การปรับแก้ข้อมูลไลดาร์ระหว่างแนวบินโดยอาศัยจุดควบคุมจากภาพถ่ายทางอากาศ

นาย กรีฑา สุวรรณสะอาด

พาลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมสำรวจ ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2553 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

LIDAR STRIP ADJUSTMENT WITH AIDING OF AERIAL PHOTOGRAPH CONTROL POINTS

Mr. Kreeta Suwansaard

สูนย์วิทยทรัพยากร

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Survey Engineering Department of Survey Engineering Faculty of Engineering Chulalongkorn University Academic Year 2010 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การปรับแก้ข้อมูลไลดาร์ระหว่างแนวบินโดยอาศัยจุด	
	ควบคุมจากภาพถ่ายทางอากาศ	
โดย	นายกรีฑา สุวรรณสะอาด	
สาขาวิชา	วิศวกรรมสำรวจ	
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ดร.ธงทิศ ฉายากุล	

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

(รองศาสตราจารย์ ดร. บุญสม เลิศหิรัญวงศ์)

คณะกรรมการสอบวิทยานิพนธ์

ประธานกรรมการ

(รองศาสตราจารย์ ดร. ชูเกียรติ วิเชียรเจริญ)

(ดร. ธงทิศ ฉายากุล)

Thon and normans

(ผู้ช่วยศาสตราจารย์ ดร. ไพศาล ลันติธรรมมานนท์)

..... กรรมการภายนอกมหาวิทยาลัย

(ดร. สุกิจ วิเศษสินธุ์)

กรีฑา สุวรรณสะอาด : การปรับแก้ข้อมูลไลดาร์ระหว่างแนวบินโดยอาศัยจุดควบคุม จากภาพถ่ายทางอากาศ. (LIDAR STRIP ADJUSTMENT WITH AIDING OF AERIAL PHOTOGRAPH CONTROL POINTS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ดร.ธงทิศ ฉายากุล, 110 หน้า.

เทคโนโลยี LiDAR (Light Detection and Ranging) เป็นระบบสำรวจรังวัดความสูงภูมิ ประเทศ ที่มีลักษณะการบินสำรวจข้อมูลโดยใช้ลำแสงเลเซอร์ที่ส่งออกและสะท้อนกลับมายัง เซ็นเซอร์ และมีการจัดเก็บข้อมูลเป็นจุด (x,y,z) ในการบินสำรวจข้อมูล LiDAR นั้น อาศัยการบินตาม แนวบิน(flight line หรือ flight strip) อย่างต่อเนื่องครอบคลุมพื้นที่ที่ได้ออกแบบไว้ โดยมีการซ้อนทับ ระหว่างแนวบิน (overlap) เมื่อผู้วิจัยได้ศึกษาข้อมูลในส่วนซ้อนทับ พบว่า จุดข้อมูลความสูงภายหลัง การสะท้อนกลับจากวัตถุเดียวกันมีค่าไม่เท่ากัน ซึ่งในความเป็นจริงค่าความสูงของวัตถุเดียวกันย่อม ต้องมีค่าเท่ากัน

งานวิจัยครั้งนี้จัดทำขึ้นเพื่อศึกษาการปรับแก้ความคลาดเคลื่อนด้านความสูงของข้อมูล LiDAR ในบริเวณพื้นที่ข้อนทับระหว่างแนวบิน ใช้จุดควบคุมในการปรับแก้ที่เลือกมาจากบริเวณ พื้นที่อาคารในภาพถ่ายทางอากาศทั้งหมด กำหนดระยะห่างของจุดระหว่างสองแนวบินที่ระยะ 5 เซนติเมตร และ 10 เซนติเมตร เพื่อใช้ในการเปรียบเทียบ ดำเนินการปรับแก้ความคลาดเคลื่อนที่ เกิดขึ้นด้วยวิธีสีสท์สแควร์ และดำเนินการปรับแก้ 3 กรณี คือ 1)ปรับแก้ข้อมูล LiDAR เฉพาะพื้นที่ อาคาร 2)ปรับแก้ข้อมูล LiDAR บนพื้นที่ช้อนทับทั้งหมด และ 3)ปรับแก้ข้อมูล LiDAR ของแนวบิน จากผลการปรับแก้กรณีที่ 1 พบว่า ค่าเบี่ยงเบนมาตรฐานที่ระยะห่างของจุดระหว่างสองแนวบิน 5 และ 10 เซนติเมตร เท่ากับ 0.06744 เมตร และ 0.03864 เมตร ตามลำดับ ซึ่งการที่พบว่า ค่า เบี่ยงเบนมาตรฐานที่ระยะห่าง 5 เซนติเมตร มีค่าสูงกว่าที่ 10 เซนติเมตร เนื่องจากจำนวนจุดข้อมูลที่ 5 เซนติเมตรมีจำนวนน้อยกว่าจึงส่งผลให้ค่าเบี่ยงเบนมาตรฐานมีค่าสูงกว่า จากนั้นใช้พารามิเตอร์ จากการปรับแก้ชั้นตอนที่ 1 ทำการปรับแก้ในกรณีที่ 2 (ปรับแก้บนพื้นที่ข้อนทับทั้งหมด) ซึ่งพบว่า ค่า เบี่ยงเบนมาตรฐานที่ระยะห่าง 5 และ 10 เซนติเมตร เท่ากับ 0.13846 เมตร 0.37832 เมตร ตามลำดับ จากการปรับแก้ในกรณีที่ 1 และ 2 พบว่า ที่ระยะห่างของจุดระหว่างสองแนวบินระยะ 5 เซนติเมตร มีค่าเบี่ยงเบนมาตรฐานน้อยกว่าที่ 10 เซนติเมตร ดังนั้น จึงเลือกใช้ค่าพารามิเตอร์ที่ระยะ 5 เซนติเมตร ไปดำเนินการปรับแก้ในกรณีที่ 2 เปอนติเมตร ดังนั้น จึงเลือกใช้ค่าพารามิเตอร์ที่ระยะ

การปรับแก้ข้อมูล LiDAR ของแนวบินโดยการเลือกจุดควบคุมจากภาพถ่ายทางอากาศ สามารถใช้พารามิเตอร์จากการปรับแก้ดังกล่าว ปรับแก้ค่าความสูง LiDAR ตลอดทั้งแนวบินได้ โดย ได้ค่าเบี่ยงเบนมาตรฐาน แนวบินที่ 1 เท่ากับ 0.13886 เมตร และ แนวบินที่ 2 เท่ากับ 0.27767 เมตร

ภาควิชา......วิศวกรรมสำรวจ.....ลายมือชื่อนิสิต....<u>กรัทว</u>รรณ*ร-อเจ* สาขาวิชา......วิศวกรรมสำรวจ.....ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก Dr⁵2 PVV ปีการศึกษา.....2553.....

5070534721 : MAJOR SURVEY ENGINEERING KEYWORDS : LIDAR / STRIP ADJUSTMENT / AERIAL PHOTOGRAPH KREETA SUWANSAARD: LIDAR STRIP ADJUSTMENT WITH AIDIND OF

AERIAL PHOTOGRAPH CONTROL POINTS. ADVISOR : DR.THONGTHIT CHAYAKOL, 110 pp.

LiDAR(Light Detection and Ranging) is a height terrain survey system consisting of a laser emitted from an aircraft to the surface of the earth, and reflected back to a sensor on board of the aircraft. It also has storaged data as a point in three dimension coordinate (x,y,z). In LiDAR survey, the aircraft flies continuously along the flight line(or flight strip) covering an overlap area. After the researcher had studied LiDAR data on the overlap area, it was found that the points that show the height of the same object were unequal which, in fact, they must be equal.

This research aimed to study of error correction in height of LiDAR data in the area of the overlap between the flight lines. The control points were selected from the area of a building of aerial photograph. The distance between two flight lines was set to 5 and 10 centimeters in order to compare their results. The method of least squares was used to adjust and minimize the error. There were three cases of adjustment ; 1) adjust the LiDAR data of building area 2)adjust the LiDAR data of the entire overlap area, and 3)adjust the LiDAR data of the flight line. The result from the first case showed that the standard deviation, of the height correction, was 0.06744 m for 5-cm flight lines distance, and was 0.03864 m for 10-cm flight lines distance. The standard deviation of 5-cm distance was higher than that of 10-cm distance because of the points selected at 5-cm distance had smaller number than that of 10-cm distance. After using the parameters from the first case to adjust for the second case, it was found that the standard deviation, of the height correction, for 5-cm and 10-cm distance was 0.13846 m and 0.37832 m respectively. From the first two cases, it was found that the smaller standard deviation occurred at 5-cm distance, so the adjustment of the LiDAR data of the flight line(the third case) was conducted at 5-cm distance.

From the adjustment of LiDAR data of the flight line, with use of control points from aerial photographs and parameters from prior adjustment, it was found that the standard deviation was 0.13886 m for the first flight line and was 0.27767 m for the second flight line.

Department : Survey Engineering Student's Signature Kreeta Supersayed Field of Study : Survey Engineering Advisor's Signature 7. Chyphe Academic Year: 2010

9

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จลุล่วงได้ด้วยดีจากความช่วยเหลือจากบุคคลหลายท่าน ขอกราบ ขอบพระคุณบิดามารดา น้องชายและน้องสาว อย่างสูงสำหรับการสนับสนุนและความช่วยเหลือ ในทุกๆ ด้าน

ขอกราบขอบพระคุณท่านอาจารย์ ดร.ธงทิศ ฉายากุล อาจารย์ที่ปรึกษาวิทยานิพนธ์ที่ กรุณาให้คำปรึกษา คำแนะนำ ข้อคิดเห็นที่เป็นประโยชน์ในการทำวิทยานิพนธ์จนเสร็จสมบูรณ์ ด้วยดี

ขอขอบพระคุณคณาจารย์ในภาควิชาวิศวกรรมสำรวจ รวมทั้งคณะกรรมการสอบ วิทยานิพนธ์ซึ่งประกอบด้วย รองศาสตราจารย์ ดร. ซูเกียรติ วิเซียรเจริญ ประธานกรรมการสอบ สอบวิทยานิพนธ์ ผู้ช่วยศาสตราจารย์ ดร. ไพศาล สันติธรรมนนท์ และ ดร. สุกิจ วิเศษสินธุ์ ที่ได้ สละเวลาให้คำแนะนำ และให้ข้อคิดเห็นในแง่มุมต่างๆ ที่ทำให้วิทยานิพนธ์ฉบับนี้มีความสมบูรณ์ ยิ่งขึ้น

ขอขอบพระคุณมหาวิทยาลัยเทคโนโลยีราชมงคลรัตนโกสินทร์ ศาลายา ที่กรุณาให้ ทุนการศึกษาในการศึกษาและทำวิทยานิพนธ์ฉบับนี้จนเสร็จสิ้นสมบูรณ์

ขอขอบพระคุณอาจารย์คณาวุฒิ เจียมวัฒนพงศ์ อาจารย์ประจำคณะศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลรัตนโกสินทร์ ศาลายา ที่ได้ให้คำปรึกษา และข้อคิดในแง่ต่างๆใน การทำวิทยานิพนธ์จนเสร็จสมบูรณ์ด้วยดี

ขอขอบคุณ นายปโยธร ศิริโยธา นายธนรัตน์ มิตรยอดวงศ์ นางสาวจุฑามาศ ปานกลิ่น นายณกร วัฒนกิจ นางสาวกรุณา พิมพ์ประสานต์ นายอรุณ บุรีรักษ์ รุ่นพี่ เพื่อนๆ และรุ่นน้อง ภาควิชาวิศวกรรมสำรวจทุกคนสำหรับความช่วยเหลือในทุกๆด้าน

หากวิทยานิพนธ์ฉบับนี้มีข้อบกพร่องประการใด ผู้เขียนขออภัยเป็นอย่างสูงในข้อบกพร่อง ทั้งหมด และหวังว่าวิทยานิพนธ์ฉบับนี้จะเป็นประโยชน์แก่ผู้สนใจทุกท่าน

สารบัญ

		หน้
บทคัด	เย่อภาษาไทย	J
บทคัด	เย่อภาษาอังกฤษ	ବ
กิตติก	รรมประกาศ	ହ
สารบั	ល្វ	ป
สารบั	ญตาราง	្ស
สารบั	ญภาพ	ป
บทที่	1 บทนำ	1
	1.1 ความเป็นม <mark>าและความสำคัญขอ</mark> งปัญหา	1
	1.2 วัตถุประสง <mark>ค</mark> ์ของการวิจัย	3
	1.3 ขอบเขตขอ <mark>งการวิจัย</mark>	3
	1.4 วิธีดำเนินงานวิจัย	4
	1.5 แผนผังวิธีการ <mark>ด</mark> ำเน <mark>ินงานวิจัย</mark>	5
	1.6 ประโยชน์ที่คาดว่ <mark>า</mark> จะไ <mark>ด้รับ.</mark>	6
บทที่	2 แนวคิดและงานวิจัยที่เกี่ยวข้อง	7
	2.1 หลักการทำงานของ Airborne Laser Scanning	7
	2.1.1 องค์ประกอบระบบเลเซอร์สแกนเนอร์	7
	2.1.2 ส่วนประกอบของระบบ Airborne Laser Scanning	8
	2.2 ความคลาดเคลื่อน	1
	2.2.1 ความคลาดเคลื่อนของข้อมูล LiDAR	1
	2.2.2 สาเหตุของความคลาดเคลื่อน	1
	2.3 การใช้ภาพถ่ายทางอากาศเพื่อพิจารณาตำแหน่งข้อมูล LiDAR	16
	2.3.1 ภาพถ่ายทางอากาศ (Aerial Photograph)	16
	2.3.2 การหาขอบวัตถุ (Edge Detection)	1
	2.3.3 Canny Edge Detection Algorithm	1
	2.4 แบบจำลองทางคณิตศาสตร์ในการปรับแก้ความคลาดเคลื่อน	2
	2.4.1 วิธีการคำนวณปรับแก้ค่าคลาดเคลื่อนด้วยวิธีลีสท์สแควร์	2 [.]

สารบัญ (ต่อ)

	หน้า
2.4.2 ชนิดวิธีของการปรับแก้ด้วยลีสท์สแควร์	22
2.4.3 สมการระนาบและการปรับแก้ด้วยลีสท์สแควร์	24
2.5 งานวิจัยที่เกี่ยวข้อง	25
บทที่ 3 การเตรียมข้อมูลที่ใช้ในการปร <mark>ะมว</mark> ลผล	29
3.1 การเตรียมข้อมูล Li <mark>DAR</mark>	30
3.1.1 จัดเตรียม <mark>ข้อมูลLiDA</mark> Rของบริ <mark>เวณพื้นที่ศึ</mark> กษา	30
3.1.2 กำหนด <mark>แนวบินของข้</mark> อมูล LiDAR บริเวณพื้นที่ศึกษา	30
3.2 กำหนดตำแ <mark>หน่งซ้อนทับระหว่างแนวบินของ</mark> ข้อมูล LiDAR	31
3.2.1 กำหน <mark>ดตำแหน่งพื้นที่ช้อนทับระหว่างแ</mark> นวบิน	31
3.2.2 เลือกต่ำแหน่งพื้นที่ช้อนทับระหว่างแนวบิน	31
3.3 การจัดเตรียมข้อมูล <mark>ภา</mark> พถ่า <mark>ยทางอากาศ</mark>	32
3.4 การเลือกพื้นที่ <mark>และการหาขอบวัตถุจา</mark> กภาพถ่ายทางอากาศ	34
3.4.1 การพิจารณ <mark>า</mark> พื้น <mark>ที่อาคาร</mark>	34
3.4.2 การพิจารณาพื้นที่ถนน	35
3.4.3 การหาขอบวัตถุพื้นที่อาคาร	36
3.4.4 การสร้างชั้นข้อมูลอาคาร	37
3.5 การใช้ภาพถ่ <mark>า</mark> ยทางอากาศเป็นจุดควบคุมข้อมูล LiDAR ระหว่างแนวบิน	39
3.6 การเลือกจุดข้อมูล LiDAR ระหว่างแนวบิน	41
3.6.1 การพิจารณาเลือกจุดระหว่างแนวบิน	41
3.6.2 การเลือกจุดข้อมูล LiDAR เมื่อเทียบกับข้อมูลภาพถ่ายทางอากาศ	43
3.6.3 เปรียบเทียบการเลือกจุดระหว่างแนวบินจากภาพถ่ายทางอากาศและชั้น	
ข้อมูลอาคาร	50
3.6.4 ค่าความคลาดเคลื่อนระหว่างแนวบิน ที่ระยะห่างระหว่างจุด ไม่เกิน 5	
และ 10 เซนติเมตร	55
3.7 การปรับแก้ด้วยลีสท์สแควร์	58

สารบัญ (ต่อ)

	หน้า
บทที่ 4 การประมวลผลข้อมูล	61
4.1 ผลการเตรียมข้อมูลและกำหนดตำแหน่งซ้อนทับระหว่างแนวบินของข้อมูล	
LiDAR	61
4.2 ผลการเตรียมการเลือกพื้นที่ <mark>และกา</mark> รหาขอบวัตถุจากภาพถ่ายทางอากาศ	62
4.3 ผลการใช้ภาพถ่ายทางอากาศเพื่อพิจารณาข้อมูล LiDAR ระหว่างแนวบิน	. 65
4.4 ผลการเลือกจุดข้อมูล LiDAR ระหว่า <mark>งแนวบิน</mark>	68
4.4.1 ข้อมูล <mark>LiDAR บนชั้นข้อมูลอาคารที่ระยะห่าง</mark> ระหว่างจุด 5 เซนติเมตร	68
4.4.2 ข้อมูล LiDAR บนชั้นข้อมูลอาคารที่ระยะห่างระหว่างจุด 10 เซนติเมต	ร 69
4.5 ผลการปรับแก้ด้วยลีสท์สแควร์	70
4.5.1 ค่าคว <mark>ามคลาดเคลื่อนระหว่างแนวบิน ที่ระยะห่า</mark> งระหว่างจุดไม่เกิน 5	
และ10 <mark>เซนติเมต</mark> ร	70
4.5.2 กราฟแสด <mark>งความสูงต่างและความสูงปรับแก้</mark> ระหว่างแนวบิน	73
4.5.3 ค่าพารามิเต <mark>อร์ที่ได้จากการคำนวณส</mark> มการระนาบ	75
บทที่ 5 บทสรุปและข้อเสนอแนะ	79
5.1 บทสรุป	79
5.2 ข้อเสนอแน <mark>ะ</mark>	83
5.3 ประโยชน์ที่ได้รับจากงานวิจัย	83
รายการอ้างอิง	84
ภาคผนวก	87
ภาคผนวก ก ตารางแสดงค่าความสูงต่างและความสูงปรับแก้ระหว่างแนวบิน	88
ภาคผนวก ข การหาขอบของวัตถุ	103
ภาคผนวก ค การประมวลผลด้วยโปรแกรม Matlab 2008a	106
ประวัติผู้เขียนวิทยานิพนธ์	110

สารบัญตาราง

ตารางที่		หน้า
2.1	รูปแบบและผลลัพธ์การScanning	10
2.2	ค่าแสดงการสะท้อนของวัสดุ	12
3.1	แสดงรายการเลือกจุดข้อมูล LiDAR	42
3.2	ข้อมูล LiDAR ที่ระยะห่างร <mark>ะหว่างแนวบินที่</mark> ระยะ15, 20, 30 และ 50 เซนติเมตร	50
3.3	แสดงข้อมูล LiDA <mark>R ที่ระยะห่า</mark> งระหว่างแนวบินที่ระยะ 5 และ 10 เซนติเมตร	53
3.4	ค่าความสูงระห <mark>ว่างแนวบิน ร</mark> ะยะห่างร <mark>ะหว่างจุด 5</mark> เซนติเมตร	55
3.5	ค่าความสูงระหว่าง <mark>แนวบิน ระยะห่างระหว่างจุด</mark> 10 เซนติเมตร	56
4.1	ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 5	
	เซนติเมตร	70
4.2	ผลการปรับแ <mark>ก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน</mark> ระยะห่างระหว่างจุด 10	
	เซนติเมตร	71
5.1	สรุปผลการปรับแก <mark>้คว</mark> ามสูง <mark>ต่างระหว่าง</mark> แนวบ <mark>ินและ</mark> ความสูงของแต่ละแนวบิน	81
ก-1	ผลการปรับแก้ค่าค <mark>วามสูงคลาดเคลื่อนระห</mark> ว่างแนวบิน ระยะห่างระหว่างจุด 5	
	เซนติเมตร(แนวบินที่ซ้ <mark>อนทับกัน)</mark>	89
ก-2	ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 10	
	เซนติเมตร(แ <mark>น</mark> วบินที่ซ้อนทับกัน)	93
ก-3	ค่าความสูงและค่าความสูงปรับแก้แนวบินที่ 1 (ปรับแก้ทั้งแนวบิน)	97
ก-4	ค่าความสูงและค่าความสูงปรับแก้แนวบินที่ 2 (ปรับแก้ทั้งแนวบิน)	100

ы เங.า.ษฬิ⊿แตร⊾ เы.า.ษฬิภกรภทแแรงากหม 5 (กรภทแมงศหรภกช)

สารบัญภาพ

ภาพที่		หน้า
1.1	ลักษณะการทำงานและการบันทึกข้อมูล LiDAR	1
1.2	ลักษณะความคลาดเคลื่อนความสูงข้อมูล LiDAR ระหว่างแนวบิน	3
1.3	แผนผังวิธีดำเนินงานวิจัย	5
2.1	แสดงการทำงานของ Airborne Laser Scanning	7
2.2	แสดงการปล่อยแสง <mark>แบบ Puls</mark> ed Lase <mark>r</mark>	9
2.3	แสดงช่วงของ Pulsed Laser	9
2.4	แสดงลักษณะคลื่นของ CW	9
2.5	แสดงการปล่อยช่วงคลื่นของ CW	9
2.6	แสดงการเกิดกำลังส่งและรับของเลเซอร์	10
2.7	แสดงลักษณะช่วงคลื่นของ Pulsed Laser	12
2.8	แสดงลักษณะคลื่นต่อเนื่องของ CW	13
2.9	กราฟแสดงการหาขอบวัตถุด้วยวิธี Gradient method	18
2.10	ตัวอย่างการหาขอบวัตถุ <mark>โดยใช้ Edge dete</mark> ctor แบบต่าง ๆ	18
2.11	ขั้นตอนการหาขอบวัตถุโ <mark>ดยวิธีของ Canny</mark>	19
2.12	แสดงภาพก่อนและหลังการปรับแนวบิน	24
2.13	แสดงการปรับแก้ระหว่างแนวบินโดยใช้วิธีการเดียวกับการปรับแก้ทาง	
	Photogrammetric	25
3.1	ขั้นตอนวิธีการทำงาน	29
3.2	พื้นที่ศึกษาข้อมูล LiDAR บริเวณ อ.บ้านหมอ จ.สระบุรี	30
3.3	การตั้งค่า Points LiDAR ระหว่างแนวบินด้วยสีที่ต่างกัน	31
3.4	กำหนดแนวพื้นที่ซ้อนทับระหว่างแนวบิน	31
3.5	เลือกพื้นที่ซ้อนทับระหว่างแนวบินที่ 1 และแนวบินที่ 2	32
3.6	พื้นที่ส่วนซ้อนทับระหว่างแนวบินที่ 1 และแนวบินที่ 2	32
3.7	ภาพถ่ายทางอากาศพื้นที่ศึกษา	33
3.8	ภาพถ่ายทางอากาศบริเวณพื้นที่ อ.บ้านหมอ จ.สระบุรี	33
3.9	อาคารที่มีลักษณะเรียบ (Flat roof)	34
3.10	อาคารที่มีลักษณะเป็นทรงจั่ว (Gable roof))	35

สารบัญภาพ (ต่อ)

ภาพที่		หน้า
3.11	ความเสียหายต่อผิวถนน	35
3.12	ภาพถ่ายทางอากาศที่ทำการหาขอบวัตถุ (Edge Detection)	36
3.13	ภาพถ่ายทางอากาศที่ทำการหาขอบวัตถุโดยวิธี Canny	37
3.14	กระบวนการสร้างชั้นข้อมูล <mark>อาคาร</mark>	38
3.15	การซ้อนทับข้อมูล <mark>LiDAR บนภาพถ่ายทางอากาศ</mark> ของแนวบินที่ 1	39
3.16	การซ้อนทับข้อมู <mark>ล LiDAR บน</mark> ภาพถ่าย <mark>ทางอากาศข</mark> องแนวบินที่ 2	39
3.17	ชั้นข้อมูลอาคารของ <mark>จำนวนอาคารทั้งหมดบริเวณ</mark> พื้นที่ศึกษา	40
3.18	การซ้อนทับข้อมูล LiDAR บริเวณ <mark>พื</mark> ้นที่อาคารจากชั้นข้อมูลอาคาร	40
3.19	เปรียบเทียบการเลือกจุดบนภาพถ่ายทางอากาศ	41
3.20	ข้อมูล LiDAR ซ้อนทับชั้นข้อมูลอาคาร	43
3.21	ข้อมูล LiDAR <mark>แนวบินที่ 1 บนชั้นข้อมูลอาคาร</mark>	44
3.22	ข้อมูล LiDAR แนวบินที่ 2 บนชั้นข้อมูลอาคาร	44
3.23	ข้อมูล LiDAR ทั้งส ^อ งแนวบินบนชั้นข้อมูลอาคาร	45
3.24	ข้อมูล LiDAR แนวบินที่1 ระยะห่างจุดไม่เกิน 5 เซนติเมตร ทั้งแนวบิน	45
3.25	ข้อมูล LiDAR แนวบินที่2 ระยะห่างจุดไม่เกิน 5 เซนติเมตร ทั้งแนวบิน	46
3.26	ข้อมูล LiDAR แนวบินที่1 ระยะห่างจุดไม่เกิน 5 เซนติเมตร เฉพาะบนชั้นข้อมูล	46
3.27	ข้อมูล LiDAR แนวบินที่2 ระยะห่างจุดไม่เกิน 5 เซนติเมตร เฉพาะบนชั้นข้อมูล	47
3.28	ข้อมูล LiDAR แนวบินที่1 ระยะห่างจุดไม่เกิน 10 เซนติเมตร ทั้งแนวบิน	47
3.29	ข้อมูล LiDAR แนวบินที่2 ระยะห่างจุดไม่เกิน 10 เซนติเมตร ทั้งแนวบิน	48
3.30	ข้อมูล LiDAR แนวบินที่1 ระยะห่างจุดไม่เกิน 10 เซนติเมตร เฉพาะบนชั้นข้อมูล	48
3.31	ข้อมูล LiDAR แนวบินที่2 ระยะห่างจุดไม่เกิน 10 เซนติเมตร เฉพาะบนชั้นข้อมูล	49
3.32	ข้อมูล LiDAR ทั้งสองแนวบินที่ระยะ 5 และ 10 เซนติเมตร บนชั้นข้อมูลอาคาร	49
3.33	แสดงภาพก่อนและหลังการปรับแนวบินระหว่างสองแนวบิน	58
4.1	ขอบเขตการซ้อนทับระหว่างแนวบิน	61
4.2	ข้อมูล LiDAR แนวบินที่ 1 บริเวณพื้นที่ซ้อนทับ	62
4.3	ข้อมูล LiDAR แนวบินที่ 2 บริเวณพื้นที่ซ้อนทับ	62
4.4	ภาพถ่ายทางอากาศ บริเวณพื้นที่ช้อนทับ	63

สารบัญภาพ (ต่อ)

ภาพที่		หน้า
4.5	ภาพถ่ายทางอากาศ บริเวณพื้นที่อาคาร	63
4.6	อาคารที่เลือกพิจารณาจากภาพถ่ายทางอากาศ	64
4.7	การหาขอบวัตถุจากถ่ายทางอากาศของอาคารที่มีลักษณะเรียบ (Flat roof)	65
4.8	การหาขอบวัตถุจากภาพถ่ <mark>ายทางอากาศข</mark> องอาคารที่มีลักษณะเป็นทรงจั่ว	
	(Gable roof)	65
4.9	ชั้นข้อมูลอาคาร <mark>ทั้งหมดจำน</mark> วน 8 อาคาร	66
4.10	การแสดงตำแหน่งพิกัด LiDAR และภาพถ่ายทางอากาศเป็นจุดควบคุม	67
4.11	ข้อมูล LiDAR บนชั้นข้อมูลอาคาร ระยะห่างระหว่างจุด 5 เซนติเมตร	68
4.12	ข้อมูล LiDAR บนชั้นข้อมูลอาคาร ระยะห่างระหว่างจุด 10 เซนติเมตร	69
4.13	กราฟแสดงค <mark>วามสูงต่างระหว่างแนวบิน ระยะห่างระหว่า</mark> งจุด 5 เซนติเมตร	73
4.14	กราฟแสดงความสู <mark>งปรับแก้ระหว่างแนวบิน ระยะห่าง</mark> ระหว่างจุด 5 เซนติเมตร	73
4.15	กราฟแสดงความสูงต่างระหว่างแนวบิน ระยะห่างระหว่างจุด 10 เซนติเมตร	74
4.16	กราฟแสดงความสูงปรับ <mark>แก้ระหว่างแนวบิน</mark> ระยะห่างระหว่างจุด 10 เซนติเมตร.	74
4.17	ตำแหน่งการเลือกจุดข้อมูล LiDAR ทั้งแนวบินกระจายทั่วพื้นที่	78
ข-1	แสดงการหาขอบวัตถุด้วยวิธี Canny โดยใช้ Matlab 2008a	105

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

ปัจจุบันเทคโนโลยี LiDAR (Light Detection and Ranging) เป็นที่ยอมรับของหลาย หน่วยงานและหลายประเทศที่ทำแผนที่ทั้งในยุโรป อเมริกา และญี่ปุ่น ได้นำเทคโนโลยีการสำรวจ ลักษณะภูมิประเทศด้วยระบบ LiDAR มาใช้มากขึ้นจนเป็นที่แพร่หลายในงานทางวิศวกรรมและงาน การวิเคราะห์เชิงพื้นที่ เนื่องจากข้อมูลความสูงภูมิประเทศเชิงเลขที่ได้ มีความถูกต้องสูงมากจน สามารถนำไปประยุกต์ในหลายๆด้าน หากแต่ว่าการใช้ข้อมูลดังกล่าวนั้นจำเป็นอย่างยิ่งที่ผู้ใช้งาน ต้องรู้เกี่ยวกับคุณลักษณะข้อมูลและความเหมาะสมในการใช้งาน เพื่อให้ทราบทั้งประโยชน์และ อุปสรรคที่เกิดขึ้นเมื่อใช้ข้อมูลดังกล่าว

เทคโนโลยี LiDAR เป็นระบบสำรวจรังวัดความสูงภูมิประเทศด้วยแสงเลเซอร์ที่ติดตั้งบน อากาศยาน ซึ่งเดินทางจากเซ็นเซอร์ไปยังวัตถุเป้าหมาย และเดินทางกลับมายังเซ็นเซอร์ ดังนั้นถ้า แสงเลเซอร์กระทบกับวัตถุใดก่อนก็จะสะท้อนกลับ เมื่อนำข้อมูลทั้งหมดเข้าสู่ระบบประมวลผล ระบบจะทำการทอนค่าต่าง ๆ เป็นค่าความสูงภูมิประเทศทั้งชนิดที่เป็นพื้นผิวปกคลุมภูมิประเทศ (DSM: Digital Surface Model) และค่าความสูงพื้นผิวภูมิประเทศ (DEM: Digital Elevation Model) แสดงลักษณะการทำงานดังรูปที่ 1.1

รูปที่ 1.1 ลักษณะการทำงานและการบันทึกข้อมูล LiDAR (LIDAR, 2010)

และที่สำคัญข้อมูล LiDAR ไม่เพียงแต่มีความถูกต้องเสมอไป ซึ่งอาจมีความคลาดเคลื่อน เกิดขึ้นได้เช่นกัน จากข้อมูล LiDAR มีความคลาดเคลื่อนเกิดขึ้นได้แม้ว่าจะได้มีการเทียบมาตรฐาน (Calibration) เครื่องมือแล้วก็ตาม สาเหตุของความคลาดเคลื่อนของข้อมูล LiDAR แบ่งได้เป็น 3 สาเหตุ ได้แก่ 1) ความคลาดเคลื่อนสุ่ม (Random Error) 2) ความคลาดเคลื่อนเชิงระบบ (Systematic Error) และ 3) ความคลาดเคลื่อนที่เกิดจากความผิดพลาด (Mistake or Blunders) (Willers et al., 2008)

ความคลาดเคลื่อนแบบสุ่มและความคลาดเคลื่อนที่เกิดจากความผิดพลาดสามารถแก้ไขได้ ด้วยมือ (Manual) หรืออาจใช้วิธีกรองข้อมูลด้วยคอมพิวเตอร์ (Automated Filtering Methods) ความคลาดเคลื่อนแบบมีระบบ มีสาเหตุมาจากคุณสมบัติของเครื่องสแกนเนอร์เอง และเกิดจาก ระบบนำร่องภายใน (INS: Inertial navigation sensors) ของอากาศยานที่ใช้ขนส่งสแกนเนอร์ ความคลาดเคลื่อนแบบมีระบบนี้ ก็เหมือนกับความคลาดเคลื่อนลักษณะอื่นๆ ที่ต้องมีการปรับแก้ เพื่อสร้างแบบจำลองให้มีคุณภาพสูง

แบบจำลองที่ใช้ควบคุมความคลาดเคลื่อนแบบมีระบบโดยทั่วไปมี 2 ชนิด (Pfeifer et al., 2005) คือ 1) แบบจำลองระบบตรวจจับ (Sensor System Models) และ 2) แบบจำลองที่ใช้ข้อมูล เป็นตัวตัดสินใจ (Data Driven Models) วิธีการใช้แบบจำลองระบบตรวจจับนั้นจะใช้ข้อมูลที่เก็บ ในช่วงที่มีการปรับเทียบเครื่องสแกนเนอร์ ซึ่งเราไม่สามารถใช้วิธีนี้ได้เนื่องจากไม่มีข้อมูลเกี่ยวกับ คุณสมบัติของเครื่องสแกนเนอร์ และเครื่องบินพาหนะที่ใช้ขนสแกนเนอร์เพียงพอ ดังนั้นเราจึงต้องใช้ แบบจำลองที่ใช้ข้อมูลเป็นตัวตัดสินใจ ภายหลังจากที่ได้ดำเนินการตามกระบวนการเพื่อให้ได้ข้อมูล มาแล้ว

จากลักษณะการบินสำรวจข้อมูล LiDAR ซึ่งเป็นการบันทึกข้อมูลเป็นแถบซ้อนทับกัน (overlap strip) และมีการบินเก็บภาพถ่ายทางอากาศบริเวณนั้นพร้อมกัน ทำให้เราสามารถ ตรวจสอบค่าความคลาดเคลื่อนจากการซ้อนทับกันระหว่างแนวบินของข้อมูล LiDAR ด้วยภาพถ่าย ทางอากาศ โดยวิเคราะห์จุดซ้อนทับระหว่างแนวบินบนภาพถ่ายทางอากาศเพื่อเปรียบเทียบ ตำแหน่งทางด้านความสูงของข้อมูล LiDAR

จากการศึกษาข้อมูล LiDAR สาเหตุของความคลาดเคลื่อนเกิดจากหลายปัจจัย ซึ่งใน งานวิจัยนี้เราจะพิจารณาเฉพาะค่าความคลาดเคลื่อนจากข้อมูล LiDAR บริเวณพื้นที่ซ้อนทับเท่านั้น ซึ่งเราพิจารณาตำแหน่งของข้อมูลในบริเวณพื้นที่เดียวกันคือบริเวณที่เป็นสิ่งปลูกสร้างได้แก่ บ้านพัก อาศัย อาคารต่างๆ ในการวิเคราะห์ข้อมูล โดยนำภาพถ่ายทางอากาศซ้อนทับข้อมูล LiDAR แสดง ค่าความสูงบริเวณพื้นที่เดียวกันของข้อมูล LiDAR ย่อมมีค่าความสูงของข้อมูลเท่ากันหรือใกล้เคียง กันมากที่สุด แต่จากข้อมูลดังกล่าวทำให้เห็นว่าค่าความสูง LiDAR บริเวณอาคารเดียวกันมีความ แตกต่างกัน ส่งผลให้เกิดค่าความคลาดเคลื่อนจากความสูง LiDAR ระหว่างแนวบินเกิดขึ้น ดังแสดง การเกิดค่าคลาดเคลื่อนในรูปที่ 1.2

รูปที่ 1.2 ลักษณะความคลาดเคลื่อนความสูงข้อมูล LiDAR ระหว่างแนวบิน (Brenner, 2006)

ด้วยเหตุผลนี้เองจึงเป็นที่มาของงานวิจัยฉบับนี้ เพื่อทำการตรวจสอบและลดความคลาด เคลื่อนที่เกิดขึ้นของข้อมูล LiDAR ระหว่างแนวบินบริเวณพื้นที่เดียวกัน และจะทำการปรับแก้ความ คลาดเคลื่อนด้วยแบบจำลองทางคณิตศาสตร์และใช้วิธีลีสท์สแควร์ในการปรับแก้ความคลาดเคลื่อน ระหว่างแนวบินของข้อมูล LiDAR บริเวณอาคารจากภาพถ่ายทางอากาศบนพื้นที่เดียวกัน

1.2 วัตถุประสงค์ของการวิจัย

1.2.1 เพื่อศึกษารายละเอียด วิธีการเก็บข้อมูล เทคนิคการบินเก็บข้อมูลในแนวบิน การ ซ้อนทับระหว่างแนวบิน และค่าความคลาดเคลื่อนที่เกิดขึ้นของข้อมูล LiDAR

1.2.2 เพื่อศึกษาเทคนิคการใช้ภาพถ่ายทางอากาศเป็นจุดควบคุม และเลือกพื้นที่ซ้อนทับ ของข้อมูล LiDAR ในการเก็บข้อมูลในพื้นที่ได้อย่างถูกต้อง

1.2.3 เพื่อทำการปรับแก้ค่าความคลาดเคลื่อนทางด้านความสูงของ LiDAR ระหว่างแนวบิน โดยอาศัยจุดควบคุมจากภาพถ่ายทางอากาศด้วยวิธีการปรับแก้ด้วยวิธีลีสท์สแควร์

1.3 ขอบเขตของการวิจัย

1.3.1 ศึกษาความคลาดเคลื่อนที่เกิดขึ้น และทำการปรับแก้ค่าความคลาดเคลื่อนในบริเวณ พื้นที่ซ้อนทับของแนวบินเท่านั้น

1.3.2 ใช้ภาพถ่ายทางอากาศเป็นจุดควบคุมในการเลือกข้อมูล LiDAR ที่จะทำการปรับแก้

1.3.3 พิจารณาปรับแก้เฉพาะค่าความสูงของ LiDAR เท่านั้น

1.3.4 ใช้วิธีการปรับแก้ค่าความคลาดเคลื่อนด้วยวิธีลีสท์สแควร์

1.4 วิธีดำเนินการวิจัย

1.4.1 ศึกษาแนวคิด ทฤษฎี และงานวิจัยที่เกี่ยวข้อง

- ศึกษาข้อมูล LiDAR วิธีการเก็บข้อมูล การบินเก็บข้อมูลในแนวบิน การซ้อนทับ ระหว่างแนวแนวบินและค่าความคลาดเคลื่อนที่เกิดขึ้นของข้อมูล LiDAR

1.4.2 ศึกษาเทคนิคจุดควบคุมจากถ่ายทางอากาศ

- ศึกษาวิธีการหาขอบวัตถุจากถ่ายทางอากาศให้มีแนวเด่นซัด เพื่อใช้จุดควบคุมจาก ภาพถ่ายทางอากาศในการเก็บข้อมูล LiDAR ในบริเวณพื้นที่เดียวกัน

1.4.3 การวิเคราะห์และเก็บข้อมูล LiDAR บริเวณพื้นที่อาคาร

 ทำการเลือกและวิเคราะห์ข้อมูล LiDAR ระหว่างแนวบินบริเวณซ้อนทับของ ภาพถ่ายทางอากาศบริเวณพื้นที่อาคารเดียวกัน ซึ่งข้อมูล LiDAR อยู่ในรูปพิกัด x,y,z ของบริเวณ ซ้อนทับในแนวบินที่ 1 (Strip1) และแนวบินที่ 2 (Strip2) เก็บข้อมูลเพื่อนำมาทำการเปรียบเทียบค่า ความสูงต่างหรือค่าความคลาดเคลื่อนที่เกิดขึ้นทำให้ทราบได้ว่า LiDAR บริเวณเดียวกันย่อมมีความ สูงใกล้เคียงกัน ดังนั้นจะทำให้ทราบค่าความคลาดเคลื่อนที่เกิดขึ้นในบริเวณเดียวกัน

1.4.4 ศึกษาแบบจำลองทางคณิตศาสตร์

ใช้วิธีลีสท์สแควร์ในการปรับแก้ความคลาดเคลื่อน

1.4.5 คำนวณการปรับแก้ด้วยโปรแกรม Matlab 2008a

1.4.6 ปรับแก้ค่าค<mark>วา</mark>มคลาดเคลื่อนโดยใช้ข้อมูล LiDAR ทั้งชุดข้อมูล

1.4.7 สรุปผลและจัดทำรูปเล่มวิทยานิพนธ์

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

1.5 แผนผังวิธีการดำเนินงานวิจัย

แสดงแผนผังวิธีการดำเนินงานวิจัย ดังรูปที่ 1.3

5

1.6 ประโยชน์ที่คาดว่าจะได้รับ

1.6.1 ข้อมูล LiDAR ที่มีค่าความคลาดเคลื่อนจากการซ้อนทับระหว่างแนวบินได้มีการ ปรับแก้ให้มีค่าความคลาดเคลื่อนน้อยที่สุด

1.6.2 สามารถใช้ภาพถ่ายทางอากาศ เป็นตัวช่วยในการเลือกจุดที่จะใช้ในการปรับแก้

1.6.3 เทคนิคต่างๆ ที่ใช้ในงานวิจัยครั้งนี้สามารถใช้เป็นแนวทางในการพัฒนาต้นแบบใน การใช้แบบจำลองทางคณิตศาสตร์ในการปรับแก้ความคลาดเคลื่อนจากข้อมูลอื่น

1.6.4 สามารถทำให้ข้อมูล LiDAR <mark>มีความถูกต้องและน่าเชื่อถือในการนำไปวิเคราะห์งานใน</mark> ด้านต่าง ๆ

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 2 แนวคิดและงานวิจัยที่เกี่ยวข้อง

การปรับแก้ข้อมูล LiDAR ระหว่างแนวบินโดยอาศัยจุดควบคุมจากภาพถ่ายทางอากาศซึ่ง งานวิจัยบทนี้จะกล่าวถึงแนวคิด ทฤษฏี รวมทั้งหลักการทำงานและระบบของ LiDAR สาเหตุการเกิด ความคลาดเคลื่อนระหว่างแนวบิน การใช้ภาพถ่ายทางอากาศเพื่อพิจารณาตำแหน่งข้อมูล LiDAR การหาขอบวัตถุจากภาพถ่ายทางอากาศ แบบจำลองทางคณิตศาสตร์ วิธีปรับแก้ด้วยลีสท์สแควร์ และงานวิจัยที่เกี่ยวข้อง

2.1 หลักการทำงานของ Airborne Laser Scanning

รูปที่ 2.1 แสดงการทำงานของ Airborne Laser Scanning (Brenner, 2006)

2.1.1 องค์ประกอบระบบเลเซอร์สแกนเนอร์

ระบบเลเซอร์สแกนเนอร์มีเครื่องวัดระยะทางอิเล็กทรอนิกส์เป็นองค์ประกอบที่สำคัญ การ รังวัดระยะทางอิเล็กทรอนิกส์มีการใช้ประโยชน์จากการส่งคลื่นแม่เหล็กไฟฟ้าที่มีกำลังในการทะลุ ทะลวงเป็นลำแสงควบแน่น เช่น แสงเลเซอร์ เครื่องวัดระยะทางจะกำเนิดเลเซอร์และจับเวลาในการ เดินทางด้วย "หน่วยวัดเปรียบเทียบเวลา" เมื่อแสงไปตกกระทบพื้นผิวแสงจะสะท้อนกลับ การ สะท้อนกลับได้มากหรือน้อยขึ้นอยู่กับชนิดพื้นผิวว่าเป็นของแข็ง เรียบหรือหยาบ แห้งหรือชื้น เมื่อ แสงเดินทางกลับมายังเครื่องรับจะมีการเปรียบเทียบเวลาอีกครั้ง (ไพศาล สันติธรรมนนท์, 2553)

เมื่อทราบเวลาคูณด้วยความเร็วแสงจะได้ระยะทางเป็น 2 เท่า ของระยะทางจากเครื่องวัด ระยะไปยังพื้นผิว ดังความสัมพันธ์ สามารถหาระยะทางจากสมการ

จากสมการ (2.1) สามารถหาระยะทางจากความเร็วแสง(c) ขณะบินบันทึกข้อมูลภาพ

ดังนั้น จะกล่าวได้ว่าระยะทางของ LiDAR เกิดจากการเคลื่อนที่แบบคลื่นที่เกิดขึ้นใน ช่วงเวลา (Pulse Laser) และคลื่นแบบต่อเนื่อง (Continuous Wave)

2.1.2 ส่วนประกอบของ Airborne Laser Scanning (ALS)

2.1.2.1 Laser

คำว่า Laser ย่อมาจาก Light Amplification by Stimulated Emission of Radiation หมายถึง แสงเลเซอร์ซึ่งเป็นแสงที่มีสมบัติพิเศษแตกต่างจากแสงทั่ว ๆ ไป แสงเลเซอร์ถูกนำมาใช้ ประโยชน์มากมายทั้ง ทางด้านการสื่อสาร การทหาร บันเทิง อุตสาหกรรม และการแพทย์

แสงเลเซอร์ที่ใช้ในระบบ ALS มี 2 แบบคือ Pulsed Laser และ Continuous Wave (CW) 1) Pulsed Laser คุณลักษณะทั่วไปของ Pulsed Laser เป็นการปล่อยแสงเลเซอร์ลงมาเป็นช่วง โดย ไม่ต่อเนื่อง

จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 2.2 แสดงการปล่อยแสงแบบ Pulsed Laser (Brenner, 2006)

รูปที่ 2.3 แสดงช่วงของ Pulsed Laser (Brenner, 2006)

2) Continuous Wave (CW) คุณลักษณะทั่วไปของ Continuous Wave เป็นการปล่อยแสงเลเซอร์ ลงมาอย่างต่อเนื่อง ซึ่งมีการจำกัดความยาวคลื่นแสงเลเซอร์

2.1.2.2 Deflection Unit รูปแบบและผลลัพธ์การ Scanning มี 4 รูปแบบดังต่อไปนี้ ตารางที่ 2.1 รูปแบบและผลลัพธ์การScanning (Brenner, 2006)

กลไกและรูปแบบการ Scanning				
	Oscillating	Rotating polygon	Nutating mirror	Fiber switch
รูปแบบและ	mirror		(Palmer scan)	
ลักษณะการ Scanning	N			Later (same for receiving optics)
	Z-shaped,	Parallel	Elliptical	Parallel
ผลลัพธ์ของ	sinusodial	lines	Ешриса	lines
การ Scanning				

2.1.2.2.1 สมการสมดุลพลังงาน (Power balance)

รูปที่ 2.6 แสดงการเกิดกำลังส่ง – รับของเลเซอร์ (Brenner, 2006)

จากรูปที่ 2.6 สามารถอธิบายสมการสมดุลพลังงานได้ดังนี้

กำลังส่ง (Power transmitted) คือกำลังที่ส่งออกจากเลเซอร์ ซึ่งให้แทนด้วย P_τ

2) กำลังรับ (Power received) ติดตั้งภาคพื้นดินคือ กำลังที่รับจากจุดควบคุมภาคพื้นดิน (Ground Control Point) จะได้

3) กำลังสะท้อน (Power reflected) คือกำลังที่สะท้อนเมื่อแสงตกกระทบไปยังวัตถุ ภาคพื้นดินจะได้

$$\frac{\Psi}{2\pi} \cdot \rho \cdot \mathbf{M} \cdot \mathbf{P}_{\mathrm{T}} \tag{2.4}$$

4) กำลังรับ (Power received) จากเครื่องรับติดตั้งบนอากาศยาน คือ กำลังรับเมื่อแสง สะท้อนจากภาคพื้นดินกลับไปยังตัวเครื่องรับบนอากาศยานจะได้

$$P_{\rm r} = \frac{A_{\rm r}}{2\pi R^2} \cdot \mathbf{M} \cdot \boldsymbol{\rho} \cdot \mathbf{M} \cdot \mathbf{P}_{\rm T} = \frac{\boldsymbol{\rho} \mathbf{M}^2 A_{\rm r}}{2\pi R^2} \cdot \mathbf{P}_{\rm T} \qquad (2.5)$$

เมื่อ $P_T =$ กำลังที่ส่งออกจากเลเซอร์ (วัตต์)

P_r = กำลังรับจากเครื่องตรวจวัดที่ติดตั้งบนอากาศยาน (วัตต์)

M = ค่าการเปล่งรังสีของช่วงคลื่นทั้งหมดจากพื้นผิวของวัตถุ (วัตต์ต่อตารางเมตร)

 $M = \sigma T^4$ $\sigma = ค่าคงที่ของสเต<mark>ฟานและโบลซ์แมน</mark> 5.6697x10⁸ วัตต์ต่อตารางเมตรเคลวิน⁻⁴$

T =อุณหภูมิ(เคลวิน)

ho = พลังงานสะท้อน / พลังงานตกกระทบ

 $2\pi =$ มุมที่รองรับที่ศูนย์กลางโดยส่วนโค้งซึ่งยาวเท่ากับรัศมีของวงกลม

 $\Psi=$ ฟลักซ์ของพลังงาน หมายถึงอัตราการส่งผ่านพลังงานจากที่หนึ่งไปอีกที่หนึ่ง(จูล)

A = พื้นที่ที่แสงเลเซอร์ตกกระทบวัตถุ (ตารางเมตร)

R = ระยะทางจากเครื่องตรวจวัดถึงเป้าหมาย (เมตร)

2.1.2.2.2 ความสามารถการสะท้อนกลับของวัสดุ

เมื่อเลเซอร์กระทบวัสดุที่มีคุณสมบัติทางกายภาพที่ต่างกัน การสะท้อนกลับได้ของเลเซอร์ จะแตกต่างกันไป โดยจะให้ในรูปของสัดส่วนความแรงสัญญาณที่สะท้อนกลับเทียบกับวัตถุที่ สะท้อนได้เป็น 100 % และให้ความสามารถสะท้อนกลับ (reflectivity) สำหรับวัสดุต่างๆปรากฏใน ตารางต่อไปนี้

MATERIAL	REFLECTIVITY @ λ =	
	900 nm	
Dimension lumber(pine, clean, dry	94 %	
Snow	80-90 %	
White masonry	85 %	
Limestone, clay	Up to 75 %	
Deciduous trees	typ. 60 %	
Coniferous trees	typ. 30 %	
Carbonate sand (dry)	57 %	
Carbonate sand (wet)	41 %	
Beach sands, bare areas in desert	typ. 50 %	
Rough wood pallet (clean)	25 %	
Concrete, smooth	24 %	
Asphalf with pebbles	17 %	
Lava	8 %	
Back rub rubber tire wall	2%	

ตารางที่ 2.2 ค่าแสดงการสะท้อนของวัสดุ (Brenner, 2006)

2.1.2.3 Ranging Unit ระยะที่ใช้ในการวัดในระบบ ALS มี 2 แบบคือ Pulsed Laser และ Continuous Wave

1) Pulsed Laser เครื่องส่ง Pulsed Laser ที่มีกำลังสูง 2,000 วัตต์ มีค่าความ คลาดเคลื่อนน้อยกว่า Continuous Wave ถึง 85 เท่า ค่าความคลาดเคลื่อนของ Pulsed อยู่ที่2-5 เซนติเมตร.

รูปที่ 2.7 แสดงลักษณะช่วงคลื่นของ Pulsed Laser (Brenner, 2006)

การวัดระยะ (Range)

$$\mathbf{R} = \frac{\mathbf{c}}{2} \cdot \mathbf{t} \qquad \dots \dots$$

ความละเอียดของการวัด (Range resolution)

$$\Delta \mathbf{R} = \frac{\mathbf{c}}{2} \cdot \Delta \mathbf{t} \tag{2.7}$$

ความคลาดเคลื่อนของการวัด (Range accuracy)

$$\sigma_{\rm R} \propto \frac{c}{2} t_{\rm rise} \cdot \frac{1}{\sqrt{S/N}}$$
 (2.8)

เมื่อ *R* = ระยะทางจากเครื่องวัดไปยังวัตถุ (เมตร)

t = ระยะเวลาที่สัญญาณเดินทาง (วินาที)

c = ความเร็วของแสงกำหนดให้เป็น 299,792,458 เมตรต่อวินาที

 $\Delta R =$ ความละเอียดของการวัด

 $\Delta t =$ ความต่างข<mark>องระยะเวลา</mark>

 $\sigma_{R} =$ ค่าความคล<mark>าดเคลื่อนข</mark>องการวัด

t_{rise} = ช่วงเวลาที่เปลี่<mark>ยนแปลงสัญญาณ (วินาที)</mark>

S / N = อัตราส่วนสัญญาณต่อสัญญาณรบกวน

2) Continuous Wave (CW) เครื่องส่ง CW ที่มีกำลังสูงมากกว่า 2 วัตต์ และความถึ่ มากกว่า 10 MHz มีความคลาดเคลื่อนมากกว่า Pulsed Laser การวัดในระดับความถูกต้องระดับ เซนติเมตร Continuous Wave ไม่สามารถทำได้

รูปที่ 2.8 แสดงลักษณะคลื่นต่อเนื่องของ CW (Brenner, 2006)

(2.6)

การวัดระยะ (Range)

$$\mathbf{R} = \frac{1}{2} \cdot \frac{\phi}{2\pi} \cdot \lambda_{\text{short}} \tag{2.9}$$

ความละเอียดของการวัด (Range resolution)

$$\Delta \mathbf{R} = \frac{\lambda_{\text{short}}}{4\pi} \cdot \Delta \phi = \frac{c}{4\pi} \cdot \frac{1}{f_{\text{high}}} \cdot \Delta \phi \qquad (2.10)$$

ความคลาดเคลื่อนของการวัด (Range accuracy)

เมื่อ

ม *R* = ระยะทางจากเครื<mark>่องวัดไปยังว</mark>ัตถุ (เม<mark>ตร)</mark>

 $2\pi=$ มุมที่รองรับที่ศูนย์กลางโดยส่วนโค้งซึ่งยาวเท่ากับรัศมีของวงกลม

 $\lambda_{short} =$ ความยาวช่วงคลื่น

 $\Delta R =$ ความละเอียดของการวัด

 $f_{high} =$ ค่าความถี่คลื่นสูงสุด

 $\sigma_{\scriptscriptstyle R}$ = ความคลาดเคลื่อนของการวัด

 $S \,/\, N =$ อัตราส่วนสัญญาณต่อสัญญาณรบกวน

2.1.2.4 INS (Inertial Navigation Sensors) คือระบบนำหนด้วยการวัดความเลื่อย เป็นระบบช่วยการนำหนที่ประกอบด้วยอุปกรณ์ตรวจวัดการเคลื่อนไหว เช่น เครื่องวัดอัตราเร่งเชิง เส้น (Linear Accelerometer) เครื่องวัดอัตราการหมุน (Gyroscope) โดยใช้หลักการวัดความเลื่อย ที่เกิดจากการที่พาหนะที่มีมวลสารเปลี่ยนแปลงสถานะทางตำแหน่งและความเร็ว ซึ่งจะเหนี่ยวนำทำ ให้เกิดอัตราเร่งที่สามารถตรวจวัดได้ในรูปของแรงเลื่อย (Inertial Force) ดังนั้น ผลการคำนวณ เชิงเลขและการอินทิเกรต (Integration) อัตราเร่ง (Acceleration) จะได้ความเร็ว (Velocity) และการ อินทิเกรตความเร็วจะได้การขจัด (Displacement) เครื่องมือดังกล่าวจะติดตั้งอยู่บนแกนทั้ง 3 แกน (แกน X, แกน Y และ แกน Z) ซึ่งเรียกกันในภาษาเทคนิคว่า IMU (Inertial Measurement Unit)

2.1.2.5 GPS (Global Positioning System) ระบบดาวเทียม GPS เป็นระบบที่ใช้ใน การหาพิกัดตำแหน่งโดยการรับสัญญาณดาวเทียม GPS โดยใช้การส่งสัญญาณคลื่นวิทยุลงมายัง พื้นโลก เมื่อเครื่องรับสัญญาณดาวเทียม GPS รับสัญญาณจากดาวเทียมได้แล้วจะนำเอาข้อมูล ต่างๆ ที่ได้ไปประมวลผลหาตำแหน่งที่ต้องการ ระบบดาวเทียม GPS ประกอบด้วยส่วนประกอบ 3 ส่วนหลักๆ ได้แก่ ส่วนอวกาศ (Space segment) ส่วนควบคุม (Control segment) และส่วนผู้ใช้ (User segment) โดยส่วนควบคุมจะมีสถานีติดตามภาคพื้นดินที่กระจายอยู่บนพื้นโลกเพื่อคอย ติดตามการเคลื่อนที่ของดาวเทียม ซึ่งทำให้สามารถคำนวณวงโคจรและตำแหน่งของดาวเทียมที่ ขณะเวลาต่างๆ ได้ จากนั้นส่วนควบคุมก็จะทำนายวงโคจรและตำแหน่งของดาวเทียมทุกดวงใน ระบบล่วงหน้าแล้วส่งข้อมูลเหล่านี้ไปยังส่วนอวกาศซึ่งก็คือตัวดาวเทียม ดาวเทียมก็จะทำการส่ง ข้อมูลเหล่านี้ออกมาพร้อมกับคลื่นวิทยุมายังโลก ในส่วนของผู้ใช้เมื่อต้องการจะทราบตำแหน่งของ จุดใดๆ ก็เพียงนำเครื่องรับสัญญาณดาวเทียมไปตั้งตรงจุดที่ต้องการหาตำแหน่ง แล้วนำข้อมูลที่ได้ ไปประมวลผลก็จะทราบตำแหน่งที่ต้องการ (ซูเกียรติ วิเชียรเจริญ, 2549)

2.1.2.6 Control & data recording เป็นตัวควบคุมและบันทึกข้อมูลให้ LiDAR สามารถบันทึกข้อมูล ได้ตามตำแหน่งที่<mark>ต้องการ</mark>

2.2. ความคลาดเคลื่อน

2.2.1 ความคลาดเคลื่อนของข้อมูล LiDAR

- การวัดโดยใช้เลเซอร์ ได้แก่ ระยะทาง และค่ามุมที่วัดได้ ซึ่งขึ้นอยู่กับการใช้งานของอุปกรณ์
 อิเลคทรอนิกส์ภายในส่งผลให้เกิดค่า drift ตามอายุการใช้งาน
- การวัดตำแหน่งโดยใช้ระบบดาวเทียมนำหน (Global Navigation Satellite Systems, GNSS) ที่ขึ้นอยู่กับประเภทเครื่องรับสัญญาณดาวเทียม เทคนิคและวิธีการทำงานที่ใช้
- การหาตำแหน่งโดยใช้ระบบการวัดความเฉื่อย (Inertial Navigation System, INS) ที่ขึ้นอยู่ กับประเภทของอุปกรณ์ตรวจวัดความเฉื่อย (Inertial Measure Unit, IMU) อัตราความถี่ที่ ใช้บันทึกข้อมูล
- 4. ค่า offset/alignment ระหว่างอุปกรณ์ GNSS, INS และ laser scanner
- 5. การเคลื่อนไหวของอุปกรณ์ IMU และ scanner ที่ติดตั้งบนแผ่นยึด
- การปรับเวลา (Time synchronization) เนื่องจากปกติการวัดตำแหน่งโดยใช้ระบบดาวเทียม GNSS จะมีอัตราการบันทึกข้อมูล 1-10 Hz ซึ่งต่ำกว่าระบบ INS ที่มีอัตราการบันทึกข้อมูล สูงถึง 200 Hz
- 7. การแปลงค่าพิกัดไปสู่ระบบพิกัดท้องถิ่น (local coordinate system)
- 8. การกำหนดค่าของข้อมูลพื้นฐานทางเรขาคณิต

2.2.2 สาเหตุของความคลาดเคลื่อน

ซึ่งจากสาเหตุของความคลาดเคลื่อนของข้อมูล LiDAR ดังกล่าวสามารถ แบ่งได้เป็น 3 สาเหตุ (Willers et al., 2008) ได้แก่

2.2.2.1 ความผิดพลาดประมาทเลินเล่อ (Mistake or blunders)

ความผิดพลาดจะถือว่าเป็นความคลาดเคลื่อนขนาดใหญ่ ที่เกิดขึ้นในส่วนของผู้วัดมีผล มาจากการขาดความระมัดระวัง หรือเกิดความสับสน โดยทั่วไปความผิดพลาดจะไม่ถูกจัดเป็นความ คลาดเคลื่อน และสามารถขจัดออกไปได้โดยทำการตรวจสอบเฉพาะแยกออกต่างหาก แล้วจึงแก้ไข โดยการวัดใหม่

2.2.2.2 ความคลาดเคลื่อนแบบมีระบบ (Systematic Error)

ความคลาดเคลื่อนเชิงระบบ เป็นความคลาดเคลื่อนของการวัดซึ่งเป็นไปตามกฎทาง กายภาพหรือธรรมชาติ แสดงได้โดยฟังก์ชันทางคณิตศาสตร์ ถ้าเงื่อนไขที่ทำให้เกิดความ คลาดเคลื่อนถูกวัดมาค่าแก้ก็สามารถคำนวณได้ และความคลาดเคลื่อนเชิงระบบนี้จะถูกขจัด ออกไปได้ เช่น ค่า drift ตามอายุการใช้งานของอุปกรณ์ตรวจวัดโดยใช้เลเซอร์ ค่าคลาดเคลื่อนของ GNSS ที่เกิดจากวงโคจรดาวเทียม การเดินทางของคลื่นผ่านชั้นบรรยากาศ และนาฬิกาของ ดาวเทียมและเครื่องรับที่สามารถขจัดได้โดยใช้แบบจำลองและเทคนิคการหาค่าต่าง ค่า offset/alignment ระหว่างอุปกรณ์ GNSS, INS และ laser scanner การปรับเวลา(Time synchronization) และการแปลงพิกัดไปสู่ระบบพิกัดท้องถิ่น

2.2.2.3 ความคลาดเคลื่อนแบบสุ่ม (Random Error)

ภายหลังจากความผิดพลาดและความคลาดเคลื่อนเชิงระบบถูกขจัดออกไปจากค่าการ วัดแล้ว ยังมีความคลาดเคลื่อนขนาดเล็กเหลืออยู่ ที่เรียกว่า ความคลาดเคลื่อนสุ่ม เช่น การเกิดคลื่น สะท้อนและสัญญาณรบกวนของอุปกรณ์รับสัญญาณ GNSS เป็นต้น

2.3 การใช้ภาพถ่ายทางอากาศเพื่อพิจารณาตำแหน่งข้อมูล LiDAR

2.3.1 ภาพถ่ายทางอากาศ (Aerial Photograph)

การใช้ภาพถ่ายทางอากาศ ซึ่งภาพถ่ายทางอากาศที่ใช้เป็นภาพออร์โทสี ซึ่งติดกล้อง บันทึกภาพบนอากาศยานและเก็บข้อมูลพร้อมกันกับข้อมูล LiDAR ดังนั้นจากการบินถ่ายและบันทึก ข้อมูล ณ ตำแหน่งเวลาเดียวกัน ทำให้เราวิเคราะห์ได้ว่าข้อมูลมีพิกัดเดียวกัน เมื่อเราต้องการ พิจารณาค่าความสูงที่เกิดขึ้น ณ ตำแหน่งต่างๆ ซึ่งในงานวิจัยนี้เราพิจารณาความสูงที่สามารถ ตรวจสอบได้ ซึ่งได้แก่ ความสูงของอาคารและถนน ดังนั้นจึงต้องใช้ภาพถ่ายทางอากาศบริเวณพื้นที่ ที่มีอาคารและถนนมาทำการซ้อนทับเพื่อให้ทราบตำแหน่งความสูงของ LiDAR บนพื้นที่อาคารและ ถนน ระหว่างความสูงที่ได้จากการเก็บข้อมูล LiDAR ของแนวบินที่ 1 และทำการเปรียบเทียบความ สูงจากการเก็บข้อมูล LiDAR ของแนวบินที่ 2 ซึ่งเปรียบเทียบและวิเคราะห์ได้ว่า ณ ความสูงของ LiDAR บนพื้นที่ลักษณะและตำแหน่งเดียวกันความสูงในการเก็บข้อมูลของแนวบินที่ 1และ แนวบิน ที่ 2 ต้องมีความสูงเท่ากัน และเพื่อความถูกต้องของจุดในตำแหน่งของภาพบนพื้นที่ภาพถ่ายทาง อากาศจำเป็นต้องมีการหาขอบวัตถุของอาคารและแนวถนนเพื่อความชัดเจนและถูกต้องของจุดที่อยู่ ในพื้นที่บริเวณเดียวกัน

2.3.2 การหาขอบวัตถุ (Edge Detection)

เป็นการหาเส้นรอบวัตถุที่อยู่ในภาพ เมื่อทราบเส้นรอบวัตถุ เราจะสามารถคำนวณพื้นที่ (ขนาด) หรือรู้จักชนิดของวัตถุนั้นได้ อย่างไรก็ตาม การหาขอบวัตถุที่ถูกต้องสมบูรณ์ไม่ใช่เรื่องที่ง่าย โดยเฉพาะอย่างยิ่งการหาขอบวัตถุที่มีคุณภาพต่ำ มีความแตกต่างระหว่างพื้นหน้ากับพื้นหลังน้อย หรือมีความสว่างไม่สม่ำเสมอทั่วภาพ

ขอบวัตถุเกิดจากความแตกต่างของความเข้มแสงจากจุดหนึ่งไปยังอีกจุดหนึ่ง หากค่าความ ต่างนี้มีค่ามาก ขอบวัตถุก็จะเห็นได้ชัด ถ้าความแตกต่างมีค่าน้อย ขอบวัตถุก็จะไม่ชัดเจน

การหาขอบวัตถุหรือการตรวจสอบว่าเส้นขอบลากผ่านหรือใกล้เคียงกับจุดใด โดยวัดจาก การเปลี่ยนแปลงของความเข้มในตำแหน่งที่ใกล้เคียงกับจุดดังกล่าว ซึ่งวิธีการหาขอบนั้นมีด้วยกัน หลายวิธี แต่อย่างไรก็ตามสามารถแบ่งได้เป็น 2 กลุ่มหลัก คือ Gradient method และ Laplacian method โดยในแต่ละวิธีมีรายละเอียดดังต่อไปนี้ (Castleman, 1996)

1) Gradient method วิธีนี้จะหาขอบโดยการหาจุดต่ำสุดและจุดสูงสุดในรูปของอนุพันธ์ อันดับหนึ่งของภาพ โดยจุดที่เป็นขอบจะอยู่ในส่วนที่เหนือค่า Threshold (ภาพที่ 2.9 ในรูป ข) จึง อาจทำให้เส้นขอบที่ได้มีลักษณะหนา ตัวอย่างวิธีการหาขอบของกลุ่มนี้ เช่น Roberts, Prewitt, Sobel และCanny เป็นต้น

2) Laplacian method จะหาขอบโดยใช้อนุพันธ์อันดับ 2 โดยใช้จุดที่ค่า y เป็น 0 (Zerocrossing) (ภาพที่ 2.9 ในรูป ค) ซึ่งวิธีนี้จะใช้เวลาในการคำนวณมากกว่า Gradient method ตัวอย่างวิธีการหาขอบของกลุ่มนี้เช่น Laplacian of Gaussian และ Marrs-Hildreth เป็นต้น

จุฬาลงกรณมหาวทยาลย

ภาพที่ 2.9 กราฟแสดงการหาขอบด้วยวิธี Gradient method รูป ข และ Laplacian method รูป ค โดย รูป ก แสดงถึงความแตกต่างของระดับความเข้มของสี (GIMP, 2010)

ในตัวอย่างนี้ได้ใช้โปรแกรม Matlab 2008a ช่วยในการหาขอบวัตถุ ซึ่งมีคำสั่งที่ใช้ในการหา ขอบทั้งหมด 6 วิธี (Semmlow 2004:368-370) ดังนี้ Roberts, Sobel, Canny, Lapalacian of Gaussian, zero cross และ Prewitt โดยในตัวอย่างงานวิจัยนี้ได้เลือกใช้วิธี Canny ในการหาขอบ วัตถุ เนื่องจากวิธีดังกล่าวมีการใช้ Gaussian filter ก่อนการหาขอบจึงสามารถควบคุมระดับความ ละเอียดของขอบที่ต้องการและสามารถลดสัญญาณรบกวนได้ ทำให้สามารถตัดขั้นตอนการ ประมวลผลภาพเบื้องต้น (preprocessing) ตัวอย่างภาพที่ผ่านการหาขอบทั้ง 6 วิธีโดยใช้โปรแกรม Matlab 2008a ดังแสดงในภาพที่ 2.10 ซึ่งจากรูปตัวอย่างจะพบว่าการหาขอบวัตถุด้วยวิธี Canny จะให้รายละเอียดขอบวัตถุดีที่สุดและใช้ได้ในกรณีที่สีแต่ละสีมีความแตกต่างกันน้อยเมื่อเทียบกับวิธี

ภาพที่ 2.10 ตัวอย่างการหาขอบวัตถุโดยใช้ Edge detector แบบต่าง ๆ (Semmlow, 2004)

2.3.3 Canny Edge Detection Algorithm ขั้นตอนการหาขอบวัตถุโดยวิธีของ Canny ประกอบด้วย 4 ขั้นตอน ดังภาพที่ 2.11

ภาพที่ 2.11 ขั้นตอนการหาขอบวัตถุโดยวิธีของ Canny (Canny, 1986)

การทำงานของ Canny edge detection นั้นเริ่มต้นจากการปรับภาพให้เรียบ (Smoothing) ด้วยตัวกรองเกาเซียน (Gaussian filter) เพื่อกำจัดสัญญาณรบกวน หลังจากนั้นจะคำนวณค่าขนาด (magnitude) และทิศทาง (orientation) ของ gradient โดยใช้การหาอนุพันธ์อันดับหนึ่ง ถัดมาจึงใช้ nonmaxima suppression กับขนาด (magnitude) ของ gradient เพื่อทำให้ได้ขอบที่บางลง และใน ขั้นตอนสุดท้ายจะใช้ double thresholding algorithm เพื่อหาพิกเซลที่เป็นขอบและทำการเชื่อมต่อ ขอบ (Canny, 1986) โดยในแต่ละขั้นตอนมีรายละเอียดดังต่อไปนี้

2.3.3.1 Smoothing

ในขั้นตอนแรกของการหาขอบโดยอัลกอริทึมนี้จะต้องกำจัดสัญญาณรบกวนออกก่อน โดยใช้ Gaussian filter ซึ่งสามารถคำนวณได้จากการใช้กรอบ (mask) ขนาดเล็ก ขนาดของ Gaussian mark นี้หากมีขนาดกว้างจะมีผลทำให้ลดสัญญาณรบกวนได้มาก แต่ถ้ากว้างมากเกินไป จะมีผลทำให้ขอบย่อย ๆ ที่เป็นส่วนรายละเอียดนั้นหายไป สำหรับการคำนวณหาภาพที่ได้จากการ ใช้ Gaussian filter เป็นดังสมการที่ 2.12

$$S[i, j] = G[i, j, \sigma] * I[i, j]$$
 (2.12)

กำหนดให้

I[i, j] เป็นภาพที่ต้องการหาขอบ

 $G[i,j,\sigma]$ เป็น Gaussian smoothing filter

 σ เป็น spread of the Gaussian (ควบคุมระดับของการ smoothing)

S[i, j] เป็น smoothing image

2.3.3.2 Gradient calculation

ในขั้นแรกนำ Smoothing image S[i, j] มาสร้าง x, y partial derivatives P[i, j]และ Q[i, j] ตามลำดับ ดังสมการที่ 2.13a และ 2.13b

$$M[i, j] = \sqrt{P[i, j]^2 + Q[i, j]^2}$$
(2.13c)
$$\sqrt{[i, j]} = \arctan(Q[i, j], P[i, j])$$
(2.13d)

2.3.3.3 Nonmaxima Suppression

สำหรับการหาขอบโดย Canny method จุดที่ถือเป็นเส้นขอบได้นั้นต้องเป็นจุดที่ให้ ค่าสูงสุดเฉพาะที่และเป็นทิศทางเดียวกับ gradient ด้วย ซึ่งด้วยวิธีดังกล่าวนี้ทำให้ได้ขอบที่บาง เพียง 1 พิกเซล ภาพที่ได้หลังการทำ Nonmaxima Suppression จะให้ค่าเป็นศูนย์ในทุกจุดยกเว้นที่ เป็น local maxima Points ซึ่งยังคงค่าเดิมไว้

2.3.3.4 Thresholding

แม้ว่าภาพจะผ่านการ smoothing ในขั้นตอนแรกแล้วก็ตาม ภาพที่ได้อาจยังมีเส้นขอบ ที่ไม่ใช่ขอบที่แท้จริงปรากฏอยู่อันเนื่องจากสัญญาณรบกวนหรือลักษณะของวัตถุในภาพเป็นพื้นผิวที่ มีลวดลายหรือมีรายละเอียดภายในมาก ดังนั้นเพื่อลดปัญหาดังกล่าวจึงได้มีการกำหนดค่า threshold ขึ้นมา 2 ค่า คือ high threshold (T1) และ low threshold (T2) โดยพิกเซลที่มีค่ามากกว่า T1 จะปรับเป็น 1 (เป็นพิกเซลที่เป็นขอบ) แต่ถ้าน้อยกว่า T2 จะถูกปรับเป็น 0 ส่วนค่าที่อยู่ระหว่างค่า threshold ทั้งสอง การปรับเป็นค่า 0 หรือ 1 นั้นขึ้นอยู่กับพิกเซลที่อยู่รอบข้าง หากพบว่าพิกเซลที่อยู่ รอบข้างของพิกเซลที่เป็นขอบ (ค่า>T1) มีค่ามากกว่า T2 แล้ว จะปรับค่าพิกเซลดังกล่าวให้มีค่าเป็น 1 และถือเป็นหนึ่งในขอบวัตถุด้วยเช่นกัน

2.4 แบบจำลองเชิงคณิตศาสตร์ในการปรับแก้ความคลาดเคลื่อน

ในการศึกษาวิเคราะห์ระบบหรือการแก้ปัญหาด้วยวิธีเชิงปริมาณ (Quantitative methods) จะเป็นวิธีการที่ใช้ข้อมูลและเครื่องมือคำนวณเป็นสำคัญ ซึ่งจะแบ่งเป็น 2 วิธีการใหญ่ ๆ คือ วิธีเชิง วิเคราะห์ (analytical methods) หรือวิธีเชิงคณิตศาสตร์ (mathematical methods) และวิธีการ จำลอง (simulation methods) ตัวแบบจำลองเชิงคณิตศาสตร์ (Mathematical simulation models) จัดเป็นตัวแบบ คณิตศาสตร์ประเภทหนึ่ง ต่อไปจะเรียกสั้น ๆ ว่า "ตัวแบบจำลอง" การสร้างแบบจำลองทาง คณิตศาสตร์จึงต้องอาศัยความรู้ในเนื้อหาเรื่องนั้นก่อน แล้วจึงใช้ความรู้ทางคณิตศาสตร์ในการช่วย ทดสอบแก้ปัญหา แบบจำลองเชิงคณิตแยกเป็น 2 ส่วน คือ

(1) ฟังก์ชั่นนอลโมเดล (Functional Model) เป็นแบบจำลองที่อธิบายถึงคุณสมบัติที่ทราบ ได้แน่นอน เช่น แบบจำลองทางเรขาคณิตของรูปสามเหลี่ยมระนาบ ซึ่งบอกลักษณะได้ด้วย มุมสาม มุม ด้านสามด้าน หรือพิกัดจุดยอดเป็นต้น และแบบจำลองนี้จะเป็นสิ่งเริ่มต้นของการวางแผนทำการ วัด

(2) สโตคาสติคโมเดล (Stochastic Model) เป็นแบบจำลองที่อธิบายถึงคุณสมบัติที่ทราบได้ ไม่แน่นอน นั่นคือ เป็นรูปแบบของการศึกษาทางสถิติของการหาค่าการวัด โดยที่ข้อสันนิษฐานบน คุณสมบัติทางสถิติของตัวแปรต่างๆ ที่เกี่ยวข้องจะนำไปสู่แบบจำลองนี้ สโตคาสติคโมเดลในทฤษฏี ของการปรับแก้ด้วยลีสท์สแควร์จะใช้คำว่า ความคลาดเคลื่อนของการวัดหรือคุณสมบัติความ คลาดเคลื่อนของค่าการวัด

2.4.1 วิธีการคำนวณปรับแก้ค่าคลาดเคลื่อนด้วยวิธีลีสท์สแควร์

การปรับแก้ (Adjustment) จะมีความหมายก็ต่อเมื่อปริมาณของข้อมูลมีมากกว่าจำนวน ต่ำสุดที่จำเป็นต้องใช้หาคำตอบ ๆ เดียวสำหรับแต่ละค่าของปัญหานั้น ๆ หรืออีกนัยหนึ่งคือมี redundant data หรือ redundant observation โดยทั่วไปแล้วค่าที่แท้จริงของปริมาณใด ๆ เป็นสิ่งที่ ไม่มีใครทราบได้ ในทางปฏิบัติจึงต้องอาศัยการวัด (measurement) หรือการสังเกต (observation) จะโดยตรงหรือโดยทางอ้อมเพื่อใช้คาดคะเนหรือคำนวณหาปริมาณที่ต้องการทราบนั้น ๆ ข้อมูลที่ได้ ดังกล่าวย่อมเปลี่ยนแปลงหรือขึ้น ๆ ลง ๆ (fluctuate) ได้ตามทฤษฎีของความน่าจะเป็นและสถิติ ซึ่ง เรียกกันว่ามีความคลาดเคลื่อน (errors) ค่าคำตอบที่ได้จากข้อมูลที่มากเกินนี้ตามปกติจะไม่แน่นอน ในนัยที่ว่า ถ้าเอากลุ่มย่อย ๆ ของข้อมูลจำนวนเพียงพอที่จะให้คำตอบได้มาหาคำตอบ แต่ละกลุ่มจะ ให้คำตอบต่างกัน ตัวอย่างเช่นการหาสมการเส้นตรงโดยมีจุดอยู่หลายจุด แต่ละ 2 จุดใดๆ อาจจะให้ สมการที่แตกต่างกันออกไปในขณะเดียวกันการวัดใด ๆ ก็ควรที่จะต้องวัดให้มีจำนวนข้อมูลมากกว่า จำนวนต่ำสุดที่จำเป็นเพื่อตรวจสอบความผิดพลาด (mistake หรือ blunder) ที่อาจจะเกิดขึ้น เพื่อที่จะให้ได้คำตอบเดียว จากข้อมูลที่มีอยู่จึงจำเป็นต้องมีมาตรการบางอย่างเพิ่มเข้าไปอาทิเช่น เทคนิคของลีสท์สแควร์ (วิชา จิวาลัย, 2522) 2.4.2 ชนิดวิธีของการปรับแก้ด้วยลีสท์สแควร์

ในการปรับแก้ข้อมูลของงานสำรวจโดยใช้หลักการของลีสท์สแควร์นั้น สามารถกระทำได้ หลายวิธีตามลักษณะของแบบจำลองเชิงคณิต แต่วิธีที่นิยมใช้กันอยู่เสมอมี 2 วิธี คือ

 1. วิธีสมการการวัด (Observation Equation Method) เป็นวิธีการปรับแก้ในรูปแบบจำลอง เชิงคณิต L_a = F(X_a) โดยที่สมการวัด คือ สมการที่ได้จากการนำเอาข้อมูลการวัดหนึ่งค่ามาเขียน เป็นสมการได้หนึ่งสมการ ซึ่งในสมการนั้นจะประกอบด้วยพารามิเตอร์หรือตัวไม่ทราบค่าอย่างน้อย หนึ่งตัว

2. วิธีสมการเงื่อนไข (Condition Equation Method) เป็นวิธีการปรับแก้ในรูปแบบจำลอง เชิงคณิต $F(L_a) = 0$ โดยที่สมการเงื่อนไข คือ สมการที่แสดงกฎเกณฑ์หรือเงื่อนไขทางคณิตศาสตร์ ระหว่างข้อมูลการวัดต่างๆ กลุ่มหนึ่ง

ผลลัพธ์ของการปรับแก้ทั้งสองวิธีที่ได้จะเหมือนกัน เพราะหลักการของลีสท์สแควร์จะให้ ผลลัพธ์ที่เป็นเอกภาพ (Unique) คือมีคำตอบเดียว และในการเลือกใช้วิธีการให้เหมาะสมนั้นขึ้นอยู่ กับองค์ประกอบที่สำคัญ คือ การเขียนสมการของแบบจำลองเชิงคณิตและการแปลงสมการให้เป็น สมการเชิงเส้น (Linear Equation) (วัฒนะ ทวนพรมราช, 2537)

2.4.2.1 การปรับแก้ด้วยลีสท์สแควร์โดยวิธีสมการค่าสังเกต (Least Squares Adjustment by Method of Observation Equations) แบบจำลองทางคณิตศาสตร์ของกรณีนี้เขียนได้เป็น

$$L_a = F(X_a) \tag{2.14}$$

เมื่อกำหนดค่าประมาณ X_0 ขึ้นมาได้แล้วหากแทนค่า X_a ด้วย X_0 ใน $F(X_a)$ จะได้ $F(X_0)$ สมมุติให้ค่า $F(X_0)$ เป็น L_0 และให้

$$L = L_0 - L_b$$
 (2.15)

หากสมการ (2.14) เป็นสมการเซิงเส้น (เป็น linear combination ของ X) ก็ไม่จำเป็นต้องหาค่า X₀โดยอาจถือเป็นศูนย์ไป กรณีเช่นนี้ L₀ จะมีค่าเท่ากับค่า constant ของสมการ จากสมการ (2.14) เราสามารถเขียนได้เป็น (วิชา จิวาลัย, 2522)

$$L_{b} + V = F(X_{a})$$
(2.16)

$$L_{b} + V = F(X_{0} + X)$$
(2.17)

$$L_{b} + V = F(X_{0}) + \frac{\partial F}{\partial X} \Big|_{X = X_{0}}^{X} (X)$$

$$L_b + V = F(X_0) + AX$$

หรือ

$$L_b + V = L_0 + AX$$
 (2.18)
 $V = AX + (L_0 - L_b)$
 $V = AX + L$ (2.19)

หลักการของลีสท์สแควร์คือต้องการให้ V^TPV → Minimum

โดยจะทำการคำนวณค่า

$$O \quad N = A^{T} P A$$

$$O \quad U = A^{T} P L$$

$$O \quad X = -N^{-1} U$$

$$O \quad X_{a} = X_{0} + X$$

$$O \quad L_{a} = L_{0} + A X$$

$$O \quad V = L_{a} - L_{b}$$

2.4.2.2 การปรับแก้ด้วยลีสท์สแควร์โดยวิธีสมการเงื่อนไข (Least Squares Adjustment by Method of Condition Equations) แบบจำลองทางคณิตศาสตร์ของกรณีนี้เขียนได้เป็น

$$F(La) = 0$$
 (2.20)

เมื่อ
$$L_a = L_b + V$$

แทนค่า $L_a = L_b + V$ ในสมการที่ (2.20) สามารถเขียนได้ในรูป

$$F(L_b + V) = 0$$
 (2.21)

หากแทนค่า L_a ในสมการ (2.20) ด้วย L_b จะได้ค่าตัวเลขซึ่งมักไม่เป็นศูนย์เรียกว่า ค่าคลาดเคลื่อน บรรจบ (misclosure) แทนด้วย W

หากสมการ(2.20)เป็นสมการเชิงเส้น สมการ(2.21)ก็เป็นสมการเชิงเส้นและสามารถเขียนในรูปของ

	$F(L_b) + BV = 0$	(2.23)
หรือ	BV + W = 0	(2.24)

ในรูปสมการ(2.24)คือ BV+W=0 ซึ่งเรียกว่าสมการเงื่อนไข

โดยจะทำการคำนวณค่า

$$O \quad M = BP^{-1}B^{T}$$
$$O \quad K = -M^{-1}W$$
$$O \quad V = P^{-1}B^{T}K$$
$$O \quad L_{q} = L_{b} + V$$
2.4.3 สมการระนาบและปรับแก้ด้วยลีสท์สแควร์

รูปที่ 2.12 แสดงภาพก่อนและหลังการปรับแนวบิน (Brenner, 2006)

ซึ่งจากสมการที่ใช้ในการปรับแก้เป็นสมการระนาบระหว่างแนวบินดังสมการที่ 2.25 (Brenner, 2006)

$$\Delta H = a_s + b_s (X - X_s^c) + c_s (Y - Y_s^c) - a_t - b_t (X - X_t^c) - c_t (Y - Y_t^c) \dots \dots \dots \dots (2.25)$$

เมื่อ
$$s =$$
แนวบินที่ 1, $t =$ แนวบินที่ 2
 $a_s = s$ ะยะห่างความสูงของจุดศูนย์กลาง แนวบินที่ 1
 $b_s =$ แนวเอียงตามทิศทางการบินของเครื่องบิน แนวบินที่ 1
 $c_s =$ แนวเอียงตั้งฉากกับทิศทางการบินของเครื่องบิน แนวบินที่ 1
 $X_s^c, Y_s^c =$ จุดศูนย์กลางของแนวบินที่ 1
 $a_t = s$ ะยะห่างความสูงของจุดศูนย์กลาง แนวบินที่ 2
 $b_t =$ แนวเอียงตามทิศทางการบินของเครื่องบิน แนวบินที่ 2
 $c_t =$ แนวเอียงตั้งฉากกับทิศทางการบินของเครื่องบิน แนวบินที่ 2
 $X_t^c, Y_t^c =$ จุดศูนย์กลางของแนวบินที่ 2

2.5 งานวิจัยที่เกี่ยวข้อง

Kilian, Haala and Englich (1996) ทำการปรับแก้ข้อมูล LiDAR ระหว่างแนวบิน โดยใช้ วิธีการเหมือนกับการปรับแก้ทาง Photogrammetric คือการใช้ค่าความแตกต่างของพารามิเตอร์ 6 พารามิเตอร์มาช่วยในการหาสมการที่นำมาใช้ในการปรับแก้ พารามิเตอร์ดังกล่าวประกอบด้วย ΔX, ΔY, ΔZ, Δω, Δφ, Δκ และในการเลือกจุดที่จะนำมาใช้เป็นตัวแทนของแนวบิน จะเลือกจาก จุดตัดของถนน และจุดจากมุมของอาคาร เพื่อนำมาใช้ในการโยงยึดข้อมูล ดังแสดงในรูปที่ 2.13

Crombaghs, Min and Bruegelmann (2000) ทำการปรับแก้ข้อมูล LiDAR จากการ ซ้อนทับแนวบินโดยใช้ค่าการปรับแก้จากground control point มาทำการสร้างระนาบอ้างอิง เพื่อใช้ ในการปรับแก้ข้อมูล LiDAR ที่มีความคลาดเคลื่อนจากการซ้อนทับแนวบิน ด้วยวิธีการปรับแก้ลีสท์ส แควร์ ข้อมูลที่ใช้ในการทดสอบในงานวิจัยนี้ จะทำการเลือกจากพื้นที่ที่มีการซ้อนทับแนวบิน 2 แบบ คือ Along overlap และ Across overlap

Willers, J., et al., (2008) ได้ทำการศึกษาเรื่องอัลกอริธึมเพื่อการปรับแก้ความ คลาดเคลื่อนจากการซ้อนทับของข้อมูล LiDAR สำหรับพื้นที่เกษตรกรรม ซึ่งได้สร้างแบบจำลองค่าที่ เหมาะสมที่สุด (Optimization Model) มาใช้ลด error แต่แบบจำลองค่าเหมาะสมที่สุด ที่ปรับแก้ ด้วยวิธีลีสท์สแควร์ เหมาะสำหรับปรับแก้ข้อมูลในพื้นที่ขนาดเล็ก โดยทำการแบ่งข้อมูลที่ปรับเป็น shape files เป็น k ชุด โดย

$$\mathbf{S}_k = \{(\mathbf{i}, \mathbf{j}) | \mathbf{Sub} \mathbf{X}_k \le \mathbf{x}_{\mathbf{ij}} < \mathbf{Sup} \mathbf{X}_k$$
and
 $\mathbf{Sub} \mathbf{Y}_k \le \mathbf{y}_{\mathbf{ij}} < \mathbf{Sup} \mathbf{Y}_k$
 S_k คือ เซตของจำนวนจุดในกลุ่ม k

เมื่อ

S_k คือ เซตของจำนวนจุดในกลุ่ม k
 Sub คือ ค่าที่มีขนาดเล็กว่า *x_{ij} Sup* คือ ค่าที่มีขนาดใหญ่กว่า *x_{ij}*

ขั้นต่อมากำจัดค่าข้อมูลที่การยกตัว ก่อนปรับมีค่าส่วนเบี่ยงเบนมาตรฐาน (Standard deviation) เกินกว่าค่าที่กำหนด (t)

$$\mathbf{K}' = \left\{ \mathbf{k} \left| \frac{\sqrt{\sum_{i=1}^{L} \sigma_{ik}^2}}{L} \le \mathbf{t} \right\}$$
 (2.26a)

where

$$\sigma_{ik}^{2} = \frac{\sum_{i,j \in S_{i}} (e_{ij} - E_{ik})^{2}}{n_{ik} - 1}$$
(2.26b)

and

$$E_{ik} = \frac{\sum_{i,j \in S} e_{ij}}{n_{ik}}$$
(2.26c)

เมื่อ

K่ คือ เป็นจำนวนกลุ่ม โดยที่ให้ K่มีค่าน้อยลงเป็น k โดยที่ $k \leq t$

L คือ จำนวน Strip

t คือ ค่าคงที่

 σ_{ik}^{2} คือ ความแปรปรวนของกลุ่มตัวอย่าง

 e_{ii} คือ ค่า error จริงของจุดที่ j บน Strip i

 $n_{_{ik}}$ คือ จำนวนจุดใน Strip i ในกลุ่ม k

 E_{ik} คือ ค่าเฉลี่ยของ error ทั้งหมดในกลุ่ม k

ให้ B_k เป็นค่าเฉลี่ยของการยกตัวของกลุ่ม k ก่อนการปรับค่าและ A_k เป็นค่าเฉลี่ยของการยกตัวของ กลุ่มเดียวกันหลังปรับค่า (*kɛK*ˈ) หาได้โดย

$$B_{k} = \frac{\sum_{(i,j) \in S_{k}} e_{ij}}{n_{k}} \text{ and } A_{k} = \frac{\sum_{(i,j) \in S_{k}} (e_{ij} + a_{i})}{n_{k}} = B_{k} + \sum_{i=1}^{L-1} \frac{n_{ik}}{n_{k}} a_{i}...... (2.27)$$

ให้ V_k เป็นเป็นผลรวมของกำลังสองของเศษเหลือในกลุ่ม (*kɛK*ˈ) หลังจากปรับแต่งข้อมูลแล้ว

$$V_{k} = \sum_{(i,j) \in S_{k}} (e_{ij} + a_{i} - A_{k})^{2}$$
 (2.28)

เมื่อ B_k คือ ค่า error เฉลี่ยก่อนที่จะปรับแก้

 $A_{\scriptscriptstyle k}$ คือ ค่า error เฉลี่ยหลังการปรับแก้

 $V_{\scriptscriptstyle k}$ คือ ค่าผลรวมกำลังสองของเศษคงเหลือ

เพื่อลดค่า error ให้เหลือน้อยที่สุด ทำการ minimize ผลรวมของกำลังสอง โดยหาค่าของตัวแปร ตัดสินใจ ai, i=1, 2.....,L-1 ที่เป็นคำตอบของปัญหาค่าเหมาะสมที่สุดโดยไม่มีสมการข้อจำกัด (Unconstrained Optimization)

$$\min_{ai} \sum_{k} \mathbf{v}_{k} = \sum_{k} \sum_{(i,j) \in \mathbf{S}_{i}} (\mathbf{e}_{ij} + \mathbf{a}_{i} - \mathbf{A}_{k})^{2}$$
 (2.29)

เนื่องจากสมการเป้าหมายใน (2.29) เป็นฟังก์ชัน convex ดังนั้นจะมีค่าต่ำสุดแน่นอนเป็นคำตอบ เดียว โดยการทำซ้ำ (Iterations) จะได้ค่าของแต่ละแถบ และเมื่อทำการปรับค่าแล้ว ค่าของตัวแปร ตัดสินใจจะทำหน้าที่เป็นค่าคงที่สำหรับแถบถัดไป การหาค่าน้อยที่สุดใน (2.29) จะสมมูลกัน

$$\min_{a_{i}} \sum_{k} \sum_{(i,j) \in S_{i}} \left[2\left(e_{ij} - B_{k}\right) \left(a_{i} - \sum_{l=1}^{L-1} \frac{n_{lk}}{nk} a_{l}\right) + \left(a_{i} - \sum_{l=1}^{L-1} \frac{n_{lk}}{nk} a_{l}\right)^{2} \right]$$

which is equal to

$$=\sum_{l=1}^{L-1} 2\left\{\sum_{k}\sum_{(i,j)\in S_{i}} \left(e_{ij} - B_{k}\right) - \sum_{k}\sum_{(i,j)\in S_{i}} \left(e_{ij} - B_{k}\right) \frac{n_{lk}}{nk}\right\} a_{l} + \sum_{l=1}^{L-1} \left(n_{l} - \sum_{k}\frac{n_{lk}^{2}}{n_{k}}\right) a_{l}^{2} - \sum_{l=1}^{L-1}\sum_{s=1,s\neq l}^{L-1} 2a_{l}a_{s}\left(\sum_{k}\frac{n_{lk}n_{sk}}{n_{k}}\right) \qquad (2.30)$$

หารด้วยสมการที่ (2.27) แล้วหาอนุพันธ์อันดับที่ 1

$$\frac{\partial \sum_{k} V_{k}}{2\partial a_{l}} = \sum_{k} \left\{ \sum_{(l,j) \in S_{k}} (e_{lj} - B_{k}) - \sum_{(i,j) \in S_{k}} (e_{ij} - B_{k}) \frac{n_{lk}}{n_{k}} \right\} + \left(n_{l} - \sum_{k} \frac{n_{lk}^{2}}{n_{k}} \right) a_{l} - \sum_{s=l,s\neq l}^{L-1} a_{s} \left(\sum_{k} \frac{n_{lk} n_{sk}}{n_{k}} \right) \qquad (2.31)$$

$$l = 1, \dots, L - 1$$

สมการ (2.30) เป็น convex ดังนั้นสามารถหาค่าผลเฉลยโดยให้สมการ (2.31) เท่ากับ 0

Csanyi (2006) ความแม่นยำในการวางตำแหน่ง LiDAR ของการเชื่อมโยงเส้นทาง เป้าหมายเฉพาะภาคพื้น การวางตำแหน่งการเชื่อมโยงเส้นทางเพื่อสนับสนุนการวางแผนเชิง วิศวกรรมเพื่อให้เกิดความแม่นยำของข้อมูล LiDAR ซึ่งระบบ LiDAR นั้นสามารถให้อัตราความ ต่อเนื่องได้ถึง 100 KHz, และมีระดับความแม่นยำ อยู่ในระดับ 2-3 เซนติเมตร อย่างไรก็ดีความ ซับซ้อนของระบบ LiDAR และความสัมพันธ์เชิงพื้นที่ สามารถระบุความผิดพลาดที่สามารถลดทอน คุณภาพความแม่นยำของข้อมูล LiDAR ได้ ความผิดพลาดนี้มักเกิดจากความผิดพลาดทางการ ควบคุมเส้นทางและไม่สามารถกำจัดไปได้โดยปราศจากการควบคุมข้อมูลเข้าสู่ LiDAR ดังนั้นเพื่อ การออกแบบ LiDAR ที่น่าพอใจที่สุด จึงอยู่ภายใต้การออกแบบความแม่นยำในการวางตำแหน่ง LiDAR ผลการศึกษานี้ได้จากการทดสอบโดยใช้ระบบ LiDAR Optech ALTM 30/70 ของ Ohio Department of Transportation

จากงานวิจัยที่ผ่านมาได้มีการปรับแก้ค่าความคลาดเคลื่อนการการซ้อนทับของ LiDAR ด้วย วิธีการต่าง ๆ บ้างแต่ไม่ได้ใช้ภาพถ่ายทางอากาศในการวิเคราะห์ความคลาดเคลื่อนร่วมกับวิธีทาง คณิตศาสตร์ ดังนั้นในงานวิจัยนี้จึงใช้วิธีปรับแก้ด้วยลีสท์สแควร์ร่วมกับภาพถ่ายทางอากาศบริเวณ ซ้อนทับของแนวบิน ของข้อมูล LiDAR มาร่วมในการปรับแก้เนื่องจากจะใช้ภาพถ่ายทางอากาศเป็น ตัวกำหนดแนวบินว่าอยู่ในพื้นที่ซ้อนทับเดียวกันและจุด (Point) ที่ทำการปรับแนวบินเป็นจุด ใกล้เคียงกัน ผู้วิจัยจึงเห็นว่าถ้าใช้ภาพถ่ายทางอากาศร่วมกับวิธีปรับแก้ด้วยลีสท์สแควร์ อาจจะทำ ให้ค่าความคลาดเคลื่อนลดลงและดียิ่งขึ้น

บทที่ 3 การเตรียมข้อมูลที่ใช้ในการประมวลผล

สำหรับเนื้อหาในบทนี้จะเกี่ยวข้องกับข้อมูลที่ใช้ในการประมวลผล โดยจะกล่าวถึง รายละเอียดในแต่ละขั้นตอนได้แก่ การเตรียมข้อมูล LiDAR การเตรียมข้อมูลภาพถ่ายทางอากาศ การเตรียมข้อมูล LiDAR ระหว่างแนวบินบนพื้นที่อาคาร การซ้อนทับข้อมูล LiDAR บนภาพถ่ายทาง อากาศ การเตรียมข้อมูลที่จำเป็นในการประมวลผล การประมวลผลข้อมูลความสูงของ LiDAR ระหว่างแนวบินบริเวณพื้นที่อาคาร และการจัดเก็บข้อมูลความสูง LiDAR เพื่อเตรียมข้อมูลไป ปรับแก้ความคลาดเคลื่อน โดยมีรายละเอียดดังนี้

3.1 การเตรียมข้อมูลLiDAR

3.1.1. จัดเตรียมข้อมูล LiDAR ของบริเวณพื้นที่ศึกษา

ข้อมูล LiDAR ที่ใช้ในงานวิจัยนี้ เป็นข้อมูล LiDAR ที่มีการบินสำรวจข้อมูล ณ.อำเภอบ้าน หมอ จ.สระบุรี ข้อมูล LiDAR ที่ใช้เป็นลักษณะ cloud point ระบบพิกัด UTM บนพื้นหลักฐาน WGS 1984 โซน 47

รูปที่ 3.2 พื้นที่ศึกษาข้อมูล LiDAR บริเวณ อ.บ้านหมอ จ.สระบุรี

3.1.2. กำหนดแนวบินของข้อมูล LiDAR บริเวณพื้นที่ศึกษา

เนื่องจากข้อมูล LiDAR บริเวณพื้นที่ศึกษาที่ใช้มีจำนวน 2 แนวบิน ที่ซ้อนทับกันจึงต้องทำ การกำหนดแนวบินอย่างซัดเจนในการเลือก โดยทำการกำหนดแนวบินให้มีลักษณะที่แตกต่างกัน โดยการนำเข้าข้อมูล LiDAR บนโปรแกรม ArcGIS Desktop 9.3 เพื่อทำการเลือกข้อมูล LiDAR โดย การตั้งค่า Points LiDAR ระหว่างแนวบินให้มีสีแตกต่างกัน เพื่อทำให้ทราบส่วนที่ซ้อนทับกันระหว่าง แนวบินอย่างชัดเจน

รูปที่ 3.3 การตั้งค่า Points LiDAR ระหว่างแนวบินด้วยสีที่ต่างกัน

3.2 กำหนดแนวพื้นที่ซ้อนทับระหว่างแนวบินของข้อมูล LiDAR

3.2.1 กำหนดแนวพื้นที่ช้อนทับระหว่างแนวบิน

เนื่องจากงานวิจัยนี้เราจะทำการพิจารณาเฉพาะส่วนที่มีการซ้อนทับกันระหว่างแนวบินเพื่อ พิจารณาค่าความคลาดเคลื่อนระหว่างแนวบินและปรับแก้ค่าความคลาดเคลื่อนดังกล่าว ดังนั้นเรา จึงเลือกข้อมูล LiDAR และกำหนดแนวพื้นที่ซ้อนทับระหว่างแนวบินเพื่อเลือกวิเคราะห์เฉพาะส่วน ซ้อนทับดังกล่าวเท่านั้น จากการกำหนดให้ Points LiDAR มีค่าเฉดสีของแนวบินที่ต่างกัน แนวบินที่ 1 สีน้ำเงิน และแนวบินที่ 2 สีแดง เราจึงทำการพิจารณาในส่วนของพื้นที่ซ้อนทับกันดังรูปที่ 3.4

รูปที่ 3.4 กำหนดแนวพื้นที่ช้อนทับระหว่างแนวบิน

3.2.2 เลือกตำแหน่งพื้นที่ซ้อนทับระหว่างแนวบิน

จากการกำหนดตำแหน่งแนวพื้นที่ช้อนทับของข้อมูล LiDAR จะทำให้ทราบพื้นที่ส่วนที่ ซ้อนทับกันเป็นแนวเส้นสีเหลืองดังรูปที่ 3.4 จึงทำการเลือกเฉพาะพื้นที่ที่มีข้อมูล LiDAR ซ้อนทับ กันมาใช้เปรียบเทียบความสูงระหว่างแนวบิน ด้วยใช้โปรแกรม ArcGIS Desktop 9.3 ช่วยในการ เลือกพื้นที่ส่วนซ้อนทับกันดังแสดงในรูปที่ 3.5 และ 3.6

รูปที่ 3.5 พื้นที่ซ้อนทับระหว่างแนวบินที่ 1 และแนวบินที่ 2

รูปที่ 3.6 เลือกพื้นที่ส่วนซ้อนทับระหว่างแนวบินที่ 1 และแนวบินที่ 2

3.3 การเตรียมข้อมูลภาพถ่ายทางอากาศ

เนื่องจากการบินถ่ายภาพและจัดเก็บบันทึกข้อมูลภาพถ่ายทางอากาศของพื้นที่ที่ใช้ใน การศึกษา เป็นการติดตั้งกล้องถ่ายภาพไว้บนอากาศยานและบินเก็บบันทึกภาพพร้อมกับการบิน สำรวจข้อมูล LiDAR ดังนั้นภาพถ่ายทางอากาศของพื้นที่ศึกษานี้ จึงเป็นภาพถ่ายทางอากาศที่มี ตำแหน่งและพิกัดเดียวกับข้อมูล LiDAR ลักษณะภาพถ่ายทางอากาศเป็นภาพออร์โทสี บินถ่ายภาพ ข้อมูล ณ.อำเภอบ้านหมอ จ.สระบุรี ระบบพิกัด UTM บนพื้นหลักฐาน WGS 1984 โซน 47

<mark>รู</mark>ปที่ 3.7 ภาพถ่ายทางอากาศ พื้นที่ศึกษา

รูปที่ 3.8 ภาพถ่ายทางอากาศบริเวณพื้นที่ อ.บ้านหมอ จ.สระบุรี

เนื่องจากงานวิจัยการปรับแก้ข้อมูล LiDAR ระหว่างแนวบินโดยอาศัยจุดควบคุมจาก ภาพถ่ายทางอากาศ ซึ่งข้อมูลจากภาพถ่ายทางอากาศจะช่วยในการวิเคราะห์ตำแหน่งของข้อมูล LiDAR บนพื้นที่ซ้อนทับ สามารถช่วยวิเคราะห์ตำแหน่งของข้อมูล LiDAR บนภาพถ่ายทางอากาศ จากพื้นที่วัตถุ สามารถเปรียบเทียบความสูงระหว่างแนวบินและช่วยในการเลือกตำแหน่งของข้อมูล LiDAR ระหว่างแนวบินได้อย่างถูกต้อง

ซึ่งจะทำให้เราทราบตำแหน่งของข้อมูล LiDAR เมื่อเราต้องการพิจารณาค่าความสูงที่ เกิดขึ้น ณ ตำแหน่งต่างๆ ซึ่งในงานวิจัยนี้เราพิจารณาความสูงของวัตถุต่างๆ ดังนั้นจึงต้องใช้ ภาพถ่ายทางอากาศบริเวณพื้นที่นั้นมาทำการซ้อนทับเพื่อให้ทราบความสูงของข้อมูล LiDAR บน ตำแหน่งพื้นที่ซ้อนทับของข้อมูล LiDAR บนวัตถุต่างๆจากภาพถ่ายทางอากาศ

3.4 การเลือกพื้นที่และการหาขอบวัตถุจากภาพถ่ายทางอากาศ

ทำการเลือกข้อมูล LiDAR บริเวณพื้นที่ซ้อนทับเดียวกันของพื้นที่ศึกษา เพื่อต้องการ ตรวจสอบค่าความสูงของข้อมูล LiDAR จึงได้ใช้ภาพถ่ายทางอากาศมาทำการซ้อนทับและพิจารณา ความสูงบริเวณพื้นที่นั้น ซึ่งพื้นที่ศึกษาเราพิจารณาพื้นที่ที่ทราบความสูงได้แน่นอนไม่เปลี่ยนแปลง เป็นสิ่งปลูกสร้างต่าง ๆ ซึ่งได้แก่ อาคาร ถนน เป็นต้น การเลือกพิจารณาพื้นที่อาคารและถนน เป็นไป ตามลักษณะการพิจารณาดังนี้

3.4.1 การพิจารณาพื้นที่อาคาร

อาคารเป็นสิ่งปลูกสร้างที่มีความเสถียร เนื่องจากสามารถตรวจสอบความสูงอาคารได้ แน่นอน ซึ่งลักษณะของอาคารที่ใช้ในการพิจารณาความสูงของข้อมูล LiDAR บริเวณพื้นที่ซ้อนทับ นั้น ต้องเป็นอาคารที่สามารถตรวจสอบความสูงได้ ในการเลือกภาพถ่ายทางอากาศบริเวณแนว ซ้อนทับระหว่างแนวบินที่ 1 และแนวบินที่ 2 นั้นจำเป็นต้องเลือกข้อมูลบริเวณพื้นที่อาคารเพื่อใช้ใน การวิเคราะห์ความสูงของข้อมูล LiDAR ซึ่งงานวิจัยนี้ทำการเลือกพื้นที่อาคารที่มีลักษณะราบเรียบ (Flat roof) และลักษณะเป็นจั๋ว (Gable roof) ดังแสดงในรูปที่ 3.9 และ 3.10

รูปที่ 3.9 อาคารที่มีลักษณะเรียบ (Flat roof) (Brenner, 2006)

รูปที่ 3.10 อาคารที่มีลักษณะเป็นทรงจั่ว (Gable roof) (Brenner, 2006)

3.4.2 การพิจารณาพื้นที่ถนน

เนื่องจากถนนเป็นสิ่งปลูกสร้างที่สามารถตรวจสอบความสูงได้แต่มีก็มีปัญหาในเรื่องความ ไม่เสถียร เนื่องจากมีการใช้งานและรับน้ำหนักบรรทุกตลอดเวลาทำให้ถนนอาจมีการชำรุดได้ ดังนั้น ทำให้ความสูงของถนนมีความเปลี่ยนแปลง สาเหตุของการชำรุดของถนนมีหลายสาเหตุด้วยกัน ดัง แสดงในรูปที่ 3.11

(ข) ผิวถนนขรุขระ

(ค) ผิวถนนทรุดตัว

(ก) ผิวถนนเป็นหลุมบ่อ

รูปที่ 3.11 ความเสียหายต่อผิวถนน (CHEMROAD, 2010)

งานวิจัยนี้จึงเลือกใช้ภาพถ่ายทางอากาศพื้นที่ ที่สามารถตรวจสอบความสูงได้แน่นอนเป็น พื้นที่ช้อนทับข้อมูล LiDAR เพื่อลดปัญหาความคลาดเคลื่อนซึ่งเกิดจากความเสียหายจากวัตถุ ดังเช่น ความเสียหายที่เกิดจากผิวถนนเป็นหลุมเป็นบ่อ ผิวถนนขรุขระ ผิวถนนทรุดตัว เป็นต้น ซึ่งจะ ส่งผลต่อความสูงของพื้นที่ถนนเอง ดังนั้นการเลือกภาพถ่ายทางอากาศบริเวณพื้นที่วัตถุนั้น จึงเลือก เฉพาะบริเวณพื้นที่อาคารซึ่งมีความเสถียร สามารถตรวจสอบความสูงได้ มีความเสียหายและ ผิดพลาดของความสูงน้อยกว่าถนน เพราะฉะนั้นจะทำให้ทราบข้อมูลความสูงของ LiDAR บริเวณ อาคารและความคลาดเคลื่อนระหว่างแนวบินที่เกิดจากตัว LiDAR เอง 3.4.3 การหาขอบวัตถุพื้นที่อาคาร

เป็นการหาเส้นรอบวัตถุที่อยู่ในภาพ เมื่อทราบเส้นรอบวัตถุ เราจะสามารถคำนวณพื้นที่ (ขนาด) หรือรู้จักชนิดของวัตถุนั้นได้

งานวิจัยนี้ได้เลือกใช้วิธี Canny ในการหาขอบวัตถุจะให้รายละเอียดขอบวัตถุดีที่สุดและ ใช้ได้ในกรณีที่สีแต่ละสีมีความแตกต่างกันน้อย ขั้นตอนการหาขอบโดยวิธีของ Canny ประกอบด้วย 4 ขั้นตอน

- 1) Smoothing with Gaussian filter
- 2) Gradient Calculation
- 3) Nonmaxima Suppression
- 4) Thresholding

ทำการหาขอบวัตถุ(Edge Detection) โดยวิธีCanny โดยใช้ภาพถ่ายทางอากาศของพื้นที่ อาคารบริเวณที่เลือกมาหาขอบวัตถุ โดยใช้กระบวนการหาขอบวัตถุโดยคำสั่งCanny ด้วยโปรแกรม สำเร็จรูป Matlab 2008a จะทำให้ได้ขอบวัตถุชัดเจนตามที่เราต้องการเพื่อจะนำไปซ้อนข้อมูลLiDAR และเลือกตำแหน่งจุดของชุดข้อมูลบริเวณขอบของอาคารได้อย่างถูกต้อง

รูปที่ 3.12 ภาพถ่ายทางอากาศที่ทำการหาขอบวัตถุ (Edge Detection)

รูปที่ 3.13 ภาพถ่ายทางอากาศที่ทำการหาขอบวัตถุโดยวิธี Canny

3.4.4 การสร้างชั้นข้อมูลของอาคาร

หลังทำการหาขอบวัตถุของอาคาร โดยวิธี Canny แล้วนั้น จึงเป็นกระบวนการสร้างชั้น ข้อมูลโดยทำการสร้างขอบเขตที่แน่นอนของวัตถุนั้น เพื่อจะทำการกำหนดขนาดของอาคาร โดย โปรแกรม ArcGIS Desktop 9.3 ซึ่งขนาดของภาพการสร้างชั้นข้อมูลของอาคารที่แสดงดังรูปที่ 3.14 แสดงมาตราส่วน 1: 200 และนำชั้นข้อมูลของอาคารไปทำการเลือกจุดข้อมูล LiDAR ใน กระบวนการต่อไป

การสร้างชั้นข้อมูลอาคารนั้นยังช่วยในกระบวนการเลือกจุดข้อมูล LiDAR บนโปรแกรม ArcGIS Desktop 9.3 ซึ่งทำการเลือกข้อมูล LiDAR ที่อยู่ในชั้นข้อมูลเท่านั้น ซึ่งสามารถทำการเลือก จุดที่อยู่ในชั้นข้อมูลอาคารได้พร้อมกันทั้งหมดทุกจุดแต่ถ้าไม่สร้างชั้นข้อมูลก็จะต้องใช้การเลือกทีละ จุด ซึ่งจะทำให้กระบวนการทำงานช้าและยุ่งยาก

จุฬาลงกรณ่มหาวิทยาลัย

รูปที่ 3.14 กระบวนการสร้างชั้นข้อมูลอาคาร

3.5 การใช้ภาพถ่ายทางอากาศเป็นจุดควบคุมข้อมูล LiDAR ระหว่างแนวบิน

เมื่อทำการเตรียมข้อมูล LiDAR และภาพถ่ายทางอากาศที่ทำการหาขอบวัตถุของอาคาร แล้วนั้นจึงใช้ภาพถ่ายทางอากาศเป็นจุดควบคุมข้อมูล LiDAR ระหว่างแนวบิน บนพื้นที่ซ้อนทับใน ตำแหน่งเดียวกัน โดยการซ้อนทับข้อมูลพื้นที่ซ้อนทับทั้งหมดเพื่อจะพิจารณาข้อมูล LiDAR บนพื้นที่ ตำแหน่งอาคารต่างๆ ดังแสดงในรูปที่ 3.15 และ 3.16

รูปที่ 3.15 การซ้อนทับข้อมูล LiDAR บนภาพถ่ายทางอากาศของแนวบินที่ 1

รูปที่ 3.16 การซ้อนทับข้อมูล LiDAR บนภาพถ่ายทางอากาศของแนวบินที่ 2

เมื่อทำการใช้ภาพถ่ายทางอากาศเพื่อพิจารณาการซ้อนทับของแนวบินทั้งหมด จึงทำการ วิเคราะห์ข้อมูล LiDAR บริเวณภาพถ่ายทางอากาศพื้นที่อาคาร ทำการเลือกอาคารที่จะทำการ พิจารณา จากนั้นจึงทำการสร้างชั้นข้อมูลของอาคารจากภาพถ่ายทางอากาศที่หาขอบวัตถุทุกหลัง บนพื้นที่ศึกษาดังแสดงในรูปที่ 3.14 ซึ่งงานวิจัยนี้ได้เลือกพิจารณาอาคารทั้งหมดจำนวน 8 อาคาร ทำให้ได้ชั้นข้อมูลอาคารดังแสดงในรูปที่ 3.17

รูปที่ 3.17 ชั้นข้อมูลอาคารของจำนวนอาคารทั้งหมดบริเวณพื้นที่ศึกษา

เมื่อได้จัดเตรียมจำนวนชั้นข้อมูลอาคารทุกหลังที่พิจารณาแล้ว จึงทำการพิจารณาข้อมูล LiDAR บนพื้นที่อาคารจากชั้นข้อมูลอาคารที่ได้สร้างขึ้น ดังแสดงในรูปที่ 3.18

รูปที่ 3.18 การซ้อนทับข้อมูล LiDAR บริเวณพื้นที่อาคารจากชั้นข้อมูลอาคาร

3.6 การเลือกจุดข้อมูล LiDAR ระหว่างแนวบิน

3.6.1 การเลือกจุดข้อมูล LiDAR ระหว่างแนวบินบนชั้นข้อมูลอาคาร

จากการวิเคราะห์โดยการเลือกจุดข้อมูลจากอาคาร จะเห็นได้ว่าจุดระหว่างทั้งสองแนวบิน บนจุดควบคุมจากภาพถ่ายทางอากาศบนพื้นที่อาคารนั้นมีจุดซ้อนทับกันจำนวนมาก ซึ่งจุดที่อยู่ใกล้ กันเปรียบเสมือนจุดเดียวกัน และจุดที่อยู่ห่างกันก็ถือได้ว่าไม่ได้เป็นจุดเดียวกัน ดังแสดงให้เห็นได้ว่า ที่ระยะห่างที่วิเคราะห์ที่ระยะ 5, 10, 15, 20, 30 และ 50 เซนติเมตร ปรากฏตามที่แสดงดังรูปที่ 3.19

รูปที่ 3.19 เปรียบเทียบการเลือกจุดบนภาพถ่ายทางอากาศและชั้นข้อมูลอาคาร

จากรูปที่ 3.19 ที่แสดงจะเห็นได้ว่าที่ระยะ 20, 30 และ 50 เซนติเมตร จุดที่ซ้อนทับแสดงให้ เห็นได้จากภาพการซ้อนทับว่าเป็นจุดที่ห่างกันเปรียบเป็นคนละจุดกัน แต่ที่ระยะ 5, 10 และ 15 เซนติเมตร เป็นจุดที่ระยะห่างระหว่างจุดซ้อนทับกันพอดีซึ่งเปรียบเสมือนจุดเดียวกัน แต่ระยะความ สูงของข้อมูล LiDAR ที่ระยะ 15 เซนติเมตร มีความสูงคลาดเคลื่อนเปลี่ยนแปลงมากกว่าความสูง คลาดเคลื่อนที่ระยะ 5 และ 10 เซนติเมตร ซึ่งแสดงว่าเป็นคนละจุดกัน และได้วิเคราะห์ข้อมูล ดังกล่าว ในตารางที่ 3.1

ข้อมูล LiDAR	แสดงรายการเลือกจุด					
ที่ระยะห่าง	ทั้งแนวบิน	เฉพาะอาคาร	<mark>ค่าคลาดเค</mark> ลื่อน	ค่าคลาดเคลื่อน		
ระหว่าง	<mark>จำนวน</mark>	จำนวน	ต่ำสุด	ଶ୍ବଏଶ୍ନ		
ବ୍ବ୭	<mark>(</mark> ବ୍ବୂଜ)	(ବ୍ବୁ୭)	(m.)	(m.)		
1 cm	48	3	0.06	0.12		
2 cm	168	11	0.01	0.15		
3 cm	416	16	0.01	0.26		
4 cm	697	27	0.01	0.29		
5 cm	1,044	30	0.01	0.29		
6 cm	1,610	36	0.01	0.31		
7 cm	2,122	45	0.01	0.31		
8 cm	2,811	51	0.01	0.31		
9 cm	3,638	54	0.01	0.31		
10 cm	4,536	54	0.01	0.31		
15 cm	4,784	58	0.01	<0.50		
20 cm	5,071					
30 cm	36,717	ไม่ทดสอบ	ไม่ทดสอบ	ไม่ทดสอบ		
50 cm	92,232					

ตารางที่ 3.1 แสดงรายการเลือกจุดข้อมูล LiDAR

จากตารางที่ 3.1 สรุปได้ว่า ระยะห่างที่จะนำมาใช้ในการวิเคราะห์ผลในขั้นต่อไปนั้นคือ ข้อมูลที่มีระยะห่างของจุดเท่ากับ 5 และ10 เซนติเมตร เนื่องจากข้อมูลที่ระยะ 5 เซนติเมตรมีความ เปลี่ยนแปลงค่าความคลาดเคลื่อนอย่างเห็นได้ชัดเจน และมีจำนวนจุดที่เพียงพอต่อการนำมาใช้ (ครอบคลุมอาคาร) เมื่อเทียบกับข้อมูลในช่วงระยะห่างที่น้อยกว่า และเลือกใช้ข้อมูล LiDAR ที่ ระยะห่างเท่ากับ 10 เซนติเมตร เนื่องจาก ข้อมูลที่ระยะห่างที่มากกว่าระยะห่างดังกล่าวจะมีค่า ความคลาดเคลื่อนที่เปลี่ยนแปลงอย่างรวดเร็วคือเท่ากับ 0.5 เมตร จาก 0.31 เมตร ซึ่งค่า ความคลาดเคลื่อนที่เปลี่ยนแปลงดังกล่าวอาจส่งผลในการเปรียบเทียบจุด ซึ่งแสดงว่าเป็นคนละจุด กัน ดังนั้นผลจากการเลือกจุดจึงได้ระยะห่างของจุดที่ใช้เพื่อพิจารณาในการปรับแก้ที่ระยะห่าง 5 และ 10 เซนติเมตร

3.6.2 การใช้ชั้นข้อมูลอา<mark>คารจากภาพถ่ายทางอากาศ</mark>เลือกข้อมูล LiDAR

เมื่อทำการเตรียมชั้นข้อมูลอาคารจากภาพถ่ายทางอากาศที่หาขอบวัตถุและข้อมูล LiDAR ที่ระยะห่างระหว่างจุด 5 และ 10 เซนติเมตร นำข้อมูลทั้งสองส่วนมาทำการซ้อนทับกันเพื่อพิจารณา เลือกวิเคราะห์ข้อมูล LiDAR บนพื้นที่อาคารดังแสดงในรูปที่ 3.20

(ก) ข้อมูล LiDAR ที่ระยะห่างจุด 5 เซนติเมตร (ข) ข้อมูล LiDAR ที่ระยะห่างจุด 10 เซนติเมตร

รูปที่ 3.20 ข้อมูล LiDAR ซ้อนทับชั้นข้อมูลอาคาร

จากรูปที่ 3.21 และ 3.22 เป็นการนำข้อมูล LiDAR ของแนวบินที่ 1 และแนวบินที่ 2 ทำการ ซ้อนทับบนชั้นข้อมูลอาคารเพื่อทำการเลือกจุดที่อยู่บนชั้นข้อมูลอาคารที่ระยะ 5 เซนติเมตร โดยทำ การเลือกข้อมูล LiDAR บนโปรแกรม ArcGIS Dektop 9.3

0 0 0 0 00000 000 000 000 000000000000	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
00 8 8 8 8 8 8 8 0 00 00 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
000000000000000000000000000000000000000	
a and a	
000000 000000 0000000000000000000000000	
000000 00000000 0000000000000000000000	
10000 00 00000000000000000000000000000	

รูปที่ 3.21 ข<mark>้อมูล LiDAR แนวบ</mark>ินที่ 1 บนชั้นข้อมูลอาคาร

รูปที่ 3.22 ข้อมูล LiDAR แนวบินที่ 2 บนชั้นข้อมูลอาคาร

จากรูปที่ 3.23 ข้อมูล LiDAR แนวบินที่ 1 และแนวบินที่ 2 ซ้อนทับบนชั้นข้อมูลอาคาร จากนั้นทำการสร้าง buffer บนโปรแกรม ArcGIS Dektop 9.3 ให้ข้อมูล LiDAR แนวบินที่ 1 และ แนวบินที่ 2 ที่อยู่ในรัศมี 5 เซนติเมตร และถ้ามีจุดที่ใกล้กันมากกว่า 1 จุดให้เลือกจุดที่ใกล้ที่สุดเพียง จุดเดียวให้สัมพันธ์กัน ดังแสดงในรูปที่ 3.24 และ 3.25

รูปที่ 3.2<mark>3</mark> ข้อมูล LiDAR ทั้งสองแนวบินบนชั้นข้อมูลอาคาร

รูปที่ 3.24 ข้อมูล LiDAR แนวบินที่1 ระยะห่างจุดไม่เกิน 5 เซนติเมตร ทั้งแนวบิน

รูปที่ 3.25 ข้อมูล LiDAR แนวบินที่2 ระยะห่างจุดไม่เกิน 5 เซนติเมตร ทั้งแนวบิน

เมื่อได้ข้อมูล LiDAR ที่ระยะห่างระหว่างจุด 5 เซนติเมตรทั้งแนวบินที่ 1 และแนวบินที่ 2 จึง ทำการเลือกข้อมูล LiDAR ที่อยู่บนชั้นข้อมูลอาคารเท่านั้นโดยการเลือกข้อมูล LiDAR ที่ระยะห่าง ระหว่างจุด 5 เซนติเมตร ทั้งแนวบินที่ 1 และแนวบินที่ 2 ให้ intersect กับชั้นข้อมูลอาคารที่ได้สร้าง จากภาพถ่ายทางอากาศที่หาขอบวัตถุ บนโปรแกรม ArcGIS Dektop 9.3 จะทำให้ได้ข้อมูล LiDAR แนวบินที่ 1 และ แนวบินที่ 2 ที่อยู่ในรัศมี 5 เซนติเมตร บนชั้นข้อมูลอาคาร ดังแสดงในรูปที่ 3.26 และ 3.27

รูปที่ 3.26 ข้อมูล LiDAR แนวบินที่1 ระยะห่างจุดไม่เกิน 5 เซนติเมตร บนชั้นข้อมูลอาคาร

รูปที่ 3.27 ข้อมูล LiDAR แนวบินที่2 ระยะห่างจุดไม่เกิน 5 เซนติเมตร บนชั้นข้อมูลอาคาร

วิธีการเลือกข้อมูล LiDAR บนชั้นข้อมูลอาคาร ที่ระยะห่างระหว่างจุด 10 เซนติเมตร เช่นเดียวกันกับที่ระยะห่างระหว่างจุด 5 เซนติเมตร จากรูปที่ 3.23 ข้อมูล LiDAR แนวบินที่ 1 และ แนวบินที่ 2 บนชั้นข้อมูลอาคาร จากนั้นทำการสร้าง buffer บนโปรแกรม ArcGIS Dektop 9.3 ให้ ข้อมูล LiDAR แนวบินที่ 1 และ แนวบินที่ 2 ที่อยู่ในรัศมี 10 เซนติเมตร และถ้ามีจุดที่ใกล้กันมากกว่า 1 จุดให้เลือกจุดที่ใกล้ที่สุดเพียงจุดเดียวให้สัมพันธ์กัน ดังแสดงในรูปที่ 3.28 และ 3.29

รูปที่ 3.28 ข้อมูล LiDAR แนวบินที่1 ระยะห่างจุดไม่เกิน 10 เซนติเมตร ทั้งแนวบิน

รูปที่ 3.29 ข้อมูล LiDAR แนวบินที่2 ระยะห่างจุดไม่เกิน 10 เซนติเมตร ทั้งแนวบิน

และเช่นเดียวกับวิธีการเลือกข้อมูล LiDAR ที่ระยะห่างจุด 5 เซนติเมตร คือ เมื่อได้ข้อมูล LiDAR ที่ระยะห่างระหว่างจุด 10 เซนติเมตรทั้งแนวบินที่ 1 และแนวบินที่ 2 จึงทำการเลือกข้อมูล LiDAR ที่อยู่บนชั้นข้อมูลอาคารเท่านั้นโดยการเลือกข้อมูล LiDAR ที่ระยะห่างระหว่างจุด 10 เซนติเมตร ทั้งแนวบินที่ 1 และแนวบินที่ 2 ให้ intersect กับชั้นข้อมูลอาคารที่ได้สร้างจากภาพถ่าย ทางอากาศที่หาขอบวัตถุ บนโปรแกรม ArcGIS Dektop 9.3 จะทำให้ได้ข้อมูล LiDAR แนวบินที่ 1 และ แนวบินที่ 2 ที่อยู่ในรัศมี 10 เซนติเมตร บนชั้นข้อมูลอาคาร ดังแสดงในรูปที่ 3.30 และ 3.31

รูปที่ 3.30 ข้อมูล LiDAR แนวบินที่1 ระยะห่างจุดไม่เกิน 10 เซนติเมตร บนชั้นข้อมูลอาคาร

รูปที่ 3.31 ข้อมูล LiDAR แนวบินที่2 ระยะห่างจุดไม่เกิน 10 เซนติเมตร บนชั้นข้อมูลอาคาร

(ก)ข้อมูล LiDAR ระยะห่างจุด 5 เซนติเมตร 👘 (ข) ข้อมูล LiDAR ระยะห่างจุด 10 เซนติเมตร

รูปที่ 3.32 ข้อมูล LiDAR ทั้งสองแนวบินที่ระยะ 5 และ 10 เซนติเมตร บนชั้นข้อมูลอาคาร

ดังนั้น จากรูปที่ 3.32 จะทำให้ได้จุดข้อมูล LiDAR บนอาคารที่ระยะห่างระหว่างจุดที่ระยะ 5 เซนติเมตรตามรูป (ก) และที่ระยะห่างระหว่างจุดที่ระยะ 10 เซนติเมตรตามรูป (ข) เมื่อได้ข้อมูล LiDAR ตามที่งานวิจัยต้องการจึงทำการพิจารณาค่าความสูงของข้อมูล LiDAR ที่เลือกพิจารณาเพื่อ นำค่าความสูง ข้อมูล LiDAR ไปพิจารณาปรับแก้ค่าความคลาดเคลื่อนทางด้านความสูงระหว่างแนว บินต่อไป 3.6.3 เปรียบเทียบการเลือกจุดระหว่างแนวบินจากภาพถ่ายทางอากาศและชั้นข้อมูลอาคาร งานวิจัยนี้วิเคราะห์และเลือกจุดในแนวแกน X และ Y ที่มีระยะใกล้เคียงกันซึ่งจะพิจารณา จุดระหว่างแนวบินทั้งสองแนวบินที่มีความต่างในแนวแกน X และ Y โดยได้ทำการเลือกจุด ที่ ระยะห่างระหว่างแนวบินที่ระยะ 5, 10, 15, 20, 30 และ 50 เซนติเมตร และใช้ภาพถ่ายทางอากาศ บริเวณพื้นที่อาคาร โดยทำการหาขอบอาคารและสร้างชั้นข้อมูลอาคาร เพื่อช่วยในการพิจารณา ระยะห่างระหว่างจุด ซึ่งได้แสดงระยะห่างของจุดตามรูปที่แสดงดังตารางที่ 3.2 และ 3.3

อาคาร	15 เซนติเมตร	20 เซนติเมตร	30 เซนติเมตร	50 เซนติเมตร
B1				
B1-E				
B2				
В2-Е				
В3				

ตารางที่ 3.2 แสดงข้อมูล LiDAR ที่ระยะห่างระหว่างแนวบินที่ระยะ 15, 20, 30 และ 50 เซนติเมตร

อาคาร	15 เซนติเมตร	20 เซนติเมตร	30 เซนติเมตร	50 เซนติเมตร
В3-Е				
B4				
В4-Е	· · ·			
В5				
В5-Е				
B6				
В6-Е				

ตารางที่ 3.2 ข้อมูล LiDAR ที่ระยะห่างระหว่างแนวบินที่ระยะ 15, 20, 30 และ 50 เซนติเมตร (ต่อ)

อาคาร	15 เซนติเมตร	20 เซนติเมตร	30 เซนติเมตร	50 เซนติเมตร
В7				
В7-Е				
B8				
B8-E				

ตารางที่ 3.2 ข้อมูล LiDAR ที่ระยะห่างระหว่างแนวบินที่ระยะ 15, 20, 30 และ 50 เซนติเมตร (ต่อ)

จากตารางที่ 3.2 เป็นตารางแสดงข้อมูล LiDAR บนภาพถ่ายทางอากาศ และชั้นข้อมูล อาคารที่ได้จากการสร้างขอบวัตถุพื้นที่อาคารซึ่ง B1 ถึง B8 คือ อาคารหลังที่ 1 ถึง อาคารหลังที่ 8 จากภาพถ่ายทางอากาศ และ B1-E – B8-E คือ ชั้นข้อมูลอาคารที่ได้สร้างจากขอบวัตถุอาคารหลังที่ 1 ถึง หลังที่ 8 ได้แสดงการเลือกข้อมูล LiDAR อย่างถูกต้องและชัดเจน ซึ่งการใช้ชั้นข้อมูลอาคารนั้น จะทำให้สามารถเลือกจุดข้อมูล LiDAR ได้ง่ายและชัดเจนกว่าใช้ภาพถ่ายทางอากาศ

อาคาร	5 เซนติเมตร (Photograph)	5 เซนติเมตร (ชั้นข้อมูลอาคาร)	ବ୍ବୁଡ	10 เซนติเมตร (Photograph)	10 เซนติเมตร (ชั้นข้อมูลอาคาร)	ବ୍ବୁଡ
B1			4			13
B2		•	5			7
B3			6			11
B4		•	2		•••	З
В5			7			12
	จุฬาลง	มาวณา	М	13418118	18	

ตารางที่ 3.3 ข้อมูล LiDAR ที่ระยะห่างระหว่างแนวบินที่ระยะ 5 และ 10 เซนติเมตร

อาคาร	5 เซนติเมตร (Photograph)	5 เซนติเมตร (ชั้นข้อมูลอาคาร)	୍ବୃଡ	10 เซนติเมตร (Photograph)	10 เซนติเมตร (ชั้นข้อมูลอาคาร)	ବ୍ବ
B6			2			2
В7			2			3
B8			2	H.		4

ตารางที่ 3.3 ข้อมูล LiDAR ที่ระยะห่างระหว่างแนวบินที่ระยะ 5 และ 10 เซนติเมตร (ต่อ)

จากตารางที่ 3.2 และ 3.3 สามารถเปรียบเทียบได้ว่าการเลือกจุดข้อมูล LiDAR ระหว่างแนว บินจากภาพถ่ายทางอากาศและชั้นข้อมูลอาคารนั้น การเลือกข้อมูล LiDAR จากภาพถ่ายทาง อากาศสามารถเลือกข้อมูลได้แต่ก็ไม่ชัดเจน ซึ่งมีปัญหาในการเลือกบริเวณขอบอาคารที่คาบเกี่ยว กันและก็มีความจำกัดในกรณีที่ข้อมูลมีจำนวนมากซึ่งจะต้องทำการเลือกดูข้อมูลจากโปรแกรม ArcGIS Desktop 9.3 เพื่อจะให้ทราบพิกัดซึ่งไม่สามารถทำพร้อมกันได้ครั้งละหลายจุดข้อมูล ซึ่งทำ ได้เพียงครั้งละข้อมูลเท่านั้น แต่การเลือกจุดจากชั้นข้อมูลอาคารที่สร้างจากภาพถ่ายทางอากาศที่หา ขอบอาคารนั้นสามารถเลือกจุดจากโปรแกรม ArcGIS Desktop 9.3 ได้ทุกข้อมูลที่อยู่ในชั้นข้อมูล อาคารทั้งหมด ทำให้สามารถหาพิกัดของข้อมูล LiDAR พร้อมกันและเป็นการช่วยลดขั้นตอนในการ เลือกจุดอีกด้วย

Puilding	แนวบินที่ 1			แนวบินที่ 2		
Building	X1 (m)	Y2 (m)	Z1 (m)	X2 (m)	Y2 (m)	Z2 (m)
B1	683125.92	1618404.59	17.2200	683125.93	1618404.63	17.1300
B1	683129.11	1618404.82	17.2300	683129.06	1618404.82	17.1600
B1	683130.24	1618 <mark>411.08</mark>	20.5200	683130.24	1618411.07	20.4000
B1	683128.44	1618415.18	20.7800	683128.46	1618415.16	20.7600
B2	683134.47	1618407.33	17.0500	683134.50	1618407.36	16.7900
B2	683134.07	1618409.35	17.3100	683134.10	1618409.39	17.2100
B2	683132.76	1618413.48	17.2000	6 <mark>8</mark> 3132.77	1618413.51	17.2200
B2	683140.21	1 <mark>618411.9</mark> 1	17.5200	<u>683140.22</u>	1618411.89	17.4900
B2	683138.55	161 <mark>8</mark> 416.05	16.7400	68313 <mark>8.5</mark> 4	1618416.01	16.9600
В3	683134.91	1 <mark>618426.29</mark>	17.4800	6 <mark>8313</mark> 4.96	1618426.29	17.3600
В3	683131.75	161 <mark>8</mark> 426.05	17.4900	<mark>68</mark> 3131.75	1618426.08	17.4300
B3	683128.52	1 <mark>618425</mark> .81	17.5400	6 <mark>831</mark> 28.56	1618425.78	17.3600
В3	683127.71	161 <mark>8</mark> 427.83	18.1900	683127.72	1618427.85	18.0400
В3	683130.08	1618430.10	18.9600	683130.10	1618430.11	18.8300
B3	683129.59	1618432.21	18.8300	683129.58	1618432.18	19.0100
B4	683480.87	1618229.33	17.3200	683480.89	1618229.36	17.1700
B4	683478.14	1618231.25	17.6100	683478.12	1618231.29	17.3300
B5	683547.75	1618357.30	17.9300	683547.75	1618357.28	17.8100
В5	683548.18	1618365.54	18.1100	683548.14	1618365.52	18.0500
B5	683549.33	1618361.54	18.4300	683549.31	1618361.52	18.3600
B5	683552.64	1618361.69	19.2000	683552.60	1618361.72	19.1500
B5	683553.93	1618367.93	18.1800	683553.91	1618367.92	18.1900
B5	683554.93	1618363.89	19.0000	683554.88	1618363.89	19.0600
B5	683555.69	1618361.97	19.0700	683555.71	1618361.93	18.7800
B6	683339.81	1618491.78	20.5200	683339.77	1618491.78	20.4000
B6	683342.36	1618491.97	20.6200	683342.33	1618491.93	20.5100
B7	683214.90	1618454.77	18.6000	683214.91	1618454.75	18.6800
B7	683220.38	1618463.62	19.3200	683220.39	1618463.61	19.3800
B8	683138.05	1618209.84	20.4600	683138.06	1618209.84	20.3400
B8	683138.51	1618209.98	16.9600	683138.55	1618209.97	16.7500

ตารางที่ 3.4 ค่าความสูงระหว่างแนวบิน ระยะห่างระหว่างจุด 5 เซนติเมตร

Building	แนวบินที่ 1			แนวบินที่ 2		
Duliding	X1 (m)	Y2 (m)	Z1 (m)	X2 (m)	Y2 (m)	Z2 (m)
B1	683123.83	1618410.60	20.6800	683123.84	1618410.69	20.6700
B1	683124.07	1618408.51	20.6700	683124.04	1618408.58	20.6500
B1	683124.43	1618406.48	20.6900	683124.37	1618406.52	20.7000
B1	683125.24	1618414.93	21.1000	683125.30	1618415.01	21.0700
B1	683125.92	1618404.5 <mark>9</mark>	17.2200	683125.93	1618404.63	17.1300
B1	683125.85	1618 <mark>412.86</mark>	21.1300	<mark>68</mark> 3125.90	1618412.89	21.1200
B1	683127.00	1618410.82	21.2000	683126.96	1618410.91	21.1400
B1	683127.17	1618408.73	21.2000	683127.09	1618408.74	21.1500
B1	683127.59	1618406.70	21.2100	683127.64	1618406.77	21.1400
B1	683128.44	1618415.18	20.7800	683128.46	1618415.16	20.7600
B1	683129.11	1618404.82	17.2300	683129.06	1618404.82	17.1600
B1	683130.24	1 <mark>618</mark> 411.08	20.5200	68 <mark>3</mark> 130.24	1618411.07	20.4000
B1	683130.45	1618408.99	20.4900	683130.48	1618409.06	20.4300
B2	683134.47	1 <mark>6</mark> 18407.33	17.0500	683134.50	1618407.36	16.7900
B2	683134.07	1618 <mark>40</mark> 9.35	17.3100	<mark>68</mark> 3134.10	1618409.39	17.2100
B2	683132.76	161 <mark>8</mark> 413.48	17.2000	683132.77	1618413.51	17.2200
B2	683140.21	1618411.91	17.5200	683140.22	1618411.89	17.4900
B2	683133.82	1618411.43	17.5200	683133.89	1618411.37	17.4600
B2	683138.55	1618416.05	16.7400	683138.54	1618416.01	16.9600
B3	683134.91	1618426.29	17.4800	683134.96	1618426.29	17.3600
В3	683131.75	1618426.05	17.4900	683131.75	1618426.08	17.4300
В3	683128.52	1618425.81	17.5400	683128.56	1618425.78	17.3600
В3	683134.14	1618428.31	18.1500	683134.17	1618428.24	17.9400
В3	683127.71	1618427.83	18.1900	683127.72	1618427.85	18.0400
B3	683124.54	1618427.60	18.1800	683124.59	1618427.67	18.0100
B3	683133.34	1618430.37	18.1300	683133.37	1618430.32	18.2400
B3	683130.08	1618430.10	18.9600	683130.10	1618430.11	18.8300
В3	683129.59	1618432.21	18.8300	683129.58	1618432.18	19.0100
В3	683123.23	1618431.74	18.8500	683123.24	1618431.82	18.9600
В3	683125.52	1618434.02	18.0700	683125.56	1618434.06	18.1600
В3	683125.13	1618436.12	17.4200	683125.12	1618436.20	17.4500

ตารางที่ 3.5 ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 10 เซนติเมตร

Building	แนวบินที่ 1			แนวบินที่ 2		
Building	X1 (m)	Y2 (m)	Z1 (m)	X2 (m)	Y2 (m)	Z2 (m)
B4	683480.87	1618229.33	17.3200	683480.89	1618229.36	17.1700
B4	683478.14	1618231.25	17.6100	683478.12	1618231.29	17.3300
В5	683546.10	1618361.33	17.4700	683546.04	1618361.35	17.7800
В5	683547.75	1618357.30	17.9300	683547.75	1618357.28	17.8100
В5	683548.18	1618365.54	18.1100	683548.14	1618365.52	18.0500
В5	683549.33	1618361.54	18.4300	<mark>68</mark> 3549.31	1618361.52	18.3600
В5	683551.55	1618363.63	18.6800	683551.63	1618363.69	18.7000
В5	683552.64	1618361.69	19.2000	68355 <mark>2</mark> .60	1618361.72	19.1500
В5	683553.36	1618359.76	18.8400	683553.36	1618359.69	18.6300
В5	683553.93	1618367.93	18.1800	683553.91	1618367.92	18.1900
В5	683554.47	1618365.92	18.5300	683554.56	1618365.91	18.5500
В5	683554.93	1618363.89	19.0000	683554.88	1618363.89	19.0600
В5	683555.69	1618 <mark>3</mark> 61.97	19.0700	683555.71	1618361.93	18.7800
B6	683339.81	1 <mark>61</mark> 8491.78	20.5200	6 <mark>83</mark> 339.77	1618491.78	20.4000
B6	683342.36	1618 <mark>4</mark> 91.97	20.6200	683342.33	1618491.93	20.5100
B6	683344.88	161 <mark>8</mark> 492.15	20.7100	683344.88	1618492.08	20.6200
B7	683214.90	1618454.77	18.6000	683214.91	1618454.75	18.6800
B7	683221.72	1618459.44	20.2800	683221.77	1618459.36	20.3500
B7	683220.38	1618463.62	19.3200	683220.39	1618463.61	19.3800
B8	683130.93	1618211.44	20.5700	683130.86	1618211.43	20.4900
B8	683134.09	1618211.67	20.6700	683134.14	1618211.62	20.5800
B8	683138.05	1618209.84	20.4600	683138.06	1618209.84	20.3400
B8	683138.51	1618209.98	16.9600	683138.55	1618209.97	16.7500

ตารางที่ 3.5 ค่าความสูงระหว่างแนวบิน ระยะห่างระหว่างจุด 10 เซนติเมตร (ต่อ)

รูปที่ 3.33 แสดงภาพก่อนและหลังการปรับแนวบินระหว่างสองแนวบิน

จากรูปที่ 3.33 เป็นการปรับแก้แนวบินบนระนาบระหว่างแนวบินที่ 1 และแนวบินที่ 2 โดยการใช้ สมการจากสมการที่ 2.25

$$\Delta H = a_s + b_s (X_{si} - X_s^c) + c_s (Y_{si} - Y_s^c) - a_t - b_t (X_{ti} - X_t^c) - c_t (Y_{ti} - Y_t^c)$$

เมื่อ s =แนวบินที่ 1, t =แนวบินที่ 2 $a_s = s$ ะยะห่างความสูงของจุดศูนย์กลาง แนวบินที่ 1 $b_s =$ แนวเอียงตามทิศทางการบินของเครื่องบิน แนวบินที่ 1 $c_s =$ แนวเอียงตั้งฉากกับทิศทางการบินของเครื่องบิน แนวบินที่ 1 $X_s^c, Y_s^c =$ จุดศูนย์กลางของแนวบินที่ 1 $X_{si}, Y_{si} =$ ค่าพิกัด X และ Y ณ จุดใดๆ ของแนวบินที่ 1 $a_t = s$ ะยะห่างความสูงของจุดศูนย์กลาง แนวบินที่ 2 $b_t =$ แนวเอียงตามทิศทางการบินของเครื่องบิน แนวบินที่ 2 $c_t =$ แนวเอียงตั้งฉากกับทิศทางการบินของเครื่องบิน แนวบินที่ 2 $X_t^c, Y_t^c =$ จุดศูนย์กลางของแนวบินที่ 2 $X_{ti}, Y_{ti} =$ ค่าพิกัด X และ Y ณ จุดใดๆ ของแนวบินที่ 2 สามารถเขียนให้อยู่ในแบบจำลองทางคณิตศาสตร์ของกรณีนี้ตามสมการที่ 2.14 เขียนได้เป็น

$$L_a = F(X_a)$$

Observations	ΔH
Parameters	$(a_s,b_s,c_s,a_t,b_t,c_t)$
Constants	$(X_{si}, Y_{si}, X_s^c, Y_s^c, X_{ti}, Y_{ti}, X_t^c, Y_t^c)$

จัดรูปแบบสมการจากแบบจำลองเพื่อทำการคำนวณด้วยวิธีลีสท์สแควร์ให้อยู่ในรูปแบบสมการดังที่ แสดงตามสมการที่ 2.19

$$V = AX + L$$

หลักการของลีสท์สแควร์คือต้องการให้ V^TPV → Minimum ทำการคำนวณค่าต่างๆ ตามกระบวนการดังนี้

$$N = A^{T} P A$$

$$U = A^{T} P L$$

$$X = -N^{-1} U$$

$$X_{a} = X_{0} + X$$

$$L_{a} = L_{0} + A X$$

$$V = L_{a} - L_{b}$$

เมื่อทำการคำนวณหาค่า Δ*H* คือค่าความสูงต่างระหว่างแนวบินที่ 1 และแนวบินที่ 2 จากความสัมพันธ์ของสมการระนาบ ในการหาสมการความสัมพันธ์ของการปรับค่าความสูงระหว่าง แนวบินที่ 1 และแนวบินที่ 2 ให้มีค่าความคลาดเคลื่อนระหว่างกันเท่ากับศูนย์ ในที่นี้จะใช้วิธีลีสท์ส แควร์โดยวิธีสมการเงื่อนไข ซึ่งเป็นวิธีที่ทำให้ได้สมการความสัมพันธ์ระหว่างความสูงของแนวบินที่ 1 และแนวบินที่ 2 ก่อนการปรับแก้กับค่า Δ*H* มีความสัมพันธ์กัน สามารถเขียนสมการความสัมพันธ์ ได้ดังนี้

$$z_{PL_i} - z_{PR_i} = \Delta H \tag{3.1}$$

โดยที่

z_{PLi} = ค่าความสูงของจุดใดๆของแนวบินที่ 1
 z_{PRi} = ค่าความสูงของจุดใดๆของแนวบินที่ 2
 Δ*H* = ค่าความสูงต่างระหว่างแนวบิน
รูปแบบในการปรับแก้ด้วยลีสท์สแควร์วิธีสมการเงื่อนไข เนื่องจากเรากำหนดให้ค่าความสูง ณ จุดใดๆ ของแนวบินที่1 และแนวบินที่ 2 เป็นค่าสังเกต และ ΔH เป็นค่าคงที่ ดังนั้นสามารถเขียน ให้อยู่ในแบบจำลองทางคณิตศาสตร์ของกรณีนี้ตามสมการที่ 2.20 เขียนได้เป็น

 $F(L_a) = 0$

 Z_{PL_i}, Z_{PR_i}

Observations

Parameters

Constants ΔH

ทำการคำนวณค่าต่างๆ ตามกระบวนการดังนี้

$$M = BP^{-1}B^{T}$$

$$K = -M^{-1}W$$

$$V = P^{-1}B^{T}K$$

$$L_{a} = L_{b} + V$$

ดังนั้นจะทำให้ได้ค่าความสูงแนวบินที่ 1 และแนวบินที่ 2 ที่มีความสัมพันธ์กับค่า ∆H ที่ได้จาก สมการระนาบ

บทที่ 4

การประมวลผลข้อมูล

ในบทนี้กล่าวถึงการประมวลผลข้อมูลและผลการประมวลผลในแต่ละขั้นตอน ซึ่ง ประกอบด้วย ผลของการเลือกตำแหน่งพื้นที่ซ้อนทับระหว่างแนวบินของข้อมูล LiDAR ผลการเลือก พื้นที่และการหาขอบวัตถุจากภาพถ่ายทางอากาศ การหาชั้นข้อมูลอาคาร ผลการใช้ภาพถ่ายทาง อากาศเป็นจุดควบคุมข้อมูล LiDAR ระหว่างแนวบินผลการเลือกจุดข้อมูล LiDAR ระหว่างแนวบิน และผลการปรับแก้ด้วยลีสท์สแควร์ ตามรายละเอียดดังนี้

4.1 ผลการเตรียมข้อมูลและการกำหน<mark>ดตำแหน่งซ้อนทับระ</mark>หว่างแนวบินของข้อมูล LiDAR

จากผลการเตรียมข้อมูลและกำหนดตำแหน่งซ้อนทับจะได้ข้อมูล LiDAR ที่อยู่เฉพาะใน ขอบเขตพื้นที่ซ้อนทับของข้อมูล โดยจุดที่ทำการเลือกอยู่ขอบเขตพื้นที่ มีพิกัด 683,097.1600 mE 1,618,725.1600 mN ถึง 683,575.4700 mE 1,617,095.8700 mN

พื้นที่ทั้งสองแนวบินทั้งหมด 3.26 ตารางกิโลเมตร จำนวนข้อมูล LiDAR แนวบินที่ 1 จำนวน 718,158 จุด แนวบินที่ 2 จำนวน 652,187 จุด พื้นที่ส่วนซ้อนทับเท่ากับ 0.778 ตารางกิโลเมตร โดย มีเปอร์เซ็นต์การซ้อนทับระหว่างแนวบินประมาณ 40 เปอร์เซ็นต์ของพื้นที่ระหว่างแนวบินทั้งหมด และจำนวนจุดที่อยู่บนขอบเขตการซ้อนทับของแนวบินที่ 1 จำนวนข้อมูล LiDAR จำนวน 337,726 จุด แนวบินที่ 2 จำนวน 328,348 จุด แสดงตำแหน่งขอบเขตการซ้อนทับระหว่างแนวบินดังรูปที่ 4.1, 4.2 และ 4.3

รูปที่ 4.1 ขอบเขตการซ้อนทับระหว่างแนวบิน

รูปที่ 4.2 ข้อมูล LiDAR แนวบินที่ 1 บริเวณพื้นที่ซ้อนทับ

รูปที่ 4.3 ข้อมูล LiDAR แนวบินที่ 2 บริเวณพื้นที่ซ้อนทับ

4.2 ผลการเตรียมการเลือกพื้นที่และการหาขอบวัตถุจากภาพถ่ายทางอากาศ

จากการพิจารณาเลือกพื้นที่จากภาพถ่ายทางอากาศเฉพาะพื้นที่ซ้อนทับจากข้อมูล LiDAR ดังรูปที่ 4.4 ซึ่งได้ทำการเลือกพื้นที่อาคารเพื่อช่วยในการเลือกข้อมูล LiDAR จากภาพถ่ายทาง อากาศ ทำให้ทราบตำแหน่งความสูงของข้อมูล LiDAR บริเวณพื้นที่เดียวกัน ดังแสดงในรูปที่ 4.5 และ 4.6 ดังนั้นเพื่อความถูกต้องในการเลือกตำแหน่งข้อมูล LiDAR บนพื้นที่อาคารจึงทำการหาขอบ ของวัตถุจากภาพถ่ายทางอากาศ

รูปที่ 4.4 ภาพถ่ายทางอากาศ บริเวณพื้นที่ซ้อนทับ

รูปที่ 4.5 ภาพถ่ายทางอากาศ บริเวณพื้นที่อาคาร

รูปที่ 4.6 อาคารที่เลือกพิจารณาจากภาพถ่ายทางอากาศ

ดังนั้นเพื่อความถูกต้องในการเลือกตำแหน่งข้อมูล LiDAR บนพื้นที่อาคารจึงต้องทำการหา ขอบวัตถุของอาคารเพื่อทำให้ขอบชัดเจนข้อมูล LiDAR บริเวณขอบอาคารสามารถพิจารณา ตรวจสอบตำแหน่งได้ถูกต้องชัดเจน แต่เนื่องจากพื้นที่ศึกษาเป็นพื้นที่มีขนาดใหญ่ ไม่สามารถหา ขอบวัตถุ คือ อาคารได้ที่เดียวทั้งพื้นที่ จึงต้องทำการเลือกตัดเฉพาะตำแหน่งอาคารที่เลือกพิจารณา ตำแหน่งของข้อมูล LiDAR จากภาพถ่ายทางอากาศทุกอาคารที่จะทำการเปรียบเทียบ ซึ่งอาคารที่ใช้ ในการหาขอบวัตถุนั้นเป็นอาคารที่มีลักษณะราบเรียบ และเป็นทรงจั่ว ดังแสดงในรูปที่ 4.7 และ 4.8

รูปที่ 4.7 การหาขอบวัตถุจากภาพถ่ายทางอากาศของอาคาร ที่มีลักษณะเรียบ (Flat roof)

รูปที่ 4.8 การหาขอบวัตถุจากภาพถ่ายทางอากาศของอาคาร ที่มีลักษณะเป็นทรงจั่ว (Gable roof)

4.3 ผลการใช้ภาพถ่ายทางอากาศเพื่อพิจารณาข้อมูล LiDAR ระหว่างแนวบิน

การสร้างชั้นข้อมูลอาคารเป็นขั้นตอนหลังจากทำการหาขอบวัตถุของอาคาร โดยวิธี Canny แล้ว การสร้างชั้นข้อมูลอาคารนั้นยังช่วยในกระบวนการเลือกจุดข้อมูล LiDAR บนโปรแกรม ArcGIS Desktop 9.3 ซึ่งทำการเลือกข้อมูล LiDAR ที่อยู่ในชั้นข้อมูลเท่านั้น ซึ่งสามารถทำการเลือกจุดที่อยู่ ในชั้นข้อมูลอาคารได้พร้อมกันทั้งหมดทุกจุดแต่ถ้าไม่สร้างชั้นข้อมูลก็จะต้องใช้การเลือกทีละจุด ซึ่ง จะทำให้กระบวนการทำงานช้าและยุ่งยาก

ดังนั้นวิธีการสร้างชั้นข้อมูลอาคารเป็นขั้นตอนอย่างหนึ่งที่สามารถช่วยในการเลือกข้อมูล LiDAR ได้อย่างถูกต้องและรวดเร็ว ผลจากการสร้างชั้นข้อมูลดังแสดงในรูปที่ 4.9

เนื่องจากข้อมูล LiDAR และภาพถ่ายทางอากาศที่ทำการศึกษาเป็นการบินสำรวจและ บันทึกข้อมูลพร้อมกันดังนั้นตำแหน่งของข้อมูล LiDAR และภาพถ่ายทางอากาศจึงมีค่าพิกัดและ ความถูกต้องตามตำแหน่งเดียวกัน สามารถตรวจสอบพิกัดและซ้อนทับกันได้ ซึ่งไม่ว่าลักษณะ อาคารที่ปรากฏบนภาพถ่ายทางอากาศจะมีลักษณะเอียงตัวยังไงก็ตามแต่ point ของข้อมูล LiDAR บนตำแหน่งภาพถ่ายทางอากาศบริเวณพื้นที่อาคารมีพิกัดที่แสดงชัดเจนว่า point ของ LiDAR อยู่ บนพื้นที่เดียวกันกับภาพถ่ายทางอากาศ ซึ่งการรุบุตำแหน่งพิกัดที่ชัดเจนเราสามารถอ้างอิงตำแหน่ง ได้ว่าพื้นที่เดียวกันของข้อมูล LiDAR จากภาพถ่ายทางอากาศที่ใช้เป็นจุดควบคุมเป็นตำแหน่งใน Object เดียวกันจะสามารถตรวจสอบความสูงของ LiDAR ได้ดังรูปที่ 4.10

รูปที่ 4.10 การแสดงตำแหน่งพิกัด LiDAR และภาพถ่ายทางอากาศเป็นจุดควบคุม

4.4 ผลการเลือกจุดข้อมูล LiDAR ระหว่างแนวบิน

4.4.1 ข้อมูล LiDAR บนชั้นข้อมูลอาคารที่ระยะห่างระหว่างจุด 5 เซนติเมตร
 การสร้างชั้นข้อมูลอาคารจะช่วยในการเลือกข้อมูล LiDAR ให้สามารถประมวลผลบน
 โปรแกรมได้อย่างรวดเร็วและถูกต้อง และช่วยลดขั้นตอนในการทำงาน ซึ่งในรูปที่ 4.11 เป็นการ
 แสดงข้อมูล LiDAR บนชั้นข้อมูลอาคารที่ระยะห่างระหว่างจุด 5 เซนติเมตร

รูปที่ 4.11 ข้อมูล LiDAR บนชั้นข้อมูลอาคาร ระยะห่างระหว่างจุด 5 เซนติเมตร

4.4.2 ข้อมูล LiDAR บนชั้นข้อมูลอาคารที่ระยะห่างระหว่างจุด 10 เซนติเมตร
 การสร้างชั้นข้อมูลอาคารจะช่วยในการเลือกข้อมูล LiDAR ให้สามารถประมวลผลบน
 โปรแกรมได้อย่างรวดเร็วและถูกต้อง และช่วยลดขั้นตอนในการทำงาน ซึ่งในรูปที่ 4.12 เป็นการ
 แสดงข้อมูล LiDAR บนชั้นข้อมูลอาคารที่ระยะห่างระหว่างจุด 10 เซนติเมตร

รูปที่ 4.12 ข้อมูล LiDAR บนชั้นข้อมูลอาคาร ระยะห่างระหว่างจุด 10 เซนติเมตร

4.5 ผลการปรับแก้ด้วยลีสท์สแควร์

4.5.1 ค่าความคลาดเคลื่อนระหว่างแนวบิน ที่ระยะห่างระหว่างจุด ไม่เกิน 5 และ 10 เซนติเมตร

ตารางที่ 4.1 ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 5 เซนติเมตร

ค่าความสูงร	ะหว่างแนวบิน	สมการ	ระนาบ	ค่าแก้	ค่าปรับแก้		
แนวบินที่ 1	แนวบินที่ 2	แนวบินที่ 1	แนวบินที่ 2	ความสูงต่าง	แนวบินที่ 1	แนวบินที่ 2	คาคลาดเคลอน
17.22	17.13	17.22870	17.12130	0.10740	17.17500	17.17500	0.00000
17.23	17.16	17.16520	17.22480	-0.05961	17.19500	17.19500	0.00000
20.52	20.40	20.47308	20.44692	0.02616	20.46000	20.46000	0.00000
20.78	20.76	20. <mark>79613</mark>	20.74387	<mark>0.05226</mark>	20.77000	20.77000	0.00000
17.05	16.79	16.98809	16.85191	0.13618	16.92000	16.92000	0.00000
17.31	17.21	17.33384	17.18616	0.14769	17.26000	17.26000	0.00000
17.20	17.22	17.25723	17.16277	0.09446	17.21000	17.21000	0.00000
17.52	17.49	17.52295	17.48705	0.03591	17.50500	17.50500	0.00000
16.74	16.96	16. <mark>83</mark> 523	16.86477	-0.02953	16.85000	16.85000	0.00000
17.48	17.36	17.487 <mark>30</mark>	17.35270	0.13460	17.42000	17.42000	0.00000
17.49	17.43	17.4 <mark>9</mark> 553	17.42447	0.07105	17.46000	17.46000	0.00000
17.54	17.36	17.4885 <mark>3</mark>	17.41147	0.07705	17.45000	17.45000	0.00000
18.19	18.04	18.15370	18.07630	0.07740	18.11500	18.11500	0.00000
18.96	18.83	18.93753	18.85247	0.08507	18.89500	18.89500	0.00000
18.83	19.01	18.90816	18.93184	-0.02369	18.92000	18.92000	0.00000
17.32	17.17	17.36559	17.12441	0.24118	17.24500	17.24500	0.00000
17.61	17.33	17.55638	17.38362	0.17275	17.47000	17.47000	0.00000
17.93	17.81	17.93102	17.80898	0.12203	17.87000	17.87000	0.00000
18.11	18.05	18.10026	18.05974	0.04052	18.08000	18.08000	0.00000
18.43	18.36	18.43577	18.35423	0.08155	18.39500	18.39500	0.00000
19.20	19.15	19.22659	19.12341	0.10317	19.17500	19.17500	0.00000
18.18	18.19	18.23151	18.13849	0.09302	18.18500	18.18500	0.00000
19.00	19.06	19.05343	19.00657	0.04687	19.03000	19.03000	0.00000
19.07	18.78	18.99402	18.85598	0.13804	18.92500	18.92500	0.00000
20.52	20.40	20.45230	20.46770	-0.01540	20.46000	20.46000	0.00000
20.62	20.51	20.54324	20.58676	-0.04353	20.56500	20.56500	0.00000
18.60	18.68	18.66068	18.61932	0.04136	18.64000	18.64000	0.00000
19.32	19.38	19.37619	19.32381	0.05238	19.35000	19.35000	0.00000
20.46	20.34	20.45654	20.34346	0.11308	20.40000	20.40000	0.00000
16.96	16.75	16.93530	16.77470	0.16059	16.85500	16.85500	0.00000

ตารางที่ 4.2 ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 10

เซนติเมตร

ค่าความสูงระ	ะหว่างแนวบิน	สมการ	ระนาบ	ค่าแก้	ค่าปรับแก้		
แนวบินที่ 1	แนวบินที่ 2	แนวบินที่ 1	แนวบินที่ 2	ความสูงต่าง	แนวบินที่ 1	แนวบินที่ 2	ค. เคฆ. เดเคฆอน
20.68	20.67	20.68967	20.66033	0.02934	20.67500	20.67500	0.00000
20.67	20.65	20.66754	20.65246	0.01509	20.66000	20.66000	0.00000
20.69	20.70	20.69860	20.69140	0.00720	20.69500	20.69500	0.00000
21.10	21.07	21.11115	21.05885	0.05230	21.08500	21.08500	0.00000
17.22	17.13	17.19543	17.15457	0.04086	17.17500	17.17500	0.00000
21.13	21.12	21.15361	21.09639	0.05722	21.12500	21.12500	0.00000
21.20	21.14	21.17 <mark>290</mark>	21.16710	0.00581	21.17000	21.17000	0.00000
21.20	21.15	21.17593	21.17407	0.00186	21.17500	21.17500	0.00000
21.21	21.14	21.20169	21.14831	0.05337	21.17500	21.17500	0.00000
20.78	20.76	20.79530	20.74470	0.05060	20.77000	20.77000	0.00000
17.23	17.16	17.20476	17.18524	0.01952	17.19500	17.19500	0.00000
20.52	20.40	20.48077	20.43923	0.04153	20.46000	20.46000	0.00000
20.49	20.43	2 <mark>0.4</mark> 8143	20.43857	0.04286	20.46000	20.46000	0.00000
17.05	16.79	16.9 <mark>452</mark> 5	16.89475	0.05050	16.92000	16.92000	0.00000
17.31	17.21	17. <mark>28390</mark>	17.23610	0.04779	17.26000	17.26000	0.00000
17.20	17.22	17.229 <mark>0</mark> 7	17.19093	0.03813	17.21000	17.21000	0.00000
17.52	17.49	17.52871	17.48129	0.04742	17.50500	17.50500	0.00000
17.52	17.46	17.53133	17.44867	0.08266	17.49000	17.49000	0.00000
16.74	16.96	16.86974	16.83026	0.03947	16.85000	16.85000	0.00000
17.48	17.36	17.44783	17.39217	0.05566	17.42000	17.42000	0.00000
17.49	17.43	17.47364	17.44636	0.02727	17.46000	17.46000	0.00000
17.54	17.36	17.47822	17.42178	0.05644	17.45000	17.45000	0.00000
18.15	17.94	18.07367	18.01633	0.05734	18.04500	18.04500	0.00000
18.19	18.04	18.13142	18.09858	0.03283	18.11500	18.11500	0.00000
18.18	18.01	18.11655	18.07345	0.04310	18.09500	18.09500	0.00000
18.13	18.24	18.21145	18.15855	0.05290	18.18500	18.18500	0.00000
18.96	18.83	18.91404	18.87596	0.03808	18.89500	18.89500	0.00000
18.83	19.01	18.93494	18.90506	0.02988	18.92000	18.92000	0.00000
18.85	18.96	18.91532	18.89468	0.02065	18.90500	18.90500	0.00000
18.07	18.16	18.13520	18.09480	0.04040	18.11500	18.11500	0.00000

ค่าความสูงระหว่างแนวบิน		สมการระนาบ		ค่าแก้	ค่าปรั		
ู แนวบินที่ 1	แนวบินที่ 2	แนวบินที่ 1	แนวบินที่ 2	ความสูงต่าง	แนวบินที่ 1	แนวบินที่ 2	ค่าคลาดเคลื่อน
17.42	17.45	17.43956	17.43044	0.00911	17.43500	17.43500	0.00000
17.32	17.17	17.30999	17.18001	0.12999	17.24500	17.24500	0.00000
17.61	17.33	17.52432	17.41568	0.10864	17.47000	17.47000	0.00000
17.47	17.78	17.63929	17.61071	0.02858	17.62500	17.62500	0.00000
17.93	17.81	17.90275	17.83725	0.06549	17.87000	17.87000	0.00000
18.11	18.05	18.10136	18.05864	0.04271	18.08000	18.08000	0.00000
18.43	18.36	18. <mark>42</mark> 202	18.36798	0.05403	18.39500	18.39500	0.00000
18.68	18.70	1 <mark>8.73301</mark>	18.64699	0.08603	18.69000	18.69000	0.00000
19.20	19.15	19.19299	19.15701	0.03598	19.17500	19.17500	0.00000
18.84	18.63	18.77140	18.69860	0.07281	18.73500	18.73500	0.00000
18.18	18.19	18.20 <mark>95</mark> 6	18.16044	0.04912	18.18500	18.18500	0.00000
18.53	18.55	18.59078	18.48922	0.10157	18.54000	18.54000	0.00000
19.00	19.06	19. <mark>04767</mark>	19.01233	0.03535	19.03000	19.03000	0.00000
19.07	18.78	18.96 <mark>29</mark> 5	18.88705	0.07590	18.92500	18.92500	0.00000
20.52	20.40	20. <mark>44960</mark>	20.47040	-0.02079	20.46000	20.46000	0.00000
20.62	20.51	20.560 <mark>3</mark> 2	20.56968	-0.00936	20.56500	20.56500	0.00000
20.71	20.62	20.66985	20.66015	0.00971	20.66500	20.66500	0.00000
18.60	18.68	18.65277	18.62723	0.02554	18.64000	18.64000	0.00000
20.28	20.35	20.34109	20.28891	0.05219	20.31500	20.31500	0.00000
19.32	19.38	19.35970	19.34030	0.01941	19.35000	19.35000	0.00000
20.57	20.49	20.58356	20.47644	0.10713	20.53000	20.53000	0.00000
20.67	20.58	20.71000	20.54000	0.16999	20.62500	20.62500	0.00000
20.46	20.34	20.47178	20.32822	0.14355	20.40000	20.40000	0.00000
16.96	16.75	16.93462	16.77538	0.15923	16.85500	16.85500	0.00000

ตารางที่ 4.2 ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 10 เซนติเมตร (ต่อ)

จุฬาลงกรณ์มหาวิทยาลัย

4.5.2 กราฟแสดงความสูงต่างและความสูงปรับแก้ระหว่างแนวบิน

รูปที่ 4.13 กราฟแสดงค<mark>วามสูงต่างระหว่างแนวบิน ระยะห่า</mark>งระหว่างจุด 5 เซนติเมตร

รูปที่ 4.14 กราฟแสดงความสูงปรับแก้ระหว่างแนวบิน ระยะห่างระหว่างจุด 5 เซนติเมตร

รูปที่ 4.15 กราฟแสดง<mark>ค</mark>วามสูงต่างระหว่างแนวบิน ระยะห่างระหว่างจุด 10 เซนติเมตร

รูปที่ 4.16 กราฟแสดงความสูงปรับแก้ระหว่างแนวบิน ระยะห่างระหว่างจุด 10 เซนติเมตร

จากการคำนวณค่า ∆*H* จากสมการระนาบเราสามารถวิเคราะห์ค่าปรับแก้เพื่อพิจารณา เปรียบเทียบระหว่าง ระยะห่างระหว่างจุดที่ระยะ 5 เซนติเมตร และ 10 เซนติเมตร ซึ่งค่าที่นำมาทำ การเปรียบเทียบเพื่อวิเคราะห์การกระจายตัวของข้อมูล เพื่อจะนำค่าดังกล่าวไปทำการพิจารณา ค่าพารามิเตอร์ในการปรับแก้ค่าความคลาดเคลื่อนทางด้านความสูงของ LiDAR ทั้งแนวบินต่อไป โดยพิจารณาจากค่าเฉลี่ย (mean) และค่าส่วนเบี่ยงเบนมาตรฐาน (standard deviation)

ซึ่งได้ทำการปรับแก้ข้อมูล LiDAR ระหว่างแนวบินที่ระยะห่างระหว่างจุด 5 เซนติเมตรและ 10 เซนติเมตร ซึ่งได้คำนวณค่าความสูงปรับแก้ของข้อมูลที่ระยะ 5 เซนติเมตร ได้ค่า ค่าเฉลี่ย เท่ากับ 0.07600 ค่าส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.06744 และคำนวณค่าความสูงปรับแก้ของข้อมูลที่ ระยะ 10 เซนติเมตร ได้ค่าเฉลี่ย เท่ากับ 0.05056 ค่าส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.03864 จาก ค่าดังกล่าวที่ระยะห่างระหว่างจุด 5 เซนติเมตร มีค่าเฉลี่ยและเบี่ยงเบนมาตรฐาน เท่ากับ 0.03864 จาก ต่าดังกล่าวที่ระยะห่างระหว่างจุด 5 เซนติเมตร มีค่าเฉลี่ยและเบี่ยงเบนมาตรฐานของค่าปรับแก้ ข้อมูลมากกว่าที่ระยะ 10 เซนติเมตร อาจจะขึ้นอยู่กับจำนวนจุดที่ใช้ปรับแก้น้อยมากไม่กระจายทั้ง พื้นที่ ดังนั้นจึงทำการวิเคราะห์จากการปรับแก้แนวบินที่ซ้อนทับกันทั้งหมด โดยใช้พารามิเตอร์ที่ ระยะห่างจุด 5 เซนติเมตร บนอาคาร ปรับแก้ข้อมูล LiDAR ที่ระยะห่างจุด 5 เซนติเมตรพื้นที่ซ้อนทับ ทั้งหมด และ ใช้พารามิเตอร์ที่ระยะห่างจุด 10 เซนติเมตร บนอาคาร ปรับแก้ข้อมูล LiDAR ที่

4.5.3 ค่าพารามิเตอร์ที่ได้จากการคำนวณสมการระนาบจากสมการที่ 2.25

$$\Delta H = a_s + b_s (X - X_s^c) + c_s (Y - Y_s^c) - a_t - b_t (X - X_t^c) - c_t (Y - Y_t^c)$$

สามารถคำนวณค่า Parameters $(\Delta H, a_s, b_s, c_s, a_t, b_t, c_t)$ ได้ดังนี้ ที่ระยะห่างระหว่างแนวบินที่ระยะไม่เกิน 5 เซนติเมตร ค่าที่คำนวณได้

$$\Delta H =$$
จากตารางที่ 4.2
 $a_s - a_t = 1505.97406$
 $b_s = 1.98561$
 $c_s = 1.21306$
 $b_t = 1.98584$
 $c_t = 1.21279$
ที่ระยะห่างระหว่างแนวบินที่ระยะไม่เกิน 10 เซนติเมตร ค่าที่คำนวณได้

 ΔH = จากตารางที่ 4.3 $a_s - a_t = 354.82290$ $b_s = 0.46786$ $c_s = -0.17123$ $b_t = 0.46785$ $c_t = -0.17172$

ที่ระยะห่างระหว่างจุด 5 เซนติเมตร

 $\Delta H = 1505.97406 + 1.98561(X - X_s^c) - 1.21306(Y - Y_s^c) - 1.98584(X - X_t^c) + 1.21279(Y - Y_t^c)$

ที่ระยะห่างระหว่างจุด 10 เซน<mark>ติเมตร</mark>

 $\Delta H = 354.82290 + 0.46786(X - X_s^c) - 0.17123(Y - Y_s^c) - 0.46785(X - X_t^c) + 0.17172(Y - Y_t^c)$

จะสามารถใช้พารามิเตอร์ดังกล่าวไปคำนวณค่าทั้งหมดทั้งแนวบินเพื่อได้ค่าปรับแก้ ∆*H* จึง นำดังกล่าวไปทำการปรับแก้ค่าความสูงระหว่างแนวบินจากสมการที่ 3.2

$$z_{PL} - z_{PR} - \Delta H = 0$$

เมื่อทำการปรับแก้ค่าความสูงต่างระหว่างแนวบินแล้วจึงทำการวิเคราะห์ค่าความสูงต่าง ปรับแก้จากทั้งที่ระยะห่างระหว่างจุด 5 เซนติเมตร และ 10 เซนติเมตร จากค่าเบี่ยงเบนมาตรฐาน เพื่อจะได้เลือกค่าพารามิเตอร์ระหว่าง ทั้งสองกรณีไปทำการปรับแก้ค่าทั้งแนวบินต่อไป

จากการวิเคราะห์ผลการคำนวณค่าปรับแก้ความสูงต่างระหว่างแนวบินเราจึงพิจารณา พารามิเตอร์จากการคำนวณเพื่อใช้ในการปรับแก้ข้อมูลทั้งแนวบินจากสมการดังนี้ที่ระยะห่าง ระหว่างจุด 5 เซนติเมตร พื้นที่ซ้อนทับทั้งหมด จำนวนข้อมูล 1,044 จุดข้อมูล และที่ระยะห่าง ระหว่างจุด 10 เซนติเมตร พื้นที่ซ้อนทับทั้งหมด จำนวนข้อมูล 4,536 จุดข้อมูล ปรากฏว่าค่าความสูง ปรับแก้ของข้อมูลที่ระยะ 5 เซนติเมตร ได้ค่า ค่าเฉลี่ย เท่ากับ 0.19082 ค่าส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.13846 และคำนวณค่าความสูงปรับแก้ของข้อมูลที่ระยะ 10 เซนติเมตร ได้ค่าเฉลี่ย เท่ากับ 0.42526 ค่าส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.37832 จากค่าดังกล่าวที่ระยะห่างระหว่างจุด 5 เซนติเมตร มีค่าเฉลี่ยและเบี่ยงเบนมาตรฐานของค่าปรับแก้ข้อมูลน้อยกว่าที่ระยะ 10 เซนติเมตร ซึ่ง มีความน่าเชื่อถือกว่าและจะเห็นได้ว่าจำนวนจุดที่ใช้ในการปรับแก้มีผลต่อการวิเคราะห์เลือกจุด ดังนั้นจึงใช้พารามิเตอร์จาก ระยะห่างจุด 5 เซนติเมตร บนอาคาร ในการปรับแก้ข้อมูล LiDAR ทั้ง แนวบิน

กรณีปรับแก้ทั้งแนวบิน สมการระนาบในการปรับแก้

 $\Delta H = a_s + b_s (X - X_s^c) + c_s (Y - Y_s^c)$ (4.1)

เมื่อ

$$a_s = s$$
ะยะห่างความสูงของจุดศูนย์กลาง แนวบันท์ 1
 $b_s =$ แนวเอียงตามทิศทางการบินของเครื่องบิน แนวบินที่ 1
 $c_s =$ แนวเอียงตั้งฉากกับทิศทางการบินของเครื่องบิน แนวบินที่ 1
 $X_s^c, Y_s^c =$ จุดศูนย์กลางของแนวบินที่ 1

 $\Delta H = a_t + b_t (X - X_t^c) + c_t (Y - Y_t^c)$ (4.2)

เมื่อ

ซึ่งเราทราบค่าพารามิเตอร์จากสมการระนาบ กรณีระยะห่างระหว่างจุด 5 เซนติเมตรบน อาคาร นำค่าพารามิเตอร์ไปแทนค่าในสมการที่ 4.1 และ 4.2 เพื่อหา ΔH

เมื่อได้ค่า ∆H ของแนวบินที่ 1 และแนวบินที่ 2 จึงทำการปรับแก้ด้วยสมการที่ 4.3 และ 4.4 เพื่อปรับแก้ค่าความสูง แนวบินที่ 1 และ แนวบินที่ 2 ทั้งแนวบิน ดังต่อไปนี้

ปรับแก้ค่าทั้งแนวบินที่ 1

$$Z_{si} - \Delta H_{si} = Z_{adj} \tag{4.3}$$

เมื่อ
$$Z_{si}$$
 = ค่าความสูงที่จุดใดๆ ของแนวบินที่ 1
Δ H_{si} = ค่าความสูงปรับแก้จากสมการระนาบที่จุดใดๆ ของแนวบินที่ 1
 Z_{adj} = ค่าความสูงที่ทำการปรับแก้ด้วยสมการระนาบ

ปรับแก้ค่าทั้งแนวบินที่ 2

$$Z_{ti} - \Delta H_{ti} = Z_{adj} \tag{4.4}$$

เมื่อ Z_{ti} = ค่าความสูงที่จุดใดๆ ของแนวบินที่ 2 ΔH_{ti} = ค่าความสูงปรับแก้จากสมการระนาบที่จุดใดๆ ของแนวบินที่ 2 Z_{adj} = ค่าความสูงที่ทำการปรับแก้ด้วยสมการระนาบ

จากข้อมูล LiDAR แนวบินที่ 1 มีจุดข้อมูลทั้งหมดจำนวน 718,158 จุด แนวบินที่ 2 จำนวน 652,187 จุด ซึ่งได้ทำการเลือกจุดในการปรับแก้ทั้งพื้นที่โดยเลือกพิจารณาจุดทั้งแนวบินที่ 1 และ แนวบินที่ 2 จำนวน 100 จุด ดังรูปที่ 4.17

รูปที่ 4.17 ตำแหน่งการเลือกจุดข้อมูล LiDAR ทั้งแนวบินกระจายทั่วพื้นที่

บทที่ 5 บทสรุปและข้อเสนอแนะ

จากงานวิจัยในครั้งนี้เป็นงานวิจัยที่ทำการศึกษาวิธีการปรับแก้ค่าความคลาดเคลื่อน ทางด้านความสูงของ LiDAR ระหว่างแนวบินโดยอาศัยจุดควบคุมจากภาพถ่ายทางอากาศด้วยวิธี ลีสท์สแควร์ สามารถสรุปงานวิจัยได้ดังต่อไปนี้

5.1 บทสรุป

จากการศึกษาการปรับแก้ข้อมูล LiDAR ระหว่างแนวบินโดยอาศัยจุดควบคุมจากภาพถ่าย ทางอากาศนั้น งานวิจัยนี้ได้ศึกษาข้อมูล LiDAR ในรายละเอียดการบินสำรวจ จนกระทั่งการได้มาซึ่ง ข้อมูล LiDAR เพื่อพิจารณาความถูกต้องของค่าความสูงของข้อมูล LiDAR โดยการพิจารณา เปรียบเทียบค่าความสูงระหว่างแนวบินที่ซ้อนทับกัน บนตำแหน่งพื้นที่เดียวกัน โดยงานวิจัยนี้ได้ เลือกพื้นที่ ที่ทำการพิจารณาตำแหน่งเพื่อเปรียบเทียบข้อมูล LiDAR เป็นพื้นที่อาคาร ซึ่งสามารถ ตรวจสอบตำแหน่ง LiDAR บนความสูงอาคารเดียวกันย่อมทำให้ความสูงระหว่างแนวบินที่ซ้อนทับ กันมีความสูงเท่ากัน

ซึ่งจากการบินสำรวจข้อมูล LiDAR พร้อมกันกับการบินถ่ายภาพทางอากาศทำให้การบันทึก ข้อมูลทางตำแหน่งถูกต้องตรงกันสามารถพิจารณาค่าพิกัดของข้อมูล LiDAR ซ้อนทับกับภาพถ่าย ทางอากาศเพื่อพิจารณาตำแหน่งของ LiDAR บนอาคารได้ แต่เนื่องจากข้อมูล LiDAR มีจุดข้อมูล จำนวนมากและไม่สามารถเลือกเปรียบเทียบข้อมูล LiDAR ระหว่างแนวบินที่ 1 และแนวบินที่ 2 ของ ความสูงบนอาคารได้ ดังนั้นจึงต้องทำการเลือกเปรียบเทียบระหว่างจุดต่อจุดของข้อมูล โดยการ พิจารณาจุดที่อยู่ใกล้กันบนอาคาร โดยวิเคราะห์ว่าจุดที่อยู่ใกล้กันเปรียบเป็นจุดเดียวกัน ดังนั้นใน ขั้นตอนการเลือกจุดเป็นอีกขั้นตอนหนึ่งที่ทำให้สามารถเปรียบเทียบค่าความสูงของข้อมูล LiDAR ระหว่างแนวบินและสามารถนำค่าที่มีความสูงต่างระหว่างแนวบินไปทำการปรับแก้ ซึ่งผลการเลือก จุดได้พิจารณาจุดข้อมูล LiDAR ที่ระยะห่างระหว่างจุดที่ระยะไม่เกิน 5 เซนติเมตร และ 10 เซนติเมตร

เมื่อได้ระยะที่ใช้ในการเลือกจุดแล้วขั้นตอนต่อไปเป็นการเลือกจุดบนอาคารซึ่งขั้นตอนนี้ จำเป็นต้องใช้ภาพถ่ายทางอากาศในการซ้อนทับข้อมูล LiDAR เพื่อเลือกจุด แต่เนื่องจากอาคารจาก ภาพถ่ายทางอากาศที่ใช้เพื่อซ้อนทับข้อมูล LiDAR นั้น บริเวณของขอบอาคารไม่ซัดเจนซึ่งจะมีผลใน การเลือกจุดข้อมูล LiDAR บริเวณของขอบอาคาร ดังนั้นจึงต้องหาขอบอาคาร จากภาพถ่ายทาง อากาศ

ซึ่งเมื่อได้ขอบของอาคารจากภาพถ่ายทางอากาศแล้ว จึงนำขอบของอาคารไปสร้างชั้น ข้อมูลอาคาร ซึ่งวิธีการสร้างชั้นข้อมูลอาคารนั้นช่วยให้การเลือกจุดได้ถูกต้องและรวดเร็ว ลดขั้นตอน การทำงานในกระบวนการต่างๆ ดังนั้นจากการเลือกข้อมูล LiDAR ระหว่างแนวบินนั้น ที่ระยะห่าง ระหว่างจุด 5 เซนติเมตร มีข้อมูล LiDAR จำนวน 30 จุดข้อมูล และที่ระยะห่างระหว่างจุด 10 เซนติเมตร มีข้อมูล LiDAR จำนวน 54 จุดข้อมูล ซึ่งเมื่อได้ข้อมูลดังกล่าวและเปรียบเทียบความสูง ระหว่างแนวบินจึงทำการปรับแก้ด้วยวิธีลีสท์สแควร์

จากการปรับแก้ค่าความคลาดเคลื่อนของข้อมูล LiDAR ด้วยวิธีลีสท์สแควร์ ผู้วิจัยได้ทำการ แบ่งเงื่อนไขเพื่อใช้พิจารณาทั้งหมด 2 กรณี คือ

- ปรับแก้ข้อมูล LiDAR บนอาคารที่ระยะห่างจุด 5 เซนติเมตร
- ปรับแก้ข้อมูล LiDAR บนอาคารที่ระยะห่างจุด 10 เซนติเมตร

เมื่อได้ผลจากการปรับแก้จากชุดข้อมูลทั้ง 2 กรณีแล้วนั้นจึงนำค่าพารามิเตอร์ที่ได้จากการ ปรับแก้ทั้ง 2 กรณี ไปทำการปรับแก้ค่าความสูงต่าง โดยไม่ได้เลือกใช้ข้อมูลบนภาพถ่ายทางอากาศ ซึ่งผู้วิจัยได้ทำการแบ่งเงื่อนไขเพื่อใช้พิจารณาทั้งหมด 3 กรณี คือ

- ปรับแก้ข้อมูล LiDAR ระหว่างแนวบินพื้นที่ซ้อนทับที่ระยะห่างจุด 5 เซนติเมตร
 - ปรับแก้ข้อมูล LiDAR ระหว่างแนวบินพื้นที่ซ้อนทับที่ระยะห่างจุด 10 เซนติเมตร
 - ปรับแก้ข้อมูล LiDAR ทั้งแนวบิน

รายการ	จำนวนข้อมูล ทั้งหมด(จุด)	จุดที่ปรับแก้ (จุด)	ค่าปรับแก้เฉลี่ย (เมตร)	ค่า S.D (เมตร)
ระยะห่างจุด 5 เซนติเมตร บนอาคาร	30	30	0.07600	0.06744
ระยะห่างจุด 10 เซนติเมตร บนอาคาร	54	54	0.05056	0.03864
ระยะห่างจุด 5 เซนติเมตร ทั้งแนวซ้อนทับ	1,044	100	0.11027	0.10498
ระยะห่างจุด 5 เซนติเมตร ทั้งแนวซ้อนทับ	1,044	1,044	0.19082	0.13846
ระยะห่างจุด 10 เซนติเมตร ทั้งแนวซ้อนทับ	4,536	100	0.26429	0.26977
ระยะห่างจุด 10 เซนติเมตร ทั้งแนวซ้อนทับ	4,536	4,536	0.42526	0.37832
ปรับแก้ทั้งแนวบินที่ 1	718,158	100	0.18074	0.13886
ปรับแก้ทั้งแนวบินที่ 2	652,187	100	0.33395	0.27767

ตารางที่ 5.1 สรุปผลการปรับแก้ความสูงต่างระหว่างแนวบินและความสูงของแต่ละแนวบิน

จากตารางที่ 5.1 ได้ผลการปรับแก้ด้วยลีสท์สแควร์ สามารถสรุปผลได้ดังนี้

5.1.1 ผลลัพธ์ที่ได้จากการประมวลผลวิธีลีสท์สแควร์ กรณีปรับแก้ข้อมูล LiDAR บนอาคารที่ ระยะห่างจุด 5 เซนติเมตร ซึ่งมีจำนวนจุดข้อมูลในการปรับแก้ 30 จุดข้อมูล ได้ผลการคำนวณค่า ปรับแก้ค่าความสูงต่าง เฉลี่ยเท่ากับ 0.07600 เมตร ค่าส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.06744 เมตร

5.1.2 ผลลัพธ์ที่ได้จากการประมวลผลวิธีลีสท์สแควร์ กรณีปรับแก้ข้อมูล LiDAR บนอาคาร ที่ระยะห่างจุด 10 เซนติเมตร ซึ่งมีจำนวนจุดข้อมูลในการปรับแก้ 54 จุดข้อมูล ได้ผลการคำนวณค่า ปรับแก้ค่าความสูงต่าง เฉลี่ย เท่ากับ 0.05056 เมตร ค่าส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.03864 เมตร

5.1.3 ผลลัพธ์ที่ได้จากการประมวลผลวิธีลีสท์สแควร์ กรณีปรับแก้ข้อมูล LiDAR ระหว่าง แนวบินพื้นที่ซ้อนทับ ระยะห่างจุด 5 เซนติเมตร ซึ่งมีจำนวนจุดข้อมูลในการปรับแก้ 1,044 จุดข้อมูล แต่ได้นำมาทำการคำนวณปรับแก้ 100 จุดข้อมูล ได้ผลการคำนวณค่าปรับแก้ค่าความสูงต่าง เฉลี่ย เท่ากับ 0.11027 เมตร ค่าส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.10498 เมตร และนำมาปรับแก้ทั้งหมด 1,044 จุดข้อมูล ได้ผลการคำนวณค่าปรับแก้ค่าความสูงต่าง เฉลี่ยเท่ากับ 0.19082 เมตร ค่าส่วน เบี่ยงเบนมาตรฐาน เท่ากับ 0.13846 เมตร 5.1.4 ผลลัพธ์ที่ได้จากการประมวลผลวิธีลีสท์สแควร์ กรณีปรับแก้ข้อมูล LiDAR ระหว่าง แนวบินพื้นที่ซ้อนทับ ระยะห่างจุด 10 เซนติเมตร ซึ่งมีจำนวนจุดข้อมูลในการปรับแก้ 4,536 จุด ข้อมูล แต่ได้นำมาทำการคำนวณปรับแก้ 100 จุดข้อมูล ได้ผลการคำนวณค่าปรับแก้ค่าความสูงต่าง เฉลี่ยเท่ากับ 0.26429 เมตร ค่าส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.26977 เมตร และนำมาปรับแก้ ทั้งหมด 4,536 จุดข้อมูล ได้ผลการคำนวณค่าปรับแก้ค่าความสูงต่าง เฉลี่ยเท่ากับ 0.42526 เมตร ค่าส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.37832 เมตร

5.1.5 ผลลัพธ์ที่ได้จากการประมวลผลวิธีลีสท์สแควร์ กรณีปรับแก้ข้อมูล LiDAR ทั้งแนวบิน ซึ่งใช้พารามิเตอร์จากการปรับแก้ที่ระยะห่างระหว่างจุด 5 เซนติเมตร ซึ่งมีจำนวนจุดข้อมูลในการ ปรับแก้แนวบินที่ 1 จำนวน 718,158 จุด แนวบินที่ 2 จำนวน 652,187 จุดข้อมูล แต่ได้นำมาทำการ คำนวณปรับแก้แนวบินที่ 1 จำนวน 100 จุดข้อมูล และแนวบินที่ 2 จำนวน 100 จุดข้อมูล โดยการ เลือกจุดกระจายทั้งแนวบิน ได้ผลการคำนวณค่าปรับแก้ค่าความสูงปรับแก้ แนวบินที่ 1 เฉลี่ยเท่ากับ 0.18074 เมตร ค่าส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.13886 เมตร และแนวบินที่ 2 เฉลี่ยเท่ากับ 0.33395 เมตร ค่าส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.27767 เมตร

จากผลลัพธ์ที่ได้จากงานวิจัยในเรื่องการปรับแก้ข้อมูล LiDAR ระหว่างแนวบินโดยอาศัยจุด ควบคุมจากภาพถ่ายทางอากาศนั้น จากการปรับแก้ข้อมูล LiDAR บนอาคารที่ระยะห่างจุด 5 เซนติเมตร เปรียบเทียบกับที่ระยะห่างจุด 10 เซนติเมตร ปรากฏว่าที่ระยะห่างของข้อมูล LiDAR ที่ ระยะห่างจุด 5 เซนติเมตร มีค่าเบี่ยงเบนมาตรฐานมากกว่า เนื่องจากจำนวนจุดที่น้อย จึงนำ ค่าพารามิเตอร์จากที่ปรับแก้บนอาคารที่ระยะดังกล่าวไปทำการปรับแก้ข้อมูล LiDAR ระหว่างแนว บินพื้นที่ซ้อนทับที่ระยะห่างจุด 5 เซนติเมตร และ 10 เซนติเมตร ปรากฏว่าทั้งการทดสอบการปรับแก้ ที่จำนวนจุด 100 จุดข้อมูล และ จำนวนข้อมูลทั้งหมดที่ซ้อนทับกันทั้งแนวบิน ค่าเบี่ยงเบนมาตรฐาน ที่ระยะห่างจุด 5 เซนติเมตร มีค่าน้อยกว่าที่ระยะห่างจุด 10 เซนติเมตร ดังนั้นจึงสรุปได้ว่า ค่าพารามิเตอร์จากการปรับแก้ที่ระยะห่าง 5 เซนติเมตร มีความน่าเชื่อถือมากกว่า จึงเลือกใช้ พารามิเตอร์ระยะห่างจุด 5 เซนติเมตร ไปทำการปรับแก้ทั้งแนวบิน ดังนั้นสามารถสรุปได้ว่าการเลือก จุดควบคุมจากภาพถ่ายทางอากาศมีผลช่วยในการปรับแก้ และสามารถใช้พารามิเตอร์จากสมการ ระนาบช่วยในการปรับแก้ข้อมูล LiDAR ทั้งแนวบิน

5.2 ข้อเสนอแนะ

จากงานวิจัยนี้ มีการใช้ทฤษฎีต่างๆในการทำให้เกิดเทคนิคใหม่ ๆ เช่น การเลือกจุดเพื่อ เปรียบเทียบจุดใกล้เคียงกันเป็นจุดเดียวกัน การใช้ภาพถ่ายทางอากาศเป็นจุดควบคุมเพื่อแสดงให้ เห็นว่าข้อมูล LiDAR ที่อยู่บนอาคารเดียวกันนั้นย่อมมีค่าความสูงใกล้เคียงกัน การเลือกจุดและพื้นที่ ทำให้เลือกจุดเปรียบเทียบได้ถูกต้อง ช่วยในการลดค่าความคลาดเคลื่อนลงได้ และการใช้สมการ ระนาบในการปรับแก้เป็นวิธีการเลือกใช้สมการเพื่อแสดงให้เห็นว่าสมการระนาบสามารถปรับแก้ ข้อมูล LiDAR ทั้งแนวบินได้ ซึ่งจากทฤษฎีดังกล่าวสามารถนำไปใช้ในงานวิจัยอื่นที่มีการปรับแก้เพื่อ ลดค่าความคลาดเคลื่อนได้

นอกจากนี้ งานวิจัยนี้สามารถที่จะพัฒนาซอฟท์แวร์ที่ใช้ในการปรับแก้ด้วยวิธีลีสท์สแควร์ เพื่อสามารถปรับแก้ค่าคลาดเคลื่อนได้อย่างรวดเร็ว ด้วยเทคนิคต่างๆ เพื่อสะดวกในการใช้งาน และ การปรับแก้ในงานวิจัยนี้ไม่ได้วิเคราะห์ข้อมูลทางสถิติ อาจมีการวิเคราะห์หรือศึกษาเปรียบเทียบได้ ในงานวิจัยอื่นต่อไปในอนาคต

5.3 ประโยชน์ที่ได้รับจากงานวิจัย

ในงานวิจัยชิ้นนี้ก่อให้เกิดประโยชน์ดังนี้

- 5.3.1 งานวิจัยนี้สนใจความคลาดเคลื่อนที่เกิดขึ้นทางด้านความสูงและมีการปรับแก้ข้อมูล LiDAR ทางด้านความสูงเท่านั้น ซึ่งสามารถประยุกต์ใช้วิธีการจากการเลือกจุดของ ข้อมูล LiDAR และวิธีการปรับแก้จากงานวิจัยนี้เพื่อนำไปทำการปรับแก้ข้อมูล LiDAR ทั้งทางดิ่งและทางราบ
- 5.3.2 งานวิจัยนี้เป็นการปรับแก้ข้อมูล LiDAR ระหว่างแนวบิน ซึ่งปรับแก้เพียง 2 แนวบินที่ ซ้อนทับกัน ซึ่งสามารถนำวิธีการปรับแก้ข้อมูล LiDAR ระหว่างแนวบินจากงานวิจัยนี้ ไปเป็นแนวทางในการปรับแก้ข้อมูล LiDAR พร้อมกันหลายๆแนวบิน

รายการอ้างอิง

ภาษาไทย

- ชูเกียรติ วิเซียรเจริญ. (2538). การสำรวจรังวัดด้วยดาวเทียมระบบGPS. <u>เอกสารประกอบการ</u> <u>สอน</u>. ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- ไพศาล สันติธรรมนนท์. (2550). การรังวัดด้วยภาพในทางปฏิบัติ. <u>เอกสารประกอบการสอน</u> ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- วิชา จิวาลัย. (2522). การคำนวณปรับแก้. <u>เอกสารประกอบการสอน หมายเลข ส 24-03</u>. ภาควิชาวิศวกรรมสำรวจ คณ<mark>ะวิศวกรรมศาสตร์ จุฬา</mark>ลงกรณ์มหาวิทยาลัย.
- วัฒนะ ทวนพรมราช. (2537). การคำนวณปรับแก้. <u>เอกสารประกอบการสอน</u>. สำนักงานฝ่าย บัณฑิตศึกษา วิทยาเขตภาคตะวันออกเฉียงเหนือ นครราชสีมา สถาบันเทคโนโลยีราช มงคล.
- สุกิจ วิเศษสินธุ์ และจนิษฐ์ ประเสริฐบูรณกุล. (2550). ความเป็นไปได้ในการประยุกต์ใช้ Lidar. <u>วารสารอีเอสอาร์ไอประเทศไทย</u>. (มกราคม) บริษัทอีเอสอาร์ไอ ประเทศไทย จำกัด.

ภาษาอังกฤษ

- Brenner, C. (2006). <u>Aerial Laser Scanning</u>. Institute of Cartography and Geoinformatice University of Hannover, Germany.
- Bretar F., Pierrot-Deseilligny, M., and Roux, M. (2004). <u>Solving the Strip Adjustment</u> <u>Problem of 3D Airborne Lidar Data</u>. Proceedings of the IEEE IGARSS'04, 20-24 September, Anchorage, Alaska.
- Canny, J. (1986). <u>A Computational to Edge Detection</u>, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6): 679-698
- Castleman, K. R.(1996). <u>Digital Image Processing</u>. Englewood Cliffs, N.J. : Prentice-Hall.
- CHEMROAD, Polymer for Soil Stabilizer : <u>Road destruction [Online]</u>. 2010. Available from: http://www.chemroad.com/en/Gallery/Road-destruction [2010, November 10]
- Crombaghs, M., Min E.D., and Bruegelmann, R. (2000). <u>On the Adjustment of</u> <u>Overlapping Strips of Laser Altimeter Height Data</u>. International Archives of Photogrammetry and Remote Sensing, 33(B3/1), pp. 230-237
- Csanyi, N. (2006). <u>Precision LiDAR Mapping of Transportation Corridors Using LiDAR-Specific Ground Targets</u>. Department of Civil and Environmental Engineering and Geodetic Science Ohio state University.
- GIMP, GNU Image Manipulation Program User Manual: <u>5. Edge-detect filters</u> [Online].
 2010. Available from: http://k12linux.mesd.k12.or.us/docs/gimp/en/index.html
 [2010, November 1]
- Kilian, J., Haala, N., and Englich, M. (1996). <u>Capture and evaluation of airborne laser</u> <u>scanner data</u>. International Archives of Photogrammetry and Remote Sensing, 31(B3), pp. 383-388
- LIDAR. <u>Basic overview of LIDAR</u> [Online]. 2010. Available from: http://tmackinnon.com/2005/lidar/lidar.php [2010, November 8]
- Pfeifer, N., Elberink, S.O., and Filin, S. (2005). <u>Automatic Tie Elements Detection for</u> <u>Laser Scanner Strip Adjustment</u>. International Archives of Photogrammetry and Remote Sensing, 36(3/W3), pp. 1682-1750.

Semmlow, J.L. (2004). <u>Biosignal and Biomedical Image Processing : MATLAB-Based</u> <u>Application.</u> New York : Marcel Dekker, Inc.,

Willers, J., et al. (2008). <u>A post-processing step error correction algorithm for</u> <u>overlapping LiDAR strips from agricultural landscapes</u>. Computers and Electronics in Agriculture, pp. 183-193

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก ก ตารางแสดงค่าความสูงต่างและความสูงปรับแก้ระหว่างแนวบิน

ตารางแสดงค่าความสูงต่างและความสูงปรับแก้ระหว่างแนวบิน

การทดลองปรับแก้ทั้งแนวบินโดยแสดงจำนวนข้อมูลที่ใช้ในการปรับแก้จำนวน 100 จุดข้อมูล ตารางที่ ก-1 ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 5 เซนติเมตร (แนวบินที่ซ้อนทับกัน)

ค่าความสูงระ	ะหว่างแนวบิน	สมการ	ระนาบ	ค่าแก้	ค่าปรับแก้		
แนวบินที่ 1	แนวบินที่ 2	แนวบินที่ 1	แนวบินที่ 2	ความสูงต่าง	แนวบินที่ 1	แนวบินที่ 2	คาคลาดเคลอน
14.03	13.92	14.04929	13.90071	0.14858	13.97500	13.97500	0.00000
13.22	13.25	13.29833	13.17167	0.12666	13.23500	13.23500	0.00000
16.24	16.07	16.20317	16.10683	0.09634	16.15500	16.15500	0.00000
21.85	21.39	21.68816	21.55184	0.13631	21.62000	21.62000	0.00000
14.58	14.12	14.37027	14.32973	0.04054	14.35000	14.35000	0.00000
13.41	13.22	13.37248	13.25752	0.11495	13.31500	13.31500	0.00000
13.30	13.24	13. <mark>3</mark> 3578	13.20422	0.13157	13.27000	13.27000	0.00000
18.34	18.20	18 <mark>.36</mark> 585	18.17415	0.19170	18.27000	18.27000	0.00000
15.37	15.25	15.3 <mark>480</mark> 1	15.27199	0.07 <mark>6</mark> 03	15.31000	15.31000	0.00000
13.32	13.16	13.35226	13 <mark>.</mark> 12774	0.22453	13.24000	13.24000	0.00000
24.44	24.65	24.6 <mark>46</mark> 84	<mark>24</mark> .44316	0.20367	24.54500	24.54500	0.00000
13.67	13.53	13.6172 <mark>6</mark>	13.58274	0.03451	13.60000	13.60000	0.00000
17.38	17.29	17.42272	17.24728	0.17543	17.33500	17.33500	0.00000
13.24	13.14	13.23753	13.14247	0.09507	13.19000	13.19000	0.00000
16.64	16.29	16.58043	16.34957	0.23085	16.46500	16.46500	0.00000
13.31	13.21	13.33922	13.18078	0.15845	13.26000	13.26000	0.00000
16.30	16.70	16.51531	16.48469	0.03061	16.50000	16.50000	0.00000
14.57	14.45	14.58974	14.43026	0.15947	14.51000	14.51000	0.00000
13.35	13.21	13.23319	13.32681	-0.09361	13.28000	13.28000	0.00000
14.05	13.97	14.00979	14.01021	-0.00043	14.01000	14.01000	0.00000
13.44	13.35	13.33911	13.45089	-0.11178	13.39500	13.39500	0.00000
14.06	13.92	14.02081	13.95919	0.06163	13.99000	13.99000	0.00000
16.02	16.43	16.24078	16.20922	0.03157	16.22500	16.22500	0.00000
13.83	13.75	13.79575	13.78425	0.01151	13.79000	13.79000	0.00000
13.32	13.25	13.27956	13.29044	-0.01088	13.28500	13.28500	0.00000
13.49	13.38	13.43659	13.43341	0.00319	13.43500	13.43500	0.00000
13.30	13.04	13.17111	13.16889	0.00223	13.17000	13.17000	0.00000
14.00	13.98	14.07493	13.90507	0.16986	13.99000	13.99000	0.00000
13.85	13.78	13.89056	13.73944	0.15111	13.81500	13.81500	0.00000
14.15	14.02	14.03475	14.13525	-0.10050	14.08500	14.08500	0.00000

ค่าความสูงระ	ะหว่างแนวบิน	สมการ	ระนาบ	ค่าแก้	ค่าปรับแก้		
แนวบินที่ 1	แนวบินที่ 2	แนวบินที่ 1	แนวบินที่ 2	ความสูงต่าง	แนวบินที่ 1	แนวบินที่ 2	PI 1PI WI 1PI LPI WI 2012
13.95	13.98	13.94613	13.98387	-0.03774	13.96500	13.96500	0.00000
14.05	13.92	13.95239	14.01761	-0.06521	13.98500	13.98500	0.00000
14.20	14.11	14.19979	14.11021	0.08958	14.15500	14.15500	0.00000
22.50	22.60	22.56115	22.53885	0.02231	22.55000	22.55000	0.00000
13.82	13.77	13.82831	13.7 <mark>616</mark> 9	0.06662	13.79500	13.79500	0.00000
13.66	13.46	13.60979	13.51021	0.09958	13.56000	13.56000	0.00000
14.09	13.91	14.029 <mark>15</mark>	13.97085	0.0 <mark>5830</mark>	14.00000	14.00000	0.00000
13.79	13.60	13.73150	13.65850	0.07301	13.69500	13.69500	0.00000
14.04	13.94	13.948 <mark>2</mark> 3	14.03177	-0.08354	13.99000	13.99000	0.00000
13.34	13.21	13.241 <mark>2</mark> 3	13.30877	-0.06754	13.27500	13.27500	0.00000
13.72	13.68	13.73473	13.66527	0.06946	13.70000	13.70000	0.00000
13.62	13.48	13. <mark>67883</mark>	13.42117	0.25766	13.55000	13.55000	0.00000
13.44	13.33	13.368 <mark>3</mark> 6	1 <mark>3</mark> .40164	-0.03328	13.38500	13.38500	0.00000
13.36	13.28	13.3 <mark>4177</mark>	13.29823	0.04354	13.32000	13.32000	0.00000
13.94	13.96	13.971 <mark>7</mark> 3	13.92827	0.04347	13.95000	13.95000	0.00000
13.61	13.49	13.59737	13.50263	0.09473	13.55000	13.55000	0.00000
14.07	13.94	14.07416	13.93584	0.13831	14.00500	14.00500	0.00000
14.01	13.81	13.94468	13.87532	0.06935	13.91000	13.91000	0.00000
13.71	13.59	13.72524	13.57476	0.15047	13.65000	13.65000	0.00000
14.08	13.96	13. <mark>991</mark> 46	14.04854	-0.05708	14.02000	14.02000	0.00000
14.01	13.87	13.96662	13.91338	0.05324	13.94000	13.94000	0.00000
13.33	13.24	13.29986	13.27014	0.02971	13.28500	13.28500	0.00000
16.27	16.50	16.42590	16.34410	0.08181	16.38500	16.38500	0.00000
17.99	17.93	17.98841	17.93159	0.05681	17.96000	17.96000	0.00000
13.58	13.47	13.59748	13.45252	0.14496	13.52500	13.52500	0.00000
14.19	14.07	14.14955	14.11045	0.03910	14.13000	14.13000	0.00000
13.40	13.26	13.40273	13.25727	0.14547	13.33000	13.33000	0.00000
13.54	13.37	13.50793	13.40207	0.10586	13.45500	13.45500	0.00000
13.63	13.49	13.62854	13.49146	0.13707	13.56000	13.56000	0.00000
14.04	13.98	14.03893	13.98107	0.05785	14.01000	14.01000	0.00000

ตารางที่ ก-1 ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 5 เซนติเมตร (แนวบินที่ซ้อนทับกัน) (ต่อ)

ค่าความสูงระ	ะหว่างแนวบิน	สมการ	ระนาบ	ค่าแก้	ค่าปรับแก้		
แนวบินที่ 1	แนวบินที่ 2	แนวบินที่ 1	แนวบินที่ 2	ความสูงต่าง	แนวบินที่ 1	แนวบินที่ 2	คาคลาดเคลอน
13.29	13.23	13.31035	13.20965	0.10070	13.26000	13.26000	0.00000
15.13	15.09	15.15742	15.06258	0.09484	15.11000	15.11000	0.00000
13.96	13.92	13.99090	13.88910	0.10181	13.94000	13.94000	0.00000
13.31	13.27	13.33173	13.24827	0.08346	13.29000	13.29000	0.00000
13.75	13.63	13.77554	13.6044 <mark>6</mark>	0.17108	13.69000	13.69000	0.00000
14.27	14.12	14.23495	14.15505	0.07989	14.19500	14.19500	0.00000
14.05	13.88	14.05347	13.87653	0.1769 <mark>3</mark>	13.96500	13.96500	0.00000
13.58	13.47	13.62894	13.42106	0.20788	13.52500	13.52500	0.00000
14.00	13.96	14.09187	13.86813	0.22375	13.98000	13.98000	0.00000
13.60	13.50	13.528 <mark>54</mark>	13.57146	-0.04292	13.55000	13.55000	0.00000
13.36	13.27	13.39009	1 <mark>3.23991</mark>	0.15018	13.31500	13.31500	0.00000
14.22	14.04	14.26090	13.99910	0.26180	14.13000	14.13000	0.00000
14.20	14.11	14.2864 <mark>8</mark>	14.0 <mark>2</mark> 352	0.26296	14.15500	14.15500	0.00000
16.30	17.04	16.75531	1 <mark>6.</mark> 58469	0.17062	1 <mark>6.67</mark> 000	16.67000	0.00000
13.40	13.28	13.49485	<mark>13</mark> .18515	0.30970	13.34000	13.34000	0.00000
14.07	13.96	14.05245	13.97755	0.07491	14.01500	14.01500	0.00000
13.49	13.38	13.48782	13.38218	0.10564	13.43500	13.43500	0.00000
14.15	13.91	14.05139	14.00861	0.04277	14.03000	14.03000	0.00000
14.01	13.89	14.03638	13.86362	0.17275	13.95000	13.95000	0.00000
14.80	14.65	14.91775	14.53225	0.38550	14.72500	14.72500	0.00000
13.78	13.61	13.78065	13.60935	0.17131	13.69500	13.69500	0.00000
13.52	13.41	13.51797	13.41203	0.10595	13.46500	13.46500	0.00000
14.12	14.10	14.24642	13.97358	0.27284	14.11000	14.11000	0.00000
23.25	23.32	23.32449	23.24551	0.07897	23.28500	23.28500	0.00000
13.73	13.56	13.66412	13.62588	0.03825	13.64500	13.64500	0.00000
14.08	14.01	14.18439	13.90561	0.27878	14.04500	14.04500	0.00000
13.36	13.20	13.35333	13.20667	0.14665	13.28000	13.28000	0.00000
14.01	13.93	14.00573	13.93427	0.07146	13.97000	13.97000	0.00000
14.69	14.52	14.68392	14.52608	0.15783	14.60500	14.60500	0.00000
13.99	13.87	13.99917	13.86083	0.13834	13.93000	13.93000	0.00000

ตารางที่ ก-1 ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 5 เซนติเมตร (แนวบินที่ซ้อนทับกัน) (ต่อ)

ค่าความสูงระ	ะหว่างแนวบิน	สมการ	ระนาบ	ค่าแก้	ค่าปรับแก้		ด่วดดวดเคลื่องเ
แนวบินที่ 1	แนวบินที่ 2	แนวบินที่ 1	แนวบินที่ 2	ความสูงต่าง	แนวบินที่ 1	แนวบินที่ 2	PI 19130 1916 9130 1916
15.50	15.45	15.58711	15.36289	0.22422	15.47500	15.47500	0.00000
13.97	13.89	13.99602	13.86398	0.13203	13.93000	13.93000	0.00000
14.73	14.57	14.71361	14.58639	0.12722	14.65000	14.65000	0.00000
24.16	23.99	24.35722	23.79278	0.56444	24.07500	24.07500	0.00000
18.12	17.72	18.06164	17.77 <mark>836</mark>	0.28329	17.92000	17.92000	0.00000
14.16	14.00	14.14175	14.01825	0.12349	14.08000	14.08000	0.00000
13.78	13.69	13.83723	13.63277	0.2044 <mark>6</mark>	13.73500	13.73500	0.00000
16.67	16.92	16.8900 <mark>6</mark>	16.69994	0.19012	16.79500	16.79500	0.00000
14.11	14.03	14.13513	14.00487	0.13027	14.07000	14.07000	0.00000
13.55	13.44	13.58489	13.40511	0.17978	13.49500	13.49500	0.00000

ตารางที่ ก-1 ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 5 เซนติเมตร (แนวบินที่ซ้อนทับกัน) (ต่อ)

ค่าแก้ ค่าปรับแก้ สมการระนาบ ค่าความสูงระหว่างแนวบิน ้ค่าคลาดเคลื่อน แนวบินที่ 1 แนวบินที่ 2 แนวบินที่ 1 แนวบินที่ 2 แนวบินที่ 1 แนวบินที่ 2 ความสูงต่าง 13.2300 13,1800 13.52380 12.88620 0.63761 13.20500 0.00000 13.20500 0.56894 13.2100 13.0800 13.42947 12.86053 13.14500 13.14500 0.00000 13.7800 0.41773 13.7200 13.95886 13.54114 13.75000 13.75000 0.00000 13.8500 14.04114 13.56886 0.47228 13.80500 13.80500 0.00000 13.7600 13.4100 13.5900 13.76658 13.23342 0.53315 13.50000 13.50000 0.00000 13.1500 13.2400 13.51667 12.87333 0.64334 13.19500 13.19500 0.00000 0.35913 13.5500 13,7400 13.82456 13,46544 13.64500 13.64500 0.00000 19.7900 19.7700 19.81147 19.74853 0.06295 19.78000 19.78000 0.00000 21.1500 21.2000 21.21507 21.13493 0.08014 21.17500 21.17500 0.00000 15.8500 16.1300 16.00203 15.97797 0.02405 15,99000 15.99000 0.00000 14.0000 13.9800 14.15266 13.82734 0.32533 13.99000 13.99000 0.00000 13.8300 13.7700 13.76090 13.83910 -0.07820 13.80000 13.80000 0.00000 18.0300 17.5000 17.80410 -0.07820 17.76500 0.00000 17,72590 17,76500 20.3500 20.2100 20.27947 20.28053 -0.00106 20.28000 20.28000 0.00000 13.1200 13.2000 13.49874 12.82126 0.67748 13.16000 13.16000 0.00000 13.8800 13.9300 13.99967 13.81033 0.18934 13.90500 13.90500 0.00000 14.8100 14.9700 14.92377 14.85623 0.06755 14.89000 14.89000 0.00000 14.9100 14.5700 14.74427 14.73573 0.00853 14.74000 14.74000 0.00000 13.2300 12.90892 0.62216 13.22000 0.00000 13.2100 13.53108 13.22000 14.0100 14.0100 14.17743 13.84257 0.33485 14.01000 14.01000 0.00000 20.4900 20.5700 20.61460 20.44540 0.16920 20.53000 20.53000 0.00000 16.6700 16.5800 16.61123 16.63877 -0.02755 16.62500 16.62500 0.00000 0.66453 12.96500 12.96500 13.0100 12.9200 13.29727 12.63273 0.00000 13.5200 13.5600 13.79641 13.28359 0.51282 13.54000 13.54000 0.00000 13.1800 13.2300 13.51888 12.89112 0.62776 13.20500 13.20500 0.00000 17.6200 17.6200 17.59452 17.64548 -0.05096 17.62000 17.62000 0.00000 13.4700 13.4800 13.69714 13.25286 0.44427 13.47500 13.47500 0.00000 15.4500 15.4000 15.44562 15.40438 0.04124 15.42500 15.42500 0.00000 18.0900 18.55720909 -0.07442 18.52000 18.52000 0.00000 18.9500 18.48279 13.1400 13.2700 13.50118 12.9088169 0.59237 13.20500 13.20500 0.00000

ตารางที่ ก-2 ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 10 เซนติเมตร (แนวบินที่ซ้อนทับกัน)

ค่าความสูงระ	ะหว่างแนวบิน	สมการ	รระนาบ	ค่าแก้	ค่าปรับแก้		
แนวบินที่ 1	แนวบินที่ 2	แนวบินที่ 1	แนวบินที่ 2	ความสูงต่าง	แนวบินที่ 1	แนวบินที่ 2	คาคลาดเคลอน
16.79	17.05	16.93636	16.90364068	0.03272	16.92000	16.92000	0.00000
13.53	13.67	13.77800	13.42199994	0.35600	13.60000	13.60000	0.00000
16.15	16.51	16.33054	16.32946191	0.00108	16.33000	16.33000	0.00000
17.36	17.48	17.42444	17.41556038	0.00888	17.42000	17.42000	0.00000
14.44	14.49	14.45643	14.473 <mark>56859</mark>	-0.01714	14.46500	14.46500	0.00000
19.10	18.95	19.16026	18.88973676	0.27053	19.02500	19.02500	0.00000
13.27	13.45	13.63319	13.0868108	0.54638	13.36000	13.36000	0.00000
13.12	13.24	13.50113	12.85886862	0.64226	13.18000	13.18000	0.00000
13.98	14.18	14.23927	13.92072862	0.31854	14.08000	14.08000	0.00000
16.34	16.25	16.3 <mark>0991</mark>	16.28009131	0.02982	16.29500	16.29500	0.00000
13.13	13.19	13.48613	12.83386718	0.65227	13.16000	13.16000	0.00000
13.08	13.18	13. <mark>474</mark> 37	12.78562717	0.68875	13.13000	13.13000	0.00000
13.60	13.74	13.65 <mark>176</mark>	13.68824273	-0.03649	13.67000	13.67000	0.00000
17.78	18.13	17.9 <mark>6</mark> 931	17.9406875	0.02862	17.95500	17.95500	0.00000
14.41	14.44	14.4458 <mark>2</mark>	14.40417917	0.04164	14.42500	14.42500	0.00000
13.15	13.16	13.47163	12.83836894	0.63326	13.15500	13.15500	0.00000
13.14	13.21	13.46734	12.88266404	0.58467	13.17500	13.17500	0.00000
17.85	17.77	17.88417	17.73583119	0.14834	17.81000	17.81000	0.00000
14.81	14.81	14.81526	14.80474163	0.01052	14.81000	14.81000	0.00000
20.34	20.46	20.46710	20.33290119	0.13420	20.40000	20.40000	0.00000
15.29	15.31	15.27796	15.32204011	-0.04408	15.3 <mark>000</mark> 0	15.30000	0.00000
13.25	13.32	13.54908	13.02092298	0.52815	13.28500	13.28500	0.00000
16.96	16.74	16.86755	16.83244524	0.03511	16.85000	16.85000	0.00000
21.60	22.03	21.80544	21.82455822	-0.01912	21.81500	21.81500	0.00000
16.81	16.96	17.22797	16.54203323	0.68593	16.88500	16.88500	0.00000
13.21	13.26	13.54679	12.9232141	0.62357	13.23500	13.23500	0.00000
13.10	13.21	13.46791	12.84208778	0.62582	13.15500	13.15500	0.00000
14.37	14.38	14.39386	14.35613999	0.03772	14.37500	14.37500	0.00000
17.67	17.85	17.71310	17.80689899	-0.09380	17.76000	17.76000	0.00000
14.54	14.61	14.59193	14.55807398	0.03385	14.57500	14.57500	0.00000

ตารางที่ ก-2 ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 10 เซนติเมตร (แนวบินที่ซ้อนทับกัน) (ต่อ)

ค่าความสูงระ	ะหว่างแนวบิน	สมการ	รระนาบ	ค่าแก้	ค่าปรับแก้		
แนวบินที่ 1	แนวบินที่ 2	แนวบินที่ 1	แนวบินที่ 2	ความสูงต่าง	แนวบินที่ 1	แนวบินที่ 2	คาคลาดเคลอน
14.83	14.88	14.86439	14.84561355	0.01877	14.85500	14.85500	0.00000
18.56	18.73	18.61385	18.67614849	-0.06230	18.64500	18.64500	0.00000
18.09	17.68	17.85286	17.91714419	-0.06429	17.88500	17.88500	0.00000
15.07	15.59	15.33961	15.32039053	0.01922	15.33000	15.33000	0.00000
17.49	17.52	17.52060	17.4 <mark>8940021</mark>	0.03120	17.50500	17.50500	0.00000
21.58	21.14	21.42663	21.29336837	0.13326	21.36000	21.36000	0.00000
13.29	13.28	13.54166	13.02833599	0.5 <mark>1333</mark>	13.28500	13.28500	0.00000
14.39	14.51	14.44712	14.45287643	-0.00575	14.45000	14.45000	0.00000
13.15	13.25	13.50596	12.89403916	0.61192	13.20000	13.20000	0.00000
16.32	16.11	16.1 <mark>8392</mark>	16.24607894	-0.06216	16.21500	16.21500	0.00000
13.99	14.01	14.13005	13.86995234	0.26010	14.00000	14.00000	0.00000
13.53	13.58	13. <mark>86609</mark>	13.24390569	0.62219	13.55500	13.55500	0.00000
13.15	13.24	13.52 <mark>81</mark> 2	12.86188262	0.66623	13.19500	13.19500	0.00000
14.95	14.16	14.6 <mark>2</mark> 643	14.48357259	0.14285	14.55500	14.55500	0.00000
14.78	14.52	14.70288	14.59712138	0.10576	14.65000	14.65000	0.00000
13.93	14.00	14.09705	13.83295483	0.26409	13.96500	13.96500	0.00000
13.37	13.38	13.62466	13.12533898	0.49932	13.37500	13.37500	0.00000
13.81	14.67	14.18904	14.29095658	-0.10191	14.24000	14.24000	0.00000
13.17	13.18	13.47177	12.87822778	0.59354	13.17500	13.17500	0.00000
13.95	14.05	14.1 <mark>48</mark> 37	13.85162831	0.29674	14.00000	14.00000	0.00000
13.97	14.04	14.16766	13.8423432	0.32531	14.00500	14.00500	0.00000
16.94	17.00	16.99101	16.94899117	0.04202	16.97000	16.97000	0.00000
13.14	13.26	13.46358	12.93642001	0.52716	13.20000	13.20000	0.00000
21.36	21.60	21.49690	21.46309684	0.03381	21.48000	21.48000	0.00000
13.38	13.41	13.68860	13.10139917	0.58720	13.39500	13.39500	0.00000
13.96	13.97	14.12224	13.8077613	0.31448	13.96500	13.96500	0.00000
14.03	14.09	14.01529	14.1047144	-0.08943	14.06000	14.06000	0.00000
13.16	13.24	13.48271	12.91729091	0.56542	13.20000	13.20000	0.00000
13.29	13.29	13.53655	13.04345347	0.49309	13.29000	13.29000	0.00000
19.51	19.20	19.41935	19.29064692	0.12871	19.35500	19.35500	0.00000

ตารางที่ ก-2 ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 10 เซนติเมตร (แนวบินที่ซ้อนทับกัน) (ต่อ)
ค่าความสูงระหว่างแนวบิน		สมการ	รระนาบ	ค่าแก้	ค่าปร	รับแก้	ค่าดอาจเคลื่อง
แนวบินที่ 1	แนวบินที่ 2	แนวบินที่ 1	แนวบินที่ 2	ความสูงต่าง	แนวบินที่ 1	แนวบินที่ 2	คาคงาดเคลอน
13.31	13.39	13.61403	13.08596902	0.52806	13.35000	13.35000	0.00000
19.05	18.52	18.73337	18.83663026	-0.10326	18.78500	18.78500	0.00000
14.93	14.85	14.91939	14.8606141	0.05877	14.89000	14.89000	0.00000
13.25	13.41	13.59111	13.06889488	0.52221	13.33000	13.33000	0.00000
14.26	14.29	14.28235	14.267 <mark>6450</mark> 2	0.01471	14.27500	14.27500	0.00000
13.09	13.22	13.44312	12.86688393	0.57623	13.15500	13.15500	0.00000
16.90	16.54	16.82372	16.61627594	0.20745	16.72000	16.72000	0.00000
15.49	15.18	15.32128	15.34872403	-0.02745	15.33500	15.33500	0.00000
13.30	13.50	13.70911	13.09088563	0.61823	13.40000	13.40000	0.00000
13.52	13.61	13.74966	13.38033896	0.36932	13.56500	13.56500	0.00000

ตารางที่ ก-2 ผลการปรับแก้ค่าความสูงคลาดเคลื่อนระหว่างแนวบิน ระยะห่างระหว่างจุด 10 เซนติเมตร (แนวบินที่ซ้อนทับกัน) (ต่อ)

ค่าความสูง	ค่าแก้	ค่าปรับแก้	
แนวบินที่ 1	ความสูง	แนวบินที่ 1	
13.63	0.41096	13.21904	
13.49	0.41028	13.07972	
13.17	0.40943	12.76057	
13.20	0.40711	12.79289	
13.64	0.40844	13.23156	
13.90	0.38776	13.51224	
13.24	0.38640	12.85360	
13.61	0.38544	13.22456	
13.10	0.38396	12.71604	
13.11	0.38312	12.72688	
13.52	0.36144	13.15856	
13.29	0.35985	12.93015	
13.46	0.33936	13.12064	
13.16	0.35907	12.80093	
13.61	0.33864	13.27136	
13.31	0.33731	12.97269	
13.21	0.33609	12.87391	
13.20	0.33492	12.86508	
13.55	0.31541	13.23459	
13.50	0.31447	13.18553	
13.35	0.31095	13.03905	
13.66	0.31196	13.34804	
13.70	0.31310	13.38690	
13.30	0.28674	13.01326	
14.09	0.26717	13.82283	
13.63	0.26604	13.36396	
13.62	0.26484	13.35516	
13.30	0.26297	13.03703	
13.51	0.26357	13.24643	
14.06	0.24319	13.81681	
13.74	0.24221	13.49779	
17.82	0.24065	17.57935	
13.51	0.23874	13.27126	

ตารางที่ ก-3 ค่าความสูงและค่าความสูงปรับแก้แนวบินที่ 1 (ปรับแก้ทั้งแนวบิน)

ค่าความสูง	ค่าแก้	ค่าปรับแก้
แนวบินที่ 1	า่ี่ 1 ความสูง แนวบินที่ 1	
13.63	0.23963 13.39037	
14.33	0.21918	14.11082
13.92	0.21779	13.70221
17.83	0.21675	17.61325
16.88	0.21425	16.66575
13.88	0.21539	13.66461
14.46	0.19498	14.26502
25.02	0.19418	24.82582
28.58	0.19288	28.38712
13.95	0.19048	13.75952
15.98	0.19783	15.78217
22.79	0.17098	22.61902
25.81	0.16965	25.64035
28.97	0.16851	28.80149
19.54	0.14702	19.39298
16.51	0.14603	16.36397
25.10	0.14467	24.95533
13.78	0.14245	13.63755
13.87	0.14327	13.72673
30.31	0.12162	30.18838
14.21	0.12247	14.08753
17.69	0.12039	17.56961
17.17	0.11914	17.05086
17.16	0.11875	17.04125
14.07	0.09840	13.97160
13.87	0.09770	13.77230
21.60	0.09644	21.50356
14.34	0.09544	14.24456
14.48	0.09429	14.38571
13.92	0.07426	13.84574
13.81	0.07373	13.73627
15.41	0.07259	15.33741
14.00	0.06992	13.93008

ตารางที่ ก-3 ค่าความสูงและค่าความสูงปรับแก้แนวบินที่ 1 (ปรับแก้ทั้งแนวบิน) (ต่อ)

ค่าความสูง	ค่าแก้	ค่าปรับแก้
แนวบินที่ 1	ความสูง	แนวบินที่ 1
19.22	0.07109	19.14891
13.95	0.05033	13.89967
13.85	0.04927	13.80073
15.43	0.04720	15.38280
20.04	0.04829	19.99171
14.71	0.04617	14.66383
13.65	0.02658	13.62342
13.88	0.02534	13.85466
22.81	0.02297	22.78703
17.22	0.02167	17.19833
13.75	0.00246	13.74754
15.01	-0.00233	15.01233
14.03	-0.00105	14.03105
16.75	0.00033	16.74967
13.91	0.00126	13.90874
16.02	-0.02403	16.04403
14.28	-0.02615	14.30615
13.73	-0.02332	13.75332
13.97	-0.02525	13.99525
15.91	-0.05060	15.96060
13.58	0.36366	13.21634
13.75	0.36243	13.38757
13.77	0.29141	13.47859
13.52	0.29019	13.22981
13.89	0.28918	13.60082
13.34	0.28798	13.05202
13.90	0.16762	13.73238
23.82	0.16640	23.65360
14.26	0.02440	14.23560
13.89	-0.02160	13.91160
20.83	-0.04584	20.87584
13.72	-0.04653	13.76653
16.60	-0.04848	16.64848
13.88	-0.04931	13.92931

ตารางที่ ก-3 ค่าความสูงและค่าความสูงปรับแก้แนวบินที่ 1 (ปรับแก้ทั้งแนวบิน) (ต่อ)

ค่าความสูง	ค่าแก้	ค่าปรับแก้		
แนวบินที่ 2	ความสูง แนวบินที่ 2			
13.38	0.79630	12.58370		
13.24	0.79358	12.44642		
13.90	0.79161	13.10839		
13.28	0.78885	12.49115		
13.17	0.75238	12.41762		
13.45	0.74298	12.70702		
13.20	0.78616	12.41384		
13.22	0.74523	12.47477		
13.22	0.74051	12.47949		
13.30	0.70005	12.59995		
13.15	0.69760	12.45240		
13.44	0.73731	12.70269		
13.39	0.65194	12.73806		
13.32	0.69259	12.62741		
13.23	0.64890	12.58110		
13.27	0.64735	12.62265		
13.28	0.64480	12.63520		
13.85	0.60410	13.24590		
13.36	0.64162	12.71838		
13.25	0.60147	12.64853		
13.52	0.59888	12.92112		
13.12	0.59577	12.52423		
13.23	0.59296	12.63704		
13.58	0.50732	13.07268		
13.51	0.50447	13.00553		
13.74	0.45923	13.28077		
13.23	0.50265	12.72735		
18.55	0.50026	18.04974		
13.19	0.49694	12.69306		
13.62	0.46113	13.15887		
13.85	0.45244	13.39756		
13.96	0.41099	13.54901		
13.26	0.45445	12.80555		

ตารางที่ ก-4 ค่าความสูงและค่าความสูงปรับแก้แนวบินที่ 2 (ปรับแก้ทั้งแนวบิน)

ค่าความสูง	ค่าแก้	ค่าปรับแก้	
แนวบินที่ 2	ความสูง	มสูง แนวบินที่ 2	
15.86	0.44918	15.41082	
21.53	0.36039	21.16961	
13.21	0.40625	12.80375	
13.17	0.40410	12.76590	
13.64	0.40139	13.23861	
13.65	0.35507	13.29493	
13.47	0.35751	13.11249	
14.03	0.36019	13.66981	
13.66	0.31092	13.34908	
13.60	0.35312	13.24688	
13.82	0.30932	13.51068	
17.80	0.26663	17.53337	
15.87	0.30459	15.56541	
13.80	0.26248	13.53752	
17.72	0.26170	17.45830	
17.41	0.25885	17.15115	
15.93	0.21894	15.71106	
14.04	0.21326	13.82674	
13.86	0.21613	13.64387	
13.48	0.25663	13.22337	
19.18	0.17014	19.00986	
14.42	0.21169	14.20831	
18.85	0.20812	18.64188	
23.39	0.16338	23.22662	
14.33	0.16040	14.16960	
23.54	0.12000	23.42000	
14.79	0.12274	14.66726	
16.02	0.11737	15.90263	
21.34	0.11249	21.22751	
17.46	0.07433	17.38567	
13.85	0.11513	13.73487	
14.96	0.07128	14.88872	
17.66	0.06910	17.59090	

ตารางที่ ก-4 ค่าความสูงและค่าความสูงปรับแก้แนวบินที่ 2 (ปรับแก้ทั้งแนวบิน) (ต่อ)

ค่าความสูง	ค่าแก้	ค่าปรับแก้
แนวบินที่ 2	ความสูง	แนวบินที่ 2
13.87	0.06672	13.80328
13.61	0.06418	13.54582
18.46	0.02646	18.43354
12.35	0.01576	12.33424
14.07	-0.02248	14.09248
14.59	-0.02422	14.61422
13.74	-0.02728	13.76728
13.30	-0.03240	13.33240
13.74	-0.02960	13.76960
14.14	-0.07061	14.21061
13.78	-0.07495	13.85495
21.14	-0.07282	21.21282
18.54	-0.07719	18.61719
13.56	-0.08011	13.64011
13.97	-0.11874	14.08874
13.22	0.69472	12.52528
13.25	0.68972	12.56028
13.49	0.55602	12.93398
13.62	0.55337	13.06663
13.55	0.55097	12.99903
13.24	0.54825	12.69175
13.30	0.54594	12.75406
14.88	0.31297	14.56703
13.68	0.40826	13.27174
13.58	0.30727	13.27273
24.27	0.16769	24.10231
14.00	0.16694	13.83306
19.96	0.02394	19.93606
18.89	0.02055	18.86945
14.12	0.01814	14.10186
13.79	-0.12048	13.91048
18.10	-0.12319	18.22319
13.86	-0.12551	13.98551
13.57	-0.12868	13.69868

ตารางที่ ก-4 ค่าความสูงและค่าความสูงปรับแก้แนวบินที่ 2 (ปรับแก้ทั้งแนวบิน) (ต่อ)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก ข การหาขอบของวัตถุ การหาขอบวัตถุ (Edge Detection) โดยใช้วิธี Canny ด้วยโปรแกรม Matlab 2008a ในการหา ขอบวัตถุของพื้นที่อาคาร ซึ่งในภาคผนวก ข นี้จะแสดงตัวอย่างของ อาคารที่ทำการหาขอบวัตถุเรียบร้อย แล้ว

รูปที่ ข-1 แสดงการหาขอ<mark>บวัตถุด้วยวิธี Cann</mark>y โดยใช้ Matlab 2008a

ภาคผนวก ค การประมวลผลด้วยโปรแกรม Matlab 2008a

เนื่องจากการคำนวณการปรับแก้ความคลาดเคลื่อนระหว่างแนวบินซึ่งมีจำนวนตัวแปรในกา คำนวณค่า ข้อมูล LiDAR จำนวนมาก จึงจำเป็นต้องใช้โปรแกรมประยุกต์ในการช่วยในการคำนวณ ซึ่ง โปรแกรมประยุกต์ที่ใช้ในการคำนวณช่วยได้แก่โปรแกรม Matlab 2008a ซึ่งได้มีการคำนวณเพื่อได้ค่า ความคลาดเคลื่อนที่ปรับแก้แล้วโดยวิธีลีสท์สแควร์ ตามรายละเอียดที่แสดงไว้ดังนี้

```
clc
clear all
%%Data from Strip-1
xy1 = xlsread('deaw new data(3).xlsx','10cm','L3:N3');
data1 = xlsread('deaw new data(3).xlsx', '10cm', 'C3:E102');
%%Data from Strip-2
xy2 = xlsread('deaw new data(3).xlsx','10cm','03:Q3');
data2 = xlsread('deaw new data(3).xlsx','10cm','F3:H102');
Lb = [data1(:,3) - data2(:,3)];
n = size(Lb, 1);
% Model La=F(Xa)
% dH = a + b*(xc1-x1) + c*(yc1-y1) - d - e*(xc2-x2) - f*(yc2-y2);
% Parameters :
%-----Approximate X0(a1-a3, b1-b3)------%
[a b c] = solve('a1 + a2*(682935.21-683125.92) + a3*(1617910.41-
1618404.59)=0.09', 'a1 + a2*(682935.21-683130.24) + a3*(1617910.41-
1618411.08)=0.12', 'a1 + a2*(682935.21-683128.44) + a3*(1617910.41-
1618415.18) = 0.02';
[d e f] = solve('a1 + a2*(683693.19-683125.93) + a3*(1617910.92-
1618404.63)=0.09', 'a1 + a2*(683693.19-683130.24) + a3*(1617910.92-
1618411.07)=0.12','a1 + a2*(683693.19-683128.46) + a3*(1617910.92-
1618415.16) = 0.02';
%a + b*(682934.12-683125.92) + c*(0-1618404.59)-17.22
%d + e*(682934.12-683125.93) + f*(0-1618404.63)-17.13
X0 = [a-d;b;c;e;f];
xc1 = xy1(1);
yc1 = xy1(2);
xc2 = xy2(1);
yc2 = xy2(2);
for i=1:1
for i=1:n
       x1 = data1(i,1);
       y1 = data1(i, 2);
       x^{2} = data^{2}(i, 1);
       y^{2} = data^{2}(i, 2);
       A(i, 1) = 1;
       A(i,2) = xc1-x1;
       A(i,3) = yc1-y1;
       A(i, 4) = -xc2+x2;
       A(i, 5) = -yc2+y2;
       LO(i,1) = XO(1) + XO(2) * (xc1-x1) + XO(3) * (yc1-y1) - XO(4) * (xc2-x2) - XO(4) * (xc2-x2) - XO(4) * (xc2-x2) - XO(4) * (xc2-x2) + XO(3) * (yc1-y1) - XO(4) * (xc2-x2) + XO(3) * (yc1-y1) + XO(3) * (yc1
X0(5) * (yc2-y2);
end
L = LO-Lb;
N = A' * A;
U = A' * L;
X = -inv(N) * U
```

```
Xa = X0 + X;
X0= Xa;
V = A*X+L;
VPV = V'*V;
end
for i=1:n
  delH(i,1) = Xa(1) + Xa(2) * (xcl-data1(i,1)) + Xa(3) * (ycl-data1(i,2)) -
Xa(4)*(xc2-data2(i,1)) - Xa(5)*(yc2-data2(i,2));
end
data3 = xlsread('deaw new data(3).xlsx', 'sum2', 'B3:G102');
for i=1:size(data3,1)
   delH1(i,1) = Xa(1) + Xa(2)*(xc1-data3(i,1)) + Xa(3)*(yc1-data3(i,2)) -
Xa(4)*(xc2-data3(i,4)) - Xa(5)*(yc2-data3(i,5));
end
check2 = [delH1 data3(:,3) data3(:,6)];
88-----Part2-----
z1 = data1(:,3);
z2 = data2(:,3);
for i=1:n
     B(i, (i-1) * 2+1) = 1;
     B(i, (i-1) * 2 + 2) = -1;
     W(i,1) = (z1(i,1)-z2(i,1))-delH(i,1);
     Lb1(2*i-1,1) = z1(i,1);
     Lb1(2*i,1)
                = z2(i,1);
end
M = B*B';
K = -inv(M) *W;
V = B' * K;
La1= Lb1+V;
for i=1:n
   dHadj(i,1) = La1(2*i-1,1) - La1(2*i,1);
   z1_new(i,1) = La1(2*i-1,1); %% ค่าใหม่ z ของ strip1
  z2 \text{ new}(i,1) = La1(2*i,1);
                             %% ค่าใหม่z ของstrip2
end
%check = dHadj - delH;
%-----Final result--
final = [z1_new z2_new delH];
%-----Descripe a final-parameter--
%colume1 are value z of strip1
%colume2 are value z of strip2
%colume3 are difference z between strip1-strip2 (dH = z1-z2)
<u>%</u>
                 -----Part3-----
z3 = data3(:,3);
z4 = data3(:, 6);
for i=1:size(data3,1)
     B1(i, (i-1)*2+1) = 1;
     B1(i, (i-1)*2+2) = -1;
     W1(i,1) = (z3(i,1)-z4(i,1))-delH1(i,1);
```

```
Lb2(2*i-1,1) = z3(i,1);
Lb2(2*i,1) = z4(i,1);
end
M1 = B1*B1';
K1 = -inv(M1)*W1;
V1 = B1'*K1;
La2= Lb2+V1;
for i=1:size(data3,1)
dHadj2(i,1) = La2(2*i-1,1) - La2(2*i,1);
z3_new(i,1) = La2(2*i-1,1); %% milmiz uowstrip1
z4_new(i,1) = La2(2*i,1); %% milmiz uowstrip2
end
final2 = [z3_new z4_new delH1];
```

ประวัติผู้เขียนวิทยานิพนธ์

ชื่อ:	นาย กรีฑา สุวรรณสะอาด			
วันเดือนปีเกิด:	4 สิงหาคม พ.ศ. 2526			
คุณวุฒิทางการศึกษา:				
พ.ศ. 2549	วิศวกรรมบัณฑิต สาขาวิชาวิศวกรรมโยธา			
	ภาควิชาวิศวกรรมโยธา มหาวิทยาลัยเทคโนโลยีราชมงคลรัตนโกสินทร์			
ประสบการณ์การทำงาน:				
พ.ศ. 2550-2551	วิศว <mark>กรควบคุมง</mark> าน <mark>บริษัท พี เอ คอน</mark> ตรัคชั่นเมเนจเม้นท์ จำกัด			

ผลงานทางวิชาการ

กรีฑา สุวรรณสะอาด และ ธงทิศ ฉายากุล พ.ศ. 2553. การปรับแก้ข้อมูลไลดาร์ระหว่างแนวบิน โดยอาศัยจุดควบคุมจากภาพถ่ายทางอากาศ, การประชุมวิชาการการแผนที่และภูมิสารสนเทศ แห่งชาติ ประจำปี 2553 เมืองทองธานี กรุงเทพฯ 15-17 ธันวาคม 2553.

