plots of energy gaps of ZnO nanosheets against invert values of their termination-proton numbers (NTP).
4.7 Plots of CO molecules as minimum energy structures of their adsorptions on (a) the $\mathrm{AL}-\mathrm{ZnONC}\left(\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}\right)$, (b) NLL-ZnONC $\left(\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}\right)$ and (c) PRL-ZnONC $\left(\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}\right)$. Their left and right adsorption maps were CO adsorption on ZnONCs by pointing C end and O-end toward the adsorption sites, respectively. The set of labeled molecules was representative of CO interacting with ALZnONC ($C_{3 \mathrm{~h}}$), NLL-ZnONC $\left(C_{2 v}\right)$ and PRL-ZnONC $\left(C_{2 v}\right)$. Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.
4.8 Plots of CO molecules as minimum energy structures of their adsorptions on CNL-ZnONS $\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ as adsorption configurations of CO with pointing its (a) C -end and (b) O-end toward the adsorption sites of the CNL-ZnONS. The set of labeled molecules was representative of CO adsorption interacting with CNL-ZnONS with $C_{3 h}$ symmetry. Adsorption energies were presented in $\overline{\mathrm{kcal}} / \mathrm{mol}$
4.9 Plots of carbon monoxide molecules as minimum energy structures of their ddsorptions ${ }^{\circ}$ on CCL-Znons $\left(\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}\right)$ as (a) adsorption configurations of CO by pointing (a) C-end and (b) Oand toward thepadsorptiong sites, The molecules labeled with
numbers represent the oxygen molecule interacting with CCLZnONS of molecular symmetry of $\left(C_{3 \mathrm{~h}}\right)$. Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$
4.10 Plots of all possible adsorption energies of CO on all the ZnONC , PRL-ZnONC nanoclusters and PRL-ZnONC, CNL-ZnONS and CCL-ZnONS nanosheets against their bond distances. Four bond distances types $[\underline{C O} \cdots \mathrm{H}],[\underline{C O} \cdots \mathrm{Zn}],[\mathrm{CO} \cdots \mathrm{H}]$ and $[\mathrm{CO} \cdots \mathrm{Zn}]$, four
4.11 The structure models of (a) $C_{3 \mathrm{~h}}$ symmetric ZnOGLNS(i) and (b) $C_{2 \mathrm{v}}$ symmetric ZnOGLNS(i). The layer numbers of $C_{3 h^{-}}$ ZnOGLNS(i) and $C_{2 v}$-ZnOGLNS(i) defined as radial layer models of which the one layer structures (the most inner) were ALZnONC and PRL-ZnONC, respectively. The numbers labeled in the center of hexagonal rings indicate the number of most outer layer of the ZnOGLNS.
4.12 The adsorption configurations of water adsorbed on (a) the ALZnONC, (b) NLL-ZnONC, (c) PRL-ZnONC, (d) CNL-ZnONS and (e) CCL-ZnONS. The pond distances bonds were in \AA.
4.13 Plots of water molecules as minimum energy structures of their adsorptions on (a) the $\mathrm{AL}-\mathrm{ZnONC}\left(\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}\right)$, (b) NLL-ZnONC $\left(\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}\right)$, (c) PRL-ZnONC $\left(\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}\right)$, (d) CNL-ZnONS $\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ and (e) CCL-ZnONS $\left(\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}\right)$. The molecules labeled with numbers represent the water molecules interacting with ZnONCs and ZnOGLNS as representative of molecular symmetries of AL-ZnONC ($\left(C_{3 h}\right)$, NLL-ZnONC ($C_{2 v}$), PRLZnONC ($C_{2 v}$), CNL-ZnOGLNS ($C_{3 h}$) and CCL-ZnOGLNS ($C_{3 h}$). Adsorption energies in $\mathrm{kcal} / \mathrm{mol}$ were presented.
4.14 The adsorption configurations of ammonia adsorbed on (a) the AL- ZnONC, (b) NLL-ZnONC, (c) PRL-ZnONC, (d) CNLZnONS 9 and (e) 9 CCL-ZnONS. W The bond distances, $\left(\mathrm{N}_{\mathrm{NH}_{3}}{ }^{\circ} \mathrm{Zn}\right)$ were in \AA
4.15 Qplots of ammonia molecules as minimumenergy-structomes of their
9adsorptions on (a) the AL-ZnONC, (b) NLL-ZnONC, (c) PRLZnONC, (d) CNL-ZnONS and (e) CCL-ZnONS. The molecules labeled with numbers represent the ammonia molecules interacting with ZnONCs and ZnOGLNS as representative of their molecular symmetries. Adsorption energies in $\mathrm{kcal} / \mathrm{mol}$ were presented.
4.16 Plots of H_{2} molecules as minimum energy structures of their adsorptions on (a) the AL-ZnONC, (b) NLL-ZnONC, (c) PRLZnONC, (d) CNL-ZnONS and (e) CCL-ZnONS. The molecules labeled with numbers represent the H_{2} molecules interacting with ZnONCs and ZnOGLNSs as representative of their molecular symmetries. Adsorption energies in kcal/mol were presented........
4.17 Plots of NO molecules as minimum energy structures of their adsorptions on (a) the $\mathrm{AL}-\mathrm{ZnONC}\left(\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}\right)$, (b) NLL-ZnONC $\left(\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}\right)$ and (c) PRL- $\mathrm{ZnONC}\left(\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}\right)$. Their left and right adsorption maps were NO adsorption on ZnONCs by pointing $\mathrm{N}-$ end and O-end toward the adsorption sites, respectively. The set of labeled molecules was representative of NO interacting with AL$\mathrm{ZnONC}\left(C_{3 \mathrm{~h}}\right)$, NLL-ZnONC $\left(C_{2 \mathrm{v}}\right)$ and PRL-ZnONC ($C_{2 \mathrm{v}}$). Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.
4.18 Plots of NO molecules as minimum energy structures of their adsorptions on CNL-ZnONS $\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ as adsorption configurations of NO with pointing its (a) N -end and (b) O-end toward the adsorption sites of the CNL-ZnONS. The set of labeled molecules was representative of NO adsorption interacting with CNL-ZnONS with $C_{3 h}$ symmetry. Adsorption energies were presented in $\overline{\mathrm{kcal}} / \mathrm{mol}$.
4.19 Plots of NO molecules as minimum energy structures of their adsorptions on CCLA znONS ($\mathrm{Zn}_{2} 27 \mathrm{O}_{2} \mathrm{H}_{18}$) as (a) adsorption configurations of NO by pointing (a) N-end and (b) O-end toward theadsorption sites. The molecules labeled with numbers represent
the oxygen molecule interacting with CCL-ZnONS of molecular
symmetry of $\left(C_{3 n}\right)$. Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$
4.20 Plots of $\mathrm{N}_{2} \mathrm{O}$ molecules as minimum energy structures of their adsorptions on (a) the AL-ZnONC $\left(\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}\right)$, (b) NLL-ZnONC $\left(\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}\right)$ and (c) PRL-ZnONC $\left(\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}\right)$. Their left and right adsorption maps were $\mathrm{N}_{2} \mathrm{O}$ adsorption on ZnONCs by pointing

Figure
Page
N -end and O -end toward the adsorption sites, respectively. Their left and right adsorption maps were $\mathrm{N}_{2} \mathrm{O}$ adsorption on ZnONCs by pointing N -end and O -end toward the adsorption sites, respectively. The set of labeled molecules was representative of $\mathrm{N}_{2} \mathrm{O}$ interacting with $\mathrm{AL}-\mathrm{ZnONC}\left(C_{3 \mathrm{~h}}\right)$, $\mathrm{NLL}-\mathrm{ZnONC}\left(C_{2 \mathrm{v}}\right)$ and PRL-ZnONC $\left(C_{2 v}\right)$. Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$ \qquad
4.21 Plots of $\mathrm{N}_{2} \mathrm{O}$ molecules as minimum energy structures of their adsorptions on $\mathrm{CNL}-\mathrm{ZnONS} \quad\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ as adsorption configurations of $\mathrm{N}_{2} \mathrm{O}$ with pointing its (a) N -end and (b) O-end toward the adsorption sites of the CNL-ZnONS. The set of labeled molecules was representative of $\mathrm{N}_{2} \mathrm{O}$ adsorption interacting with CNL-ZnONS with C_{31} symmetry. Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.
4.22 Plots of $\mathrm{N}_{2} \mathrm{O}$ molecules as minimum energy structures of their adsorptions on $\mathrm{CCL}-\mathrm{ZnONS}\left(\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}\right)$ as (a) adsorption configurations of $\mathrm{N}_{2} \mathrm{O}$ by pointing (a) N -end and (b) O -end toward the adsorption sites. The molecules labeled with numbers represent the $\mathrm{N}_{2} \mathrm{O}$ molecule interacting with CCL-ZnONS of molecular symmetry of $\left(C_{3 h}\right)$. Adsorption energies were presented in kcal/mol.
4.23 Plots of NO_{2} molecules as minimum energy structures of their adsorptions on (a) the $\mathrm{AL}-\mathrm{ZnONC}\left(\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}\right)$,(b) $\mathrm{NLL}-\mathrm{ZnONC}$ $\left(\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}\right)$ and (c) PRL-ZnONC $\left(\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}\right)$. Their left and right adsorption maps were NO_{2} adsorption on ZnONOs by pointing $\mathrm{N}-$
end and O -end toward the adsorption sites, respectively. The set of labeled molecules was representative of NO_{2} interacting with $\mathrm{AL}-$ $\mathrm{ZnONC}\left(C_{3 \mathrm{~h}}\right)$, NLL-ZnONC $\left(C_{2 \mathrm{v}}\right)$ and PRL-ZnONC $\left(C_{2 \mathrm{v}}\right)$. Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.
4.24 Plots of NO_{2} molecules as minimum energy structures of their adsorptions on $\mathrm{CNL}-\mathrm{ZnONS} \quad\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ as adsorption configurations of NO_{2} with pointing its (a) N -end and (b) O -end

Figure
Page
4.25 Plots of NO_{2} molecules as minimum energy structures of their adsorptions on CCL-ZnONS $\left(\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}\right)$ as (a) adsorption configurations of NO_{2} by pointing (a) N -end and (b) O -end toward the adsorption sites. The molecules labeled with numbers represent the NO_{2} molecule interacting with CCL-ZnONS of molecular symmetry of $\left(C_{3 h}\right)$. Adsorption energies were presented in kcal/mol \qquad

LIST OF ABBREVIATIONS AND SYMBOLS

CHAPTER I

INTRODUCTION

1.1 Background

The crystal faces of zinc oxide (ZnO) have been studied by several experimental and theoretical techniques on adsorptions of H_{2} [1-5], CO [6], $\mathrm{H}_{2} \mathrm{O}$ [7-9], CO_{2} [10], NH_{3} [11], NO [12], NO_{2} [12, 13], SO_{2} [13] and $\mathrm{N}_{2} \mathrm{O}$ [14]. ZnO materials have excellent performance in optics, electronics, photoelectronics [1] and piezoelectricity [2]. It can also be used as transducers and sensors due to their strong piezoelectricity. Different surfaces of the wurtzite $\mathrm{ZnO}[15,16]$ and planar graphitelike structure [17] have been studied. Al large number of different ZnO nanostructures such as nanorods [18], nanowires [19-21], nanocombs [22], nanorings [23] and nanotubes [24,25] have been prepared and studied their properties. One dimensional ZnO nanotube, or nanorods, or nanowires ZnO were found that they have shown much higher sensitivity than polycrystalline ZnO at room temperature because of their higher surface-to-volume ratio and stronger dependence of electrical conductance on the amount of adsorbates [26-33]. However, sinee ultrawide ZnO nanosheets which have high specific sufface area were synthesized, [34] they are expected to have the highest surface-to-volume ratio and can be used as gas sensors. Many synthesized ZnO nanosheets have been expected to be wurtzite or planar graphite-like structures $[15,16,17]$ but they have never been expected to be graphene-like structures. Recently, the single ZnO monolayer with graphene-like structure (SZOML) was theoretically studied and its elastic, piezoelectric, electronic and/optical properties were investigated from? the firstr principles calculations [35], Nevertheless, its chemical properties such adsorption of fundamental gases have almost never been studied.

1.2 Fundamentals of the zinc oxide structure [36]

Zinc oxide (ZnO) is a compound semiconductor whose ionicity resides at the borderline between the covalent and ionic semiconductors. The crystal structures of

ZnO are found as three structures namely rock salt, zinc blende and wurtzite as shown in Figure 1.1 (a), (b) and (c), respectively. The wurtzite ZnO structure is found to be the most stable phase. The zinc blende ZnO structure is found to be stabilized on cubic substrates.

Figure 1.1 Stick-and-ball representation of ZnO crystal structures: (a) rocksalt, (b) zinc blende and (c) wurtzite. Gray and black balls denote Zn and O atoms, respectively.

Bulk ZnO is known as an ionic semiconductor with a wide band gap (3.4 eV). ZnO have been extensively studied for using as a gas sensor and biosensor due to its excellent compatibility of ZnO surface. However, it has been found that polycrystalline ZnO in forms of integrated film or ceramics shows only limited sensitivity for gas-sensor application. Additionally, high sensitivity of the thin-film gas sensors cand obe only realized at elevated temperatures. Alternatively, one dimensional (1D) ZnO nanotubes (NTs), nanorods (NRs), or nanowires (NWs) have shown much higher sensitivity than polycrystalfine ZnO at-roon temperature. The reason is that their surface-to-volume ratio all high. Moreover, the gas sensors fabricated with the 1 D ZnO nanostructures have shown some advantages over crystalline materials for examples low power consumption, light weight, and easy recovery capability.

1.3 Literature reviews

In the 2003, Meyer et al. [37] studied the adsorption of CO on different ideal, defect-free, ZnO surfaces. For the non-polar ($10 \overline{1} 0$) surface they compared monolayer versus half-monolayer coverage and CO adsorption geometries with the C-atom ('C-down') and the O-atom ('O-down') coordinated to the surface. For the two polar surfaces, different adsorption sites were considered and they studied the influence of hydrogen coverage of the surface. The study indicated that CO only binds to Zn ions present at the non-polar ($10 \overline{1} 0$) and the polar $(000 \overline{1})-\mathrm{Zn}$ surface and to the OH groups of the hydrogen saturated $(000 \overline{1})-\mathrm{O}$ surface. In all cases, the ' C -down' adsorption geometry was more stable than the ' O -down' configuration. The relaxation of the surfaces was a significant effect and the contribution to the adsorption energy is not negligible. No binding of CO to surface oxygen ions was found. Therefore, in the experiments where a chemisorption of CO on the $(000 \overline{1})-\mathrm{O}$ surface was observed, CO was either bound to defects sites and step edges or the surface was hydrogen-covered. Altogether, pronounced differences in the adsorption properties of CO were found for the four polar surface terminations. The finding of this study opens the possibility of employing CO as a probe molecule to identify surface terminations, and by comparing theoretical and experimental results, to validate microscopic models of the complex, inhomogeneous polar ZnO surfaces.

In the 2004, Martins et al. [11] studied the large cluster model approximately includes the surrounding effects. Fortunately, in the Morokumas ONIOM framework, a very large system was divided into three layers. Every layer was described by different levels of theory. High leyel methods especially those including electron correlation effects was applied to the small system, the chemically active part, while neighbors effects were described by lower level methods. Analysis of the interaction of small molecules with ZnO surfaces using the cluster model approach within the Oniom three layers methodology offer an opportunity to probe the validity of this methodology, as well as a better comprehension of the electronic and structural properties of adsorption of $\mathrm{CO}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$, and CO_{2} species on ZnO surfaces. The results were indicated that the binding energies, orbital stabilization and geometries were comparable to the available experimental values. In general, the $6-31+G^{* *}$ basis
set level results for the binding energies, a angles and orbital stabilization energies were in better agreement with the experimental values. The partial charge values calculated using the ChelpG methods were better agreement with the suggested experimental acid-basic properties for the oniom high layer.

In the 2010, Zhang et al. [38] performed spin-polarized density functional theory calculations with a plane-wave basis set, as implemented in the Vienna $a b$ initio simulation package (VASP) to investigate the electronic and magnetic properties of hydrogenated monolayer ZnOGSs . The exchange correlation functional was described by the generalized gradient approximation (GGA) in the form of Perdew and Wang 91 (PW91). The relaxations were performed by computing the Hellmann-Feynman (H-F) forces. The analyses of the relative stability show that the H atoms prefered to adsorb on O atoms rather than Zn atoms, while the NH_{2} functional groups tended to adsorb on Zn atoms rather than O atoms. The study indicated that the metallicity or magnetic semiconductor of ZnOGS could be realized experimentally through surface passivation. The various electronic and magnetic properties of the passivated ZnOGSs might motivate potential applications of ZnO nanostructures in nanoelectronics and spintronics.

In the 2010, He et al. [39] investigated the interaction of an Mn atom with a $(9,0)$ single-wall ZnO nanotube and with a graphitic ZnO sheet by first-principles spin-polarized calculations based on density functional theory (DFT). Following that, the adsorption of a single Mn atom at various sites on the outer and inner walls of the $(9,0)$ zigzag single-wall znO nanotube are discussed, respectively. In each case, the structural, electronic and magnetic properties of the Mn -doped $(9,0)$ single-wall ZnO nanotube were anatyzed. The-study lindicated that the absorption of anj Mn atom on a graphitic ZnO sheet and a single-wall zigzag $(9,0) \mathrm{ZnO}$ nanotube were studied by $a b$ initio calculations. For the Mn -doped ZnO sheet, the most stable adsorption site was the H site. The Mn atom tended to push its three nearest-neighbor Zn atoms out of the plane so that it can formed bonds with its three nearest-neighbor oxygen atoms. Similarly, the H configuration was also the most energetically favorable site for adsorption of a single Mn atom on the inner wall of the $(9,0) \mathrm{ZnO}$ nanotube. The study provided some useful reference to the synthesis of ZnO nanotubes using TM atoms as catalysts and its potential applications.

1.4 Objective

In this study, the various sizes of ZnO nanoclusters (ZnONCs) and ZnO nanosheets (ZnONS) i.e. ZnO nanoclusters of aromatic-like ($\mathrm{AL}-\mathrm{ZnONC}$, $\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}$), naphthalene-like ($\mathrm{NLL}-\mathrm{ZnONC}, \mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}$), PRL-like (PRL-ZnONC, $\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}$), and ZnO nanosheets of coronene-like (CNL-ZnONS, $\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}$) and circumcoronene-like (CCL-ZnONS, $\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}$) and bond strength of their $\mathrm{Zn}-\mathrm{O}$ bonds have been investigated. Adsorptions of gaseous oxygen, carbon monoxide, nitric oxide, nitrogen dioxide, nitrous oxide, ammonia, hydrogen and water molecules on the ZnONCs and ZnONS and their electronic properties have been addressed by

CHAPTER II

THEORETICAL BACKGROUND

The main of quantum chemical investigations determine the energies of molecules using heavy computations based on approximate solutions of the quantum methods. Quantum chemistry is divided into semi-empirical, Hartree-Fock (HF) and density functional theory (DFT) methods that are also based on quantum mechanical principles to the explanation and prediction of chemical behavior. Quantum chemical studies relate to the ground state of individual atoms and molecules, to excited states, and to the transition states that occar during chemical reactions. Quantum chemical results include molecular structure, bond strengths and other characteristics of chemical bonds.

2.1 Ab Initio method

$A b$ initio quantum chemistiy methods are computational methods based on quantum chemistry [40]. The simplest type of $a b$ initio electronic structure calculation is the Hartree-Fock (HF), in which the instantaneous coulombic electron-electron repulsion is not specifically taken into account. Only its average effect is included in the calculation. This is a variational procedure therefore, the obtained approximate energies, expressed in terms of the system's wave function are always equal to or greater than the exactenergy and tend toca limiting value called the Hartree-Fock

limit as the size of the basis is increased [41].

2.1.1 The Hartree-Fock method [42]

The Schrödinger equation is deceptive in that, although it is mostly easy to write down for any collection of nuclei and electrons, it has proven to be insolvable except for the one-electron case (the hydrogen atom). To appreciate the convenient of quantum mechanical theory, it is necessary to make three approximations to the general multinuclear, multi-electron Schrödinger equation:

$$
\begin{equation*}
\hat{H} \Psi=E \Psi \tag{2.1}
\end{equation*}
$$

where E is the total energy of the system and Ψ is the n-electron wave function that depends both on the identities and positions of the nuclei and on the total number of electrons. The Hamiltonian \hat{H} provides the recipe for specifying the kinetic and potential energies for each of the particles:

$$
\begin{align*}
\hat{H}= & -\frac{\bar{h}^{2}}{2 m_{e}} \sum_{\mathrm{i}}^{\text {electrons }} \nabla_{i}^{2}-\frac{\bar{h}^{2}}{2} \sum_{\mathrm{A}}^{\text {nuclei }} \frac{1}{M} \nabla_{\mathrm{A}}^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0}} \sum_{i}^{\text {electrons nuclei }} \sum_{A} \frac{Z_{\mathrm{A}}}{r_{\mathrm{iA}}} \\
& +\frac{e^{2}}{4 \pi \varepsilon_{0}} \sum_{i>}^{\text {electrons electrons }} \sum_{\mathrm{i}} \frac{1}{r_{\mathrm{ij}}}+\frac{e^{2}}{4 \pi \varepsilon_{0} \sum_{\mathrm{A}}^{\text {nudee invclei }} \sum_{\mathrm{B}} \frac{Z_{\mathrm{A}} Z_{\mathrm{B}}}{R_{\mathrm{AB}}}} \tag{2.2}
\end{align*}
$$

where Z is the nuclear charge, M_{A} is the mass of the electron, R_{AB} is the distance between nuclei A and $\mathrm{B}, r_{\mathrm{iA}}$ is the distance between electrons i and $\mathrm{j}, r_{\mathrm{iA}}$ is the distance between electron i and nucleus A , and ε_{0} is the permittivity of free space.

The first approximation takes benefit of the fact that nuclei move much more slowly than do electrons. We assume that the nuclei are stationary which is known as the Born-Oppenhemer approximation. This assumption leads to a nuclear-nuclear coulombic energy term, the lastterm, which is constant. What results is the electronic Schrödinger equation:

$$
\begin{equation*}
\hat{H}^{\mathrm{el}} \Psi^{\mathrm{el}}=E^{\mathrm{el}} \Psi^{\mathrm{el}} \tag{2.3}
\end{equation*}
$$

The nuclear-nuclear coulomb energy, the previous term in Equation (2.2) needs to be added to $E^{\text {el }}$ to get the total energy. Note that nuclear mass does not appear in the electronic Schrödinger equation. To the extent that the Born-Oppenhemer approximation is suitable, this means that isotope effects on molecular properties must have a different origin.

Equation (2.3), like Equation (2.1), is insolvable for the general case and further approximations need to be made. The most obvious thing to do is to assume
that electrons move independently of each other, which is what is done in the Hartree-Fock approximation. In practice, this can be proficient by assuming that individual electrons are limited to functions called spin orbitals, χ_{i}. each of the N electrons feels the presence of an average field made up of all of the other ($N-1$) electrons. To ensure that the total wave function Ψ is anti-symmetric upon interchange of electron coordinates, it is written in the form of a single determinant called the Slater determinant:

Individual electrons are represented by different rows in the determinant, which means that interchanging the coordinates of two electrons is equivalent to interchanging two rows in the determinant, multiplying is value by -1 . Spin orbitals are the product of spatial functions on molecular orbitals, ψ_{i}, and spin functions, α or β. The fact that there are onlyo kinds of spin functions (α and β) leads to the conclusion that two electrons at most may occupy a given molecular orbital. Were a third electron to occupy the orbital, two rows in the determinant would be the same. Therefore, the value of the determinant would be zero. Thus, the perception that electrons are paired is really an artifact of the Hartree-Fock approximation. The set of molecular orbitals leading to the lowest eneergy is obtained by a process referred to as

The Hartree-Fock approximation leads to a set of differential equations, the Hartree-Fock equations, each involying the coordinates of a single electron. Although they can be solved numerically, it is profitable to introduce an additional approximation in order to transform the Hartree-Fock equations in to a set of algebraic equations. The basis for this approximation is the probability that the oneelectron solutions for many-electron molecules will closely resemble the oneelectron wave functions for hydrogen atom. The molecular orbitals ψ_{i} are expressed as linear combinations of a basis set of prescribed functions known as basis functions, ϕ :

$$
\begin{equation*}
\psi_{\mathrm{i}}=\sum_{\mu}^{\text {basis functions }} c_{\mu \mathrm{i}} \phi_{\mu} \tag{2.6}
\end{equation*}
$$

In this equation, the coefficients $c_{\mu i}$ are the molecular orbital coefficients. Because the ϕ are usually centered at the nuclear positions, they are referred to as atomic orbitals, and equation (2.6) is called the linear combination of atomic orbitals (LCAO) approximation. Note that in the boundary of a complete basis set, the LCAO approximation is exact.

2.2 Density functional theory [42]

The Hartree-Fock model is now commonly known as density functional theory. It is based on the availability of an exact solution for an idealized manyelectron problem, particularly an electron gas of uniform density. The part of this solution that relates only to the exchange and correlation contributions is extracted and then directly included into the SCF formalism much like Hartree-Fock formalism. Because the new exchange and correlation terms get from idealized problems, density functional models, unlink configuration interaction and MøllerPlesset models, do not limit to the exact solution of the Schrödinger equation. In a sense, they are empirical in that they integrate external data. For this finding, important to the development of practical density set model, Walter Kohn was awarded the Nobel Prize in chemistry in 1998.

The Hartree-Fock energy may be wrítten as a sum of the kinetic energy, E_{T}, the electron-nuclear potential energy, E_{V}, and coulomb, E_{J}, and exchange, E_{K},

$$
\begin{gather*}
\text { components of the electron-electron/interaction energy: } \\
E^{\mathrm{HF}}=E_{\mathrm{T}}+E_{\mathrm{V}}+E_{\mathrm{J}}+E_{\mathrm{K}}
\end{gather*}
$$

The first three of these terms take over directly to density functional models, whereas the Hartree-Fock exchange energy is replaced by so-called exchange/ correlation energy, E_{Xc}, the form of which follows from the solution of the idealized electron gas problem:

$$
\begin{equation*}
E^{\mathrm{DFT}}=E_{\mathrm{T}}+E_{\mathrm{V}}+E_{\mathrm{J}}+E_{\mathrm{XC}} \tag{2.8}
\end{equation*}
$$

except for E_{T}, all components depend on the total electron density, $\rho(r)$:

$$
\begin{equation*}
\rho(r)=2 \sum_{\mathrm{i}}^{\text {orbitals }}\left|\psi_{\mathrm{i}}(r)\right|^{2} \tag{2.9}
\end{equation*}
$$

the ψ_{i} are orbitals, strictly similar to molecular orbitals in Hartree-Fock theory.

2.2.1 The Kohn-Sham energy and the Kohn-Sham equations [43]

The first Kohn-Sham theorem tells us that it is worth looking for a way to calculate molecular properties from the electron density. The second theorem suggests that a variation approach might yield a way to calculate the energy and electron density (the electron density, in turn, could be used to calculate other properties). The two basis ideas behind the Kohn-Sham approach to DFT are (1) to express the molecular energy as a sum of tem, only one of which, a relatively small term, involves the unknown functionat. Thus even somewhat large errors in this term will not introduce large errors into the total energy (2) to use an initial guess of the electron density ρ in-the Kohn-Sham equations to calculate an initial guess of the Kohn-Sham orbitals. The final Kohn-Sham orbitals are used to calculate an electron density that in turn is used to calculate the energy.

The/ideal energy is that of and ideal system, el fictifious hon-interacting reference system, defined as one in which the electrons do not interact and in which the ground state electron density ρ_{r} is exactly the same as in our real ground state system, $\rho_{\mathrm{r}}=\rho_{0}$. The electronic energy of the molecule is the total internal frozennuclei energy can be found by adding the internuclear repulsions and the 0 K total internal energy by further adding the zero-point energy.

The ground state electronic energy of our real molecule is the sum of the electron kinetic energy, the nucleus-electron attraction potential energies, and the
electron-electron repulsion potential energies and each is a functional of the groundstate electron density

$$
\begin{equation*}
E_{0}=\left\langle T\left[\rho_{0}\right]\right\rangle+\left\langle V_{\mathrm{ne}}\left[\rho_{0}\right]\right\rangle+\left\langle V_{\mathrm{ce}}\left[\rho_{0}\right]\right\rangle \tag{2.10}
\end{equation*}
$$

Focusing on the middle term, the nucleus-electron potential energy is the sum over all $2 n$ electrons of the potential corresponding to attraction of an electron for all the nuclei A

$$
\begin{equation*}
\left\langle V_{\text {ne }}\right)=\sum_{i=1}^{2 n} \sum_{n \text { infei }}-\frac{Q_{A}}{r_{i A}}=\sum_{i=1}^{2 n} v\left(r_{i}\right) \tag{2.11}
\end{equation*}
$$

where $v\left(r_{\mathrm{i}}\right)$ is the external potential for the attraction of electron i to the nuclei. The density function ρ can be introduced into $\left\langle V_{\text {ne }}\right\rangle$ by using that

$$
\begin{equation*}
\int \Psi \sum_{i=1}^{2 n} f(r) \Psi d t=f \rho(r) f(r) d r \tag{2.12}
\end{equation*}
$$

where $f\left(r_{\mathrm{i}}\right)$ is a function of the coordinates of the $2 n$ electrons of a system and Ψ is the total wave function from equations (2.11) and (2.12), invoking the notion of expectation value $\left\langle V_{\text {ne }}\right)=\langle\Psi| \hat{V}_{\text {ne }}|\Psi\rangle$, and since $\hat{V}=V_{\mathrm{x}}$, and get,
that can not known the function in $\left\langle T\left[\rho_{0},\right\rangle\right\rangle$ and $\left.\alpha V_{9}\left[p_{0}\right]\right\rangle$. The Kohn and Sham to introduced the idea of a reference system of non-interacting electrons. Let us to define the quantity $\Delta\left\langle T\left[\rho_{0}\right]\right\rangle$ as the deviation of the real kinetic energy from that of the reference system.

$$
\begin{equation*}
\Delta\left\langle T\left[\rho_{0}\right]\right\rangle \equiv\left\langle T\left[\rho_{0}\right]\right\rangle-\left\langle T_{\mathrm{r}}\left[\rho_{0}\right]\right\rangle \tag{2.1.1}
\end{equation*}
$$

Let us next define $\Delta\left\langle V_{\text {ee }}\right\rangle$ as the deviation of the real electron-electron repulsion energy from classical charged-cloud coulomb repulsion energy. This typical electrostatic repulsion energy is the summation of the repulsion energies for pairs of infinitesimal volume elements $\rho\left(r_{1}\right) d r_{1}$ and $\rho\left(r_{2}\right) d r_{2}$ divided by distance r_{12}, multiplied by one-half. The sum infinitesimals is an integral and so

$$
\begin{equation*}
\Delta\left\langle V_{\text {ee }}\left[\rho_{0}\right]\right\rangle=\left\langle V_{\text {ee }}\left[\rho_{0}\right]\right\rangle-\frac{1}{2} \iint \frac{\rho_{0}\left(r_{1}\right) \rho_{0}\left(r_{2}\right)}{r_{12}} d r_{1} d r_{2} \tag{2.15}
\end{equation*}
$$

Actually, the classical charged-cloudrepulsion is somewhat in appropriate for electrons in that smearing an eleetron out into a cloud forces it to repel itself, as any two regions of the cloud interact repulsively. This physically incorrect electron selfinteracting will be compensated for by a good exchange-correlation functional can be written as

$$
\begin{equation*}
E_{0}=\int \rho_{0}(r) v(r) d r+\left\langle T\left[\rho_{0}\right]\right\rangle+\frac{1}{2} \int \frac{\rho_{0}\left(r_{1}\right) \rho_{0}\left(r_{2}\right)}{r_{0}}+\Delta\left\langle T\left[\rho_{0}\right]\right\rangle+\Delta\left\langle V_{\text {ee }}\left[\rho_{0}\right]\right\rangle \tag{2.16}
\end{equation*}
$$

The sum of the kinetie energy deviation from the reference system and the electron-electron repulsion energy deviation from the classical system is called the exchange-correlation energy, E_{xc}

The $\Delta\langle T\rangle_{0}$ term represents the kinetic correlation energy of the electrons and the $\left\langle\Delta V_{\text {ee }}\right\rangle$ term the potential correlation energy and the exchange energy, although exchange and correlation energy in DFT do have exactly.

2.2.1.2 The Kohn-Sham equations [43]

The Kohn-Sham equations are theorem obtained by utilizing the variation principle, which the second Hohenberg-Kohn theorem assures applies to DFT. They
use the fact that the electron density of the reference system, which is the same as that of our real system, is given by

$$
\begin{equation*}
\rho_{0}=\rho_{\mathrm{r}}=\sum_{\mathrm{i}=1}^{2 \mathrm{n}}\left|\psi_{\mathrm{i}}^{\mathrm{KS}}(1)\right|^{2} \tag{2.18}
\end{equation*}
$$

where the $\psi_{\mathrm{i}}^{\mathrm{KS}}$ are the Kohn-Sham spatial orbital. Substituting the above appearance for the orbitals into the energy and varying E_{0} with respect to the $\psi_{i}^{K S}$ subject to the restriction that these remain orthonormal lead to the Kohn-Sham equations, procedure is similar to that used in deriving the Hartree-Fock equations,

$$
\begin{equation*}
\left[-\frac{1}{2} \nabla_{\mathrm{i}}^{2}-\sum_{\text {nucleiA }} \frac{Z_{\mathrm{A}}}{r_{\mathrm{i}}}+\int \frac{\rho\left(r_{2}\right)}{r_{12}} d r_{2}+v_{\mathrm{xc}}(1)\right] \psi_{\mathrm{i}}^{\mathrm{KS}}(1)=\varepsilon_{\mathrm{i}}^{\mathrm{KS}} \psi_{\mathrm{i}}^{\mathrm{KS}}(1) \tag{2.19}
\end{equation*}
$$

where $\varepsilon_{\mathrm{i}}^{\mathrm{KS}}$ are the Kohn-Sham energy levels and $v_{\mathrm{xc}}(1)$ is the exchange correlation potential, arbitrarily designated here for electron number 1 , since the Kohn-Sham equations are a set of one-electron equations with the subscript i running from 1 to n , over all the 2 n electron in the system. The exchange correlation potential is defined as the functional derivative of $E_{x c}\left[\rho_{0}(r)\right]$ with respect to $\rho(r)$

$$
\begin{equation*}
v_{\mathrm{xc}}(r)=\frac{\delta E_{x c}[\rho(r)]}{\delta \rho(r)} \tag{2.20}
\end{equation*}
$$

We need the derivative $v_{x c}$ for, and the exchange-correlation function itself for

$$
\begin{align*}
& \text { the energy equation. The Kohn-Sham equations an be written as } \\
& \qquad \hat{h}^{\mathrm{KS}}(1) \psi_{\mathrm{i}}^{\mathrm{KS}}(1)=\varepsilon_{\mathrm{i}}^{\mathrm{KS}} \psi_{\mathrm{i}}^{\mathrm{KS}}(1)
\end{align*}
$$

The Kohn-Sham operator $\hat{h}^{\text {Ks }}$ is defined by equation (2.19). The difference between DFT methods is the choice of the functional from of the exchangecorrelation energy. Functional forms are often designed to have a certain limiting behavior, and correct parameters to known perfect data. Which functional is the better
will have to be settled by comparing the performance with experiments or high-level wave mechanics calculations.

2.2.2 Hybrid methods

Hybrid functional increase the DFT exchange-correlation energy with a term calculated from Hartree-Fock theory. The Kohn-Sham orbitals are quit similar to the HF orbitals give an expression, based on Kohn-Sham orbitals, for the HF exchange energy

Since the Kohn-Sham Slater determinant is an exact representation of the wave function of the non-interacting electron reference system, E_{x}^{HF} is the exact exchange energy for a system of non-interacting electron with electron density equal to real system. Including in a LSDA gradient-corrected DFT expression for $E_{\text {xc }}$ $\left(E_{\mathrm{xc}}=E_{\mathrm{x}}+E_{\mathrm{c}}\right)$ a weighted involvement of the expression for $E_{\mathrm{x}}^{\mathrm{HF}}$ give a HF/DFT exchange-correlation functionat, commonly calted a Hybrid DFT functional. The most popular hybrid functional at present is based on an-exchange-energy functional developed by Becke and Steven et al. modified introduetion of the LYP correlationenergy functional. This exchange-correlation functional, called the Becke3LYP or

Here $E_{\mathrm{x}}^{\text {LSDA }}$ is the kind accurate pure DFT LSDA non-gradient-corrected exchange functional, $E_{\mathrm{x}}^{\mathrm{HF}}$ is the Kohn-Sham orbitals based HF exchange energy functional, $E_{\mathrm{x}}^{\mathrm{B88}}$ is the Becke 88 exchange functional

$$
\begin{aligned}
& E_{\mathrm{x}}^{\mathrm{B} 88}=E_{\mathrm{x}}^{\mathrm{LDA}}+\Delta E_{\mathrm{x}}^{\mathrm{B} 88} \\
& \Delta E_{\mathrm{x}}^{\mathrm{B} 88}=-\beta \rho^{1 / 3} \frac{x^{2}}{1+6 \beta x \sinh ^{-1} x}
\end{aligned}
$$

the β parameter is determined by fitting to known atomic data and x is a dimension gradient variable. The $E_{\mathrm{x}}^{\mathrm{VWN}}$ is the Vosko, Wilk, Nusair function (VWN) can be written
which forms part of the perfect functional for the homogeneous electron gas of the LDA and LSDA, and $E_{c}^{\text {LYP }}$ is the LYP correlation functional. The parameters $\mathrm{a}_{0}, \mathrm{a}_{\mathrm{x}}$ and a_{c} are those that give the best fit of the calculated energy to molecular atomization energies. This is thus gradient-corrected hybrid functional.

2.3 Gaussian basis sets

The LCAO approximation requires the use of a basis set made up of a finite number of well-defined functions centered on each atom. The apparent choice for the functions would be those corresponding closely to the exact solution of the hydrogen atom, that is, a polynomialin the Cartesian coordinates multiplying an exponential in r. However, the use of these functions was not cost effective, and early numerical calculations were carried out using nodeless Slater-type orbitals (STOs), defined by
จุหาลงกรณมม

The symbols n, m, and l denote the usual quantum numbers and ζ are the effective nuclear charge. Use of these so-called Slater functions was entertained sincerely in the years immediately following the introduction of the Roothaan-Hall equations, but soon abandoned because they lead to integrals that are difficult if not impossible to
evaluate analytically. Further work showed that the cost of calculations can be further reduced if the AOs are expanded in terms of Gaussian functions, which have the form

$$
\begin{equation*}
g_{\mathrm{ijk}}(r)=N x^{\mathrm{i}} y^{\mathrm{j}} z^{\mathrm{k}} e^{-a r^{2}} \tag{2.25}
\end{equation*}
$$

In this equation, x, y, and z are the position coordinates measured form the nucleus of an atom; i, j, and k are nonnegative integers, and α is an orbital exponent. An s-type function is generated if one of i, j, and k is 1 and the remaining two are 0 ; and a d-type function (second order Gaussian) is generated by all combinations that give i + $\mathrm{j}+\mathrm{k}=2$. Note that this guidelines leads to six rather than five d-type functions, but appropriate combinations of these six functions give the usual five d-type functions and a sixth function that has s symmetry.

Gaussian functions lead to integrals that are easily evaluated. With the experiment of so-called semi-empirical models, which do not actually entail evaluation of large numbers of difficult integrals, all practical quantum chemical models now make use of Gaussian functions.

Given the different radial dependence of STOs and Gaussian functions, it is not obvious at first glance that Gaussian functions are appropriate choices for AOs. The solution to this problem is to approximate the STOs by a linear combination of Gaussian functions having different α values, rather than by a single Gaussian function.

In practice, instead of taking character Gaussian functions as members of the basis set, a normalized Tinear combination of Gaussian functions with fixed coefficients is constructed to provide a bestfit to an AO. The value of each coefficient is optimized either by seeking minimum atom energies or by comparing calculated and experimental cesults for repesentative molecules. These linear combinations are called contracted functions. The contracted functions become the elements of basis set. Although the coefficients in the contracted functions are fixed, the coefficient $c_{\mu \mathrm{\mu}}$ in Equation (2.6) is variable and optimized in the solution of the Schrödinger equation.

2.3.1 Minimal basis sets

Although there is no limit to the number of functions that can be located on an atom, there is a minimum number. The minimum number is the number of functions required to grasp all the electrons of the atom while still maintaining its overall spherical character. This simplest representation or minimal basis set involves a single (1s) function for hydrogen and helium, a set of five functions ($1 \mathrm{~s}, 2 s, 2 p_{x}, 2 p_{\mathrm{y}}, 2 p_{\mathrm{z}}$) for lithium to neon, and a set of nine functions ($1 \mathrm{~s}, 2 \mathrm{~s}, 2 p_{\mathrm{x}}, 2 p_{\mathrm{y}}, 2 p_{z}, 3 s, 3 p_{\mathrm{x}}, 3 p_{\mathrm{y}}, 3 p_{\mathrm{z}}$) for sodium to argon. Note that although $2 p$ functions are not occupied in the lithium atoms (and $3 p$ functions are not occupied in the sodium or magnesium atoms), they are needed to provide proper descriptions of the bonding in molecular systems.

The minimal basis sets have been devised, perhaps the most widely used and widely documented is the STO-3G basis set. Here, each of the basis functions is extended in terms of three Gaussian functions, where the values of the Gaussian exponents and the linear coefficient have been determined by least squares as best fits to Slater-type (exponential) functions.

$$
\begin{aligned}
& \varphi(2 s)=d_{1 s} e^{-\alpha_{1 s} r}+d_{2 s} e^{-\alpha_{2 s} r}+d_{3 s} e^{-\alpha_{3 s} r} \\
& \phi\left(2 p_{x}\right)=d_{1 p_{x}} e^{-\alpha_{1 p} r}+d_{2 p_{x}} e^{-\alpha_{2 p} r}+d_{3 p_{x}} e^{-\alpha_{3 p} r} \\
& \phi\left(2 p_{y}\right)=d_{1 p_{y}} e^{-\alpha_{1 p} r}+d_{2 p_{y}} e^{-\alpha_{2 p} r}+d_{3 p_{y}} e^{-\alpha_{3 p} r} \\
& \phi\left(2 p_{z}\right)=d_{1 p_{z}} e^{-\alpha_{1 p} r}+d_{2 p_{z}} e^{-\alpha_{2 p} r}+d_{3 p_{z}} e^{-\alpha_{3 p} r}
\end{aligned}
$$

A Split-valence basis sets represents core atomic orbitals by one set of functions and valence atomic orbitals byltwo sets of functions, $1 s, 2 s^{i}, 2 p_{x}^{i}, 2 p_{y}^{i}, 2 p_{z}^{i}$, $2 s^{o}, 2 p_{x}^{o}, 2 p_{y}^{o}, 2 p_{z}^{o}$ for lithium to neon and $1 s, 2 s, 2 p_{x}, 2 p_{y}, 2 p_{z}, 3 s^{i}, 3 p_{x}^{i}, 3 p_{y}^{i}, 3 p_{z}^{i}$, $3 s^{o}, 3 p_{x}^{o}, 3 p_{y}^{o}, 3 p_{z}^{o}$ for sodium to argon. Note that the valence $2 s$ (3s) functions are also split into inner and outer components, and that hydrogen atoms are also represented by inner and outer valence (1s) functions. Among the simplest splitvalence basis sets are 3-21G and 6-31G. Each core atomic orbital in the 3-21G basis set is expanded in terms of three Gaussians, whereas basis functions representing
inner and outer components of valence atomic orbitals are expanded in term of two and one Gaussians, respectively. The 6-31G basis sets are similarly constructed, with core orbitals represented in terms of six Gaussians and valence orbitals split into three and one Gaussians components. Expansion coefficients and Gaussians exponents for 3-21G and 6-31G basis sets have been determined by Hartree-Fock energy minimization on atomic ground states.

2.3.3 Polarized basis sets

The second shortcoming of a minimal (or split-valence) basis set, namely, that the basis functions are centered on atoms rather than between atoms, can be addressed by providing d-type functions on main-group elements (where the valence orbitals are of s and p type), and p-type functions on hydrogen (where the valence orbital is of s type). This allows displacement of electron distributions away from the nuclear positions.

The inclusion of polarization functions can be thought about either in terms of hybrid orbitals, for example, pd and sp hybrids, or otherwise in terms of a Taylor series expansion of a function (d functions are the first derivatives of p functions and p functions are the first derivatives of s functions). Although the first way of thinking is quite familiar to chemists (Pauling hybrids), the second offers the advantage of significant what steps might be taken next to effect further development, that is, adding second, third, and so on derivatives.

Among the simplest polarization basis set is 6-31G*, constructed from 6-31G by adding a setof d-type polarization functions written in terms of a single Gaussian for each heavy (hon-hydrogen) atom. A set of six second-order Gaussians is added in the case of $6=31 \mathrm{G}^{*}$ Gaussian exponentials for polarization functions have been selected to give the lowest energies for representative molecules. Polarization of the s orbitals on hydrogen atoms is necessary for an accurate description of the bonding in many systems (particularly those in which hydrogen is a bridging atom). The 6-31G* basis set is identical to 6-31G*, except that it also provides p-type polarization functions for hydrogen.

2.3.4 Basis sets incorporating diffuse functions

Calculations involving anions, for example, absolute acidity calculations, and calculations of molecules in excited states and of UV adsorption spectra often posture special problems. This is because the highest energy electrons for such species may only be loosely related with specific atoms (or pairs of atoms). In these situations, basis sets may need to be supplemented by diffuse functions, such as diffuse s - and p-type functions, on heavy (non-hydrogen) atoms (designated with a plus sign as $6-31+G^{*}$ and $\left.6-31+G^{* *}\right)$. It may also be enviable to provide hydrogens with diffuse s-type functions (designated by two plus signs as in $6-31++G^{*}$ and $6-31++G^{* *}$).

2.3.5 Effective core potentials

The use of effective core potentials (ECP) has been the important success in the molecular orbital calculations involving transition metals. ECP is simply a group of potential functions that substitute the inner shell electrons and orbitals that are normally implicit to have minor effects on the formation of chemical bonds. Calculations of the valence electrons using ECP can be carried out at a fraction of the computational cost that is required for an all electron (AE) calculation, while the overall quality of computation does not differ much from the AE calculations. Combined with the use of dependable basis sets, it appears to be the most dominant and reasonable method for dealing with molecules containing heavy transition metals. Following this approach, the LanL2DZ basis set [38-40] was employed for geometry optimization. The LanL2DZ basis sets/(a split/ valehce basis) are one of the double basis sets whichlwere used for determining only valence electron in order to be easy in calculation. It contains effective core potential representätions of eleectrons near the nuclei for post-third-row atoms. The reliability of this basis set has been confirmed by the accuracy of calculation results compared with experimental data as well as those from a more expensive all electron basis set.

CHAPTER III

DETAILS OF THE CALCULATIONS

3.1 Computational method

Structure optimizations of gaseous oxygen, carbon monoxide, nitric oxide, nitrogen dioxide, nitrous oxide, ammonia, hydrogen and water molecules adsorption configurations on the various sizes of hydrogen-terminated ZnONCs and ZnOGLNSs namely aromatic-like ($\mathrm{AL}-\mathrm{ZnONC}, \mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}$), naphthalene-like ($\mathrm{NLL}-\mathrm{ZnONC}$, $\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}$), pyrene-like (PRL-ZnONC, $\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}$), coronene-like (CNL-ZnOGLNS, $\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}$) and circumcoronene-fike (CCL-ZnOGLNS, $\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}$) were carried out using density functional theory (DFT) approach. The calculations have been performed with hybrid density functional B3LYP, the Becke's three-parameter exchange functional [36] with the Lee Yang-Parr correlation functional [37], using the Los Alamos LanL2DZ split-valence basis set [38-40]. All calculations were performed with the GAUSSIAN 03 program [44].

The B3LYP/LanL2DZ-optimized structures of the AL-ZnONC, NLLZnONC, and PRL-ZnONC nanoclusters and the CNL-ZnOGLNS and CCLZnOGLNS nanosheets obtained from the full geometry optimizations were shown in Figure 3.1 The molecular symmetries for the AL-ZnONC ($C_{3 \mathrm{~h}}$), NLL-ZnONC ($C_{2 \mathrm{v}}$), PRL-ZnONC ($C_{2 \mathrm{v}}$), CNL-ZnOGLNS ($C_{3 \mathrm{~h}}$) and CCL-ZnOGLNS ($C_{3 \mathrm{~h}}$, were not obtained from the calculations but assumed based on group theory using their optimized geometries which were hardly distorted. Numbers of various gaseous molecules adsorption positions of gas molecules adsorbed on nariosheets were one third for $C_{2 v}$ symmetry and one sixth for $C_{3 n}$ symmetry of the whole adsorption area. Therefore, only one third and one sixth of adsorption area of nanosheets have been investigated as representative area for the $C_{2 \mathrm{v}}$ and $C_{3 \mathrm{~h}}$ symmetries, respectively and the whole adsorption positions have been generated from their symmetrical operation.

Initial positions of gas molecules adsorbed on the studied ZnO nanoclusters and nanosheets have been examined by lining up the gas molecules bond parallel to every bond types, the $\mathrm{Zn}-\mathrm{O}, \mathrm{Zn}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bonds with all possible directions of gas molecules above the hexagonal structure of ZnOGLNS and perpendicular to
hydrogen, oxygen atoms, zinc atoms and center of the their hexagon as illustrated in Figure 3.2 which the CNL-ZnOGLNS was selected as representative ZnO nanosheets.

(a)

(b)

(d)

(e)

Figure 3.1 The B3LYP/LanL2DZ-optimized structures of (a) the AL-ZnONC, (b) NLL-ZnONC, (c) PRL-ZnONC, (d) CNL-ZnONS and (e) CCL-ZnONS and their energy gaps and molecular symmetries. The atomic labeling of their representative atoms depend on their molecular symmetries.

Figure 3.2 The CNL-ZnONS selected as representative ZnO nanosheets shows the possible adsorption sites as over the hydrogen, zinc, oxygen atoms and hexagonal center of nanosheets.

The adsorption energy ($\Delta E_{\text {ads }}$) for gas molecules adsorbed on the clean surface of ZnOGLNS has been computed by the following equation:

$$
\begin{equation*}
\Delta E_{\text {ads }}=E_{\text {gasZnoclins }}-\left(E_{\text {gas }}+E_{\text {Znoclins }}\right) \tag{3.1}
\end{equation*}
$$

where E \qquad is the total energy of gas molecules adsorbed on the ZnOGLNS surface, E_{gss} and $E_{\text {znocins }}$ are the total energies of the isolated gas molecules and clean surface of ZnOGLNS, respectively.

The bond strength ($B S$ in $\mathrm{kcal} / \mathrm{mol}$) of $\mathrm{Zn}-\mathrm{O}$ bond in bare ZnO nanosheets has been computed using the coulomb's law as following equation:

where N_{0} is an Avogadro number, $q_{2_{n}}$ and q_{0} are electronic charges (e) of zinc and oxygen atoms, respectively and $r_{2 n-6}(\AA)$ is distance between zinc and oxygen atoms.

จุหาลงกรณ์มหาวิทยาลัย

CHATER IV

RESULTS AND DISCUSSION

In the present study, the adsorption of gaseous oxygen, carbon monoxide, nitric oxide, nitrogen dioxide, nitrous oxide, ammonia, hydrogen and water molecules on the ZnO nanoclusters (ZnONCs) and ZnO nanosheets (ZnONS) i.e. ZnO nanoclusters of aromatic-like ($\mathrm{AL}-\mathrm{ZnONC}, \mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}$), naphthalene-like (NLL $\mathrm{ZnONC}, \mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}$), pyrene-like PRL-like ($\mathrm{PRL}-\mathrm{ZnONC}, \mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}$), and ZnO nanosheets of coronene-like ($\mathrm{CNL}-\mathrm{ZnONS}, \mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}$) and circumcoronene-like (CCL-ZnONS, $\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}$) and their electronic properties have been investigated. The details of results and discussion were shown below.
4.1 The optimized structures and $\mathrm{Zn}-\mathrm{O}$ bond strength

The B3LYP/LanL2DZ-optimized structures of the AL-ZnONC, NLLZnONC, and PRL-ZnONC nanoclusters and the CNL-ZnOGLNS and CCLZnOGLNS nanosheets obtained by all-atom geometry optimization method were shown in Figure 4.1. The molecular symmetries for B3LYP/LanL2DZ-optimized structures of the AL-ZnONC ($C_{3 \mathrm{~h}}$), NLL-ZnONC $\left(C_{2 v}\right)$, PRL-ZnONC $\left(C_{2 v}\right)$, CNLZnOGLNS $\left(C_{3 \mathrm{~h}}\right)$ and CCL-ZnOGLNS $\left(C_{3 \mathrm{~h}}\right.$, were obtained by assumption of their perfect geometries; their optimized geometries were hardly distorted as shown in Figure 2.1. The bond strengths of outen $\mathrm{Zn}-\mathrm{O}$ bonds of all the ZnONCs and ZnOGLNSs were much weaker than inner $\mathrm{Zn}-\mathrm{O}$ bonds. All the ZnONCs and ZnOGLNSs, the bond strengths of their outer $\mathrm{Zn}-\mathrm{O}$ bonds which zinc were terminated by hyfogen atom, were found within the energy range of -301.88 to $-316.65 \mathrm{kcal} / \mathrm{mol}$. The bond strengths of the most inner Zn-O bonds of ZnOGLNSs computed using equation (3.2) were in order: CCL-ZnOGLNS ($-487.10 \mathrm{kcal} / \mathrm{mol}$) > CNL-ZnOGLNS ($-485.52 \mathrm{kcal} / \mathrm{mol}$) > PRL-ZnONC ($-474.93 \mathrm{kcal} / \mathrm{mol}$).

(a)

(b)

(c) N

(e)

Figure 4.1 The B3LYP/LanL2DZ-optimized structures of (a) the AL-ZnONC, (b) NLL-ZnONC, (c) PRL-ZnONC, (d) CNL-ZnONS and (e) CCL-ZnONS and their energy gaps and molecular symmetries. The atomic labeling of their representative atoms depend on their molecular symmetries.

4.2 Adsorption of molecule gaseous on ZnO nanoclusters and ZnO nanosheets

4.2.1 Adsorption of oxygen molecule

Geometry configurations of oxygen adsorptions on the rigid structures of the AL-ZnONC, NLL-ZnONC, and PRL-ZnONC nanoclusters and the CNL-ZnOGLNS and CCL-ZnOGLNS nanosheets were obtained as shown in Figures 4.2 and 4.3. The number of energy minima of oxygen adsorptions on the AL-ZnONC of nine configurations was fouhd for each side/of its molecylar planes. These energy minima were obtained from the structure optimizations of interaction configurations within one thirc offeach side of the AL-ZnONC molecular area and oxygen adsorptions over the whole AL-ZnONC molecular area were generated using $C_{3 h}$ symmetrical operation. The most stable configuration of oxygen adsorption on the AL-ZnONC was represented by the configuration of oxygen \#1 of which the adsorption energy was $-29.87 \mathrm{kcal} / \mathrm{mol}(\mathrm{O}-\mathrm{H}=1.00 \AA)$. Adsorption energies of oxygen on studied nanoclusters and nanosheets were shown in Table 4.1.

(a)

(b)

(c)

Figure 4.2 Plots of oxygen molecules as minimum energy structures of their adsorptions on (a) the $\mathrm{AL}-\mathrm{ZnONO}\left(\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}\right)$, (b) $\mathrm{NLL}-\mathrm{ZnONC}\left(\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}\right)$ and (c) PRL- $\mathrm{ZnONC}\left(\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{4}\right)$. The molecules labeled with numbers represent the oxygen molecule interacting with ZnONC as representative of molecular symmetry of ALZnONC ($C_{3 \mathrm{~h}}$), NLL-ZnONC ($C_{2 v}$) and PRL-ZnONC ($C_{2 \mathrm{v}}$). Adsorption energies in $\mathrm{kcal} / \mathrm{mol}$ were presented.

Figure 4.3 Plots of oxygen molecules as minimum energy structures of their adsorptions on (a) CNL- $\mathrm{ZnONS}\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ and (b) CCL-ZnONS $\left(\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}\right)$ as minimum energy structures. The molecules labeled with numbers represent the oxygen molecule interacting with ZnONCs as representative of molecular symmetry of CNL-ZnONS $\left(C_{3 \mathrm{~h}}\right)$ and CCL-ZnONS $\left(C_{3 \mathrm{~h}}\right)$. Adsorption energies in $\mathrm{kcal} / \mathrm{mol}$ were presented.

Table 4.1 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of O_{2} on ZnONCs and ZnOGLNSs , and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs , ZnOGLNSs , and their O_{2} adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

ZnOGLNSs/oxygen adsorption	$\Delta E_{\text {ads }}(\mathrm{kcal} / \mathrm{mol})$	$\Delta E_{\mathrm{GAP}}(\mathrm{eV})$
AL-ZnONC:		6.47
$\mathrm{O}_{2}+\mathrm{AL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{AL}-\mathrm{ZnONC}$ (1)	-29.87	3.50
$\mathrm{O}_{2}+\mathrm{AL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{AL}-\mathrm{ZnONC}$ (2)	-9.30	2.14
$\mathrm{O}_{2}+\mathrm{AL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{AL}-\mathrm{ZnONC}$ (3)	-4.24	1.49
NLL-ZnONC:		5.32
$\mathrm{O}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{NLL}-\mathrm{ZnONC}$ (1)	--23.91	2.55
$\mathrm{O}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{NLL}-\mathrm{ZnONC}$ (2)	-33.09	3.41
$\mathrm{O}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ NLL-ZnONC (3)	-30.97	3.35
$\mathrm{O}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ NLL-ZnONC (4)	-5.27	1.25
$\mathrm{O}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{NLL}-\mathrm{ZnONC}(5)$	- 10.12	2.01
$\mathrm{O}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{NLL}-\mathrm{ZnONC}$ (6)	- -8.32	2.06
$\mathrm{O}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{NLL}-\mathrm{ZnONC}$ (7)	-9.31	2.12
$\mathrm{O}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{NLL}-\mathrm{ZnONC}$ (8)	-5.72	0.87
$\mathrm{O}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{NLL}-\mathrm{ZnONC}$ (9)	-29.22	3.46
$\mathrm{O}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{NLL}-\mathrm{ZnONC}$	-30.04	3.50
PRL-ZnONC:		4.26
$\mathrm{O}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ PRL-ZnONC (1)	-28.14	2.73
$\mathrm{O}_{2}+$ PRL-ZnONC $\rightarrow \mathrm{O}_{2} /$ PRL-ZnONC (2)	-8.71	1.03
$\mathrm{O}_{2}+$ PRL-ZnONC $\rightarrow \mathrm{O}_{2} /$ PRL -ZnONC (3)	7.16	0.54
$\mathrm{O}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ PRL-ZnONC (4)	-10.64	1.16
$\mathrm{O}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ PRL-ZnONC (5)	9.51	0.99
$\mathrm{O}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ PRL-ZnONC (6)	27.15	2.48
$\mathrm{O}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ PRL-ZnONC (7)	1132-34.53	3.33
$\mathrm{O}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ PRL-ZnONC (8)	(1)-31.15	3.18
$\mathrm{O}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} / \mathrm{PRL}-\mathrm{ZnONC}$ (9)	2./2)-11.59	1.82
$\mathrm{O}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ PRL-ZnONC (10)	753) -11.03	1.92
$\mathrm{O}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ PRL-ZnONC (11)	- -11.55	1.86
$\mathrm{O}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ PRL-ZnONC (12)	\%/-33.15	3.35
$\mathrm{O}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{O}_{2} /$ PRL-ZnONC (13)	$\pm=-34.84$	3.32
CNL-ZnONS:		4.83
$\mathrm{O}_{2}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CNL}-\mathrm{ZnONS}$ (1)	6.31	1.06
$\mathrm{O}_{2}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CNL}-\mathrm{ZnONS}$ (2)	-10.05	1.95
$\mathrm{O}_{2}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} /$ CNL-ZnONS (3)	-10.94	1.90
$\mathrm{O}_{2}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CNL}-\mathrm{ZnONS}(4)$	-11.02	1.92
$\mathrm{O}_{2}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CNL}-\mathrm{ZnONS}$	-25.30	2.39
$\mathrm{O}_{2}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CNL}-\mathrm{ZnONS} \text { (6) }$	$0 .)^{-34.17}$	3.34
$\mathrm{O}_{2}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CNL}-\mathrm{ZnONS}(7)$	$-31,50$	3.27
$\mathrm{O}_{2}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CNL}-\mathrm{ZnONS} \text { (8) }$	-10.53	2.15
CCL-ZnONS:		3.74
$\mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (1)	-10.25	1.08
$\mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (2)	-11.78	1.41
$\mathrm{O}_{2}+\mathrm{CGL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CCL}-\mathrm{ZnONS}(3)$		9 ${ }^{1} 1.41$
$\begin{aligned} & \mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CCL}-\mathrm{ZnONS}(4) \\ & \mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \text { CCL-ZnONS }(5) \end{aligned}$	$/ / \begin{gathered} -11.98 \\ -9.82 \end{gathered}$	- $\begin{aligned} & 1.41 \\ & 0.90\end{aligned}$
$\mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (6)	-12.51	1.51
$\mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} /$ CCL-ZnONS (7)	-12.40	1.62
$\mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (8)	-12.38	1.46
$\mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (9)	-12.10	1.55
$\mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (10)	-29.20	2.51
$\mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (11)	-35.26	3.22
$\mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (12)	-31.34	3.03
$\mathrm{O}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{O}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (13)	-38.83	2.95

Due to the NLL-ZnONC and PRL-ZnONC nanoclusters were in $C_{2 \mathrm{v}}$ symmetry, the numbers of oxygen adsorptions on each side of their molecular planes were nineteen and twenty six configurations, respectively, see Figure 4.2(b) and (c). Five different types of adsorption sites of oxygen chemisorbed ($\mathrm{O}-\mathrm{H}=1.01 \AA$) [45] on the NLL-ZnONC were located in vicinity of hydrogen of zinc hydride and the positions of adsorbed oxygen were the oxygen \#1-23.91 kcal/mol ($\mathrm{O}-\mathrm{H}=1.00 \AA$), \#2 -33.09 kcal/mol ($\mathrm{O}-\mathrm{H}=1.00 \AA$), \#3 $-30.97 \mathrm{kcal} / \mathrm{mol}(\mathrm{O}-\mathrm{H}=1.00 \AA$), \#9 -29.22 $\mathrm{kcal} / \mathrm{mol}(\mathrm{O}-\mathrm{H}=1.00 \AA)$ and $\# 10-30.04 \mathrm{kcal} / \mathrm{mol}(\mathrm{O}-\mathrm{H}=1.00 \AA)$. Six different types of adsorption sites of oxygen chemisorbed on the PRL-ZnONC were also located in vicinity of hydrogen of zinc hydride and the positions of adsorbed oxygen were the oxygen \#1 $-28.14 \mathrm{kcal} / \mathrm{mol}(\mathrm{O}-\mathrm{H}=1.00 \AA$), \#6-27.15 kcal/mol ($\mathrm{O}-\mathrm{H}=$ $1.00 \AA$), \#7-34.53 kcal/mol $(\mathrm{O}-\mathrm{H}=1.00 \AA)$, \#8 $-31.15 \mathrm{kcal} / \mathrm{mol}(\mathrm{O}-\mathrm{H}=1.00 \AA)$ and $\# 12-33.15 \mathrm{kcal} / \mathrm{mol}(\mathrm{O}-\mathrm{H}=1.00 \AA)$ and $\# 13-34.83 \mathrm{kcal} / \mathrm{mol}(\mathrm{O}-\mathrm{H}=1.00 \AA)$.

The CNL-ZnOGLNS and CCL-ZnOGLNS were in $C_{3 h}$ symmetry, the numbers of oxygen adsorptions on each side of their molecular planes were forty two and seventy two configurations, respectively, see Figure 4.3. Three different types of adsorption sites of oxygen chemisorbed on the CNL-ZnOGLNS which were the oxygen \#5-25.30 kcal/mol $(\mathrm{O}-\mathrm{H}=1.00 \AA)$, \#6-34.17 kcal/mol ($\mathrm{O}-\mathrm{H}=1.00 \AA$) and \#7 $-31.50 \mathrm{kcal} / \mathrm{mol}(\mathrm{O}-\mathrm{H}=1.00 \AA)$. Four different types of adsorption sites of oxygen chemisorbed on the CCL-ZnOGLNS as the posifions of oxygen \#10-29.20 $\mathrm{kcal} / \mathrm{mol}(\mathrm{O}-\mathrm{H}=1.02 \AA)$, \#11-35.26 kcal/mol ($\mathrm{O}-\mathrm{H}=1.02 \AA$), \#12 $-31.34 \mathrm{kcal} / \mathrm{mol}$ $(\mathrm{O}-\mathrm{H}=1.02 \AA)$ and $\# 13-38.83 \mathrm{kcal} / \mathrm{mol}(\mathrm{O}-\mathrm{H}=1.02 \AA)$. It can be concluded that the chemisorption of oxygen on any large ZnOGLNSs occured on the hydride adsorption siteof 9 ZnOGLNSS edge. Type number of chemisorption of oxygen on large $C_{3 h}$-symmetrical ZnOGLNS , was the number of hydride of zinc hydride ($N_{\text {hydride) }}$ on reach edge plus two, N hydfide +2 . The-Figure 4.3 /showned that the oxygen adsorptions on the central ring of the CCL-ZnOGLNS, the adsorbed oxygen were located at positions above the oxygen in CCL-ZnOGLNS hexagonal ring by pointing its oxygen atom toward the nanosheet oxygen with slightly tilt direction. Nevertheless, the oxygen adsorptions occurring on oxygen of the CCL-ZnOGLNS hexagonal rings closed to the central hexagonal ring also show their adsorption position above the nanosheet oxygen, see Figure 4.3(b). This suggests that the oxygen adsorptions on large ZnOGLNSs over hexagonal ring in central region, adsorbed
oxygen molecules located at position above the nanosheet oxygen have been expected.

4.2.1.1 Atomic charge distribution

The natural bond orbital (NBO) charges on oxygen and zinc atoms in the ALZnONC, NLL-ZnONC, PRL-ZnONC, CNL-ZnOGLNS and CCL-ZnOGLNS were shown in Figure 4.4. It shows that atomic charges on oxygen and zinc atoms in large ZnOGLNSs such as CNL-ZnOGLNS and CCL-ZnOGLNS were nearly the same value because they bonded with hydride or proton. It also showed that charge distributions over all hydrogen atoms in ZnOGLNSs affected atomic charges of zinc and oxygen atoms of their nanosheets. Atomic charges of zinc and oxygen atoms in large ZnOGLNSs at inner (or central) region with equal charge distribution would be expected. The negative and positive charges on the edge of ZnOGLNSs respectively formed due to the charges of hydrides and protons were found.

Figure 4.4 NBO charges (e) of oxygen and zinc atoms on the (a) AL-ZnONC, (b) NLL-ZnONC and (c) PRL-ZnONC.

Figure 4.5 NBO charges (e) of oxygen and zinc atoms on the (a) CNL-ZnONS and (b) CCL-ZnONS.

4.2.1.2 Energy gap

The energy gaps of the clean ZnOGLNSs and their oxygen-adsorption complexes were shown in Table 4.1. The energy gaps of clean ZnOGLNSs were in order: AL-ZnONC (6.47 eV) > NDL-ZnONC (5.32 eV) > CNL-ZnOGLNS (4.83 $\mathrm{eV}) ~>~ P R L-Z n O N C(4.26 \mathrm{eV})>$ CCL-ZnOGLNS (3.74 eV). In all cases, the energy gaps of clean ZnOGLNS were higher than those values of their corresponding O_{2} adsorption complexes, see Table 4.1. This suggests that the ZnOGLNSs were oxygen sensitive materials and could be developed as oxygen sensor based on electrical conductivity. Itappears that the energy gapoof ZnOGLNS was an inverse function of its size except PRL-ZnONC which was more active than expectation. However, the energy gap of large ZnO manosheet should berconverted intoa single value which can be determined using periodic boundary condition (PBC) method; band gap of the wurtzite ZnO was found to be $\approx 3.3 \mathrm{eV}$ [46]. Inverted values of termination-proton numbers ($N_{\text {TP }}$) for AL-ZnONC ($N_{\text {TP }}=6$), NLL-ZnONC ($N_{T P}=8$), PRL-ZnONC $\left(N_{\mathrm{TP}}=10\right)$, CNL-ZnOGLNS $\left(N_{\mathrm{TP}}=12\right)$, and CCL-ZnOGLNS $\left(N_{\mathrm{TP}}=18\right)$ plotted against their energy gaps were shown in Figure 4.6. It shows that the energy gap of large ZnOGLNSs converted to a single value while the inverse value of N_{TP} approached to zero.

Figure 4.6 Plots of energy gaps:of ZnO nanosheets against invert values of their termination-proton numbers ($N_{\text {TP }}$).

4.2.2 Adsorption of carbon monoxide molecule

4.2.2.1 Adsorption energies of CO pointing with C -end

Geometry configurations of CO adsorptions on the rigid structures of the ALZnONC, NLL-ZnONC, and PRL-ZnONC nanoclusters, shown in Figure 4.7 and the CNL-ZnONS, showh in Figure 4.8 and CCL-ZnONS nanosheets, shown in Figure 4.9, were obtained. The CO adsorption configurations of CO pointing with C-end to adsorption Sites of nanoclusters were shown in left side of Figure 4.7 and to adsorption sites of the CNL-ZnONS and CCL-ZnONS nanosheets were shown in Figures 4.8(a) and 4.9(a), respectively.

9

:
(a)

Figure 4.7 R lots of co molecuiles as oninimum energy structures of their adsorptions on (a) the $\mathrm{AL}-\mathrm{ZnONC}\left(\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}\right)$, (b) NLL-ZnONC $\left(\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}\right)$ and (c) PRL-ZnONC $\left(\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}\right)$. Their left and right adsorption maps were CO adsorption on ZnONCs by pointing C-end and O-end toward the adsorption sites, respectively. The set of labeled molecules was representative of CO interacting with AL-ZnONC ($C_{3 h}$), NLL-ZnONC ($C_{2 v}$) and PRL-ZnONC ($C_{2 v}$). Adsorption energies were presented in kcal/mol.

(a)

(b)

Figure 4.8 Plots of CO molecules as minimum energy structures of their adsorptions on CNL-ZnONS $\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ as adsorption configurations of CO with pointing its (a) C-end and (b) O-end toward the adsorption sites of the CNL-ZnONS. The set of labeled molecules was representative of CO adsorption interacting with CNL-ZnONS with $C_{3 \mathrm{~h}}$ symmetry. Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.

Figure 4.9 Plots of carbon monoxide molecules as minimum energy structures of their adsorptions on CCL-ZnONS $\left(\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}\right)$ as (a) adsorption configurations of CO by pointing (a) C-end and (b) O-end toward the adsorption sites. The molecules labeled with numbers represent the oxygen molecule interacting with CCL-ZnONS of molecular symmetry of ($C_{3 \mathrm{~h}}$). Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.

The number of energy minima of CO adsorptions on the AL-ZnONC of six configurations was found for each side of its molecular planes. These energy minima were obtained from the structure optimizations of interaction configurations within one third of each side of the $\mathrm{AL}-\mathrm{ZnONC}$ molecular area and CO adsorptions over the whole AL-ZnONC molecular area were generated using $C_{3 \mathrm{~h}}$ symmetrical operation. The most stable configuration of CO adsorption on the AL-ZnONC was represented by the configuration of CO \#2 of which the adsorption energy was $-4.48 \mathrm{kcal} / \mathrm{mol}$. Adsorption energies of CO on studied nanoclusters and nanosheets were shown in Table 4.2.

As the NLL-ZnONC and PRL-ZnONC nanoclusters were in $C_{2 \mathrm{v}}$ symmetry, the numbers of CO adsorptions on each side of their molecular planes were nine and thirteen configurations, as shown/ in the left sides of Figure 4.7(b) and (c), respectively. There were five types of adsorption positions on the NLL-ZnONC which were composed of adsorption position CO \#1 ($-3.61 \mathrm{kcal} / \mathrm{mol}$), \#2 (-4.53 $\mathrm{kcal} / \mathrm{mol})$, \#3 ($-4.24 \mathrm{kcal} / \mathrm{mol}$), \#4 ($-5.65 \mathrm{kcal} / \mathrm{mol}$) and \#5 ($-4.67 \mathrm{kcal} / \mathrm{mol}$). There were eight types of adsorption positions on the PRL-ZnONC which were composed of adsorption positions CO \#1 ($-4.53 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-5.01 \mathrm{kcal} / \mathrm{mol}$), \#3 (-4.77 $\mathrm{kcal} / \mathrm{mol})$, \#4 ($-5.73 \mathrm{kcal} / \mathrm{mol}$), \#5 ($-3.83 \mathrm{kcal} / \mathrm{mol}$), \#6 ($-5.03 \mathrm{kcal} / \mathrm{mol}$), \#7 (-3.77 $\mathrm{kcal} / \mathrm{mol})$ and \#8 ($-4.18 \mathrm{kcal} / \mathrm{mol}$).

The CNL-ZnONS and CCL-ZnONS were in C_{3} symmetry, the numbers of CO adsorptions on each side of their molecular planes were eighteen and thirty nine configurations as shown in Figure 4.8(a) and Figure 4.9(a) respectively. There were four types of adsorption positions on the $\mathrm{GNL}-\mathrm{ZnONS}$ which were composed of adsorption position co \#1 (-5.51 kcal/mot), \#2 ($-4.64 \mathrm{kcal} / \mathrm{mgl})$, \#3 ($-3.78 \mathrm{kcal} / \mathrm{mol}$) and \#4 ($-4.89 \mathrm{kcal} / \mathrm{mol}$). There were eight types of adsorption positions on the CCLZnONS which were composed of adsorption positions CO/\#1 ($5.21 \mathrm{kcal} / \mathrm{mol}$), \#2 $(-5.83 \mathrm{kcal} / \mathrm{mol}), \# 3(-5.45 \mathrm{kcal} / \mathrm{mol}), \# 4(-4.91 \mathrm{kcal} / \mathrm{mol}), \# 5{ }^{(}(-3.85 \mathrm{kcal} / \mathrm{mol})$, \#6 ($-4.49 \mathrm{kcal} / \mathrm{mol}$), \#7 ($-4.99 \mathrm{kcal} / \mathrm{mol}$) and \#8 ($-3.95 \mathrm{kcal} / \mathrm{mol}$).

The adsorption energies of CO adsorption by pointing C-end towards to adsorption atoms on AL-ZnONC, NLL-ZnONC, PRL-ZnONC, CNL-ZnONS and CCL-ZnONS were within the ranges of -4.12 to $-4.48,-3.61$ to $-4.72,-3.77$ to $-4.72,-3.78$ to -5.51 and -3.85 to $-5.83 \mathrm{kcal} / \mathrm{mol}$, respectively. On the same position of CO adsorptions either on nanoclusters or nanosheets, the adsorption energies of CO of which the C-end pointing towards the nanosheets atoms were more stable that the

O-end by within 1.14 to $2.57 \mathrm{kcal} / \mathrm{mol}$. The CO adsorptions with pointing C-end towards atoms of the ZnOGLNSs were categorized into two bond types, $[\underline{C O} \cdots \mathrm{H}]$ and $[\underline{C O} \cdots \mathrm{Zn}]$. The [$\underline{\mathrm{CO}} \cdots \mathrm{H}]$ bond occurred when the CO adsorption with pointing $\mathrm{C}-$ end toward hydroxyl hydrogen of the ZnOGLNSs to which the molecular axis of CO was nearly parallel to the molecular plane. But the $[\underline{C} O \cdots H]$ bond occurred when the CO adsorption with pointing C -end towards Zn atom of the ZnOGLNS to which the molecular axis of CO was nearly perpendicular to the molecular plane.

Table 4.2 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of CO pointing its C-end toward surfaces of ZnONCs and ZnOGLNS and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs, ZnOGLNSs and their CO adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

4.2.2.2 Adsorption energies of $\mathbf{C O}$ pointing with O -end

The CO adsorption configurations of CO pointing with O-end to adsorption sites of nanoclusters were shown in right side of Figure 4.7 and to adsorption sites of the CNL-ZnONS and CCL-ZnONS nanosheets were shown in Figures 4.8(b) and 4.9(b), respectively.

The number of energy minima of CO adsorptions on the AL-ZnONC of six configurations was found for each side of its molecular planes. These energy minima were obtained from the structure optimizations of interaction configurations within one third of each side of the $\mathrm{AL}-\mathrm{ZnONC}$ molecular area and CO adsorptions over the whole AL-ZnONC molecular area were generated using $C_{3 \mathrm{~h}}$ symmetrical operation. The most stable configuration of CO adsorption on the AL-ZnONC was represented by the configuration of $\mathrm{CO} \# 2$ of which the adsorption energy was $-3.28 \mathrm{kcal} / \mathrm{mol}$. Adsorption energies of CO on studied nanoclusters and nanosheets were shown in Table 4.3.

As the NLL-ZnONC and PRL-ZnONC nanoclusters were in $C_{2 \mathrm{v}}$ symmetry, the numbers of CO adsorptions on each side of their molecular planes were nine and thirteen configurations, as shown in the right sides of Figure 4.7(b) and (c), respectively. There were five types of adsorption positions on the NLL-ZnONC which were composed of adsorption position CO \#1 $(-2.15 \mathrm{kcal} / \mathrm{mol})$, \#2 (-3.26 $\mathrm{kcal} / \mathrm{mol})$, \#3 ($-2.48 \mathrm{kcal} / \mathrm{mol}$) and \#4 ($-3.32 \mathrm{kcal} / \mathrm{mol}$) and \#5 ($-3.47 \mathrm{kcal} / \mathrm{mol}$). There were eight types of adsorption positions on the PRL-ZnONC which were composed of adsorption positions CO \#1 ($-2.88 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-3.80 \mathrm{kcal} / \mathrm{mol}$), \#3 $(-3.47 \mathrm{kcal} / \mathrm{mol})$, \#4 ($-3.52 \mathrm{kcal} / \mathrm{mol}), \# 5(-2.10 \mathrm{kcal} / \mathrm{mol}), \# 6(-2.46 \mathrm{kcal} / \mathrm{mol})$, \#7 $(-1.99 \mathrm{kcal} / \mathrm{mol})$]and \#8 ($-2.93 \mathrm{kcal} / \mathrm{mol}$).

The CNL-ZnONS and CGL-ZnONS/were in/C3R Symmetry, the numbers of CO adsorptions on each side of their molecular planes were thirty four and forty five configurations as shown in Figures 4.8(b) and 4.9(b) respectively. There were four types of adsorption positions on the CNL-ZnONS which were composed of adsorption position CO \#1 ($-3.34 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-3.37 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-2.06 \mathrm{kcal} / \mathrm{mol}$) and \#4 ($-2.58 \mathrm{kcal} / \mathrm{mol}$). There were eight types of adsorption positions on the CCLZnONS which were composed of adsorption positions CO \#1 ($-4.07 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-3.56 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-3.01 \mathrm{kcal} / \mathrm{mol}$), \#4 ($-3.44 \mathrm{kcal} / \mathrm{mol}$), \#5 ($-2.15 \mathrm{kcal} / \mathrm{mol}$), \#6 $(-2.64 \mathrm{kcal} / \mathrm{mol})$, \#7 ($-2.50 \mathrm{kcal} / \mathrm{mol}$) and \#8 ($-2.08 \mathrm{kcal} / \mathrm{mol}$).

The adsorption energies of CO adsorption with pointing O-end towards to adsorption atoms on AL-ZnONC, NLL-ZnONC, PRL-ZnONC, CNL-ZnONS and CCL-ZnONS were within the ranges of -2.39 to $-3.47,-1.99$ to $-3.80,-2.06$ to $-3.37,-2.06$ to -3.37 and -2.08 to $-4.07 \mathrm{kcal} / \mathrm{mol}$, respectively.

4.2.2.3 Bond types and maximum numbers of CO adsorption

The bond distances between atoms of CO atoms and atoms of adsorption sites were shown in Table 4.4. Plots of all possible adsorption energies of CO on all ZnONC, PRL-ZnONC nanoclusters and PRL-ZnONC, CNL-ZnONS and CCLZnONS nanosheets against their bond distances were shown in Figure 4.10. It shows that the four types of bonds [$\mathrm{CO} \cdots \mathrm{H}],[\mathrm{CO} \cdots \mathrm{Zn}],[\mathrm{CO} \cdots \mathrm{H}]$ and $[\mathrm{CO} \cdots \mathrm{Zn}]$, separated as four zones were found. The bond distances of four types, [$\underline{C O} \cdots \mathrm{H}],[\underline{\mathrm{CO}} \cdots \mathrm{Zn}]$, $[\mathrm{CO} \cdots \mathrm{H}]$ and $[\mathrm{CO} \cdots \mathrm{Zn}]$ were within the ranges of 2.21 to $2.24 \AA, 2.04$ to $2.07 \AA, 2.61$ to $2.80 \AA$ and 2.62 to $2.96 \AA$ which their corresponding adsorption energies were within the ranges of -4.18 to $-5.21,-3.61$ to $-5.83,-2.93$ to -4.07 and -1.99 to -3.52 $\mathrm{kcal} / \mathrm{mol}$, respectively. The numbers of bonds of four types were $8,8,18$ and 18 for $[\underline{C O} \cdots \mathrm{H}],[\underline{\mathrm{CO}} \cdots \mathrm{Zn}],[\underline{\mathrm{O}} \cdots \mathrm{H}]$ and $[\mathrm{CO} \cdots \mathrm{Zn}]$, respectively. The maximum numbers of CO adsorbed on ZnOGLNSs and their formulae were shown in Table 4.5. It shows formulae to compute the maximum numbers for CO adsorbed on the $C_{3 \mathrm{~h}}$ and $C_{2 \mathrm{v}}$ symmetric ZnOGLNS(i) modeled structures as defined in Figure 4.11, respectively. The $C_{3 \mathrm{~h}}$-ZnOGLNS(i) and $C_{2 v}$-ZnOGLNS(i) were the radial layer extended structures of $\mathrm{AL}-\mathrm{ZnONC}$ and PRL-ZnONC, respectively. Therefore, the one layer structures for thê $\mathrm{G}_{3 h}-\mathrm{ZnOGLNS}(i)$ and $C_{22}-\mathrm{ZnOGLNS}$ (i) were the AL-ZnONC and PRL-ZnONC, respectively. The maximum numbers for CO adsorbed on the $C_{3 \mathrm{~h}}$ ZnOGENS (i) and $6 \mathrm{a}_{2}-2$ ZMOGNS((i) were $6 \sum_{i=1}^{i}(2 i-11)+3 i$ and $2 \sum_{i=1}^{i}(6 i+1)+2 i+3$, respectively. The maximum numbers for CO adsorbed on the $C_{3 h}-\mathrm{ZnOGLNS}(i)$ and $C_{2 \mathrm{v}} \mathrm{ZnOGLNS}(i)$ were computed from $n_{\mathrm{MAX}}=2 \mathrm{x}+\frac{1}{2} \mathrm{y}$, where x and y were numbers of zinc and hydrogen atoms in their ZnOGLNSs, respectively.

4.2.2.4 Energy gap

The energy gaps of CO adsorptions either with pointing C-end or O-end on the AL-ZnONC or PRL-ZnONC were higher than the corresponding bare sheets. For CO adsorptions on the large nanosheets, PRL-ZnONC, CNL-ZnONS and CCLZnONS, their energy gaps were slightly changed but some of energy gaps of adsorption states were slightly higher than their corresponding clean nanosheets. It means that CO adsorptions on the large nanosheets were quite stable and they can be used as CO storage materials.

Table 4.3 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of CO pointing its O-end toward surfaces of ZnONCs and ZnOGLNSs and energy gaps (ΔE_{GAP} in eV) of bare surfaces of $\mathrm{ZnONCs}, \mathrm{ZnOGLNS}$, computed at the B3LYP/LanL2DZ level of theory.

Figure 4.10 Plots of all possible adsorption energies of CO on all the ZnONC, PRLZnONC nanoclusters and PRL-ZnONC, CNL-ZnONS and CCL-ZnONS nanosheets against their bond distances. Four bond distances types [$\underline{C O} \cdots \mathrm{H}]$, $[\underline{\mathrm{CO}} \cdots \mathrm{Zn}],[\mathrm{CO} \cdots \mathrm{H}]$ and $[\mathrm{CO} \cdots \mathrm{Zn}]$, separated as four zones were found.

Figure 4.11 The structure models of (a) $C_{3 \mathrm{~h}}$ symmetric $\mathrm{ZnOGLNS}(i)$ and (b) $C_{2 \mathrm{v}}$ symmetric $\mathrm{ZnOGLNS}(i)$. The layer numbers of $C_{3 \mathrm{~h}}-\mathrm{ZnOGLNS}(i)$ and $C_{2 v}-$ ZnOGLNS(i) defined as radial layer models of which the one layer structures (the most inner) were AL-ZnONC and PRL-ZnONC, respectively. The numbers labeled
in the center of hexagonal rings indicate the number of most outer layer of the ZnOGLNS.

Table 4.4 Bond distances (in \AA) between CO atoms and atoms of adsorption sites.

Table 4.5 Maximum number of CO adsorbed on ZnOGLNSs and their formulae.

ZnOGLNSs	Symmetries	Clusters	Maximum number of adsorbed CO , $n_{\text {MAX }}{ }^{\text {a }}$ (molecules)
AL-ZnONC	$C_{3 \mathrm{~h}}$	$\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}$	9
NLL-ZnONC	$C_{2 \mathrm{v}}$	$\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}$	14
PRL-ZnONC	$C_{2 \mathrm{v}}$	$\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}$	21
CNL-ZnONS	$C_{3 \mathrm{~h}}$	$\mathrm{Zn}_{12} \mathrm{O}$	30
CCL-ZnONS	$C_{3 \mathrm{~h}}$	$\mathrm{Zn}_{27} \mathrm{O}_{27}$	63
ZnOGLNSs of large number of layers:			
$C_{3 \mathrm{~h}}-\mathrm{ZnOGLNS}(i)^{\text {b }}$			
$C_{2 v}-\mathrm{ZnOGLNS}(i)^{\text {d }}$			$(6 i+1)+2 i+3$

${ }^{\text {a }}$ Computed from, $n_{\text {MAX }}=2 x+\frac{1}{2} y$, where x and y were numbers of zinc and hydrogen atoms in their ZnOGLNSs.
${ }^{\mathrm{b}} i$-layer ZnOGLNS defined in Figure 4.11(a), where i was a number of radial layers of the $C_{3 \mathrm{~h}}-\mathrm{ZnOGLNS}(i)$ modeled structure.
${ }^{\mathrm{c}} \mathrm{x}=3 \sum_{i=1}^{i}(2 i-1)$ and $\mathrm{y}=6 i$, where i was a number of radial layers of the $C_{3 h}-$

ZnOGLNS(i) modeled structure. $\%$ व 2 ?

${ }^{\mathrm{d}} i$-layer ZnOGLNS defined in Figure 4.11(b), where i was a number of radial layers

${ }^{\mathrm{e}} \mathrm{x}=1+\sum_{i=1}^{i}(6 i+1)$ and $\mathrm{y}=6 i+4$, where i was a number of radial layers of the $C_{2 v}-$ ZnOGLNS(i) modeled structure.

4.2.3 Adsorption of water molecule

4.2.3.1 Adsorption energies of $\mathbf{H}_{\mathbf{2}} \mathrm{O}$

The B3LYP/LanL2DZ-optimized structures of adsorption configurations of $\mathrm{H}_{2} \mathrm{O}$ adsorbed on the rigid structures of the AL-ZnONC, NLL-ZnONC, PRLZnONC, CNL-ZnONS and CCL-ZnONS were shown in Figure 4.12. These adsorption structures were symmetrically representative of all possible water adsorptions on the whole nanosheets of AL-ZnONC, NLL-ZnONC, PRL-ZnONC, CNL-ZnONS and CCL-ZnONS. Due to the adsorption configurations of water adsorbed on the ZnONCs and ZnOGLNS and their molecular symmetries, all water molecules as minimum energy structures of their adsorptions can be plotted as shown in Figure 4.13.

Figure 4.12 The adsorption configurations of water adsorbed on (a) the AL-ZnONC, (b) NLL-ZnONC, (c) PRL-ZnONC, (d) CNL-ZnONS and (e) CCL-ZnONS. The bond distances bonds were in \AA.

(a)

(b)

(c)

(d)
(e)

Figure 4.13 Plots of water molecules as minimum energy structures of their adsorptions on (a) the $\mathrm{AL}-\mathrm{ZnONC}\left(\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}\right)$, (b) $\mathrm{NL} \mathrm{L}-\mathrm{ZnONC}\left(\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}\right)$, (c) PRL-ZnONC ($\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}$), (d) CNL-ZnONS $\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ and (e) CCL-ZnONS $\left(\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}\right)$. The molecules labeled with numbers represent the water molecules interacting with ZnONC and ZnOGLNS as representative of molecular symmetries of $\mathrm{AL}-\mathrm{ZnONC}\left(C_{3 \mathrm{~h}}\right), \mathrm{NLL}-\mathrm{ZnONC}\left(C_{2}{ }^{\circ}\right)$, PRL-ZnONC $\left(C_{2 \mathrm{v}}\right)$, CNL-ZnOGLNS $\left(C_{3 \mathrm{~h}}\right)$ and CCL-ZnOGLNS ($C_{3 \mathrm{~h}}$). Ađsorption energies in kcal/mol were presented.

จหาลงกรณมมหาวทยาลย

There was one type (called type I) of adsorption configuration of $\mathrm{H}_{2} \mathrm{O}$ on the AL-ZnONC. The water adsorption, type I occurred by the water pointing its oxygen and hydrogen toward zinc and hydride hydrogen atoms of the surface, see Figure 4.12(a). The number of energy minima of $\mathrm{H}_{2} \mathrm{O}$ adsorptions on the AL-ZnONC of three configurations was found for each side of its molecular planes. These energy minima were obtained from the structure optimizations of interaction configurations within one third of each side of the $\mathrm{AL}-\mathrm{ZnONC}$ molecular area and $\mathrm{H}_{2} \mathrm{O}$ adsorptions
over the whole AL-ZnONC molecular area were generated using $C_{3 \mathrm{~h}}$ symmetrical operation. The adsorption energy of $\mathrm{H}_{2} \mathrm{O}$ on the $\mathrm{AL}-\mathrm{ZnONC}$ was $-11.05 \mathrm{kcal} / \mathrm{mol}$ as shown in Figure 4.12(a) and Table 4.6.

The adsorption configurations of $\mathrm{H}_{2} \mathrm{O}$ on NLL-ZnONC of two types, type I and type II were found. The type II was the water adsorption by pointing its oxygen and hydrogen toward zinc and inner oxygen atoms of the surface, see Figure 4.12(b). The water adsorptions of type I were composed of adsorption position $\mathrm{H}_{2} \mathrm{O} \# 1$ ($-10.08 \mathrm{kcal} / \mathrm{mol}$, type I) and $\mathrm{H}_{2} \mathrm{O}$ \#2 ($-11.45 \mathrm{kcal} / \mathrm{mol}$, type I) and type II was $\mathrm{H}_{2} \mathrm{O}$ \#3 (-13.78 kcal/mol, type II).

There were four types of water adsorptions on the PRL-ZnONC which were composed of six adsorption positions $\mathrm{H}_{2} \mathrm{O}$ \#1 ($-12.69 \mathrm{kcal} / \mathrm{mol}$, type I), \#2 (-14.11 $\mathrm{kcal} / \mathrm{mol}$, type II), \#3 ($-13.96 \mathrm{kcal} / \mathrm{mol}$, type III), \#4 ($-10.83 \mathrm{kcal} / \mathrm{mol}$, type IV), \#5 ($-12.41 \mathrm{kcal} / \mathrm{mol}$, type III) and \#6 ($-9.21 \mathrm{kcal} / \mathrm{mol}$, type I). The type I, the water adsorption by pointing its oxygen atom towards the zinc surface atom and its hydrogen atom towards the hydride-hydrogen surface atom were the adsorption position \#1 and \#6. The type II was the water adsorption with pointing its oxygen towards the zinc surface atom and its hydrogen atom towards the outer oxygen atom which corresponds to the adsorption position \#2. The type III was the water adsorption with pointing its oxygen towards the zinc surface atom and its hydrogen atom towards the inner oxygen atom which corresponds to the adsorption positions \#3 and \#5. The type IV was the water adsorption with pointing its oxygen towards the zinc surface atom and its hydrogen atom towards the outer oxygen atom which corresponds to the adsorption position \#4.

The ONL-ZnONS andCCLOZnONS/ which were in $C_{3 h}$ symmetry, the numbers of $\mathrm{H}_{2} \mathrm{O}$ adsorptions on each side of their molecular planes were six and eleven/Configurations as shown in Figure 4 112(d) and/(e), respectively̆. Definition of types I, II, III and TV as used for the AL-ZnONC, NLL-ZnONC and PRL-ZnONC, we can therefore apply the same definition for the CNL-ZnONS and CCL-ZnONS as follows.

The four types of water adsorptions on the CNL-ZnONS were also composed of six adsorption positions of $\mathrm{H}_{2} \mathrm{O} \# 1(-12.79 \mathrm{kcal} / \mathrm{mol}$, type II), \#2 ($-12.48 \mathrm{kcal} / \mathrm{mol}$, type III), \#3 ($-10.10 \mathrm{kcal} / \mathrm{mol}$, type I), \#4 ($-9.86 \mathrm{kcal} / \mathrm{mol}$, type IV), \#5 (-11.46 $\mathrm{kcal} / \mathrm{mol}$, type III) and \#6 ($-10.15 \mathrm{kcal} / \mathrm{mol}$, type III). The four types of water adsorptions on the CCL-ZnONS were composed of eleven adsorption positions of
$\mathrm{H}_{2} \mathrm{O}$ \#1 ($-14.08 \mathrm{kcal} / \mathrm{mol}$, type II), \#2 ($-13.93 \mathrm{kcal} / \mathrm{mol}$, type III), \#3 (-10.33 $\mathrm{kcal} / \mathrm{mol}$, type III), \#4 ($-10.41 \mathrm{kcal} / \mathrm{mol}$, type III), \#5 ($-10.68 \mathrm{kcal} / \mathrm{mol}$, type I), \#6 ($-10.96 \mathrm{kcal} / \mathrm{mol}$, type IV), \#7 ($-12.51 \mathrm{kcal} / \mathrm{mol}$, type III), \#8 ($-10.86 \mathrm{kcal} / \mathrm{mol}$, type III), \#9 ($-10.31 \mathrm{kcal} / \mathrm{mol}$, type III), \#10 ($-9.43 \mathrm{kcal} / \mathrm{mol}$, type III) and \#11 (-9.05 $\mathrm{kcal} / \mathrm{mol}$, type I).

There were three bond types, types [$\left.\underline{H}_{2} \mathrm{O} \cdots \mathrm{O}\right],\left[\underline{H}_{2} \mathrm{O} \cdots \mathrm{H}_{\text {hydride }}\right]$ and $\left[\mathrm{H}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn}\right]$ of all the adsorption energies of $\mathrm{H}_{2} \mathrm{O}$ on the AL-ZnONC, NLL-ZnONC, PRLZnONC, CNL-ZnONS and CCL-ZnONS as shown in Figure 4.14. It shows that bond distances of the bond types $\left[\underline{H}_{2} \mathrm{O} \cdots \mathrm{O}\right],\left[\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{\text {hydride }}\right]$ caused by interaction between partial positive charge of water hydrogen atom and partial negative charge of surface atoms (oxygen and hydride hydrogen atoms) were a little bit shorter than the bond distance of the bond type $\left[\mathrm{H}_{2} \mathrm{O} \% \mathrm{Zn}\right]$ which caused by interaction between water oxygen and zinc surface atom, as listed in Table 4.7.

The energy gaps ($\Delta E_{G A P}$) of the adsorption complexes $\mathrm{H}_{2} \mathrm{O}$ with the AL ZnONC, NLL-ZnONC, PRL-ZnONG, CNL-ZnONS and CCL-ZnONS were not much different from their corresponding bwere surfaces as shown in Table 4.6.

Table 4.6 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of $\mathrm{H}_{2} \mathrm{O}$ on ZnONCs and ZnOGLNSs, and energy gaps (ΔE_{GAP} in eV) of bare ZnONCs and ZnOGLNSs and their $\mathrm{H}_{2} \mathrm{O}$ adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

Table 4.7 Bond distances between oxygen atom of $\mathrm{H}_{2} \mathrm{O}$ and Zn atom of ZnOGLNSs .

4.2.4 Adsorption of ammonia molecule

4.2.4.1 Adsorption energies of $\mathbf{N H}_{3}$

The B3LYP/LanL2DZ-optimized structures of adsorption configurations of NH_{3} adsorbed on the rigid structures of the AL-ZnONC, NLL-ZnONC, PRLZnONC, CNL-ZnONS and CCL-ZnONS were shown in Figure 4.14. These adsorption structures were symmetrically representative of all possible ammonia adsorptions on the whole nanosheets of AL-ZnONC, NLL-ZnONC, PRL-ZnONC, CNL-ZnONS and CCL-ZnONS. Due to the adsorption configurations of ammonia adsorbed on the ZnONCs and ZnOGLNS s and their molecular symmetries, all ammonia molecules as minimum energy structures of their adsorptions can be plotted as shown in Figure 4.15

Figure 4.14 The adsorption configutations of ammonia ladsorbed onn (a) the ALZnONC, (b) NLL-ZnONC, (c) PRL-ZnONC, (d) CNL-ZnONS and (e) CCLZnONS . The bond distances, $\left(\mathrm{N}_{\mathrm{NH}_{3}} \cdots \mathrm{Zn}\right)$ were in \AA.

(a)

(b)

(c)

(d)
(e)

Figure 4.15 Plots of ammonia motecules as minimum energy structures of their adsorptions on (a) the AL-ZnONC, (b) NLL-ZnONC, (C) PRL-ZnONC, (d) CNLZnONS and (e) CCL-ZnONS. The molecules labeled with numbers represent the ammonia molecules interacting with ZnONCs and ZnOGLNS as representative of their molecular symmetries.Adsorption energies in $\mathrm{kcal} / \mathrm{mol}$ were presented.

ศนยวิทยทรพยากร

The adsorption bonds of NH_{3} adsorbed on the AL-ZnONC and NLL-ZnONC take placeas one type called type If The adsorption energies of NH_{3} adsorbed on the $\mathrm{AL}-\mathrm{ZnONC}$ was $-10.84 \mathrm{kcal} / \mathrm{mol}$ and on the NLL-ZnONC were $-9.26,-10.92$ and $-13.65 \mathrm{kcal} / \mathrm{mol}$ as shown in Figure 4.14(a), 4.14(b) and Table 4.8. The ammonia adsorption of type I occurred by the ammonia pointing its nitrogen towards zinc surface atom and all three hydrogen atoms align on three $[\mathrm{Zn} \cdots \mathrm{O}]$ bonds of ZnONCs as shown in Figure 4.15(a) and 4.15(b).

The adsorption bonds of NH_{3} adsorbed on the PRL-ZnONC occur as type I and another type which forms staggered configuration between $\mathrm{N}-\mathrm{H}$ bond of
ammonia and $\mathrm{Zn}-\mathrm{O}$ of the surface was defined as type II bond. The bonds of type II for the NH_{3} adsorbed on the PRL-ZnONC were the adsorption position of ammonia \#2 and \#4. The adsorption positions of NH_{3} on the PRL-ZnONC occurring as type I bond were \#1 ($-12.23 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-14.11 \mathrm{kcal} / \mathrm{mol}$), \#5 ($-10.52 \mathrm{kcal} / \mathrm{mol}$) and \#6 ($-8.39 \mathrm{kcal} / \mathrm{mol}$) and as type II were \#2 ($-12.19 \mathrm{kcal} / \mathrm{mol}$) and \#4 ($-9.08 \mathrm{kcal} / \mathrm{mol}$).

Due to the adsorptions of NH_{3} on the CNL-ZnONS and CCL-ZnONS, bonds of types I and II were also found. The types I and II bonds for all the NH_{3} adsorbed either on the CNL-ZnONS or CCL-ZnONS obviously occur over the zinc surface as shown in Figure 4.14(d) and (e). The adsorption representatives of NH_{3} on the CNLZnONS were three adsorption positions \#1 ($-13.21 \mathrm{kcal} / \mathrm{mol}$, type I), \#2 (-9.14 $\mathrm{kcal} / \mathrm{mol}$, type II) and \#3 ($-10.43 \mathrm{kcal} / \mathrm{mol}$, type I) as shown in Figure 4.15(d). For the adsorption representatives of NH_{3} on the CCL-ZnONS were six adsorption positions \#1 ($-14.08 \mathrm{kcal} / \mathrm{mol}$, type I), \#2 ($-11.01 \mathrm{kcal} / \mathrm{mol}$, type I), \#3 ($-9.37 \mathrm{kcal} / \mathrm{mol}$, type II), \#4 ($-9.15 \mathrm{kcal} / \mathrm{mol}$, type 1), \#5 ($-9.22 \mathrm{kcal} / \mathrm{mol}$, type I) and \#6 ($-7.60 \mathrm{kcal} / \mathrm{mol}$, type II) as shown in Figure 4.15(e). $\overline{\text { Due to plots of ammonia molecules as minimum }}$ energy structures of their adsorptions on the CNL-ZnONS and CCL-ZnONS shown in Figure 4.15(d) and 4.15(e), it can therefore be concluded that the NH_{3} adsorptions on all the Zn surface atoms were caused by the bonding of type I except that NH_{3} adsorptions on terminal Zn atoms were caused by the bonding of type II. Nevertheless, all the NH_{3} adsorbed on the ZnONCs and ZnOGLNSs occur by pointing its nitrogen toward Zn surface atom and this orientation was somewhat perpendicular to the surface planes of the nanosheets, as shown in Figure 4.14.

The energy gaps $\left(\Delta E_{G A P}\right)$ of the adsorption complexes NH_{3} with the $\mathrm{AL}-$ ZnONC, NLLEZnONC, PRLOZOONE, CN゙LZZnONS aní CCL-ZnONS were also not much differeht from their corresponding bare surfaces as shown in Table 4.8.

จุหาลงกรณมหาวิทยาลัย

Table 4.8 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of NH_{3} on ZnONCs and ZnOGLNSs, and energy gaps (ΔE_{GAP} in eV) of the bare ZnONCs and ZnOGLNS and their NH_{3} adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

ZnOGLNSs/ammonia adsorption	$\Delta E_{\text {ads }}(\mathrm{kcal} / \mathrm{mol})$	$E_{\text {GAP }}(\mathrm{eV})$
AL-ZnONC:		6.47
$\mathrm{NH}_{3}+\mathrm{AL}-\mathrm{ZnONC} \rightarrow \mathrm{NH}_{3} / \mathrm{AL}-\mathrm{ZnONC}(1)$	-10.84	5.86
NLL-ZnONC:		5.32
$\mathrm{NH}_{3}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{NH}_{3} / \mathrm{NLL}-\mathrm{ZnONC}$ (1)	-9.26	4.59
$\mathrm{NH}_{3}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{NH}_{3} / \mathrm{NLL}-\mathrm{ZnONC}$ (2)	-10.92	5.01
$\mathrm{NH}_{3}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{NH}_{3} / \mathrm{NLL}-\mathrm{ZnONC}$ (3)	-13.65	5.62
PRL-ZnONC:		4.26
$\mathrm{NH}_{3}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{NH}_{3} / \mathrm{PRL}-\mathrm{ZnONC}$ (1)	-12.23	4.47
$\mathrm{NH}_{3}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{NH}_{3} /$ PRL-ZnONC (2)	-12.19	4.47
$\mathrm{NH}_{3}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{NH}_{3} / \mathrm{PRL}-\mathrm{ZnONC}$ (3)	-14.11	4.54
$\mathrm{NH}_{3}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{NH}_{3} / \mathrm{PRL}-\mathrm{ZnONC}(4)$	- -9.08	3.92
$\mathrm{NH}_{3}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{NH}_{3} /$ PRL-ZnONC (5)	-10.52	4.31
$\mathrm{NH}_{3}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{NH}_{3} /$ PRL-ZnONC (6)	-8.39	3.59
CNL-ZnONS:		4.83
$\mathrm{NH}_{3}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{NH}_{3} / \mathrm{CNL}-\mathrm{ZnONS}$	-13.21	4.85
$\mathrm{NH}_{3}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{NH}_{3} / \mathrm{CNL}-\mathrm{ZnONS}$ (2)	9.14	4.10
$\mathrm{NH}_{3}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{NH}_{3} / \mathrm{CNL}-\mathrm{ZnONS}$ (3)	0.43	4.89
CCL-ZnONS:		3.74
$\mathrm{NH}_{3}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NH}_{3} / \mathrm{CCL}-\mathrm{ZnONS}$ (1)	14.08	3.76
$\mathrm{NH}_{3}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NH}_{3} / \mathrm{CCL}-\mathrm{ZnONS}(2)$	1.01	3.77
$\mathrm{NH}_{3}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NH}_{3} / \mathrm{CCL}-\mathrm{ZnONS}$ (3)	9.37	3.39
$\mathrm{NH}_{3}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NH}_{3} / \mathrm{CCL}-\mathrm{ZnONS}$ (4)	9.15	3.71
$\mathrm{NH}_{3}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NH}_{3} / \mathrm{CCL}-\mathrm{ZnONS}$ (5)	. 22	3.80
$\mathrm{NH}_{3}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NH}_{3} / \mathrm{CCL}-\mathrm{ZnONS}$ (6)	7.60	3.07
4.2.5 Adsorption of hydrogen molecule		
4.2.5.1 Adsorption energies of \mathbf{H}_{2}		

These adsorptionstructures were symmetrically representative of all possible H_{2} adsorptions on the whole nanosheets of AL-ZnONC, NLL-ZnONC, PRLZnONC, CNL-ZnONS and CCL-ZnONS. Due to the adsorption configurations of H_{2} adsorbed on the ZnONGS and ZnOGLNS and thein molecular symmetries, all H_{2} molecules as minimum energy structures of their adsorptions can be plotted as shown in Figure 4.16. The number of energy minima of H_{2} adsorptions on the AL-ZnONC of thirty configurations was found for each side of its molecular planes. These energy minima were obtained from the structure optimizations of interaction configurations within one third of each side of the AL-ZnONC molecular area and hydrogen adsorptions over the whole AL-ZnONC molecular area were generated using $C_{3 \mathrm{~h}}$ symmetrical operation. The adsorption energies of H_{2} on the AL-ZnONC were composed of five adsorption positions $\mathrm{H}_{2} \# 1(-0.13 \mathrm{kcal} / \mathrm{mol})$, \#2 ($-0.34 \mathrm{kcal} / \mathrm{mol}$),
\#3 ($-0.52 \mathrm{kcal} / \mathrm{mol}$), \#4 ($-0.47 \mathrm{kcal} / \mathrm{mol}$) and \#5 ($-0.45 \mathrm{kcal} / \mathrm{mol}$) as shown in Table 4.9.

The NLL-ZnONC and PRL-ZnONC nanocluster were in $C_{2 v}$ symmetry, the numbers of H_{2} adsorptions on each side of their molecular planes were twenty two and thirty one configurations, respectively, see Figure 4.16(b) and (c). There were twelve type of adsorption positions on the NLL-ZnONC which were composed of H_{2} adsorption positions $\mathrm{H}_{2} \# 1(-0.42 \mathrm{kcal} / \mathrm{mol})$, \#2 ($-0.23 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-0.69 \mathrm{kcal} / \mathrm{mol}$), \#4 ($-0.51 \mathrm{kcal} / \mathrm{mol}$), \#6 ($-0.64 \mathrm{kcal} / \mathrm{mol}$), \#7 ($-0.46 \mathrm{kcal} / \mathrm{mol}$), \#8 ($-0.28 \mathrm{kcal} / \mathrm{mol}$), \#9 ($-0.52 \mathrm{kcal} / \mathrm{mol}$), \#10 ($-0.55 \mathrm{kcal} / \mathrm{mol}$), \#11 ($-0.60 \mathrm{kcal} / \mathrm{mol}$) and \#12 (-0.62 $\mathrm{kcal} / \mathrm{mol})$. Threr were eighteen type of adsorption positions on the PRL-ZnONC which were composed of adsorption positions $\mathrm{H}_{2} \# 1(-0.33 \mathrm{kcal} / \mathrm{mol})$, \#2 (-0.52 $\mathrm{kcal} / \mathrm{mol})$, \#3 ($-0.80 \mathrm{kcal} / \mathrm{mol}$), \#4 ($-0.58 \mathrm{kcal} / \mathrm{mol}$), \#5 ($-0.52 \mathrm{kcal} / \mathrm{mol}$), \#6 (-0.72 $\mathrm{kcal} / \mathrm{mol})$, \#7 ($-0.70 \mathrm{kcal} / \mathrm{mol}$), \#8 ($-0.71 \mathrm{kcal} / \mathrm{mol}$), \#9 ($-0.75 \mathrm{kcal} / \mathrm{mol}$), \#10 (-0.46 $\mathrm{kcal} / \mathrm{mol})$, \#11 ($-0.37 \mathrm{kcal} / \mathrm{mol}$), \#12 ($-0.74 \mathrm{kcal} / \mathrm{mol}$), \#13 ($-0.33 \mathrm{kcal} / \mathrm{mol}$), \#14 ($-0.44 \mathrm{kcal} / \mathrm{mol}$), \#15 ($-0.33 \mathrm{kcal} / \mathrm{mol}$), \#16 ($-0.53 \mathrm{kcal} / \mathrm{mol}$), \#17 ($-0.57 \mathrm{kcal} / \mathrm{mol}$) and \#18 ($-0.63 \mathrm{kcal} / \mathrm{mol}$).

The CNL-ZnONS and CCL-ZnONS which were in $C_{3 h}$ symmetry, the numbers of H_{2} adsorptions on each side of their molecular planes were fifty four and one seventy seven configurations, respectively, see Figure 4.16(d) and (e). The H_{2} adsorptions on The CNL-ZnONS were also composed of niine adsorption positions H_{2} \#1 ($-0.64 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-0.65 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-0.57 \mathrm{kcal} / \mathrm{mol}$), \#4 ($-0.47 \mathrm{kcal} / \mathrm{mol}$) and \#5 ($-0.85 \mathrm{kcal} / \mathrm{mol}$) \#6 ($-0.38 \mathrm{kcal} / \mathrm{mol}$), \#7 ($-0.29 \mathrm{kcal} / \mathrm{mol}$), \#8 ($-0.70 \mathrm{kcal} / \mathrm{mol}$) and \#9 $(-0.48 \mathrm{kcal} / \mathrm{mol})$; The CCL-ZnONS, were composed of eighteen adsorption positions $\mathrm{H}_{2} \# \mathrm{~B}(-0.95 \mathrm{kca} / \mathrm{mol})$, \#2 $(-0.78 \mathrm{kcal} / \mathrm{mol})$, \#3 ($-0.74 \mathrm{kcal} / \mathrm{mol}$), \#4 (-0.78 $\mathrm{kcal} / \mathrm{mol})$ and \#5 $(-0.71 \mathrm{kcal} / \mathrm{mol})$ \#6 ($-0.76 \mathrm{kcal} / \mathrm{mol}$), \#7 ($-0.37 \mathrm{kcal} / \mathrm{mol}$), \#8 (-1.13 $\mathrm{kcal} / \mathrm{mol})$, C\#9 ($-0.56 \mathrm{kcal} / \mathrm{mol}$), $\# 10 \mathrm{O}(+0.96 / \mathrm{kcal} / \mathrm{mol}), 0 \# 11(-0.64 \mathrm{kcal} / \mathrm{mol}), ~ \# 12$ ($-0.46 \mathrm{kcal} / \mathrm{mol}$), \#13 ($-0.97 \mathrm{kcal} / \mathrm{mol}$), \#14 ($-0.75 \mathrm{kcal} / \mathrm{mol}$), \#15 ($-1.03 \mathrm{kcal} / \mathrm{mol}$), \#16 ($-0.67 \mathrm{kcal} / \mathrm{mol}$), \#17 ($-0.71 \mathrm{kcal} / \mathrm{mol}$) and \#18 ($-0.54 \mathrm{kcal} / \mathrm{mol}$).

(a)

(b)

(c)

(d)
(e)

Figure 4.16 Plots of H_{2} molecules as minimum energy structures of their adsorptions on (a) the $\mathrm{AL}-\mathrm{ZnONC}$, (b) NLL-ZnONC, (c) PRL-ZnONC, (d) CNL-ZnONS and (e) CCL-ZnONS. The molecules dabeled with numbers represent the H_{2} molecules interacting with, ZnONCs and ZnOGLNS as representative of their molecular symmetries. Adsorption energies in $\mathrm{kcal} / \mathrm{mol}$ were presented.

Table 4.9 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of H_{2} on ZnONCs and ZnOGLNS , and energy gaps (ΔE_{GAP} in eV) of the bare surfaces of ZnONCs , ZnOGLNSs, and their H_{2} adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

Table 4.9 (cont.) Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of H_{2} on ZnONCs and ZnOGLNSs, and energy gaps ($\Delta E_{G A P}$ in eV) of the bare surfaces of ZnONCs , ZnOGLNSs, and their H_{2} adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

ZnOGLNSs/hydrogen adsorption	$\Delta E_{\text {ads }}(\mathrm{kcal} / \mathrm{mol})$	$E_{\mathrm{GAP}}(\mathrm{eV})$
CCL-ZnONS:		3.74
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (1)	-0.95	3.76
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (2)	-0.78	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (3)	-0.74	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (4)	-0.78	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (5)	-0.71	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (6)	-0.76	3.76
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}(7)$	-0.3	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (8)	-1.13	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (9)	-0.56	3.76
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (10)	-0.96	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (11)	-0.64	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (12)	-0.46	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (13)	-0.97	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (14)	-0.75	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (15)	-1.03	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (16)	-0.67	3.76
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (17)	-0.71	3.75
$\mathrm{H}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{H}_{2} / \mathrm{CCL}-\mathrm{ZnONS}$ (18)	-0.54	3.75

The energy gaps ($\Delta E_{G A P}$) of the adsorption complexes H_{2} with the ALZnONC, NLL-ZnONC, PRL-ZHONC, CNL-ZnONS and CCL-ZnONS were also not much different from their corresponding bare surfaces as shown in Table 4.10.

4.2.6 Adsorption of nitric oxide molecule

Geometry configurations of NO adsorptions on the rigid strunctures of the AL$\mathrm{ZnONE}, \mathrm{NLL}-\mathrm{ZnONO}$, ąd PRI-ZnONC nanoclusters, showñ in Figure 4.17 and the CNL-ZnONS, shown in Figure 4.18 and CCL-ZnONS nanosheets, shown in Figure 4.19. The calculated adsorption energy values of the minimum energy structures of NO on nanoclusters and nanosheets were shown in Table 4.10. The NO adsorption configurations of NO pointing with N -end to adsorption sites of nanoclusters were shown in left side of Figure 4.18 and to adsorption sites of the CNL-ZnONS and CCL-ZnONS nanosheets were shown in Figures 4.18(a) and 4.19(a), respectively.

Figure 4.17 P ots of NO moleculess minimum energy structures of their adsorptions on (a) the AL-ZnONC $\left(\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}\right)$, (b) NLL-ZnONC $\left(\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}\right)$ and (c) PRL-ZnONC $\left(\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}\right)$. Their Reft and right adsorption maps wefe NO adsorption on ZnONCs by pointing ${ }^{\mathrm{N}}$-end and O -end toward the adsorption sites, respectively. The set of labeled molecules was representative of NO interacting with AL-ZnONC ($C_{3 \mathrm{~h}}$), NLL-ZnONC ($C_{2 \mathrm{v}}$) and PRL-ZnONC ($C_{2 \mathrm{v}}$). Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.

(a)

(b)

Figure 4.18 Plots of NO molecules as minimum energy structures of their adsorptions on CNL-ZnONS $\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ as adsorption configurations of NO with pointing its (a) N -end and (b) O-end toward the adsorption sites of the CNL-ZnONS. The set of labeled molecules was representative of NO adsorption interacting with CNL-ZnONS with $C_{3 \mathrm{~h}}$ symmetry. Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.

จหาลงกรณมหาวิทยาลัย

Figure 4,19 Plots of NO molecules as minimum energy structures of their adsorptions on CCL-ZnONS $\left(\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}\right)$ as (a) adsorption configurations of NO by pointing (a) N -end and (b) O-end toward the adsorption sites. The molecules labeled with numbers represent the oxygen molecule interacting with CCL-ZnONS of molecular symmetry of $\left(C_{3 \mathrm{~h}}\right)$. Adsorption energies were presented in kcal/mol.

The number of energy minima of NO adsorptions on the AL-ZnONC of nine configurations was found for each side of its molecular planes. These energy minima were obtained from the structure optimizations of interaction configurations within one third of each side of the AL-ZnONC molecular area and NO adsorptions over the whole AL-ZnONC molecular area were generated using $C_{3 h}$ symmetrical operation. The most stable configuration of NO adsorption on the AL-ZnONC was represented by the configuration of NO \#2 of which the adsorption energy was $-3.26 \mathrm{kcal} / \mathrm{mol}$, shows the N atom of NO pointing to a surface Zn atom ($\mathrm{NO} \cdots \mathrm{H} 1$) at a distance of 2.15 Å, show in Table 4.11.

As the NLL-ZnONC and PRL-ZnONC nanoclusters were in $\mathrm{C}_{2 \mathrm{v}}$ symmetry, the numbers of NO adsorptions on each side of their molecular planes were ten and sixteen configurations, as shomn/jin the left sides of Figure 4.17(b) and (c), respectively. There were four types of adsorption positions on the NLL-ZnONC which were composed of adsorption position NO \#1 ($-2.84 \mathrm{kcal} / \mathrm{mol}$), \#2 (-3.76 $\mathrm{kcal} / \mathrm{mol})$, \#3 ($-4.49 \mathrm{kcal} / \mathrm{mol}$), \#4 ($-3.47 \mathrm{kcal} / \mathrm{mol}$) and \#5 ($-5.32 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of NO adsorption on the NLL-ZnONC was represented by the configuration of $\mathrm{NO} \# 5$ which N atom of NO pointing to a surface Zn atom ($\mathrm{NO} \cdots \mathrm{Zn} 3$) at a distance of $2.49 \AA$. There were eight types of adsorption positions on the PRL-ZnONC which were composed of adsorption positions NO \#1 (-4.56 $\mathrm{kcal} / \mathrm{mol})$, \#2 ($-3.62 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-5.35 \mathrm{kcal} / \mathrm{mol}$), \#4 (-4.25 kcal/mol), \#5 (-4.64 $\mathrm{kcal} / \mathrm{mol})$, \#6 ($-5.29 \mathrm{kcal} / \mathrm{mol}$), \#7 ($-3.20 \mathrm{kcal} / \mathrm{mol}$) and \#8 ($-3.71 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of NO adsorption on the PRL-ZnONC was represented by the configuration of $\mathrm{NO} \# 3$ which N atom, of NO pointing to a surface Zn atom

The CNL-ZnONS and CCL-ZnONS were in $\mathrm{C}_{3 \mathrm{~h}}$ symmetry, the numbers of NO adsorptions onreach side of their molecolar planes were twenty one and forty five configurations as shown in Figure 4.19(a) and Figure 4.19(a) respectively. There were four types of adsorption positions on the CNL-ZnONS which were composed of adsorption position NO \#1 ($-5.31 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-3.34 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-4.59 \mathrm{kcal} / \mathrm{mol}$) and \#4 ($-4.73 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of NO adsorption on the CNL-ZnONS was represented by the configuration of NO \#1 which N atom of NO pointing to a surface Zn atom ($\mathrm{NO} \cdots \mathrm{Zn} 1$) at a distance of $2.56 \AA$. There were eight types of adsorption positions on the CCL-ZnONS which were composed of adsorption positions NO \#1 ($-4.03 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-4.76 \mathrm{kcal} / \mathrm{mol}$), \#3 (-4.99
$\mathrm{kcal} / \mathrm{mol}$), \#4 ($-5.03 \mathrm{kcal} / \mathrm{mol}$), \#5 ($-4.77 \mathrm{kcal} / \mathrm{mol}$), \#6 ($-5.67 \mathrm{kcal} / \mathrm{mol}$), \#7 (-5.82 $\mathrm{kcal} / \mathrm{mol})$ and \#8 ($-5.48 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of NO adsorption on the CCL-ZnONS was represented by the configuration of $\mathrm{NO} \# 1$ which N atom of NO pointing to a surface Zn atom ($\mathrm{NO} \cdots \mathrm{Zn} 1$) at a distance of $2.56 \AA$.

The NO adsorptions with pointing N -end towards atoms of the ZnOGLNSs were categorized into two bond types, [$\underline{N O} \cdots \mathrm{H}$] and [$\underline{\mathrm{NO}} \cdots \mathrm{Zn}$]. The [$\underline{\mathrm{NO}} \cdots \mathrm{H}$] bond occurred when the NO adsorption with pointing N -end toward hydroxyl hydrogen of the ZnOGLNSs to which the molecular axis of NO was nearly parallel to the molecular plane. But the $[\mathrm{NO} \cdots \mathrm{H}]$ bond occurred when the NO adsorption with pointing N -end towards Zn atom of the ZnOGLNS to which the molecular axis of NO was nearly perpendicular to the molecular plane.

On the same position of NO adsorptions either on nanoclusters or nanosheets, the adsorption energies of NO of which the N -end pointing towards the nanosheets atoms were more stable that the O -end. The NO adsorptions with pointing N -end towards atoms of the ZnOGLNSs were categorized into two bond types, $[\mathrm{NO} \cdots \mathrm{H}]$ and [$\underline{\mathrm{NO}} \cdots \mathrm{Zn}$]. The [$\mathrm{NO} \cdots \mathrm{H}]$ bond occurred when the NO adsorption with pointing $\mathrm{N}-$ end toward hydroxyl hydrogen of the ZnOGLNSs to which the molecular axis of NO was nearly parallel to the molecular plane, But the $[\mathrm{NO} \cdots \mathrm{H}]$ bond occurred when the NO adsorption with pointing N -end towards Zn atom of the ZnOGLNS to which the molecular axis of NO was nearly perpendicular to the molecular plane.

ศูนย์วิทยทรัพยากร

จุหาลงกรณ์มหาวิทยาลัย

Table 4.10 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of NO pointing its N-end toward surfaces of ZnONCs and ZnOGLNSs and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs, ZnOGLNSs and their NO adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

ZnOGLNSs/nitric oxide adsorption	$\Delta E_{\text {ads }}(\mathrm{kcal} / \mathrm{mol})$	$E_{\mathrm{GAP}}(\mathrm{eV})$
AL-ZnONC:		6.47
$\underline{\mathrm{NO}}+\mathrm{AL-ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{AL}-\mathrm{ZnONC}(1)$	-3.26	2.82
$\underline{\mathrm{NO}}+\mathrm{AL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{AL}-\mathrm{ZnONC}$ (2)	-3.17	2.92
NLL-ZnONC:		5.32
$\underline{\mathrm{NO}}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{NLL}-\mathrm{ZnONC}(1)$	-2.84	2.74
$\underline{\mathrm{NO}}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{NLL}-\mathrm{ZnONC}$ (2)	-3.76	2.99
$\mathrm{NO}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{NLL}-\mathrm{ZnONC}$ (3)	-4.49	2.96
$\underline{\mathrm{NO}}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{NLL-ZnONC} \mathrm{(4)}$	-3.47	2.23
$\underline{\mathrm{NO}}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{NLL}-\mathrm{ZnONC}(5)$	-5.32	2.92
PRL-ZnONC:		4.26
$\underline{\mathrm{NO}}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{PRL}-\mathrm{ZnONC}$ (1)	-4.56	2.04
$\underline{\mathrm{NO}}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{N}} \mathbf{O} / \mathrm{PRL}-\mathrm{ZnONG}$ (2)	. 62	1.56
$\underline{\mathrm{N}} \mathrm{O}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{N}}$ O/PRL-ZnONC (3)	5.35	2.11
$\underline{\mathrm{NO}}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{PRL}-\mathrm{ZnONC}$ (4)		2.96
$\underline{\mathrm{NO}}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{NO} / \text { PRL-ZnONC (}}$ (5)		2.93
$\underline{\mathrm{NO}}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{PRL}-\mathrm{ZnONC}$ (6)	-5.29	2.80
$\underline{\mathrm{NO}}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{PRL}-\mathrm{ZnONC}(7)$	-3.20	2.73
$\underline{\mathrm{NO}}+\mathrm{PRL-ZnONC} \rightarrow \underline{\mathrm{NO}} / \mathrm{PRL}-\mathrm{ZnONC}(8)$	-3.71	3.00
CNL-ZnONS:		4.83
NO + CNL-ZnONS \rightarrow NO/CNL-ZnONS (1)	-5.31	2.87
$\underline{\mathrm{NO}}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \underline{\mathrm{NO}} / \mathrm{CNL}-\mathrm{ZnONS}(2)$	-3.34	2.42
$\underline{\mathrm{NO}}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \underline{\mathrm{NO} / C N L-Z n O N S}$ (3)	/ - -4.59	3.05
$\underline{\mathrm{NO}}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \underline{\mathrm{NO}} / \mathrm{CNL}-\mathrm{ZnONS}$ (4)	\pm - 4.73	2.91
CCL-ZnONS:	7319	3.74
$\underline{\mathrm{NO}}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow$ NO/CCL-ZnONS (1)-	- -4.03	1.28
$\underline{\mathrm{NO}}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \underline{\mathrm{NO}} / \mathrm{CCL}-\mathrm{ZnONS}(2)$	1.4: $\times-4.76$	2.83
$\underline{\mathrm{N}} \mathrm{O}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \underline{\mathrm{N} O / C C L-Z n O N S}$ (3)	4*-4.99	1.77
$\underline{\mathrm{NO}}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \underline{\mathrm{N}} / / \mathrm{CCL}-\mathrm{ZnONS}(4)$	-5.03	2.08
$\underline{\mathrm{NO}}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \underline{\mathrm{NO}} / \mathrm{CCL}-\mathrm{ZnONS}(5)$	-4.77	2.87
$\underline{\mathrm{NO}}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \underline{\mathrm{NO}} / \mathrm{CCL}-\mathrm{ZnONS}(6)$	-5.67	2.62
$\underline{\mathrm{NO}}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \underline{\mathrm{NO}} / \mathrm{CC}$ E-ZnONS (7)	-5.82	2.43
$\underline{\mathrm{N}}++\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \underline{\mathrm{N}} / \mathrm{CCL}-\mathrm{ZnONS}(8)$	-5.48	3.01

Table 4.11 Bond distances (in \AA) between NO atoms and atoms of adsorption sites.

${ }^{\text {a }}$ Atom S stands for atomic adsorption site, NO and NO were carbon dioxide molecules pointing their N and O atoms toward atom S in the nanoclusters or nanosheets, respectively. Atomic positions of S atom were shown in Figure 4.1.

 sites of nanoclusters were shown in right side of Figure 4.18 and to adsorption sites of the CNL-ZnONS and CCL-ZnONS nanosheets were shown in Figures 4.18(b) and 4.19(b), respectively.

The number of energy minima of NO adsorptions on the AL-ZnONC of nine configurations was found for each side of its molecular planes. These energy minima were obtained from the structure optimizations of interaction configurations within one third of each side of the $\mathrm{AL}-\mathrm{ZnONC}$ molecular area and NO adsorptions over the
whole AL-ZnONC molecular area were generated using $C_{3 \mathrm{~h}}$ symmetrical operation. The most stable configuration of NO adsorption on the AL-ZnONC was represented by the configuration of NO \#2 of which the adsorption energy was $-2.45 \mathrm{kcal} / \mathrm{mol}$ (Table 4.13), shows the O atom of NO pointing to a surface Zn atom ($\mathrm{NO} \cdots \mathrm{H} 1$) at a distance of $2.11 \AA$, show in Table 4.11.

As the NLL-ZnONC and PRL-ZnONC nanoclusters were in $C_{2 \mathrm{v}}$ symmetry, the numbers of NO adsorptions on each side of their molecular planes were nine and sixteen configurations, as shown in the right sides of Figure 4.18(b) and (c), respectively. There were five types of adsorption positions on the NLL-ZnONC which were composed of adsorption position NO \#1 ($-2.26 \mathrm{kcal} / \mathrm{mol}$), \#2 (-2.70 $\mathrm{kcal} / \mathrm{mol})$, \#3 ($-2.60 \mathrm{kcal} / \mathrm{mol}$), \#4 ($-2.08 \mathrm{kcal} / \mathrm{mol}$) and \#5 ($-3.03 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of NO adsorption on the NLL-ZnONC was represented by the configuration of $\mathrm{NO} \# 5$ which O atom of NO pointing to a surface Zn atom ($\mathrm{NO} \cdots \mathrm{Zn} 3$) at a distance of $2.66 \AA$. There were eight types of adsorption positions on the PRL-ZnONC which were composed of adsorption positions NO \#1 (-2.59 $\mathrm{kcal} / \mathrm{mol})$, \#2 ($-3.03 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-3.36 \mathrm{kcal} / \mathrm{mol}$), \#4 ($-3.47 \mathrm{kcal} / \mathrm{mol}$), \#5 (-2.18 $\mathrm{kcal} / \mathrm{mol})$, \#6 ($-2.73 \mathrm{kcal} / \mathrm{mol}$), \#7 ($-2.14 \mathrm{kcal} / \mathrm{mol}$) and \#8 ($-2.53 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of NO adsorption on the PRL-ZnONC was represented by the configuration of $\mathrm{NO} \# 4$ which O , atom of NO pointing to a surface H atom (NO $\cdots \mathrm{H} 2$) at a distance of $2.16 \AA$.

The CNL-ZnONS and CCL-ZnONS were in $C_{3 h}$ symmetry, the numbers of NO adsorptions on each side of their molecular planes were twenty four and forty five configurations as shown in Figures 4.18(b) and 4.19(b) respectively. There were four types of adsoption positions on the CNLAZnONS which were composed of adsorption position NO \#1 ($-3.15 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-2.98 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-2.36 \mathrm{kcal} / \mathrm{mol}$) and \#4 $(-2.78 \mathrm{kcat} / \mathrm{mol})$? The most stable configutation of NO adsorption on the CNL-ZnONC was represented by the configuration of NO \#1 which O atom of NO pointing to a surface Zn atom ($\mathrm{NO} \cdots \mathrm{Zn} 1$) at a distance of $2.83 \AA$. There were eight types of adsorption positions on the CCL-ZnONS which were composed of adsorption positions NO \#1 ($-3.32 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-3.97 \mathrm{kcal} / \mathrm{mol}$), \#3 (-2.81 $\mathrm{kcal} / \mathrm{mol})$, \#4 ($-3.39 \mathrm{kcal} / \mathrm{mol}$), \#5 ($-2.43 \mathrm{kcal} / \mathrm{mol}$), \#6 ($-2.87 \mathrm{kcal} / \mathrm{mol}$), \#7 (-2.88 $\mathrm{kcal} / \mathrm{mol})$ and \#8 ($-2.42 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of NO adsorption on the CCL-ZnONC was represented by the configuration of NO \#2 which O atom of NO pointing to a surface Zn atom ($\mathrm{NO} \underline{\cdots} \mathrm{H} 2$) at a distance of $2.13 \AA$.

The NO adsorptions with pointing the O-end toward atoms of the ZnOGLNSs were also categorized into two bond types, [$\mathrm{NO} \cdots \mathrm{H}$] and $[\mathrm{NO} \cdots \mathrm{Zn}$. The [$\mathrm{NO} \cdots \mathrm{H}$] bond occurred when the NO adsorption with pointing O-end toward hydroxyl hydrogen of the ZnOGLNSs to which the molecular axis of NO was nearly parallel to the molecular plane. But the [$\mathrm{NO} \cdots \mathrm{Zn}$] bond occurred when the NO adsorption with pointing O-end towards Zn atom of the ZnOGLNS to which the molecular axis of NO was nearly perpendicular to the molecular plane.

4.2.6.3 Energy gap

The energy gaps of the clean ZnOGLNSs and their NO pointing with N -end or O-end adsorption complexes were shown in Table 4.10. In all cases, the energy gaps of clean ZnOGLNSs were higher than those values of their corresponding NO adsorption complexes, see Table 4:10 and 4.12. This suggests that the ZnOGLNSs were NO sensitive materials and they would be developed to be NO sensor based on electrical conductivity.

Table 4.12 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of NO pointing its O-end toward surfaces of ZnONCs and ZnOGLNS and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs, ZnOGLNSs and their NO adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

ZnOGLNSs/nitric oxide adsorption	$\Delta E_{\text {ads }}(\mathrm{kcal} / \mathrm{mol})$	$E_{\mathrm{GAP}}(\mathrm{eV})$
AL-ZnONC:		6.47
NO+ AL-ZnONC \rightarrow NO/AL-ZnONC (1)	-2.25	2.87
NO- AL-ZnONC \rightarrow NO/AL-ZnONC (2)	-2.45	2.94
NLL-ZnONC:		5.32
NO+ NLL-ZnONC \rightarrow NO/NLL-ZnONC (1)	-2.26	2.80
$\mathrm{NO}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{NO} / \mathrm{NLL}-\mathrm{ZnONC}$ (2)	-2.70	2.94
$\mathrm{NO}+$ NLL-ZnONC \rightarrow No/NLL-ZnONC (3)	2.60	2.64
$\mathrm{NO}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{NO} / \mathrm{NLL}-\mathrm{ZnONC}$ (4)	2.08	2.08
$\mathrm{NO}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{NO} / \mathrm{NLL}-\mathrm{ZnONC}$ (5)	-3.03	2.39
PRL-ZnONC:		4.26
NO + PRL-ZnONC \rightarrow NO/PRL-ZnONC	-2.59	1.66
$\mathrm{NO}+$ PRL-ZnONC \rightarrow NO/PRL-ZnONC	-3.03	1.56
$\mathrm{NO}+$ PRL-ZnONC \rightarrow NO/PRL-ZnONC	-3.36	1.73
$\mathrm{NO}+$ PRL-ZnONC \rightarrow NO/PRL-ZnONC	-3.47	3.00
NO+ PRL-ZnONC \rightarrow NO/PRL-ZnONC	-2.18	2.49
$\mathrm{NO}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{NO} / \mathrm{PRL}-\mathrm{ZnONC}$	-2.73	2.19
$\mathrm{NO}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{NO} / \mathrm{PRL}-\mathrm{ZnONC}(7)$	-2.14	2.67
$\mathrm{NO}+$ PRL-ZnONC \rightarrow NO/PRL-ZnONC (8)	2.53	1.66
CNL-ZnONS:		4.83
$\mathrm{NO}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow$ NO/CNL-ZnONS	-3.15	2.41
$\mathrm{NO}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{NO} / \mathrm{CNL}-\mathrm{ZnONS}$ (2)	2.98	2.87
$\mathrm{N} \underline{\mathrm{O}}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{NO} / \overline{\mathrm{O}} / \mathrm{CNL}-\mathrm{ZnONS}$	-2.36	2.70
$\mathrm{NO}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{NO} / \mathrm{CNL}-\mathrm{ZnONS}(4)$./ $/$ - -2.78	2.50
CCL-ZnONS:		3.74
$\mathrm{NO}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NO} / \mathrm{CCL}-\mathrm{ZnONS}(1)$	[13-3.32	1.35
$\mathrm{NO}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NO} / \mathrm{CCL}-\mathrm{ZnONS}$ (2)	$\square-3.97$	3.00
$\mathrm{NO}+$ CCL-ZnONS \rightarrow NO/CCL-ZnONS (3)	1. $4 / \sim-2.81$	1.69
$\mathrm{NO}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NO} / \mathrm{CCL}-\mathrm{ZnONS}$ (4)	-3.39	1.70
$\mathrm{NO}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NO} / \mathrm{CCL}-\mathrm{ZnONS}$ (5)	-2.43	2.38
$\mathrm{NO}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NO} / \mathrm{CEL}-\mathrm{ZnONS}$ (6)	-2.87	2.01
$\mathrm{NO}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NO} / \mathrm{CCL}-\mathrm{ZnONS}$ (7)	-2.88	1.84
$\mathrm{N} \underline{\overline{\mathrm{O}}}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{~N} \underline{\overline{\mathrm{O}}} / \mathrm{CC} \overline{\mathrm{~L}}-\mathrm{ZnONS}(8)$	-2.42	2.57

4.2.7 Adsorption of nitrous bxide molecule ? $\} \tilde{\delta}$

The structure optimizations of $\mathrm{N}_{2} \mathrm{O}$ adsorptions on the rigid structures of the AL-ZnONC, NLL-ZnONC, and PRL-ZnONC nanoclusters, shown in Figure 4.20 and the CNL-ZnONS, shown in Figure 4.21 and CCL-ZnONS nanosheets, shown in Figure 4.22. The adsorption energy values of the minimum energy structures of $\mathrm{N}_{2} \mathrm{O}$ on nanoclusters and nanosheets were shown in Table 4.13. The $\mathrm{N}_{2} \mathrm{O}$ adsorption configurations of $\mathrm{N}_{2} \mathrm{O}$ pointing with N -end to adsorption sites of nanoclusters were
shown in left side of Figure 4.20 and to adsorption sites of the CNL-ZnONS and CCL-ZnONS nanosheets were shown in Figures 4.21(a) and 4.22(a), respectively.

The number of energy minima of $\mathrm{N}_{2} \mathrm{O}$ adsorptions on the $\mathrm{AL}-\mathrm{ZnONC}$ of six configurations was found for each side of its molecular planes. These energy minima were obtained from the structure optimizations of interaction configurations within one third of each side of the AL-ZnONC molecular area and $\mathrm{N}_{2} \mathrm{O}$ adsorptions over the whole $\mathrm{AL}-\mathrm{ZnONC}$ molecular area were generated using $C_{3 h}$ symmetrical operation. The $\mathrm{N}_{2} \mathrm{O}$ adsorption on the $\mathrm{AL}-\mathrm{ZnONC}$ was represented by the configuration of $\mathrm{N}_{2} \mathrm{O} \# 1$ of which the adsorption energy was $-2.86 \mathrm{kcal} / \mathrm{mol}$ (Table 4.13), shows the N atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn atom $\left(\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{H} 1\right)$ at a distance of $2.70 \AA$, show in Table 4.14.

Due to the NLL-ZnONC/and PRL-ZnONC nanoclusters were in $\mathrm{C}_{2 \mathrm{v}}$ symmetry, the numbers of $\mathrm{N}_{2} \mathrm{O}$ adsorptions on each side of their molecular planes were five and nine configurations, as shown in the left sides of Figure 4.20(b) and (c), respectively. There were three types of adsorption positions on the NLL-ZnONC which were composed of adsorption position $\mathrm{N}_{2} \mathrm{O} \# 1(-2.68 \mathrm{kcal} / \mathrm{mol})$, \#2 (-2.96 $\mathrm{kcal} / \mathrm{mol})$ and \#3 ($-3.80 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of $\mathrm{N}_{2} \mathrm{O}$ adsorption on the NLL-ZnONC was represented by the configuration of $\mathrm{N}_{2} \mathrm{O} \# 3$ which N atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn atom ($\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 3$) at a distance of $2.61 \AA$. There were five types of adsorption positions on the PRL-ZnONC which were composed of adsorption positions $\mathrm{N}_{2} \mathrm{O}$ \#1 ($-3.01 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-4.01 \mathrm{kcal} / \mathrm{mol}$), \#3 (-2.76 $\mathrm{kcal} / \mathrm{mol})$, \#4 ($-3.00 \mathrm{kcal} / \mathrm{mol}$) and \#5 ($-2.66 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of $\mathrm{N}_{2} \mathrm{O}$ adsorption on the $\mathrm{PRL}-\mathrm{ZnONC}$ was represented by the configuration of $\mathrm{N}_{2} \mathrm{O}$ \#1 which N atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn -atom $\left(\mathrm{N}_{2} \widetilde{\mathrm{O}} \cdots \mathrm{Zn} 1\right)$ at a distance of 2.64 Å.

The CNE-ZnONS and CCL-ZnONS were in/C3n symmetrys the numbers of

 $\mathrm{N}_{2} \mathrm{O}$ adsorptions on each side of their molecular planes were eighteen and thirty six configurations as shown in Figure 4.21(a) and Figure 4.22(a) respectively. There were three types of adsorption positions on the CNL-ZnONS which were composed of adsorption position $\mathrm{N}_{2} \mathrm{O}$ \#1 ($-3.64 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-2.71 \mathrm{kcal} / \mathrm{mol}$) and \#3 (-2.87 $\mathrm{kcal} / \mathrm{mol}$). The most stable configuration of $\mathrm{N}_{2} \mathrm{O}$ adsorption on the CNL-ZnONS was represented by the configuration of $\mathrm{N}_{2} \mathrm{O} \# 1$ which N atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn atom ($\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 1$) at a distance of $2.56 \AA$. There were six types of adsorption positions on the CCL-ZnONS which were composed of adsorptionpositions $\mathrm{N}_{2} \mathrm{O}$ \#1 ($-3.87 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-2.76 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-2.70 \mathrm{kcal} / \mathrm{mol}$), \#4 $(-3.39 \mathrm{kcal} / \mathrm{mol}), \# 5(-2.42 \mathrm{kcal} / \mathrm{mol})$ and \#6 ($-2.70 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of $\mathrm{N}_{2} \mathrm{O}$ adsorption on the CCL-ZnONC was represented by the configuration of $\mathrm{N}_{2} \mathrm{O} \# 1$ which N atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn atom $\left(\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 1\right)$ at a distance of $2.63 \AA$.

The $\mathrm{N}_{2} \mathrm{O}$ adsorptions with pointing N -end towards atoms of the ZnOGLNSs were [$\underline{N O} \cdots \mathrm{Zn}$] bond occurred when the $\mathrm{N}_{2} \mathrm{O}$ adsorption with pointing N -end towards Zn atom of the ZnOGLNS to which the molecular axis of $\mathrm{N}_{2} \mathrm{O}$ was nearly perpendicular to the molecular plane.

The energy gaps ($\Delta E_{G A P}$) of the $\mathrm{N}_{2} \mathrm{O}$ adsorptions with pointing N -end towards atoms of the ZnOGLNSs (AL-ZnONC, NLL-ZnONC, PRL-ZnONC, CNL-ZnONS and CCL-ZnONS) were also not/pnuch different from their corresponding bare surfaces as shown in Table 4.13.

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

(a)

Figure 4.20 Plots of $\mathrm{N}_{2} \mathrm{O}$ molecules 9 as minimum Cenergy structures of their adsorptions on (a) the AL-ZnONC $\left(\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}\right)$, (b) NLL-ZnONC $\left(\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}\right)$ and (c) PRL- $\mathrm{ZnONC}\left(\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}\right)$. Their left and right adsorption maps were $\mathrm{N}_{2} \mathrm{O}$ adsorption on ZnONCs by pointing N -end and $\mathrm{O}-$ end toward the adsorption sites, respectively. The set of labeled molecules was representative of $\mathrm{N}_{2} \mathrm{O}$ interacting with $\mathrm{AL}-\mathrm{ZnONC}$ $\left(C_{3 \mathrm{~h}}\right)$, NLL-ZnONC ($C_{2 \mathrm{v}}$) and PRL-ZnONC ($C_{2 \mathrm{v}}$). Adsorption energies were presented in kcal/mol.

(a)

(b)

Figure 4.21 Plots of $\mathrm{N}_{2} \mathrm{O}$ molecules as minimum energy structures of their adsorptions on CNL-ZnONS $\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ as adsorption configurations of $\mathrm{N}_{2} \mathrm{O}$ with pointing its (a) N -end and (b) O-end toward the adsorption sites of the CNL-ZnONS. The set of labeled molecules was representative of $\mathrm{N}_{2} \mathrm{O}$ adsorption interacting with CNL-ZnONS with $C_{3 \mathrm{~h}}$ symmetry. Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.

Figure 4.22, Plots of $\mathrm{N}_{2} \mathrm{O}$ molecules as minimum energy structures of their adsorptions on COD-ZnONS $\left(\mathrm{Zn}_{2} 7 \mathrm{O}_{2} \mathrm{H}_{18}\right)$ as (a) adsorption configurations of $\mathrm{N}_{2} \mathrm{O}$ by pointing (a) N-end and (b) O-end toward the adsorption sites. The molecules labeled with numbers represent the $\mathrm{N}_{2} \mathrm{O}$ molecule interacting with CCL-ZnONS of molecular symmetry of ($C_{3 \mathrm{~h}}$). Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.

Table 4.13 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of $\mathrm{N}_{2} \mathrm{O}$ pointing its N -end toward surfaces of ZnONCs and ZnOGLNS and energy gaps (ΔE_{GAP} in eV) of bare surfaces of $\mathrm{ZnONCs}, \mathrm{ZnOGLNS}$ and their $\mathrm{N}_{2} \mathrm{O}$ adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

Table 4.14 Bond distances (in \AA) between $\mathrm{N}_{2} \mathrm{O}$ atoms and atoms of adsorption sites.

ZnOGLNSs	$\left[\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{S}\right]^{\mathrm{a}}$		$\left[\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{S}\right]^{\mathrm{a}}$	
AL-ZnONC:				
	$\underline{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 1$	2.70	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 1$	2.69
NLL-ZnONC:				
	$\underline{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 1$	2.74	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 1$	2.79
	$\underline{\mathrm{N}}_{2} \mathrm{O} \cdots \mathrm{Zn} 2$	2.71	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 2$	2.69
	$\underline{\mathrm{N}}_{2} \mathrm{O} \cdots \mathrm{Zn} 3$	2.61	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 3$	2.61
PRL-ZnONC:				
	$\underline{\mathrm{N}}_{2} \mathrm{O} \cdots \mathrm{Zn} 1$	2.62	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 1$	2.64
	$\underline{\mathrm{N}}_{2} \mathrm{O} \cdots \mathrm{Zn} 2$	2.64	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 2$	2.58
	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 3$	2.77	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 3$	2.83
	$\underline{\mathrm{N}}_{2} \mathrm{O} \cdots \mathrm{Zn} 4$	2.69	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 4$	2.70
	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 5$	2.77	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 5$	2.85
CNL-ZnONS:				
	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 1$		$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 1$	2.65
	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 2$	2.77	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 2$	2.76
	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 3$	2.72	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 3$	2.70
CCL-ZnONS:				
	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 1$	2.63	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 1$	2.59
	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 2$	2.76	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 2$	2.72
	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn3}$	2.80	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 3$	2.89
	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 4$	2.72	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 4$	2.79
	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn5}$	2.78	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn5}$	2.82
	$\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 6$	2.86	$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 6$	2.99

${ }^{\text {a }}$ Atom S stands for atomic adsorption site, $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{N}_{2} \underline{\mathrm{O}}$ were carbon dioxide molecules pointing their N and O atoms toward atom S in the nanoclusters or nanosheets, respectively. Atomic positions of S atom were shown in Figure 4.1.

4.2.7.2 Adsorption energies of $\mathrm{N}_{2} \mathrm{O}$ pointing with O -end

The $\mathrm{N}_{2} \mathrm{O}$ adsorption configurations of $\mathrm{N}_{2} \mathrm{O}$ pointing with O -end to adsorption sites of nanoclusters were shown in right side of Figure 4.20 and to adsorption sites of the CNL-ZnONS andCCL-ZnONS nanosheets were shownin Figures 4.21(b) and 4.22(b), respectively.

The number pf energy dinimaof N 2 O adsorptions on the $\mathrm{AL}-\mathrm{ZnONC}$ of three configurations was found for each side of its molecular planes. These energy minima were obtained from the structure optimizations of interaction configurations within one third of each side of the AL-ZnONC molecular area and $\mathrm{N}_{2} \mathrm{O}$ adsorptions over the whole AL-ZnONC molecular area were generated using $C_{3 h}$ symmetrical operation. The $\mathrm{N}_{2} \mathrm{O}$ adsorption on the $\mathrm{AL}-\mathrm{ZnONC}$ was represented by the configuration of $\mathrm{N}_{2} \mathrm{O} \# 1$ of which the adsorption energy was $-3.00 \mathrm{kcal} / \mathrm{mol}$ (Table
4.15), shows the O atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn atom ($\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 1$) at a distance of $2.69 \AA$, show in Table 4.14.

As the NLL-ZnONC and PRL-ZnONC nanoclusters were in $C_{2 \mathrm{v}}$ symmetry, the numbers of $\mathrm{N}_{2} \mathrm{O}$ adsorptions on each side of their molecular planes were six and nine configurations, as shown in the right sides of Figure 4.20(b) and (c), respectively. There were three types of adsorption positions on the NLL-ZnONC which were composed of adsorption position $\mathrm{N}_{2} \mathrm{O}$ \#1 ($-3.26 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-3.13 \mathrm{kcal} / \mathrm{mol}$) and \#3 ($-2.85 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of $\mathrm{N}_{2} \mathrm{O}$ adsorption on the NLLZnONC was represented by the configuration of $\mathrm{N}_{2} \mathrm{O}$ \#1 which O atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn atom $\left(\mathrm{N}_{2} \mathrm{O} \cdots \mathrm{Zn} 1\right)$ at a distance of $2.79 \AA$. There were five types of adsorption positions on the PRL-ZnONC which were composed of adsorption positions $\mathrm{N}_{2} \mathrm{O}$ \#1 $(-3.72 \mathrm{kcal} / \mathrm{mol})$, \#2 ($-4.19 \mathrm{kcal} / \mathrm{mol}$), \#3 (-2.09 $\mathrm{kcal} / \mathrm{mol})$, \#4 ($-3.13 \mathrm{kcal} / \mathrm{mol}$) and \#5 ($-2.43 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of $\mathrm{N}_{2} \mathrm{O}$ adsorption on the PRL-ZnONC was represented by the configuration of $\mathrm{N}_{2} \mathrm{O}$ \#2 which O atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn atom $\left(\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 2\right)$ at a distance of 2.58 Å.

The CNL-ZnONS and CCL-ZnONS were in $C_{3 h}$ symmetry, the numbers of $\mathrm{N}_{2} \mathrm{O}$ adsorptions on each side of their molecular planes were fifteen and thirty six configurations as shown in Figures-4.21(b) and 4.22(b) respectively. There were three types of adsorption positions on the CNL-ZnONS which were composed of adsorption position $\mathrm{N}_{2} \mathrm{O}$ \#1 ($-3.35 \mathrm{kcal} / \mathrm{mol}$), \#2 ($-3.29 \mathrm{kcal} / \mathrm{mol}$) and \#3 (-2.87 $\mathrm{kcal} / \mathrm{mol}$). The most stable configuration of $\mathrm{N}_{2} \mathrm{O}$ adsorption on the CNL-ZnONS was represented by the configuration of $\mathrm{N}_{2} \mathrm{O} \# 1$ which O atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn atom $\left(\mathrm{N}_{2} \mathrm{O} \cdot \cdot \mathrm{Zn} 1\right)$ at aldistance of $2.76 \AA$. There were six types of adsorption positions on the CCL-ZnONS which were composed of adsorption positions $\mathrm{N}_{2} \mathrm{O} / \# 1(-441 \mathrm{kcal} / \mathrm{mol})$, \#2 ($\left.-3.37 \mathrm{kcal} / \mathrm{mol}\right)$) \#3 ($\left.-2.54 \mathrm{kcal} / \mathrm{mol}\right)$, \#4 $(-3.39 \mathrm{kcal} / \mathrm{mol})$, \#5 ($-2.78 \mathrm{kcal} / \mathrm{mol}$) and \#6 ($-2.23 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of $\mathrm{N}_{2} \mathrm{O}$ adsorption on the CCL-ZnONS was represented by the configuration of $\mathrm{N}_{2} \mathrm{O} \# 1$ which O atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn atom ($\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 1$) at a distance of $2.59 \AA$.

The $\mathrm{N}_{2} \mathrm{O}$ adsorptions with pointing the O -end toward atoms of the ZnOGLNSs were [$\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn}$] bond occurred when the $\mathrm{N}_{2} \mathrm{O}$ adsorption with pointing O-end towards Zn atom of the ZnOGLNS to which the molecular axis of $\mathrm{N}_{2} \mathrm{O}$ was nearly perpendicular to the molecular plane.

Table 4.15 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of $\mathrm{N}_{2} \mathrm{O}$ pointing its O-end toward surfaces of ZnONCs and ZnOGLNS and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs, ZnOGLNSs and their $\mathrm{N}_{2} \mathrm{O}$ adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

The energy gaps ($\Delta E_{G A P}$) of the $\mathrm{N}_{2} \mathrm{O}$ adsorptions with pointing O -end towards atoms of the ZnOGLASs (AL-ZnONC, NLL-ZnONC, PRL-ZnONC, CNL-ZnONS and CCL-ZnONS) were also not much different from their corresponding bare surfaces as shown in Table 4.15.

-

The B3LYP/LanL2DZ-optimized structures of NO_{2} adsorptions on the rigid structures of the AL-ZnONC, NLL-ZnONC, and PRL-ZnONC nanoclusters, shown in Figure 4.23 and the CNL-ZnONS, shown in Figure 4.24 and CCL-ZnONS nanosheets, shown in Figure 4.26. The adsorption energy values of the minimum energy structures of NO_{2} on nanoclusters and nanosheets were shown in Table 4.16.

The NO_{2} adsorption configurations of NO_{2} pointing with N -end to adsorption on the nanoclusters were shown in left side of Figure 4.23 and to adsorption sites of the CNL-ZnONS and CCL-ZnONS nanosheets were shown in Figures 4.24(a) and 4.25(a), respectively.

The number of energy minima of NO_{2} adsorptions on the AL-ZnONC of six configurations was found for each side of its molecular planes. These energy minima were obtained from the structure optimizations of interaction configurations within one third of each side of the $\mathrm{AL}-\mathrm{ZnONC}$ molecular area and NO_{2} adsorptions over the whole AL-ZnONC molecular area were generated using $C_{3 h}$ symmetrical operation. The most stable configuration of NO_{2} adsorption on the $\mathrm{AL}-\mathrm{ZnONC}$ was represented by the configuration of $\mathrm{NO}_{2} \# 2$ of which the adsorption energy was -2.31 $\mathrm{kcal} / \mathrm{mol}$, shows the N atom of NO_{2} pointing to a surface Zn atom $\left(\mathrm{NO}_{2} \cdots \mathrm{Zn} 2\right)$ at a distance of $2.75 \AA$, show in Table 4.17.

The NLL-ZnONC and PRL-ZnONC nanoclusters were in $\mathrm{C}_{2 \mathrm{v}}$ symmetry, the numbers of NO_{2} adsorptions on each side of their molecular planes were three and sixteen configurations, as shown in the left sides of Figure 4.23(b) and (c), respectively. There were two types of adsorption positions on the NLL-ZnONC which were composed of adsorpfion position $\mathrm{NO}_{2} \# 1(-1.90 \mathrm{kcal} / \mathrm{mol})$ and \#2 (-2.31 $\mathrm{kcal} / \mathrm{mol}$). The most stable configuration of NO_{2} adsorption on the NLL-ZnONC was represented by the configuration of $\mathrm{NO}_{2} \# 2$ which N atom of NO_{2} pointing to a surface Zn atom ($\mathrm{NO}_{2} \cdots \mathrm{Zn} 3$) at a distance of $3.06 \AA$. There were nine types of adsorption positions on the PRL-ZnONC which were composed of adsorption positions $\mathrm{NO}_{2} \# 1(-2.30 \mathrm{kcal} / \mathrm{mol})$, \#2 ($-1.88 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-2.43 \mathrm{kcal} / \mathrm{mol}$), \#4 $(-2.90 \mathrm{kcal} / \mathrm{mol})$, \#5 ($-3.72 \mathrm{kcal} / \mathrm{mol}), \# 6(-3.14 \mathrm{kcal} / \mathrm{mol})$, \#7 $(-3.93 \mathrm{kcal} / \mathrm{mol})$, \#8 $(-3.82 \mathrm{kcal} / \mathrm{mol})$ and \#9 $(-1.27 \mathrm{kcal} / \mathrm{mol})$, The most stable configuration of NO_{2} adsorption on the RRD-ZnONC was represented by the configuration of $\mathrm{NO}_{2} \# 7$ which N atom of NO_{2} pointing to a surface Zn atom $\left(\mathrm{NO}_{2} \cdots \mathrm{Zn} 4\right)$ at a distance of 2.73 A.

The CNL-ZnONS and CCL-ZnONS were in $\mathrm{C}_{3 \mathrm{~h}}$ symmetry, the numbers of NO_{2} adsorptions on each side of their molecular planes were thirty and fifty four configurations as shown in Figure 4.23(a) and Figure 4.24(a) respectively. There were five types of adsorption positions on the CNL-ZnONS which were composed of adsorption position $\mathrm{NO}_{2} \# 1(-2.42 \mathrm{kcal} / \mathrm{mol})$, \#2 ($-3.23 \mathrm{kcal} / \mathrm{mol}$), \#3 (-2.89 $\mathrm{kcal} / \mathrm{mol})$, \#4 ($-2.12 \mathrm{kcal} / \mathrm{mol}$) and \#5 ($-3.95 \mathrm{kcal} / \mathrm{mol}$), The most stable configuration
of NO_{2} adsorption on the CNL-ZnONS was represented by the configuration of NO_{2} $\# 5$ which N atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn atom $\left(\mathrm{NO}_{2} \cdots \mathrm{Zn} 3\right)$ at a distance of $2.72 \AA$. There were ten types of adsorption positions on the CCL-ZnONS which were composed of adsorption positions $\mathrm{NO}_{2} \# 1(-2.04 \mathrm{kcal} / \mathrm{mol})$, \#2 ($-2.77 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-4.46 \mathrm{kcal} / \mathrm{mol}$), \#4 ($-3.85 \mathrm{kcal} / \mathrm{mol}$) \#5 ($-3.91 \mathrm{kcal} / \mathrm{mol}$), \#6 ($-2.42 \mathrm{kcal} / \mathrm{mol}$), \#7 ($-3.77 \mathrm{kcal} / \mathrm{mol}$), \#8 ($-5.08 \mathrm{kcal} / \mathrm{mol}$), \#9 ($-3.42 \mathrm{kcal} / \mathrm{mol}$) and \#10 ($-5.54 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of NO_{2} adsorption on the CCL-ZnONC was represented by the configuration of $\mathrm{NO}_{2} \# 10$ which N atom of NO_{2} pointing to a surface Zn atom $\left(\mathrm{NO}_{2} \cdots \mathrm{Zn} 7\right)$ at a distance of $2.51 \AA$.

There were two bond types, types $\left[\mathrm{NO}_{2} \cdots \mathrm{O}\right]$ and $\left[\mathrm{NO}_{2} \cdots \mathrm{Zn}\right]$ of all the adsorption energies of $\underline{\mathrm{NO}}_{2}$ on the $\mathrm{AL}-\mathrm{ZnONC}$, NLL-ZnONC, PRL-ZnONC, CNLZnONS and CCL-ZnONS. It shows that bond distances of the bond type [$\mathrm{NO}_{2} \cdots \mathrm{O}$] and $\left[\mathrm{NO}_{2} \cdots \mathrm{Zn}\right]$, as listed in Table 4.17.

The energy gaps ($\Delta E_{G A P}$) of the NO_{2} adsorptions with pointing N -end towards atoms of the ZnOGLNSs (AL-ZnONG, NLL-ZnONC, PRL-ZnONC, CNL-ZnONS and CCL-ZnONS) were also not much different from their corresponding bare surfaces as shown in Table 4.16.

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

Figure 4.23. Plots of NO_{2} molecules as minimum energy structures of their adsorptions on (a) the $\mathrm{AL}-\mathrm{ZnONC}\left(\mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}\right)$, (b) $\mathrm{NLL}-\mathrm{ZnONO}\left(\mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}\right)$ and (c) PRL-ZnONC $\left(\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}\right)$. Their left and right adsorption maps were NO_{2} adsorption on ZnONCs by pointing N -end and $\mathrm{O}-$ end toward the adsorption sites, respectively. The set of labeled molecules was representative of NO_{2} interacting with AL-ZnONC $\left(C_{3 \mathrm{~h}}\right)$, NLL-ZnONC ($C_{2 \mathrm{v}}$) and PRL-ZnONC ($C_{2 \mathrm{v}}$). Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.

(a)

(b)

Figure 4.24 Plots of NO_{2} molecules as minimum energy structures of their adsorptions on CNL-ZnONS $\left(\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}\right)$ as adsorption configurations of NO_{2} with pointing its (a) N -end and (b) O -end toward the adsorption sites of the CNL-ZnONS. The set of labeled molecules was representative of NO_{2} adsorption interacting with CNL-ZnONS with $C_{3 \mathrm{~h}}$ symmetry. Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.

Figure 4.25 . Plots of NO_{2} molecules as minimum energy structures of their adsorptions on $\mathrm{CCL}-\mathrm{ZnONS}\left(\mathrm{Zn}_{2} 7 \mathrm{O}_{2} 7 \mathrm{H}_{18}\right)$ as (a) adsorption conflgurations of NO_{2} by pointing (a) N -end and (b) O-end toward the adsorption sites. The molecules labeled with numbers represent the NO_{2} molecule interacting with CCL-ZnONS of molecular symmetry of $\left(C_{3 \mathrm{~h}}\right)$. Adsorption energies were presented in $\mathrm{kcal} / \mathrm{mol}$.

Table 4.16 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of NO_{2} pointing its N -end toward surfaces of ZnONCs and ZnOGLNS and energy gaps (ΔE_{GAP} in eV) of bare surfaces of $\mathrm{ZnONCs}, \mathrm{ZnOGLNS}$ and their NO_{2} adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

Table 4.17 Bond distances (in \AA) between NO_{2} atoms and atoms of adsorption sites.

ZnOGLNSs	[$\mathrm{NO} \cdots \mathrm{C}]^{\text {a }}$		[№…S] ${ }^{\text {a }}$	
AL-ZnONC:				
	$\mathrm{NO}_{2} \cdots \mathrm{O}$	3.19	№ ${ }_{2} \cdots \mathrm{Zn} 1$	2.67
	$\mathrm{NO}_{2} \cdots \mathrm{Zn} 1$	2.75	-	-
NLL-ZnONC:				
	$\mathrm{NO}_{2} \cdots \mathrm{Zn} 1$	2.85	NO2, $\cdots \mathrm{Zn} 1$	2.32
	$\mathrm{NO}_{2} \cdots \mathrm{Zn} 3$	3.06	NO2. $\cdot \mathrm{Zn} 3$	2.45
PRL-ZnONC:				
	$\mathrm{NO}_{2} \cdots \mathrm{Zn} 1$	2.73	№ ${ }_{2} \cdot \mathrm{Zn} 1$	2.71
	$\mathrm{NO}_{2} \cdots \mathrm{Zn} 2$	3.05	№. \cdots - Zn 2	2.62
	$\mathrm{NO}_{2}+\mathrm{O}_{2}$	2.99	№ ${ }^{-} \cdot \mathrm{Zn} 4$	2.72
	$\mathrm{NO}_{2} \cdot \mathrm{Cl}^{3}$			
	$\mathrm{NO}_{2}{ }^{2} \mathrm{O}$		-	-
			-	-
		$\frac{2.73}{2.61}$	-	
	$\begin{aligned} & \mathrm{NO}_{2} \cdots \mathrm{Zn5} \\ & \mathrm{NO}_{2} \cdots 05 \end{aligned}$	3.31	-	-
CNL-ZnONS:				
	$\mathrm{NO}_{2} . . \mathrm{O} 2$	2.78	$\mathrm{NO}_{2} \cdot \mathrm{Zn} 3$	2.52
	$\mathrm{NO}_{2} \cdots \cdot \mathrm{Zn} 2$			-
	NO_{2}. O	3.16	-	-
CCL-ZnONS:				
	$\mathrm{NO}_{2} \mathrm{NO}^{1}$		$\mathrm{NO}_{2} \cdot \cdots \mathrm{Zn} 1$	2.71
	$\mathrm{NO}_{2} \cdot \mathrm{Z} \mathrm{Z} 1$		№ ${ }^{-} \cdot \cdots \mathrm{Zn} 2$	2.83
	N0 $\mathrm{NO}_{2} \geqslant 2 \mathrm{Zn} 4 /$			3.42
	$\mathrm{NO}^{\mathrm{NO}} \cdot \underline{\mathrm{Zn}}$		№. ${ }^{\prime} \cdot \mathrm{Zn5}$	2.55
	N $\mathrm{NO}_{2}=2 \mathrm{n} 3$	2.78 2.97	-	-
	NO...04	2.69	-	-
	NO2.O5	2.63	-	-
	$\frac{\mathrm{NO}}{\mathrm{O}} \times \mathrm{Zn6}$	$\begin{array}{r}3.04 \\ 2.51 \\ \hline\end{array}$	-	-
	NO2: 2 Zn 7	2.51		

${ }^{\text {a }}$ Atom S stands for atomic adsorption site, $\underline{\mathrm{NO}}_{2}$ and NO_{2} were carbon dioxide molecules pointing their N and O atoms toward atom S in the nanoclusters or nanosheets, respectively. Atomic positions of/S atom were shown in Figure 4.1.

4.2.8.2 Adsorption energies of NO_{2} pointing with O -end

The NO_{2} adsorption configurations of NO_{2} pointing with O -end to adsorption sites of nanoclusters were shown in right side of Figure 4.23 and to adsorption sites of the CNL-ZnONS and CCL-ZnONS nanosheets were shown in Figures 4.24(b) and 4.25(b), respectively.

The number of energy minima of NO_{2} adsorptions on the $\mathrm{AL}-\mathrm{ZnONC}$ of three configurations was found for each side of its molecular planes. These energy minima were obtained from the structure optimizations of interaction configurations within
one third of each side of the $\mathrm{AL}-\mathrm{ZnONC}$ molecular area and NO_{2} adsorptions over the whole AL-ZnONC molecular area were generated using $C_{3 h}$ symmetrical operation. The $\mathrm{N}_{2} \mathrm{O}$ adsorption on the $\mathrm{AL}-\mathrm{ZnONC}$ was represented by the configuration of $\mathrm{NO}_{2} \# 1$ of which the adsorption energy was $-4.82 \mathrm{kcal} / \mathrm{mol}$ (Table 4.18), shows the O atom of NO_{2} pointing to a surface Zn atom ($\mathrm{NO}_{2} \cdots \mathrm{Zn} 1$) at a distance of $2.67 \AA$, show in Table 4.17.

As the NLL-ZnONC and PRL-ZnONC nanoclusters were in $C_{2 \mathrm{v}}$ symmetry, the numbers of NO_{2} adsorptions on each side of their molecular planes were four and six configurations, as shown in the right sides of Figure 4.23(b) and (c), respectively. There were two types of adsorption positions on the NLL-ZnONC which were composed of adsorption position $\mathrm{NO}_{2} \# 1(-7.45 \mathrm{kcal} / \mathrm{mol})$ and \#2 $(-7.42 \mathrm{kcal} / \mathrm{mol})$. The most stable configuration of $/ \mathrm{NO}_{2}$ adsorption on the NLL-ZnONC was represented by the configuration of $\mathrm{NO}_{2} \# 1$ which O atom of NO_{2} pointing to a surface Zn atom ($\mathrm{N}_{2} \underline{\mathrm{O}} \mathrm{Zn} 1$) at a distance of $2.32 \AA$. There were three types of adsorption positions on the PRL-ZnONC which were composed of adsorption positions $\mathrm{NO}_{2} \# 1(-2.79 \mathrm{kcal} / \mathrm{mol})$, \#2 $(-4.00 \mathrm{kcal} / \mathrm{mol})$ and \#3 $(-2.97 \mathrm{kcal} / \mathrm{mol})$. The most stable configuration of NO_{2} adsorption on the PRL-ZnONC was represented by the configuration of $\mathrm{NO}_{2} \# 2$ which O atom of $\mathrm{N}_{2} \mathrm{O}$ pointing to a surface Zn atom $\left(\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 2\right)$ at a distance of $2.62 \AA$.

The CNL-ZnONS and CCL-ZnONS were in C_{3} symmetry, the numbers of NO_{2} adsorptions on each side of their molecular planes were twelve and twenty four configurations as shown in Figures 4.24(b) and 4.25(b) respectively. There were two types of adsorption positions on the CNL-ZnONS which were composed of adsorption position $\mathrm{NO}_{2} \# 1(-5.64 \mathrm{kcal} / \mathrm{mol})$ and \#2 $(-7.18 \mathrm{kcal} / \mathrm{mol})$. The most stable configuration of NO_{2} adsorption on the CNL-ZnONC was represented by the configuration of $\mathrm{N}_{2} \mathrm{O} \not \#_{2}$ which 9 atōm of NO_{2} pointing to a surface Zn atom $\left(\mathrm{N}_{2} \underline{\mathrm{O}} \cdots \mathrm{Zn} 3\right)$ at a distance of $2.52 \AA$. There were four types of adsorption positions on the CCL-ZnONS which were composed of adsorption positions NO_{2} \#1 (-4.45 $\mathrm{kcal} / \mathrm{mol})$, \#2 ($-3.92 \mathrm{kcal} / \mathrm{mol}$), \#3 ($-2.55 \mathrm{kcal} / \mathrm{mol}$) and \#4 ($-7.76 \mathrm{kcal} / \mathrm{mol}$). The most stable configuration of NO_{2} adsorption on the CCL-ZnONC was represented by the configuration of $\mathrm{NO}_{2} \# 4$ which O atom of NO_{2} pointing to a surface Zn atom $\left(\mathrm{NO}_{2} \cdots \mathrm{Zn} 5\right)$ at a distance of $2.55 \AA$. The adsorption energies were of NO_{2} on the $\mathrm{AL}-$ ZnONC, NLL-ZnONC, PRL-ZnONC, CNL-ZnONS and CCL-ZnONS as shown in

Figure 4.18. It shows that bond distances of the bond type $\left[\mathrm{NO}_{2} \cdots \mathrm{O}\right]$ and $\left[\mathrm{NO}_{2} \cdots \mathrm{Zn}\right]$, as listed in Table 4.17.

Table 4.18 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of NO_{2} pointing its O -end toward surfaces of ZnONCs and ZnOGLNS and energy gaps (ΔE_{GAP} in eV) of bare surfaces of ZnONCs , ZnOGLNS and their NO_{2} adsorption complexes, computed at the B3LYP/LanL2DZ level of theory.

ZnOGLNSs/nitrogen dioxide adsorption $\quad \Delta E_{\text {ads }}(\mathrm{kcal} / \mathrm{mol})$	$E_{\mathrm{GAP}}(\mathrm{eV})$
AL-ZnONC:	6.47
$\mathrm{NO}_{2}+\mathrm{AL}-\mathrm{ZnONC} \rightarrow \mathrm{NO}_{2} / \mathrm{AL}-\mathrm{ZnONC}(1)-4.82$	3.19
NLL-ZnONC: $\quad=0$	5.32
$\mathrm{NO}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{NO}_{2} / \mathrm{NLL}-\mathrm{ZnONC}$ (1) $\quad-7.45$	4.02
$\mathrm{NO}_{2}+\mathrm{NLL}-\mathrm{ZnONC} \rightarrow \mathrm{NO}_{2} / \mathrm{NLL}-\mathrm{ZnONC}$ (2) $/ /-7.42$	3.37
PRL-ZnONC:	4.26
$\mathrm{NO}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{NO}_{2} / \mathrm{PRL}-\mathrm{ZnONC}$ (1) $\quad-2.79$	1.86
$\mathrm{NO}_{2}+\mathrm{PRL}-\mathrm{ZnONC} \rightarrow \mathrm{NO}_{2} / \mathrm{PRL}-\mathrm{ZnONC}$ (2) $\quad \square-4.00$	1.90
	2.32
CNL-ZnONS:	4.83
$\mathrm{NO}_{2}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{NO}_{2} / \mathrm{CNL}-\mathrm{ZnONS}(1) \quad-5.64$	2.81
$\mathrm{NO}_{2}+\mathrm{CNL}-\mathrm{ZnONS} \rightarrow \mathrm{NO}_{2} / \mathrm{CNL}-\mathrm{ZnONS}$ (2) \% ()	3.20
CCL-ZnONS:	3.74
$\mathrm{NO}_{2}+\mathrm{CCL}-\mathrm{ZnONS} \rightarrow \mathrm{NO}_{2} / \mathrm{CCL}-\mathrm{ZnONS}(1) \quad-4.45$	2.10
	2.16
	2.04
	2.31

The energy gaps ($\Delta E_{\text {GAP }}$) of the NO_{2} adsorptions with pointing O-end towards atoms of the ZnOGLASS (AL-ZnONG, NLL-ZnONG, PRL-ZnONC, CNL-ZnONS and CCL-ZnONS) were also not much different frem their corresponding bare surfaces as shown in Table 4.18. The most stable configuration of all gases adsorbed
 จุหาลงกรณ์มหาวิทยาลัย

CHAPTER V

5.1 Conclusions

A theoretical study on the adsorption of gaseous oxygen, carbon monoxide, nitric oxide, nitrogen dioxide, nitrous oxide, ammonia, hydrogen and water molecules on the ZnO nanoclusters (ZnONCs) and ZnO nanosheets (ZnONS) i.e. ZnO nanoclusters of aromatic-like ($\mathrm{AL}-\mathrm{ZnONC}, \mathrm{Zn}_{3} \mathrm{O}_{3} \mathrm{H}_{6}$), naphthalene-like (NLL$\mathrm{ZnONC}, \mathrm{Zn}_{5} \mathrm{O}_{5} \mathrm{H}_{8}$), pyrene-like PRL-like (PRL-ZnONC, $\mathrm{Zn}_{8} \mathrm{O}_{8} \mathrm{H}_{10}$), and ZnO nanosheets of coronene-like ($\mathrm{CNL}-\mathrm{ZnONS}$, $\mathrm{Zn}_{12} \mathrm{O}_{12} \mathrm{H}_{12}$) and circumcoronene-like (CCL-ZnONS, $\mathrm{Zn}_{27} \mathrm{O}_{27} \mathrm{H}_{18}$) for all possible configurations was investicted at the B3LYP/LanL2DZ level of theory. All the results can be concluded as follows:

1. The O_{2} is chemisorbed on the hydride adsorption site of the ZnOGLNSs edge and physisorbed over the plane of ZnOGLNS .
2. The adsorption of various gases ($\mathrm{CO}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{NO}, \mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}$) on ZnOGLNSs is physisorbed.
3. The energy gaps of ZnOGLNSs are largely reduced after the adsorptions of O_{2}, NO or NO_{2} on these ZnOGLNSS.
4. The ZnOGLNSs are sensitive material for O_{2}, NO and NO_{2} and could be developed as sensor based on electrical conductivity.

5.2 Suggestion for future work

Due to the knowledge of molecular gas adsorption on metal oxides lead to find efficient way for gas sensor and economic way to convert harmful,gas into harmless gas. Thus, CO -adsorption between moleculan gases such as CO and $\mathrm{N}_{2} \mathrm{O}$ conversion to N_{2} and CO_{2} on ZnO nanosheets could be studied. Moreover, the mechanism of the reactions for absorbed molecules taking place on the ZnO nanosheets unknown and is an interesting subject remain for further study.

REFERENCES

[1] Wander, A., and Harrison, N.M. An Ab Initio study of hydrogen adsorption on ZnO(101 0). J. Phys. Chem. B 105 (2001): 6191-6193.
[2] Andres, J.B.L., Longo, J.E., and Taft, I.C.A. $\mathrm{H}_{2} \mathrm{O}$ and H_{2} interaction with ZnO surfaces: A MNDO, AM1, and PM3 theoretical study with large cluster models. J. Quantum Chem. 57 (1996): 861-870.
[3] Martins, J.B.L., Taft, C.A., and Andres, E.J. Ab Initio study of CO and H_{2} interaction with ZnO surfaces using a small cluster model. J. Mol. Struct. Theochem 398 (1997): 457-466.
[4] Martins, J.B.L.,Taft, C.A., and Lie, S.K.E. Lateral interaction of CO and H_{2} molecules on ZnO surfaces: An AM1 study. J. Mol. Struct. Theochem 528 (2000): 161-170.
[5] Becker, T., et al. Interaction of hydrogen with metal oxides: The case of the polar $\mathrm{ZnO}(0001)$ surface Surf. Sci. 486 (2001): 502-506.
[6] Gay, R.R., Nodine, M.H., Henrich, V.E., Zeiger, H.J., and Solomon, E.I. Photoelectron study of the interaction of carbon monoxide with zinc oxide. J. Am. Chem. Soc. 102 (1980): 6752-6761.
[7] Nakazawa, M., and Somorjai, G.A. Coadsorption of water and selected aromatic molecules to model the adhesion of epoxy resins on hydrated surfaces of zinc oxide and iron oxide. Appl. Surf. Sci. 84 (1995): 309323.
[8] Kumashijo, M.R., Matsuda, To, and Kuroda, M. Galorimetric study of water two dimensionally condensed on the homogeneous surface of a solid.
[9] Calzolari, A., and Catellani, A. Water adsorption on nonpolar $\mathrm{ZnO}(\overline{1} 0-10)$ surface: A microscopic understanding. J. Phys. Chem. C 113 (2009): 2896-2902.
[10] Hotan, W., Gopel, W., and Haul, R. Advanced gas sensing: the electroadsorptive effect and related techniques. Surf. Sci. 83 (1979): 162-180.
[11] Martins, J.B.L., Longo, E., Salmon, O.D.R., Espinoza, V.A.A., and Taft, C.A. The interaction of $\mathrm{H}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and NH_{3} on ZnO surfaces: an oniom study. Chem. Phys. Lett. 400 (2004): 481-486.
[12] Breedon, M., Spencer, M.J.S., and Yarovsky, I. Adsorption of NO and NO_{2} on the $\mathrm{ZnO}(2 \overline{1} \overline{1} 10)$ surface: A DFT study. Surf. Sci. 603 (2009): 33893399.
[13] Prades, J.D., Cirera, A., and Morante, J.R. Ab Initio calculations of NO_{2} and SO_{2} chemisorption onto non-polar ZnO surfaces. Sens. Actuators B 142 (2009): 179-184.
[14] Spencer, M.J.S., Wong, K.W.J., and Yarovsky, I. ZnO nanostructure-based sensors: Density functional theory modelling of the gas-sensor interaction. Mater. Chem. Phys. 119 (2010): 505-514.
[15] Na, S.-H., and Park, C.-H. First-principles study of the surface of wurtzite ZnO and ZnS -implications for nanostructure formation. J. Korean Phys. Soc. 54 (2009): 867~872.
[16] Tang, Q., Li, Y., Zhou, Z, Chen, Y., and Chen, Z. Tuning electronic and magnetic properties of wurtzite ZnO nanosheets by surface hydrogenation. ACS Appl. Mater. Inter. 8 (2010): 2442-2447.
[17] Tu, Z.C., and Hu, X. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys. Rev. B 74 (2006):035434-035440.
[18] Yi, G.-C., Wang, C., and Park, W.I. ZnO nanorods: synthesis, characterization and applications. Semicond. Sci, Technol. 20 (2005): 22-34.
[19] Wang, Ni, Cai,Y., and Zhang, R. Q Growth of nanowires. Mater. Sci. Eng. R 60 (2008): 1-51.
[20] Lieber, C.M. and wang, zl. F. Functional nâowires. MRS Bull. 32 (2007): 99-104.
[21] Jiang, Z.-Y., et al. Molten salt route toward the growth of ZnO nanowires in unusual growth directions. J. Phys. Chem. B 109 (2005): 23269-23273.
[22] Lao, C.S., et al. Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn -terminated polar surface. Chem. Phys. Lett. 417 (2006): 358-362.
[23] Peng, Y., and Bao, L. Controlled-synthesis of ZnO nanorings. Front. Chem. China 4 (2008): 458-463.
[24] She, G.W., Zhang, X.H.W., Shi, S., Fan, X., and Chang J.C. Electrochemical/ chemical synthesis of highly-oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. J. C. Electrochem. Commun. 9 (2007): 2784-2788.
[25] She, G.W., et al. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Appl. Phys. Lett. 92 (2008): 053111/1-053111/3.
[26] Li, Q.H., Liang, Y.X., Wan, Q., and Wang, T.H. Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett. 85 (2004): 6389-6391.
[27] Fan, Z., Wang, D., Chang, P.C., Tseng, W.Y., and Lu, J.G. ZnO nanowire field-effect transistor and oxygen sensing property ZnO nanowire fieldeffect transistor and oxygen sensing property. Appl. Phys. Lett. 85 (2004): 5923-5925.
[28] Wang, H.T., et al. Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett. 86 (2005): 243503-243505.
[29] Kang, B.S., et al. Hydrogen and ozone gas sensing using multiple ZnO nanorods. Appl. Phys. A 80 (2005): 1029-1032.
[30] Rout, C.S., Kulkarni, G.U., and Rao, C.N.R. Room/temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides. J. Phys. D: Appl. Phys. 40 (2007): 2777-2782.
[31] Xu, J.Q., Chen,Y.Y., Chen,.D.Y., and Shen, J.N. Hydrothermal synthesis and gas Isensing characters of ZnO nanorods. Sens. Actuators, B 113 (2006): Qu, $9,526-531.9 .$, Chen, Y.P., Li, Y.D., and Shen, J.N. Gas sensing prop
Xu.
[32] Xu, J.Q., Chen, Y.P., Li, Y.D., and Shen, J.N. Gas sensing properties of ZnO nanorods prepared by hydrothermal method. J. Mater. Sci. 40 (2005): 2919-2921.
[33] Wang, J.X., et al. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology 17 (2006): 4995-4998.
[34] Park, J.-H., Choi, H.-J., Choi, Y.-J., Sohn, S.-H., and Park, J.-G. Ultrawide ZnO nanosheets. J. Mater. Chem. 14 (2004): 35-36.
[35] Tu, Z.C. First-principles study on physical properties of a single ZnO monolayer with graphene-like structure. J. Comput. Theor. Nanosci. 7 (2010): 1182-1186.
[36] Morkoç, H., and Özgür, Ü. Zinc oxide: fundamentals, materials and device technology. Wiley-VCH Verlag, GmbH \& Co, 2009.
[37] Meyer, B., and Marx, D. First-principles study of CO adsorption on ZnO surfaces. J. Phys.: Condens. Matter 15 (2003): 89-94.
[38] Zhang, Y., Wu, S.Q., Wen, Y.H., and Zhu, Z.Z. Surface-passivation-induced metallic and magnetic properties of ZnO graphitic sheet. Appl. Phys. Lett. 96 (2010): 223113-223116.
[39] He, A.L., Wang, X.Q., Wu, R.Q., Lu, Y.H., and Feng, Y.P. Adsorption of an Mn atom on a ZnO sheet and nanotube: a density functional theory study. J. Phys.: Condens. Matter 22 (2010): 175501-175508.
[40] Levine, N. Quantum chemistry. $6^{\text {th }}$ edition. Pearson prentice hall, 2010.
[41] Cramer, C.J. Essentials of computational chemistry: theories and models $2^{\text {nd }}$ edition. Singapore: John Wiley and Sons, 2004.
[42] Engel, T., and Reid, P. Physical chemistry. Pearson benjamin chummings, 2009.
[43] Lewars, E. Computational chemistry. Canada: Trent University, 2003.
[44] Frisch, M.J., et al. Gaussian 03, revision D.02, gađssian Inc. wallingford. CT, 2006.
[45] Kong, S., Shenderovich, G., and Vener, M.V. Density functional study of the proton transfer effect on vibrations of strong (short) intermolecular OAH. $\mathrm{N} / \mathrm{O}-\mathrm{H} \cdot \mathrm{H}-\mathrm{N} /$ hydrogen Gonds in aprotic solyents. J. Phys. Chem. A 114(2010): 2393-2399,
[46] Wang, Z.L. et al. Semiconducting and piezoelectrtric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 14 (2004): 943-956.

APPENDIX A

Table A-1 Adsorption energies ($\Delta E_{\text {ads }}$ in $\mathrm{kcal} / \mathrm{mol}$) of various gases on CCL-ZnONS and energy gaps (ΔE_{GAP} in eV) of their corresponding adsorption complexes as the most stable configuration, compared to the bare surface of CCL-ZnONS, computed at the B3LYP/LanL2DZ level of theory.

VITAE

Name: Miss BENJAWAN KAEWRUKSA
Date of Birth: November 8 ${ }^{\text {th }}, 1985$
Place of Birth: Ubonratchathani, Thailand
Address: 104 Tessaban 64 Road, Ubonratchathani 34190, Thailand
Telephone: 087-2545820
E-mail address: miney_bow@hotmail.com

Educations:

2009-2011 M.Sc. (Physical Chemistry), Chulalongkorn University, Thailand
2005-2008 B.Sc. (Chemistry), Burapha University, Thailand
2001-2004 Leu Kumham Warinchamlarp high school, Ubonratchathani, Thailand

1998-2000 Tessaban Warin Wichachart secondary school, Ubonratchathani, Thailand

1992-1997 Tessaban Warin Wichachart primary school, Ubonratchathani, Thailand

Presentations:

Benjawan Kaewruksa, Vithaya Ruangpornvisuti, Theoretical investigation of gas-sensing properties of ZnO nanosheets (Poster Session): The $34^{\text {th }}$ Congress on Science and Technology of Thailand (STT 36), October 26-28 2010 at Bangkok International Trade and Exhibition Centre (BITEC), Bangkok, Thailand.
[2]
 surfaces for oxygen adsorption on various ZnO nanosheets (Poster

Publication:

Kaewruksa, B., and Ruangpornvisuti, V. Theoretical study on the adsorption behaviors of $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} on hydrogen-terminated ZnO nanoclusters and ZnO graphene-like nanosheets. J. Mol. Struct. In Press.

