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CHAPTER I

INTRODUCTION

1.1 Functional Equation

J. Aczel [2] defined functional equation as follows

“Functional equations are equations, both sides of which are terms

constructed from a finite number of unknown functions and from a

finite number of independent variables. This construction is effected

by a finite number of known functions of one or several variables and by

finitely many substitutions of terms which contain known and unknown

functions into other known and unknown functions. The functional

equations determine the unknown functions. We speak of functional

equations or systems of functional equations, depending on whether we

have one or several equations.”

We can simply say that functional equations are equations such that unknowns

are functions.

Functional equations can be solved by introducing some wise substitutions to

yield more information or additional equations as in the following example.

Example 1.1. Find all functions f : R→ R satisfying the functional equation

f(1− x) + 2f(x) = x+ 4 (1.1)

for all x ∈ R.

Solution. Assume that there is a function f : R→ R satisfying (1.1).

Replacing x by 1− x in (1.1), we have

f(x) + 2f(1− x) = 5− x. (1.2)
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Solving (1.1) and (1.2), we get f(x) = x+ 1.

Conversely if a function f is given by f(x) = x+ 1, then

f(1− x) + 2f(x) = (1− x) + 1 + 2(x+ 1) = x+ 4.

Therefore the function f defined by f(x) = x + 1 for all x ∈ R is the unique

solution of the functional equation (1.1). �

In some circumstances, functional equations may not be solvable.

Example 1.2. Find all functions f : R→ R satisfying the functional equation

2f(5− x) + xf(x) = 1 (1.3)

for all x ∈ R.

Solution. Assume that there is a function f : R→ R satisfying (1.3).

Substituting x = 1 in (1.3), we obtain that

2f(4) + f(1) = 1. (1.4)

Substituting x = 4 in (1.3), we get that

2f(1) + 4f(4) = 1. (1.5)

We see that f(1) and f(2) cannot simultaneously satisfy (1.4) and (1.5). Thus

there is no function f : R→ R satisfying the functional equation (1.3). �

Next, we will give an example of functional equations where the function is

defined on R2.

Example 1.3. Given a, b ∈ R, find all functions f : R × R → R satisfying the

functional equation

f(x, y) + f(x+ λa, y + λb) = 0 (1.6)

for all x, y, λ ∈ R and λ 6= 0.
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Solution. Assume that there is a function f : R× R→ R satisfying (1.6).

Replacing x, y by x+ λa, y + λb, respectively in (1.6), we have

f(x+ λa, y + λb) + f(x+ 2λa, y + 2λb) = 0. (1.7)

From (1.6) and (1.7), we obtain that

f(x, y) = f(x+ 2λa, y + 2λb). (1.8)

Replacing λ by λ/2 in (1.8), we have

f(x, y) = f(x+ λa, y + λb). (1.9)

From (1.6) and (1.9), we conclude that

f(x, y) = 0.

Conversely, if a function f is given by f(x, y) = 0, then it is obvious that

f(x, y) + f(x+ λa, y + λb) = 0 + 0 = 0.

Therefore the function f defined by f(x, y) = 0 for all x, y ∈ R is the unique

solution of the functional equation (1.6). �

1.2 Literature Review

In this section, we will review some research related to this thesis.

In 1968, J. Aczél, H. Haruki, M.A. McKiernan and G. N. Sakovič [1] studied a

functional equation

f(x+ u, y + v) + f(x+ u, y − v) + f(x− u, y + v) + f(x− u, y − v) = 4f(x, y).

(1.10)

This equation states that the value of f at the center of any rectangle with sides

parallel to the coordinate axes, equals the mean of the values at all vertices.

Figure 1.1 : Rectangle
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The general solution of (1.10) is given by

f(x, y) = A(x, y) +B(x) + C(y) +D (1.11)

where B(x) and C(x) are arbitrary additive functions (a function φ : R → R is

additive if and only if φ(x + y) = φ(x) + φ(y) for all x, y ∈ R), A(x, y) is an

arbitrary function which is additive in each variable, and D is a constant. They

also studied the functional equation

f(x+ u, y) + f(x− u, y) + f(x, y + v) + f(x, y − v) = 4f(x, y) (1.12)

Figure 1.2 : Rhombus

which states that the value of f at the center of any rhombus equals the mean

of the values at all vertices and obtained the same solutions of the form (1.11).

Finally, they investigated the functional equation

f(x+ v, y + v) + f(x+ v, y − v) + f(x− v, y + v) + f(x− v, y − v) = 4f(x, y)

(1.13)

Figure 1.3 : Square

which states that the value of f at the center of any square with sides parallel to

the coordinate axes equals the mean of the values at all vertices, and found that
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the general solution is given by

f(x, y) = A0 + A1(x) +B1(y) + A1,1(x; y) + A2(y)− A2(x)− A3(x)− 3A3(y, y, x)

+B3(y)− 3B3(x, x, y) + A1,3(x; y)− A1,3(x; y, x, x)

where A3(y) = A3(y, y, y), B3(y) = B3(y, y, y), A1,3(x; y) = A1,3(x; y, y, y) with the

added symmetry condition A1,3(x; y, z, z) = A1,3(z; y, x, z).

Here, Am,n(x1, . . . , xm; y1, . . . , yn) denotes a symmetric multi-additive function and

Am,n(x; y) denotes the diagonalization of Am,n.

In 1969, J.A. Baker [7] studied the functional equation

f(x+ t, y) + f(x− t, y) = f(x, y + t) + f(x, y − t) (1.14)

which is analogous to the well-known wave equation( ∂2

∂x2
− ∂2

∂y2

)
f(x, y) = 0.

He found that all continuous solutions are of the form

f(x, y) = α(x+ y) + β(x− y), (1.15)

where α and β are arbitrary continuous functions.

In the following year, H. Haruki [5] also solved (1.14) by a different method and

obtained results similar to that of J.A. Baker. In the same year, M. Kucharzewski

[8] studied (1.14) which satisfies the relation

f(x, y)− f(−x, y)− f(x,−y) + f(−x,−y) = α1(x+ y) + β1(x− y),

where α1 and β1 are arbitrary functions, and got the solutions of the form (1.15)

but the function α and β need not be continuous.

In 1972, D.P. Flemming [4] solved (1.14) using a transformation of coordinates

(x, y) into (ζ, η) according to the relations

ζ =
k + 1

2
x+

k − 1

2
y

and

η =
k − 1

2
x+

k + 1

2
y
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and obtained the solutions of the form (1.15) when there is no assumption regarding

the continuity of α, β and f . In the same year, M. A. McKiernan [9] gave the

solutions of (1.14) in the following more general context which take the form of

f(x, y) = α(x+ y) + β(x− y) + A(x, y),

where α, β are arbitrary functions and A(x, y) is an arbitrary skew-symmetric bi-

additive function,

A(x, y) = −A(y, x)

and

A(x, y + z) = A(x, y) + A(x, z).

In 1973, D. Girod [3] studied more general version of (1.14) and obtained a

result similar to that of M. A. McKiernan.

1.3 Proposed Work

We will first find the general solution of functional equation on planar triangles.

Afterward, we will find the general solution of functional equation on planar quadri-

laterals.



CHAPTER II

FUNCTIONAL EQUATION ON PLANAR TRIANGLES

2.1 Geometry of Lines and Triangles on Cartesian Plan R2

First, we will mentioned some background knowledges essential to this thesis.

We start by considering translation and dilation of a nonzero vector ~a shown in

Fig 2.1.

Figure 2.1

If vectors ~0 and ~a are translated by another vector ~x, then they will become ~x and

~x+ ~a, respectively, as shown in Fig 2.2.

Figure 2.2

If vectors ~0 and ~a are dilated by a nonzero real number λ, then they will become

~0 and λ~a, respectively, as shown in Fig 2.3.

Figure 2.3
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Therefore, the vectors ~x and ~x+ λ~a can be obtained from vectors ~0 and ~a, respec-

tively, by first dilating ~a by a factor λ(λ 6= 0) followed by a translating the result

by the vector x.

Next, we will explain a geometry of planar triangles. For given nonzero complex

numbers a1, a2 such that a1 is not a multiple of a2, we can construct a triangle on

the Cartesian plan R2, as shown in Fig 2.4.

Figure 2.4: Triangle

If vectors ~0, ~a1 and ~a are translated by another vector ~x, then they will become

~x, ~x+ ~a1 and ~x+ ~a2, respectively, as shown in Fig 2.5.

Figure 2.5: translation of triangle

If vectors ~0, ~a1 and ~a2 are dilated by a factor λ(λ 6= 0), then they will become

~0, λ~a1 and λ~a2, respectively, as shown in Fig 2.6.

Figure 2.6: dilation of triangle
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Therefore, the vectors ~x, ~x + λ~a1 and ~x + λ~a2 can be obtained from ~0, ~a1 and ~a2,

respectively, by a dilation by λ(λ 6= 0) followed by a translation by vector ~x.

2.2 General Solution of Functional Equation on Planar Tri-

angles

In this chapter, given a triangle ABC in the Cartesian plane R2. We will find the

general solution of the functional equation that the sum of the function values,

taken at all vertices of a triangle which is obtained by any translation and dilation

of a fixed triangle ABC, is equal to zero.

Fig 2.7 illustrates the case where the triangle ABC is nondegenerate.

Figure 2.7 : Triangle

Theorem 2.1. Let a1, a2 ∈ C. A function f : C → C satisfies the functional

equation

f(x) + f(x+ λa1) + f(x+ λa2) = 0

for all x ∈ C and λ ∈ R r {0} if and only if f(x) = 0 for all x ∈ C.

Proof. Let a1, a2 ∈ C. Assume that there is a functional f : C→ C satisfying

f(x) + f(x+ λa1) + f(x+ λa2) = 0 (2.1)

for all x ∈ C and λ ∈ R r {0}.
For convenience, we define

Fλ(x) ≡ f(x) + f(x+ λa1) + f(x+ λa2) (2.2)
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for all x ∈ C and λ ∈ R r {0}. Then Fλ(x) = 0 for all x ∈ C and λ ∈ R r {0}.
As formulated in (2.2) with A = x,B = x + λa1 and C = x + λa2, and with

B′ = x+ 2λa1, D = x+ λ(a1 + a2) and C ′ = x+ 2λa2.

Fλ(A) ≡ f(A) + f(B) + f(C), (2.3)

Fλ(B) ≡ f(B) + f(B′) + f(D),

Fλ(C) ≡ f(C) + f(D) + f(C ′),

F2λ(A) ≡ f(A) + f(B′) + f(C ′), . (2.4)

Figure 2.8: Geometrical representation when a1 is not a multiple of a2

It is not hard to see that

1

2

(
Fλ(A) + Fλ(B) + Fλ(C)− F2λ(A)

)
= f(C) + f(B) + f(D).

That is

f(C) + f(B) + f(D) = 0. (2.5)

From (2.3) and (2.5), we have

f(A) = f(D). (2.6)

From (2.6) and (2.4), we get

f(B′) + f(D) + f(C ′) = 0. (2.7)
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Now in (2.7) we have

f(x+ 2λa1) + f(x+ λ(a1 + a2)) + f(x+ 2λa2) = 0. (2.8)

Recall that B′ = x + 2λa1, D = x + λ(a1 + a2) and C ′ = x + 2λa2, which are

collinear points in Fig 2.8.

Thus, we define

Gλ(x) ≡ f(x+ 2λa1) + f(x+ λ(a1 + a2)) + f(x+ 2λa2).

From (2.8), we have Gλ(x) = 0 for all x ∈ C and λ ∈ R r {0}.
We can verify that

0 = Gλ/3(x+
λ

3
a1)−Gλ/3(x+

λ

3
a2) = f(x+ λa1)− f(x+ λa2).

That is

f(x+ λa1) = f(x+ λa2) (2.9)

From (2.1) and (2.9),

f(x) + 2f(x+ λa1) = 0. (2.10)

Replacing x by x+ λa1 in (2.10), we get

f(x+ λa1) + 2f(x+ 2λa1) = 0. (2.11)

From (2.10) and (2.11) and by replacing λ with λ/2, we have

f(x) = 4f(x+ λa1). (2.12)

From (2.10) and (2.12), we obtain

f(x) = 0 (2.13)

for all x ∈ C.

Conversely, we can clearly see that if f(x) = 0 for all x ∈ C then (2.1) hold for all

x ∈ C and λ ∈ R r {0}. �



CHAPTER III

FUNCTIONAL EQUATION ON PLANAR

QUADRILATERALS

In this chapter, we will find the general solution of the functional equation

stating that the sum of the function taken at all vertices of a quadrilateral, obtained

by any translation and dilation of a fixed quadrilateral ABCD, is equal to zero. In

order to better understand the method, let us start with the case of parallelograms.

3.1 The Case of Parallelograms

Given a1, a2 ∈ C r {0} such that a1 is not a multiple of a2, we can construct a

parallelogram on the Cartesian plan R2 as shown in Fig 3.1.1.

Figure 3.1.1 : Parallelogram

Then the vectors ~x, ~x+λ~a1, ~x+λ~a2 and ~x+λ(~a1+ ~a2) can be obtained from ~0, ~a1, ~a2

and ~a1 + ~a2, respectively, by a dilation ~a by a factor λ(λ 6= 0) and followed by a

translation by vector ~x as shown in Fig 3.1.2

Figure 3.1.2
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We will first prove the following lemma.

Lemma 3.1. Let a ∈ C. A function f : C→ C satisfies the functional equation

f(x) + f(x+ λa) = 0 (3.1)

for all x ∈ C and λ ∈ R r {0} if and only if f(x) = 0 for all x ∈ C.

Proof. Let a ∈ C. Assume that there is a functional f : C→ C satisfying (3.1).

Replacing x by x+ λa in (3.1), we obtain

f(x+ λa) + f(x+ 2λa) = 0. (3.2)

By (3.1) and (3.2), we get

f(x) = f(x+ 2λa). (3.3)

Replacing λ by λ/2 in (3.3), we have

f(x) = f(x+ λa). (3.4)

From (3.1) and (3.4), we get f(x) = 0 for all x ∈ C.

Conversely, we can clearly see that if f(x) = 0 for all x ∈ C then (3.1) hold for all

x ∈ C and all λ ∈ R r {0}. �

Note: It should be noted that Lemma 3.1 is equivalent to Example 1.3.

In the following theorem, we will solve a useful functional equation pertain to

a parallelogram.

Theorem 3.2. Let a1, a2 ∈ C. A function f : C → C satisfies the functional

equation

f(x) + f(x+ λa1) + f(x+ λa2) + f(x+ λ(a1 + a2)) = 0 (3.5)

for all x ∈ C and λ ∈ R r {0} if and only if f(x) = 0 for all x ∈ C.

Proof. Let a1, a2 ∈ C. Assume that there is a function f : C→ C satisfying (3.5).

For convenience, we define

Fλ(x) ≡ f(x) + f(x+ λa1) + f(x+ λa2) + f(x+ λ(a1 + a2))
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for all x ∈ C and λ ∈ R r {0} .

It is straightforward to verify that

1

2

(
Fλ(x) + Fλ(x+ λa1) + Fλ(x+ λ(a1 + a2)) + Fλ(x+ λa2)− F2λ(x)

)
−Fλ(x)− Fλ(x+ λ(a1, a2)) = −f(x)− f(x+ 2λ(a1 + a2)).

That is

f(x) + f(x+ 2λ(a1 + a2)) = 0 (3.6)

for all x ∈ C and λ ∈ R r {0} .

Applying Lemma 3.1 to (3.6), we obtain that f(x) = 0 for all x ∈ C.

Conversely, if f(x) = 0 for all x ∈ C then (3.5) hold for all x ∈ C and λ ∈ Rr{0}.
�

The above theorem motivates us to consider a functional equation peertain to

a general quadrilateral in the Cartesian plane R2 in the next section.

3.2 The Case of General Quadrilaterals

We will now turn to the case of general quadrilaterals. Let us start with a lemma

on a slightly different functional equation on a parallelogram.

Lemma 3.3. Let a1, a2 ∈ C. If a function f : C → C satisfies the functional

equation

f(x) + f(x+ λa1) = f(x+ λa2) + f(x+ λ(a1 + a2))

for all x ∈ C and λ ∈ R r {0} then f(x) = f(x+ λa2) for all x ∈ C.

Proof. Assume the hypothesis of the lemma.

We define

Fλ(x) ≡ f(x) + f(x+ λa1)− f(x+ λa2)− f(x+ λ(a1 + a2)) (3.7)

for all x ∈ C and λ ∈ R r {0}.
As formulated in (3.7) with A = x,B = x+λa1, C = x+λa2 and D = x+λ(a1+a2)
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we have,

Fλ(A) ≡ f(A) + f(B)− f(D)− f(C),

Fλ(B) ≡ f(B) + f(B′)− f(C)− f(P ),

Fλ(C) ≡ f(C) + f(P )− f(Q)− f(C ′),

Fλ(D) ≡ f(D) + f(C)− f(D′)− f(Q),

F2λ(A) ≡ f(A) + f(B′)− f(D′)− f(C ′)

where B′ = x+ 2λa1, P = x+λ(2a1 + a2), D
′ = x+ 2λa2, Q = x+λ(2a2 + a1) and

C ′ = x+ 2λ(a1 + a2).

Figure 3.2.2: Geometrical representation when a1 is not a multiple of a2

We can simply verify that

1

2

(
Fλ(A) + Fλ(D)− Fλ(B)− Fλ(C) + F2λ(A)

)
= f(A)− f(D′).

That is

f(x) = f(x+ 2λa2) (3.8)

Replacing λ by λ/2 in (3.8), we get

f(x) = f(x+ λa2) (3.9)

for all x ∈ C, λ ∈ R r {0}. �
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The following theorem is the main result in this thesis.

Figure 3.2.3 illustrates the case when the quadrilateral AEFB is nondegenerate.

Figure 3.2.3 : nondegenerate quadrilateral

Theorem 3.4. Let a1, a2, a3 ∈ C. A function f : C → C satisfies the functional

equation

f(x) + f(x+ λa1) + f(x+ λa2) + f(x+ λa3) = 0 (3.10)

for all x ∈ C, λ ∈ R r {0} if and only if f(x) = 0 for all x ∈ C.

Proof. Let a1, a2, a3 ∈ C. Assume there is a functional equation f : C → C

satisfying (3.10).

For convenience, we will define

Fλ(x) ≡ f(x) + f(x+ λa1) + f(x+ λa2) + f(x+ λa3) (3.11)

for all x ∈ C, λ ∈ R and λ 6= 0.

From (3.11), we get Fλ(x) = 0 for all x ∈ C, λ ∈ R r {0}.
As formulated in (3.11) with A = x,E = x+ λa1, F = x+ λa2 and B = x+ λa3
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we have,

Fλ(A) ≡ f(A) + f(E) + f(F ) + f(B), (3.12)

Fλ(B) ≡ f(B) + f(G) + f(H) + f(C), (3.13)

Fλ(E) ≡ f(E) + f(K) + f(L) + f(G), (3.14)

Fλ(F ) ≡ f(F ) + f(L) + f(N) + f(H), (3.15)

Fλ(G) ≡ f(G) + f(M) + f(O) + f(I), (3.16)

Fλ(H) ≡ f(H) + f(O) + f(P ) + f(J), (3.17)

Fλ(L) ≡ f(L) + f(R) + f(S) + f(O), (3.18)

F2λ(A) ≡ f(A) + f(K) + f(N) + f(C), (3.19)

F2λ(E) ≡ f(E) + f(Q) + f(S) + f(I), (3.20)

F2λ(F ) ≡ f(F ) + f(R) + f(T ) + f(J), (3.21)

F2λ(B) ≡ f(B) + f(M) + f(P ) + f(D), (3.22)

F3λ(A) ≡ f(A) + f(Q) + f(T ) + f(D), (3.23)

where

K = x+ 2λa1, Q = x+ 3λa1, N = x+ 2λa2, T = x+ 3λa2,

C = x+ 2λa3, D = x+ 3λa3, H = x+ λ(a2 + a3), J = x+ λ(a2 + 2a3),

G = x+ λ(a1 + a3), I = x+ λ(a1 + 2a3), L = x+ λ(a1 + a2),

R = x+ λ(2a1 + a2),M = x+ λ(2a1 + a3), S = x+ λ(a1 + 2a2),

O = x+ λ(a1 + a2 + a3), P = x+ λ(2a2 + a3).
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Figure 3.2.4: Geometrical representation when a1, a2, a3 are not collinear points

Setting S1 = Fλ(B) + Fλ(E) + Fλ(F ), S2 = Fλ(G) + Fλ(H) + Fλ(L)

and S3 = F2λ(A) + F2λ(E) + F2λ(F ) + F2λ(B).

By the definition of Fλ(x) in (3.11), we verify that

0 =
1

3
(S1 + S2 − S3) = f(G) + f(L) + f(O) + f(H).

That is

f(G) + f(L) + f(O) + f(H) = 0. (3.24)

Combine (3.24) with (3.13),

f(L) + f(O) = f(B) + f(C). (3.25)

Applying Lemma 3.3 with (3.25), we obtain that

f(C) = f(O). (3.26)

By combing (3.24) with (3.14) and then applying Lemma 3.3, we obtain that

f(K) = f(O). (3.27)

Now we have

f(K) = f(C).
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That is

f(x+ 2λa1) = f(x+ 2λa3). (3.28)

Replacing λ by λ/2, we get

f(E) = f(B). (3.29)

Similarly, we can prove that

f(A) = f(F ). (3.30)

Recall that f(A) + f(E) + f(F ) + f(B) = 0, and by using (3.29) and (3.30), we

get

f(A) + f(E) = 0. (3.31)

From (3.31) and Lemma 3.1, we obtain that f(x) = 0 for all x ∈ C.

Conversely, clearly that if f(x) = 0 for all x ∈ C then (3.10) hold for all x ∈ C

and λ ∈ R r {0}. �
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