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CHAPTER I

INTRODUCTION

If S is a semigroup and a ∈ S, the semigroup (S, ◦) defined by x ◦ y = xay

for all x, y ∈ S is called the variant of S induced by a and it is denoted by (S, a).

Variants of abstract semigroups were first studied by Hickey [2] in 1983. In fact,

variants of concrete semigroups of relations were earlier considered by Magill [9]

in 1967. Hickey [1, 2, 3, 4, 5] introduced various results relating to variants of

semigroups. Khan and Lawson [8] determined an element a in a regular semigroup

and an inverse semigroup such that (S, a) is a regular semigroup.

Isomorphism theorems are considered important in every algebraic structure.

It is interesting to know when two variants of a certain semigroup are isomorphic.

It is clear that if S is a semigroup with identity and a is a unit of S, then (S, a) ∼= S

through the mapping x 7→ ax. In particular, any variant of a groupG is isomorphic

to G.

For a nonempty set X, let T (X), P (X) and I(X) denote the full transforma-

tion semigroup, the partial transformation semigroup and the symmetric inverse

semigroup on X, respectively. Notice that T (X) and I(X) are subsemigroups

of P (X). If X is a finite set containing n elements, let Tn, Pn and In stand for

T (X), P (X) and I(X), respectively. For θ ∈ Pn and k ∈ {1, . . . , n}, let

tk = |{y ∈ ran θ | |yθ−1| = k}|.

The n-tuple (t1, t2, . . . , tn) is called the type of θ. In 2003-2004, Tsyaputa [12,

13] provided the remarkable results on the variants of In, Tn and Pn as follows:

for θ1, θ2 ∈ In, (In, θ1) ∼= (In, θ2) if and only if | ran θ1| = | ran θ2|; for θ1, θ2 ∈

Tn, (Tn, θ1) ∼= (Tn, θ2) if and only if θ1 and θ2 have the same type and this is also

true for the variants of Pn.

The purpose of this research is to give necessary and/or sufficient conditions
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for two variants of the semigroups of our interest to be isomorphic.

This research is organized as follows:

Chapter II contains basic definitions, notations and quoted results which are

needed for this research.

Chapter III deals with some multiplicative and additive semigroups of inte-

gers. We give necessary and sufficient conditions for two variants of the following

semigroups to be isomorphic:

(N, ·), (Nk,+) and (kN,+)

where N is the set of all natural numbers (positive integers) and Nk = {k, k +

1, k + 2, . . .}. Note that N = N1 = 1N. It is shown that ((N, ·), a) ∼= ((N, ·), b)

if and only if either a = b = 1 or a = pr11 p
r2
2 · · · p

rk
k and b = qr11 q

r2
2 · · · q

rk
k for

some distinct primes p1, p2, . . . , pk and some distinct primes q1, q2, . . . , qk and some

r1, r2, . . . , rk ∈ N. We show that ((Nk,+), a) ∼= ((Nk,+), b) if and only if a = b.

This is also true for the variants of (kN,+). In addition, necessary conditions for

being isomorphic of two variants of (Z, ·) are provided where Z is the set of all

integers.

It is shown in Chapter IV that ((Zn, ·), ā) ∼= ((Zn, ·), b̄) if and only if (a, n) =

(b, n). Dirichlet’s theorem for primes in arithmetic progression in number theory

is useful to prove this fact. We also show that if ((kZn, ·), kā) ∼= ((kZn, ·), kb̄),

then (k3a, n) = (k3b, n).

In Chapter V, the following semigroups of transformations of X are considered

where X is a nonempty set which need not be finite:

I(X), M(X), E(X) and T (X)

where

M(X) = {α ∈ T (X) | α is 1-1},

E(X) = {α ∈ T (X) | α is onto}.

We consider when two variants of I(X) are isomorphic. Using the technique of

the proof given in [12] and the generalized continuum hypothesis, we obtain nec-

essary conditions as given in [12] as follows: for θ1, θ2 ∈ I(X), if (I(X), θ1) ∼=
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(I(X), θ2), then | ran θ1| = | ran θ2|. Moreover, we give an example to show

that the converse is not true in general. However, we also give sufficient con-

ditions for two variants of I(X) are isomorphic as follows: for θ1, θ2 ∈ I(X), if

| ran θ1| = | ran θ2|, |X r ran θ1| = |X r ran θ2| and |X r dom θ1| = |X r dom θ2|,

then (I(X), θ1) ∼= (I(X), θ2). Sufficient conditions for any two variants of the

M(X), E(X) and T (X) to be isomorphic are provided. The following results are

shown for an infinite set X. If θ1, θ2 ∈M(X) and |Xrran θ1| = |Xrran θ2|, then

(M(X), θ1) ∼= (M(X), θ2). If θ1, θ2 ∈ E(X) and the partition of X induced by θ1

and the partition of X induced by θ2 are equivalent, then (E(X), θ1) ∼= (E(X), θ2).

For θ1, θ2 ∈ T (X), (T (X), θ1) ∼= (T (X), θ2) if both the above sufficient con-

ditions are satisfied. Note that the partition of X induced by θ ∈ T (X) is

{xθ−1 | x ∈ ran θ} and the partition of X induced by θ1 and the partition of X in-

duced by θ2 are said to be equivalent if there exists a bijection ϕ : ran θ2 → ran θ1

such that |xθ−1
2 | = |(xϕ)θ−1

1 | for all x ∈ ran θ2.

In the last chapter, the semigroup LF (V ) under composition of all linear trans-

formations from a vector space V over a field F into itself is considered. Tsya-

puta’s works mentioned above motivate us to consider variants of LF (V ) where

V is finite-dimensional and F is finite. The following result is obtained. If V is

finite-dimensional and F is a finite field, then for θ1, θ2 ∈ LF (V ), (LF (V ), θ1) ∼=

(LF (V ), θ2) if and only if rank θ1 = rank θ2. We obtain the following result as

a consequence. For a finite field F , a positive integer n and P1, P2 ∈ Mn(F ),

((Mn(F ), ·), P1) ∼= ((Mn(F ), ·), P2) if and only if rank P1 = rank P2 where Mn(F )

denotes the set of all n × n matrices over F . From a lemma of the proof of

the main result of this chapter, we obtain sufficient conditions for two vari-

ants of LF (V ) to be isomorphic as follows: for θ1, θ2 ∈ LF (V ), if rank θ1 =

rank θ2, dimF ker θ1 = dimF ker θ2 and dimF (V/ ran θ1) = dimF (V/ ran θ2), then

(LF (V ), θ1) ∼= (LF (V ), θ2). In particular, if V is a finite-dimensional vector space

over F and rank θ1 = rank θ2, then (LF (V ), θ1) ∼= (LF (V ), θ2). We obtain as a

consequence of this fact that if P1, P2 ∈Mn(F ) are such that rank P1 = rank P2,

then ((Mn(F ), ·), P1) ∼= ((Mn(F ), ·), P2). In addition, we give sufficient conditions
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for two variants of the following subsemigroups of LF (V ) to be isomorphic:

MF (V ) = {α ∈ LF (V ) | α is 1-1}

( = {α ∈ LF (V ) | kerα = {0}}),

EF (V ) = {α ∈ LF (V ) | α is onto}

( = {α ∈ LF (V ) | ranα = V }).

For an infinite-dimensional vector space V , we obtain the following results: if

θ1, θ2 ∈MF (V ) are such that dimF (V/ ran θ1) = dimF (V/ ran θ2), then (MF (V ), θ1)

∼= (MF (V ), θ2); if θ1, θ2 ∈ EF (V ) are such that dimF ker θ1 = dimF ker θ2, then

(EF (V ), θ1) ∼= (EF (V ), θ2).



CHAPTER II

PRELIMINARIES

The cardinality of a set X is denoted by |X|. The value of a mapping α at x

in the domain of α shall be written as xα. The notation ∪̇ stands for a disjoint

union. The identity mapping on a set A is denoted by 1A.

Denote by N and Z the set of all natural numbers (positive integers) and the set

of all integers, respectively. For a, b ∈ Z and a 6= 0, a | b means that b is divisible

by a. In this research, we use the generalized continuum hypothesis on cardinal

numbers. It follows that if a and b are cardinal numbers such that 2a = 2b, then

a = b ([11], p. 142).

In a semigroup S, we can adjoin an extra element 0 and define 0x = x0 = 0

for all x ∈ S. Then S ∪ {0} becomes a semigroup with zero 0. For a semigroup

S, we let

S0 =

S ∪ {0} if |S| = 1 or S has no zero,

S otherwise.

A semigroup S is called a left [right ] zero semigroup if every element of S is a

left [right] zero, i.e., xy = x [xy = y] for all x, y ∈ S. A semigroup S with zero 0

is called a zero semigroup if xy = 0 for all x, y ∈ S.

A Kronecker semigroup is a semigroup S with zero 0 such that for all x, y ∈ S,

xy =

x if x = y,

0 if x 6= y.

If S is a semigroup with identity 1 and a ∈ S, then a is called a unit of S if

ab = ba = 1 for some b ∈ S. We can see that the element b is unique and it is
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denoted by a−1. Note that the set of all units of S forms a subgroup of S, which

is the greatest subgroup of S containing 1 and it is called the group of units of S.

An element a of a semigroup S is called an idempotent if a2 = a. The identity

of a group G is exactly one idempotent of G. We denote the set of all idempotents

of a semigroup S by E(S).

An element a of a semigroup S is called regular if a = axa for some x ∈ S and

S is called a regular semigroup if every element of S is regular. A semigroup S is

called an inverse semigroup if for every x ∈ S, there is the unique x−1 in S such

that x = xx−1x and x−1 = x−1xx−1.

If S is a semigroup and a ∈ S, then the semigroup (S, ◦) defined by x◦y = xay

for all x, y ∈ S is called the variant of S induced by a and it is denoted by (S, a).

It is clear that if S has a zero 0, then 0 is the zero of the variant (S, a) of S.

For semigroups S and S ′, S ∼= S ′ means that S is isomorphic to S ′, i.e., there

exists a bijection ϕ : S → S ′ such that (xy)ϕ = (xϕ)(yϕ) for all x, y ∈ S. Notice

that we also have S ′ ∼= S through ϕ−1. Therefore we have that for a, b in a

semigroup S, (S, a) ∼= (S, b) if and only if there is a bijection ϕ : S → S such that

(xay)ϕ = (xϕ)b(yϕ) for all x, y ∈ S. In addition, for semigroups S, S ′ and S ′′, if

S ∼= S ′ and S ′ ∼= S ′′ through ϕ and ϕ′, respectively, then S ∼= S ′′ through ϕϕ′.

The notation S 6∼= S ′ means that S and S ′ are not isomorphic.

The following facts relate to being isomorphic of variants which will be used

later.

Proposition 2.1. Let S be a semigroup with identity and a, b units of S. Then

(S, a) ∼= (S, b) through the mapping x 7→ axb−1. In particular, (S, a) ∼= S through

the mapping x 7→ ax and S ∼= (S, a) through the mapping x 7→ xa−1. Hence for

any group G, (G, a) ∼= G for all a ∈ G.

Proof. Define ϕ : S → S by xϕ = axb−1 for all x ∈ S. Since a and b are units, ϕ

is clearly 1-1. If x ∈ S, then (a−1xb)ϕ = a(a−1xb)b−1 = x. If x, y ∈ S, then

(xay)ϕ = a(xay)b−1 = (axb−1)b(ayb−1) = (xϕ)b(yϕ).

Hence ϕ is an isomorphism from (S, a) onto (S, b), as desired.
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Proposition 2.2. Let S be a semigroup with identity and a, b ∈ S. If there are

units u, v in S such that uav = b, then (S, a) ∼= (S, b).

Proof. Define ϕ : S → S by xϕ = v−1xu−1 for all x ∈ S. Since u and v are units,

ϕ is clearly 1-1. If x ∈ S, then (vxu)ϕ = v−1(vxu)u−1 = x. If x, y ∈ S, then

(xay)ϕ = v−1(xay)u−1

= (v−1xu−1)uav(v−1yu−1)

= (v−1xu−1)b(v−1yu−1)

= (xϕ)b(yϕ).

Thus ϕ is an isomorphism from (S, a) onto (S, b).

Theorem 2.3 ([2]). If S is a semigroup and a ∈ S such that (S, a) has an identity,

then

(i) S has an identity,

(ii) a is a unit and

(iii) (S, a) ∼= S.

Hence for a semigroup S with identity and a ∈ S, (S, a) ∼= S if and only if a is a

unit.

Note that Hickey [2] proved Theorem 2.3 by using a fact of Green’s relations on

semigroups.

For a nonempty set X, let T (X), P (X) and I(X) denote the full transforma-

tion semigroup, the partial transformation semigroup and the symmetric inverse

semigroup (the 1-1 partial transformation semigroup) on X, respectively. Note

that T (X) and I(X) are subsemigroups of P (X). The domain and the range

(image) of α in P (X) are denoted by domα and ranα, respectively. We have that

for α, β ∈ P (X),

dom(αβ) = (ranα ∩ dom β)α−1 ⊆ domα,

ran(αβ) = (ranα ∩ dom β)β ⊆ ran β and
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for x ∈ X, x ∈ domαβ ⇔ x ∈ domα and xα ∈ dom β.

It is well-known that P (X) and T (X) are regular semigroups and I(X) is an

inverse semigroup ([6], p. 4). We see that 1X (the identity mapping on X) is the

identity of P (X), T (X) and I(X) and the empty transformation 0 is the zero of

P (X) and I(X). For α ∈ P (X), α is an idempotent of P (X), i.e., α2 = α, if and

only if ranα ⊆ domα and xα = x for all x ∈ ranα. It follows that for α ∈ I(X), α

is an idempotent of I(X) if and only if α is the identity mapping on domα, i.e.,

α = 1domα.

If X is finite and |X| = n, let Tn, Pn and In stand for T (X), P (X) and I(X),

respectively. For θ ∈ Pn and k ∈ {1, 2, . . . , n}, let

tk = |{y ∈ ran θ | |yθ−1| = k}|,

i.e.,

tk = |{y ∈ ran θ | |{x ∈ dom θ | xθ = y}| = k}|.

The n-tuple (t1, t2, . . . , tn) is called the type of θ. The following remarkable iso-

morphism theorems for the variants of In, Tn and Pn were given by Tsyaputa

[12, 13].

Theorem 2.4 ([12]). For θ1, θ2 ∈ In, (In, θ1) ∼= (In, θ2) if and only if | ran θ1| =

| ran θ2|.

Theorem 2.5 ([12]). For θ1, θ2 ∈ Tn, (Tn, θ1) ∼= (Tn, θ2) if and only if θ1 and θ2

have the same type.

Theorem 2.6 ([13]). For θ1, θ2 ∈ Pn, (Pn, θ1) ∼= (Pn, θ2) if and only if θ1 and θ2

have the same type.

For convenience, we may write α ∈ P (X), by using a bracket notation. For

example,

a b

c d

 stands for the mapping α with domα = {a, b}, ranα = {c, d},
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aα = c and bα = d,

A x

a x′


x∈XrA

stands for the mapping β with dom β = X,

ran β = {a} ∪ {x′ | x ∈ X r A} and xβ =

a if x ∈ A,

x′ if x ∈ X r A.

By the above notations, a mapping α can be written as α =

xα−1

x


x∈ranα

.

We shall give some examples of being isomorphic for the variants of the fol-

lowing semigroups: left zero semigroups, right zero semigroups, zero semigroups

and Kronecker semigroups.

Example 2.7. (1) If S is a left zero semigroup, a ∈ S and ϕ is a bijection on S,

then for all x, y ∈ S, (xay)ϕ = xϕ = (xϕ)(yϕ). Hence ϕ is an isomorphism from

(S, a) onto S. This shows that (S, a) ∼= S for all a ∈ S. It follows that for all

a, b ∈ S, (S, a) ∼= (S, b).

(2) It can be shown dually to (1) that for a right zero semigroup S, (S, a) ∼= S for

all a ∈ S. Consequently, (S, a) ∼= (S, b) for all a, b ∈ S.

(3) If S is a zero semigroup with zero 0, a ∈ S and ϕ is a bijection on S such

that 0ϕ = 0, then for all x, y ∈ S, (xay)ϕ = 0ϕ = 0 = (xϕ)(yϕ). Therefore ϕ is

an isomorphism from (S, a) onto S. This shows that (S, a) ∼= S for all a ∈ S and

hence (S, a) ∼= (S, b) for all a, b ∈ S.

(4) Let S be a Kronecker semigroup with zero 0, i.e.,

xy =

x if x = y,

0 if x 6= y.
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Assume that |S| > 1. Since (S, 0) is a zero semigroup, it follows that (S, 0) 6∼=

S. Claim that for a ∈ Sr{0}, (S, a) ∼= S if and only if |S| = 2. Let ϕ : (S, a)→ S

be an isomorphism and assume that |S| > 2. Let b ∈ S r {0, a}. Then 0ϕ =

(bab)ϕ = (bϕ)(bϕ) = bϕ, so b = 0, a contradiction. This shows that if (S, a) ∼= S,

then |S| = 2. If |S| = 2, then it is clearly seen that the identity mapping on S is

an isomorphism from (S, a) onto S.

Next, assume that |S| > 2. Claim that for all a, b ∈ S r {0}, (S, a) ∼= (S, b).

Let a, b ∈ S r {0} and define ϕ : S → S by

ϕ =

a b x

b a x


x∈Sr{a,b}

.

Then ϕ is a bijection on S and for x, y ∈ S,

(xay)ϕ =

aϕ if x = a = y,

0 otherwise,

=

b if x = a = y,

0 otherwise,

=

b if xϕ = b = yϕ,

0 otherwise,

= (xϕ)b(yϕ).

Hence ϕ is an isomorphism from (S, a) onto (S, b), as desired.

For k ∈ N, let

Nk = {k, k + 1, k + 2, . . .} = {k + l | l ∈ N ∪ {0}}.

Then (Nk,+) and (kN,+) are ideals of (N,+). Note that (kN,+) is the infinite

cyclic semigroup generated by k. Recall that all of the infinite cyclic semigroups

are isomorphic.
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For a, b ∈ Z, not both 0, let (a, b) denote the g.c.d. of a and b in Z. For n ∈ N,

let Zn be the set of integers modulo n. For x ∈ Z, let x be the congruence class

modulo n containing x. Then |Zn| = n and

Zn = {0, 1, . . . , n− 1} = {x | x ∈ Z}.

We have that for a ∈ Z,

aZn = (a, n)Zn

=

{
0, (a, n), 2(a, n), . . . ,

(
n

(a, n)
− 1

)
(a, n)

}
and |aZn| =

n

(a, n)
.

The following powerful theorem in number theory will be used to characterize

when ((Zn, ·), a) and ((Zn, ·), b) are isomorphic for a, b ∈ Z.

Theorem 2.8 ([10], p. 258). (Dirichlet : Primes in Arithmetic Progression)1 If

a,m ∈ Z with (a,m) = 1, then there are infinitely many primes p of the form

p ≡ a(mod m).

Let X be a nonempty set and

G(X) = {α ∈ T (X) | α is bijective}.

We can see that G(X) is the group of units of T (X), P (X) and I(X). By

Proposition 2.1, we have (G(X), α) ∼= G(X) for all α ∈ G(X). Hence for all

α, β ∈ G(X), (G(X), α) ∼= (G(X), β).

Next, let

M(X) = {α ∈ T (X) | α is 1-1},

E(X) = {α ∈ T (X) | α is onto}.

which are subsemigroups of T (X) containing G(X). Notice that M(X) = G(X)

1The author is very grateful to Associate Professor Dr. Paisan Nakmahachalasint
for introducing me this theorem in order to obtain Theorem 4.1 in Chapter IV.
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[E(X) = G(X)] if and only if X is finite. In addition, G(X) is the group of units

of M(X) and E(X).

Let θ ∈ T (X). The partition of X induced by θ is defined to be

P(θ) = {xθ−1 | x ∈ ran θ}.

Then

X =
⋃̇

x∈ran θ

xθ−1.

For θ1, θ2 ∈ T (X), we say that the partition P(θ1) and the partition P(θ2) are

equivalent if there exists a bijection ϕ : ran θ2 → ran θ1 such that |xθ−1
2 | =

|(xϕ)θ−1
1 | for all x ∈ ran θ2. If this is the case, we write P(θ1) ≈ P(θ2). No-

tice that ≈ is an equivalence relation on the set of the partitions of X induced by

θ ∈ T (X). By our definitions, we can see that if X is finite, then for θ1, θ2 ∈ T (X),

θ1 and θ2 have the same type if and only if P(θ1) ≈ P(θ2). Then Theorem 2.5

can restate as follows:

Theorem 2.9. For a finite nonempty set X and θ1, θ2 ∈ T (X), (T (X), θ1) ∼=

(T (X), θ2) if and only if P(θ1) ≈ P(θ2).

We recall some basic knowledge in linear algebra. Let V and W be vector

spaces over a field F . Let LF (V,W ) be the set of all linear transformations α : V →

W and LF (V ) stand for LF (V, V ). Then LF (V ) is a semigroup under composition.

For α ∈ LF (V,W ), let kerα denote the kernel of α. We call dimF ranα the rank

of α and it is denoted by rank α. For a subset A of V , let 〈A〉 denote the subspace

of V spanned by A.

The following facts in linear algebra will be used in our research. The proofs

are omitted.

Remark 2.10.

(1) For α ∈ LF (V,W ),

dimF V = dimF kerα + rank α.
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(2) If B is a basis of V , α ∈ LF (V,W ) are such that α|B is 1-1 and Bα is a linearly

independent subset of W , then α is a monomorphism.

(3) If B is a basis of V , B′ is a basis of W and α ∈ LF (V,W ) is such that

α|B : B → B′ is a bijection, then α is an isomorphism from V onto W .

(4) If α ∈ LF (V,W ), B1 is a basis of kerα, B2 is a basis of ranα and for each

v ∈ B2, let v′ ∈ vα−1, then B1 ∪̇ {v′ | v ∈ B2} is a basis of V .

(5) If α ∈ LF (V,W ), B1 is a basis of kerα and B is a basis of V containing B1,

then (BrB1)α is a basis of ranα and for any distinct u, v ∈ BrB1, uα 6= vα.

(6) If U is a subspace of V , B1 is a basis of U and B is a basis of V containing

B1, then {v +U | v ∈ B rB1} is a basis of the quotient space V/U and

u+ U 6= v + U for all distinct u, v ∈ B rB1. Hence dimF (V/U) = |B rB1|.

(7) If B is a basis of V , then

|LF (V,W )| = |{α | α : B → W}| = |W ||B|.

(8) If V is finite-dimensional, then V ∼= F dimF V as vector spaces over F .

(9) If W is finite-dimensional, then

|LF (V,W )| = |F dimF W |dimF V = |F |(dimF V )(dimF W ).

In particular, |LF (V,W )|= |F |(dimF V )(dimF W )<∞ if V is also finite-dimensional

and F is a finite field.

For a positive integer n and a field F , let Mn(F ) be the set of all n×n matrices

over F .

Theorem 2.11 ([7], p. 330-337). If V is finite-dimensional and dimF V = n, then

there exists a semigroup isomorphism ϕ : LF (V ) → (Mn(F ), ·) which preserves

ranks.
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Let

GF (V ) = {α ∈ LF (V ) | α is an isomorphism}.

ThenGF (V )is the group of units of LF (V ). By Proposition 2.1,we have (GF (V ),α)

∼= GF (V ) for all α ∈ GF (V ). Thus for α, β ∈ GF (V ), (GF (V ), α) ∼= (GF (V ), β).

Next, let MF (V ) and EF (V ) be the set of all 1-1 linear transformations

(monomorphisms) of V and the set of all onto linear transformations (epimor-

phisms) of V , respectively. Then

MF (V ) = {α ∈ LF (V ) | kerα = {0}},

EF (V ) = {α ∈ LF (V ) | ranα = V }

which are subsemigroups of LF (V ) containing GF (V ). Moreover, it is well-known

that dimF V <∞ if and only if MF (V ) = GF (V ) [EF (V ) = GF (V )]. In addition,

GF (V ) is also the group of units of the semigroups MF (V ) and EF (V ).



CHAPTER III

MULTIPLICATIVE AND ADDITIVE

SEMIGROUPS OF INTEGERS

In this chapter, we determine when two variants of the following semigroups

of integers are isomorphic:

(N, ·), (Nk,+) and (kN,+)

where k ∈ N and recall that

Nk = {k, k + 1, k + 2, . . .} = {k + l | l ∈ N ∪ {0}}.

Then (N,+) = (N1,+) = (1N,+) and we can see that Nk = N [kN = N] if and

only if k = 1. Note that (Z,+) is a group. Then ((Z,+), a) ∼= (Z,+) for all a ∈ Z

(Proposition 2.1). This chapter also includes necessary conditions for two variants

of (Z, ·) to be isomorphic.

To obtain an isomorphism theorem for the variants of (N, ·), the following

lemma is needed.

Lemma 3.1. Let a, b ∈ N and ϕ : N → N. Then ϕ : ((N, ·), a) → ((N, ·), b) is an

isomorphism if and only if ϕ : (N, ·)→ (N, ·) is an isomorphism such that aϕ = b.

Proof. Let ϕ : ((N, ·), a)→ ((N, ·), b) be an isomorphism. Then

(xay)ϕ = (xϕ)b(yϕ) for all x, y ∈ N,

so

(NaN)ϕ = (Nϕ)b(Nϕ) = NbN.

Since NN = N, it follows that (aN)ϕ = bN. But b ∈ bN, so (am)ϕ = b for some

m ∈ N. We have that
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aϕ = (1a1)ϕ = (1ϕ)b(1ϕ) = (1ϕ)2b ≥ b.

If aϕ > b, then (1ϕ)2b > b, so 1ϕ > 1. Consequently,

b = (am)ϕ = (1am)ϕ = (1ϕ)b(mϕ) > b,

a contradiction. Hence aϕ = b. This implies that (1ϕ)2b = b, so 1ϕ = 1. If

x, y ∈ N, then

((xy)ϕ)b = ((xy)ϕ)b(1ϕ)

= (xya1)ϕ

= (xay)ϕ

= (xϕ)b(yϕ)

= (xϕ)(yϕ)b,

so (xy)ϕ = (xϕ)(yϕ) since (N, ·) is cancellative. This proves that ϕ : (N, ·) →

(N, ·) is an isomorphism such that aϕ = b.

For the converse, let ϕ : (N, ·) → (N, ·) be an isomorphism such that aϕ = b.

Then for all x, y ∈ N,

(xay)ϕ = (xϕ)(aϕ)(yϕ) = (xϕ)b(yϕ).

Hence ϕ : ((N, ·), a)→ ((N, ·), b) is an isomorphism.

Theorem 3.2. For a, b ∈ N, ((N, ·), a) ∼= ((N, ·), b) if and only if either

(i) a = b = 1 or

(ii) a = pr11 p
r2
2 · · · p

rk
k and b = qr11 q

r2
2 · · · q

rk
k for some distinct primes p1, p2, . . . , pk,

some distinct primes q1, q2, . . . , qk and some r1, r2, . . . , rk ∈ N.

Proof. Let ϕ : ((N, ·), a) → ((N, ·), b) be an isomorphism. By Lemma 3.1, ϕ :

(N, ·) → (N, ·) is an isomorphism such that aϕ = b. Since 1 is the identity of

(N, ·), 1ϕ = 1. Therefore if a = 1, then b = aϕ = 1ϕ = 1. Assume that a > 1 and

let a = pr11 p
r2
2 · · · p

rk
k where p1, p2, . . . , pk are distinct primes and r1, r2, . . . , rk ∈ N.

Then
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b = aϕ = (pr11 p
r2
2 · · · p

rk
k )ϕ = (p1ϕ)r1(p2ϕ)r2 · · · (pkϕ)rk .

It remains to show that p1ϕ, p2ϕ, . . . , pkϕ are distinct primes. Since ϕ is 1-1, it

suffices to show that if p is a prime, then pϕ is also a prime. Let p be a prime

number and suppose that pϕ = mn for some m,n ∈ Nr{1}. Since ϕ is a bijection

and 1ϕ = 1, it follows that m′ϕ = m and n′ϕ = n for some m′, n′ ∈ N r {1}.

Then pϕ = (m′ϕ)(n′ϕ) = (m′n′)ϕ which implies that p = m′n′, a contradiction.

Hence pϕ is a prime. This shows that if a > 1, then (ii) holds.

For the converse, assume that (i) or (ii) holds. It is trivial if (i) holds. Assume

that a and b satisfy (ii). Let P be the set of all prime numbers in N. Then

|P r {p1, p2, . . . , pk}| = |P r {q1, q2, . . . , qk}|. Let ϕ : P r {p1, p2, . . . , pk} →

P r {q1, q2, . . . , qk} be a bijection. Define ϕ̄ : P → P by

ϕ̄ =

pi x

qi xϕ


i∈{1,2,...,k},
x∈Pr{p1,p2,...,pk}

.

Then ϕ̄ is a bijection on P . Let θ : N→ N be defined by

1θ = 1 and (st11 s
t2
2 · · · stmm )θ = (s1ϕ̄)t1(s2ϕ̄)t2 · · · (smϕ̄)tm

for any primes s1, s2, . . . , sm ∈ N and t1, t2, . . . , tm ∈ N. Then aθ = b. From the

definition of ϕ̄ and the fact that every element of Nr{1} can be written uniquely

as a product of primes, we have that θ is an isomorphism from (N, ·) onto itself.

From Lemma 3.1, θ : ((N, ·), a)→ ((N, ·), b) is an isomorphism.

Hence the proof is completed.

Example 3.3. From Theorem 3.2, we have that

((N, ·), 6) ∼= ((N, ·), 35) and ((N, ·), 6) 6∼= ((N, ·), 12)

since 6 = 2 · 3, 35 = 5 · 7 and 12 = 22 · 3.

The following lemma is needed to obtain an isomorphism theorem for the

variants of (Z, ·).
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Lemma 3.4. Let a, b ∈ Z r {0} and ϕ : Z → Z. Then ϕ : ((Z, ·), a) → ((Z, ·), b)

is an isomorphism if and only if ϕ satisfies the following three conditions :

(i) ϕ is a bijection;

(ii) aϕ = b;

(iii) for all x, y ∈ Z, (xy)ϕ = (xϕ)(yϕ) or for all x, y ∈ Z, (xy)ϕ = −(xϕ)(yϕ).

Proof. Assume that ϕ : ((Z, ·), a)→ ((Z, ·), b) is an isomorphism. Then (i) holds.

But for all x, y ∈ Z, (xay)ϕ = (xϕ)b(yϕ) and ZZ = Z, so we have

(aZ)ϕ = (ZaZ)ϕ = (Zϕ)b(Zϕ) = ZbZ = bZ.

Thus (am)ϕ = b for some m ∈ Z, so |(am)ϕ| = |b|. We have that

|aϕ| = |(1a1)ϕ| = |(1ϕ)b(1ϕ)| = (1ϕ)2|b| ≥ |b|.

If |aϕ| > |b|, then (1ϕ)2|b| > |b| which implies that |1ϕ| > 1, so

|(am)ϕ| = |(1am)ϕ| = |(1ϕ)b(mϕ)| > |b|,

a contradiction. Thus |aϕ| = |b|. Hence aϕ = b or aϕ = −b. Since (1ϕ)2|b| =

|aϕ| = |b|, (1ϕ)2 = 1. Thus aϕ = (1a1)ϕ = (1ϕ)2b = b and 1ϕ = ±1. Hence (ii)

holds.

Case 1: 1ϕ = 1. If x, y ∈ Z, then

((xy)ϕ)b = ((xy)ϕ)b(1ϕ)

= (xya1)ϕ

= (xay)ϕ

= (xϕ)b(yϕ)

= (xϕ)(yϕ)b

which implies that (xy)ϕ = (xϕ)(yϕ).
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Case 2: 1ϕ = −1. If x, y ∈ Z, then

((xy)ϕ)b = ((xy)ϕ)b(−(1ϕ))

= −(xya1)ϕ

= −(xay)ϕ

= −(xϕ)b(yϕ)

= −(xϕ)(yϕ)b,

so (xy)ϕ = −(xϕ)(yϕ).

Hence (iii) holds.

Conversely, assume that (i), (ii) and (iii) hold. To show that ϕ : ((Z, ·), a) →

((Z, ·), b) is an isomorphism, from (i) it remains to show that ϕ is a homomorphism.

Case 1: (xy)ϕ = (xϕ)(yϕ) for all x, y ∈ Z. If x, y ∈ Z, then

(xay)ϕ = (xϕ)(aϕ)(yϕ) = (xϕ)b(yϕ)

since aϕ = b by (ii).

Case 2: (xy)ϕ = −(xϕ)(yϕ) for all x, y ∈ Z. If x, y ∈ Z, then

(xay)ϕ = −((xa)ϕ)(yϕ) = −(−(xϕ)(aϕ))(yϕ) = (xϕ)b(yϕ).

Therefore the lemma is proved.

Theorem 3.5. For a, b ∈ Z, if ((Z, ·), a) ∼= ((Z, ·), b), then one of the following

conditions holds.

(i) a = b = 0.

(ii) |a| = |b| = 1.

(iii) a = pr11 p
r2
2 · · · p

rk
k and b = qr11 q

r2
2 · · · q

rk
k for some distinct primes p1, p2, . . . , pk

in Z, some distinct primes q1, q2, . . . , qk in Z, some r1, r2, . . . , rk ∈ N and

for i, j ∈ {1, 2, . . . , k}, if pi = −pj, then qi = −qj.
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Proof. Assume that ϕ : ((Z, ·), a) → ((Z, ·), b) is an isomorphism. Since 0 is the

zero of ((Z, ·), a) and ((Z, ·), b), 0ϕ = 0. It is clearly seen that ((Z, ·), a) is a

zero semigroup if and only if a = 0. It follows that a = 0 if and only if b = 0.

Assume that a 6= 0. Then b 6= 0. By Lemma 3.4, ϕ is a bijection, aϕ = b and

(xy)ϕ = (xϕ)(yϕ) for all x, y ∈ Z or (xy)ϕ = −(xϕ)(yϕ) for all x, y ∈ Z. Since

b = aϕ = (1a1)ϕ = (1ϕ)2b and b = aϕ = ((−1)a(−1))ϕ = ((−1)ϕ)2b,

we have that 1ϕ = ±1 and (−1)ϕ = ±1. Thus {−1, 0, 1}ϕ = {−1, 0, 1} and

0ϕ = 0.

Assume that |a| = 1. Then |b| = |aϕ| = 1.

Next, assume that |a| > 1. Then |b| > 1. Let a = pr11 p
r2
2 · · · p

rk
k where

p1, p2, . . . , pk are distinct primes in Z and r1, r2, . . . , rk ∈ N. Then

b = aϕ = (pr11 p
r2
2 · · · p

rk
k )ϕ = ±(p1ϕ)r1(p2ϕ)r2 · · · (pkϕ)rk .

It remains to show that p1ϕ, p2ϕ, . . . , pkϕ are distinct primes in Z. Since ϕ is 1-1,

it suffices to show that if p is a prime in Z, then pϕ is also a prime in Z. Let p be

a prime in Z and suppose that pϕ = mn for some m,n ∈ Z r {−1, 0, 1}. Since ϕ

is a bijection and {−1, 0, 1}ϕ = {−1, 0, 1}, it follows that m′ϕ = m and n′ϕ = n

for some m′, n′ ∈ Z r {−1, 0, 1}. Then pϕ = (m′ϕ)(n′ϕ) = ±(m′n′)ϕ.

Case 1: pϕ = (m′n′)ϕ. Then p = m′n′, a contradiction.

Case 2: pϕ = −(m′n′)ϕ. If 1ϕ = 1, then by the proof of Case 1 of the “only

if” part in Lemma 3.4, (xy)ϕ = (xϕ)(yϕ) for all x, y ∈ Z. Since 1ϕ = 1, (−1)ϕ =

−1, so

pϕ = (−1)ϕ(m′n′)ϕ

= ((−1)(m′n′))ϕ

= (−m′n′)ϕ.

It follows that p = −m′n′, a contradiction. If 1ϕ = −1, then by the proof of Case

2 of the “only if” part in Lemma 3.4, we have that (xy)ϕ = −(xϕ)(yϕ) for all



21

x, y ∈ Z. Since 1ϕ = −1, (−1)ϕ = 1, so

pϕ = −((−1)ϕ(m′n′)ϕ)

= ((−1)(m′n′))ϕ

= (−m′n′)ϕ

which implies that p = −m′n′, a contradiction.

Finally, let i, j ∈ {1, 2, . . . , k} be such that pi = −pj. If 1ϕ = 1, then (−1)ϕ =

−1 and (xy)ϕ = (xϕ)(yϕ) for all x, y ∈ Z, so

piϕ = (−pj)ϕ

= ((−1)pj)ϕ

= ((−1)ϕ)(pjϕ)

= −(pjϕ).

If 1ϕ = −1, then (−1)ϕ = 1 and (xy)ϕ = −(xϕ)(yϕ) for all x, y ∈ Z, so

piϕ = (−pj)ϕ

= ((−1)pj)ϕ

= −((−1)ϕ)(pjϕ)

= −(pjϕ).

Hence (iii) holds.

Example 3.6. From Theorem 3.5, we have that

((Z, ·), 6) 6∼= ((Z, ·),−12) 6∼= ((Z, ·), 25)

since 6 = 2 · 3, −12 = 22 · (−3) and 25 = 52.

It is natural to ask whether ((Z, ·), a) and ((Z, ·),−a) are isomorphic. The

answer is positive and the proof is given by making use of Lemma 3.4.

Theorem 3.7. For a ∈ Z, ((Z, ·), a) ∼= ((Z, ·),−a) through the mapping x 7→ −x.
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Proof. Define ϕ : Z → Z by xϕ = −x for all x ∈ Z. Then ϕ is a bijection and

aϕ = −a, so ϕ satisfies (i) and (ii) of Lemma 3.4. If x, y ∈ Z, then

(xy)ϕ = −(xy) = −(−x)(−y) = −(xϕ)(yϕ),

so ϕ satisfies (iii) of Lemma 3.4. Therefore by Lemma 3.4, ϕ : ((Z, ·), a) →

((Z, ·),−a) is an isomorphism.

Theorem 3.8. For k, a, b ∈ N, ((Nk,+), a) ∼= ((Nk,+), b) if and only if a = b.

Proof. Let ϕ : ((Nk,+), a)→ ((Nk,+), b) be an isomorphism. Since Nk + a+ k =

{a+ 2k, a+ 2k+ 1, a+ 2k+ 2, . . .} and for all i ∈ N, Nk +a+ (k+ i) ⊆ Nk +a+k,

it follows that

Nk + a+ Nk =
∞⋃
i=0

(Nk + a+ (k + i)) = Nk + a+ k.

Therefore we have that

(Nk + a+ k)ϕ = (Nk + a+ Nk)ϕ

= (Nkϕ) + b+ (Nkϕ)

= Nk + b+ Nk (since ϕ is onto)

= Nk + b+ k.

Since ϕ : Nk → Nk is a bijection,

(Nk r (Nk + a+ k))ϕ = Nk r (Nk + b+ k),

so |Nk r (Nk + a+ k)| = |Nk r (Nk + b+ k)|, i.e., |{k, k + 1, . . . , k + (k + a− 1) =

a+ 2k− 1}| = |{k, k+ 1, . . . , k+ (k+ b− 1) = b+ 2k− 1}|. Hence k+ a = k+ b,

so a = b.

As a consequence of Theorem 3.8, we have the following result.

Corollary 3.9. For a, b ∈ N, ((N,+), a) ∼= ((N,+), b) if and only if a = b.
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We can see that for k ∈ N, (kN,+) is the infinite cyclic semigroup generated

by k. Since (N,+) is the infinite cyclic semigroup generated by 1, it follows that

(kN,+) ∼= (N,+). Therefore from Corollary 3.9, the following result is directly

obtained.

Corollary 3.10. For k, a, b ∈ N, ((kN,+), a) ∼= ((kN,+), b) if and only if a = b.



CHAPTER IV

THE MULTIPLICATIVE SEMIGROUP Zn

In this chapter, we deal with isomorphism theorems for the variants of the

semigroups (Zn, ·) and (kZn, ·). We characterize when two variants of (Zn, ·) are

isomorphic and give a necessary condition for being isomorphic of two variants of

(kZn, ·).

Recall that

Zn = {0, 1, . . . , n− 1} = {x | x ∈ Z},

kZn = (k, n)Zn

=

{
0, (k, n), 2(k, n), . . . ,

(
n

(k, n)
− 1

)
(k, n)

}
,

|Zn| = n and |kZn| =
n

(k, n)
. Note that lx = lx for all l, x ∈ Z and for any l ∈ Z,

lZn = lZn. In addition, we have that

{x | x ∈ Z and x is a unit of (Zn, ·)} = {x | x ∈ Z and (x, n) = 1}.

The following main result uses Theorem 2.8 as the main tool.

Theorem 4.1. For a, b ∈ Z, ((Zn, ·), ā) ∼= ((Zn, ·), b̄) if and only if (a, n) = (b, n).

Proof. Let ϕ : ((Zn, ·), ā)→ ((Zn, ·), b̄) be an isomorphism. Then for all x, y ∈ Z,

(x̄āȳ)ϕ = (x̄ϕ)b̄(ȳϕ).

This implies that (ZnāZn)ϕ = (Znϕ)b̄(Znϕ) = Znb̄Zn. Since ZnZn = Zn, it follows

that

(āZn)ϕ = b̄Zn.
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But since ϕ is 1-1, we have that |āZn| = |b̄Zn|. Hence
n

(a, n)
=

n

(b, n)
which

implies that (a, n) = (b, n).

For the converse, assume that (a, n) = (b, n). Then

āZn = (a, n)Zn = (b, n)Zn = b̄Zn,

so ā = b̄x̄ for some x ∈ Z. This implies that n|(a− bx). Hence
n

(a, n)

∣∣∣∣a− bx(a, n)
.

Since (a, n) = (b, n), (a, n)|b. Therefore
n

(a, n)

∣∣∣∣( a

(a, n)
− b

(a, n)
x

)
, and so

a

(a, n)
≡ b

(a, n)
x

(
mod

n

(a, n)

)
.

Let l ∈ Z be such that
a

(a, n)
− b

(a, n)
x =

n

(a, n)
l. Since

(
x,

n

(a, n)

) ∣∣∣∣ b

(a, n)
x

and

(
x,

n

(a, n)

) ∣∣∣∣ n

(a, n)
l , it follows that

(
x,

n

(a, n)

) ∣∣∣∣ a

(a, n)
. Hence

(
x,

n

(a, n)

) ∣∣∣∣ ( a

(a, n)
,

n

(a, n)

)
. But

(
a

(a, n)
,

n

(a, n)

)
= 1, so

(
x,

n

(a, n)

)
= 1.

By Theorem 2.8, there are infinitely many primes p of the form

p ≡ x

(
mod

n

(a, n)

)
.

Then there exists a prime q > n such that

q ≡ x

(
mod

n

(a, n)

)
.

Thus

b

(a, n)
q ≡ b

(a, n)
x

(
mod

n

(a, n)

)
and hence

a

(a, n)
≡ b

(a, n)
q

(
mod

n

(a, n)

)
.
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This implies that

a ≡ bq(mod n),

so ā = b̄q̄. Since q > n and q is a prime, we have that (q, n) = 1. Thus q̄ is a unit

of (Zn, ·). By Proposition 2.2, we have that ((Zn, ·), ā) ∼= ((Zn, ·), b̄).

Example 4.2. From Theorem 4.1, we have that

((Z12, ·), 2̄) ∼= ((Z12, ·), 10) 6∼= ((Z12, ·), 4̄)

since (2, 12) = 2 = (10, 12) and (4, 12) = 4.

Theorem 4.3. For a, b ∈ Z, if ((kZn, ·), kā) ∼= ((kZn, ·), kb̄), then (k3a, n) =

(k3b, n).

Proof. Let ϕ : ((kZn, ·), kā) → ((kZn, ·), kb̄) be an isomorphism. Then for all

x, y ∈ Z,

((kx̄)(kā)(kȳ))ϕ = ((kx̄)ϕ)(kb̄)((kȳ)ϕ).

Since ϕ is onto, ((kZn)(kā)(kZn))ϕ = ((kZn)ϕ)(kb̄)((kZn)ϕ) = (kZn)(kb̄)(kZn).

It follows that

(k3āZn)ϕ = k3b̄Zn.

Since ϕ is 1-1, we have that |k3āZn| = |k3b̄Zn|. Hence
n

(k3a, n)
=

n

(k3b, n)
which

implies that (k3a, n) = (k3b, n).

Example 4.4. Consider (2Z12, ·). Since (23 · 1, 12) = 4 6= 12 = (23 · 3, 12), by

Theorem 4.3, we have that ((2Z12, ·), 2 · 1̄) 6∼= ((2Z12, ·), 2 · 3̄), i.e., ((2Z12, ·), 2̄) 6∼=

((2Z12, ·), 6̄).



CHAPTER V

SEMIGROUPS OF TRANSFORMATIONS OF SETS

In this chapter, some transformation semigroups on sets are considered. We

are motivated to study isomorphism theorems for the variants of I(X) and T (X)

by Theorem 2.4 and Theorem 2.5 given by Tsyaputa, respectively, where X is

an infinite set. In addition, M(X) and E(X) are also considered. We obtain

a necessary condition for two variants of I(X) to be isomorphic. A sufficient

condition for this case is provided. We give sufficient conditions for the variants

of M(X), E(X) and T (X) in the same manner.

Recall the following notations:

I(X) = the symmetric inverse transformation semigroup on X

(the 1-1 partial transformation semigroup on X),

M(X) = {α : X → X | α is 1-1},

E(X) = {α : X → X | α is onto},

T (X) = the full transformation semigroup on X.

The following facts are also recalled: G(X) is the group of units of all above

transformation semigroups; if G is a group, then (G, a) ∼= G for all a ∈ G;

M(X) = G(X) [E(X) = G(X)] if and only if X is finite.

Throughout this chapter, we assume that X is infinite.

To prove that for θ1, θ2 ∈ I(X), | ran θ1| = | ran θ2| if (I(X), θ1) ∼= (I(X), θ2),

the following lemma is needed. Note that X need not be required to be infinite

in the lemma.

Lemma 5.1. For θ ∈ I(X), |E(I(X), θ)| = 2| ran θ|.

Proof. We claim that E(I(X), θ) = {(θ−1)|A | A ⊆ ran θ}. Let α ∈ I(X) be such

that α = αθα. Then ranα ⊆ dom θ. To show that ranαθ ⊆ domα, let x ∈ ranαθ.



28

Then there exists y ∈ domαθ such that yαθ = x. But domαθ ⊆ domα, so

y ∈ domα. Since α = αθα, we have that yα = yαθα. Thus yα = (yαθ)α = xα.

Since α is 1-1, it follows that x = y ∈ domα. Hence we have ranαθ ⊆ domα. If

x ∈ domα, then

x = (xα)α−1 = (xαθα)α−1 = xαθ1domα = xαθ ∈ ran θ,

so domα ⊆ ran θ and αθ = 1domα. Since ranα ⊆ dom θ,

α = α1dom θ = αθθ−1 = 1domαθ
−1 = (θ−1)|domα

.

To prove the reverse inclusion, let A ⊆ ran θ. Then

(θ−1)|Aθ(θ
−1)|A = 1A(θ−1)|A = (θ−1)|A .

Hence (θ−1)|A ∈ E(I(X), θ).

If A,B ⊆ ran θ are such that A 6= B, then

dom(θ−1)|A = A 6= B = dom(θ−1)|B .

This implies that

|{(θ−1)|A | A ⊆ ran θ}| = |{A | A ⊆ ran θ}| = 2| ran θ|.

From the claim, we have

|E(I(X), θ)| = 2| ran θ| for all θ ∈ I(X),

as desired.

Theorem 5.2. For θ1, θ2 ∈ I(X), if (I(X), θ1) ∼= (I(X), θ2), then | ran θ1| =

| ran θ2|.

Proof. Assume that (I(X), θ1) ∼= (I(X), θ2). Then |E(I(X), θ1)| = |E(I(X), θ2)|,

so by Lemma 5.1, 2| ran θ1| = 2| ran θ2|. Hence | ran θ1| = | ran θ2| by the generalized

continuum hypothesis.
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Example 5.3. Let a1, a2, . . . ∈ X be such that ai 6= aj if i 6= j. Let

Ak = {a1, a2, . . . ak}

for all k ∈ N. Then | ran 1Ak | = k, so | ran 1Ak | 6= | ran 1Al| for all distinct k, l ∈ N.

By Theorem 5.2, (I(X), 1Ak) 6∼= (I(X), 1Al) for all distinct k, l ∈ N. This also

shows that there are infinitely many variants of I(X) such that any two of them

are not isomorphic.

The following example shows that the converse of Theorem 5.2 is not true in

general.

Example 5.4. Let a ∈ X. Then |X| = |X r {a}|. Let θ : X → X r {a} be a

bijection. Then θ ∈ I(X) r G(X), so θ is not a unit of I(X). By Theorem 2.3,

(I(X), θ) 6∼= I(X). Then (I(X), θ) 6∼= (I(X), 1X) but | ran θ| = |X r {a}| = |X| =

| ran 1X |.

Theorem 5.5. For θ1, θ2 ∈ I(X), if | ran θ1| = | ran θ2|, |Xrran θ1| = |Xrran θ2|

and |X r dom θ1| = |X r dom θ2|, then (I(X), θ1) ∼= (I(X), θ2).

Proof. Assume that | ran θ1| = | ran θ2|, |X r ran θ1| = |X r ran θ2| and |X r

dom θ1| = |X r dom θ2|. Then there are bijections ϕ1 : ran θ2 → ran θ1, ϕ2 :

X r ran θ2 → X r ran θ1 and ψ1 : X r dom θ1 → X r dom θ2. Let ψ2 = θ1ϕ
−1
1 θ−1

2 .

Then ψ2 : dom θ1 → dom θ2 is a bijection. Define ϕ and ψ ∈ G(X) by

ϕ =

 x y

xϕ1 yϕ2


x∈ran θ2
y∈Xrran θ2

and ψ =

 x y

xψ1 yψ2


x∈Xrdom θ1
y∈dom θ1

.

It follows that

ψθ2 = ψ2θ2 and θ2ϕ = θ2ϕ1.

Hence

θ1 = θ11ran θ1
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= θ1ϕ
−1
1 ϕ1

= θ1ϕ
−1
1 1ran θ2ϕ1

= θ1ϕ
−1
1 θ−1

2 θ2ϕ1

= (θ1ϕ
−1
1 θ−1

2 )θ2ϕ1

= ψ2θ2ϕ1

= (ψ2θ2)ϕ1

= (ψθ2)ϕ1

= ψ(θ2ϕ1)

= ψ(θ2ϕ)

= ψθ2ϕ.

Since ϕ and ψ are units of I(X), by Proposition 2.2, (I(X), θ1) ∼= (I(X), θ2).

Example 5.6. Let a, b be distinct elements of X. Then

| ran 1{a}| = 1 = | ran 1{b}|,

|X r ran 1{a}| = |X r {a}| = |X| = |X r {b}| = |X r ran 1{b}|,

|X r dom 1{a}| = |X r {a}| = |X| = |X r {b}| = |X r dom 1{b}|.

By Theorem 5.5, (I(X), 1{a}) ∼= (I(X), 1{b}). We can show similarly that

(I(X), 1Xr{a}) ∼= (I(X), 1Xr{b}). Notice that by Theorem 5.2, (I(X), 1{a}) 6∼=

(I(X), 1Xr{a}) for all a ∈ X. In addition, we have that

|{(I(X), 1{a}) | a ∈ X}| = |X| = |{(I(X), 1Xr{a}) | a ∈ X}|.

Theorem 5.7. For θ1, θ2 ∈ M(X), if |X r ran θ1| = |X r ran θ2|, then

(M(X), θ1) ∼= (M(X), θ2).

Proof. Assume that |Xrran θ1| = |Xrran θ2|. Since θ1 and θ2 are 1-1, | ran θ1| =

|X| = | ran θ2|. Let ϕ1 : ran θ2 → ran θ1 and ϕ2 : X r ran θ2 → X r ran θ1 be

bijections. Define ϕ ∈ G(X) by
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ϕ =

 x y

xϕ1 yϕ2


x∈ran θ2
y∈Xrran θ2

.

Let ψ = θ1ϕ
−1
1 θ−1

2 . We can see that ψ ∈ G(X) and θ2ϕ = θ2ϕ1. Then

θ1 = θ11ran θ1

= θ1ϕ
−1
1 ϕ1

= θ1ϕ
−1
1 1ran θ2ϕ1

= θ1ϕ
−1
1 θ−1

2 θ2ϕ1

= ψθ2ϕ1

= ψθ2ϕ.

By Proposition 2.2, we have that (M(X), θ1) ∼= (M(X), θ2).

Example 5.8. Since X is infinite, |X × X| = |X|. Let ϕ : X × X → X be a

bijection. Since

X ×X =
⋃̇
a∈X

({a} ×X),

it follows that

X =
⋃̇
a∈X

(({a} ×X)ϕ)

and |({a} × X)ϕ| = |{a} × X| = |X| for all a ∈ X. For each a ∈ X, let

Xa = ({a} ×X)ϕ. Then

X =
⋃̇
a∈X

Xa and |Xa| = |X| for all a ∈ X.

For each a ∈ X, let θa : X → Xa be a bijection. Then θa 6= θb for all distinct

a, b ∈ X. We also have that
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|X r ran θa| =

∣∣∣∣∣∣
⋃̇

b∈Xr{a}

Xb

∣∣∣∣∣∣ = |X|.

By Theorem 5.7, (M(X), θa) ∼= (M(X), θb) for all a, b ∈ X. This shows that there

is a set V of variants of M(X) such that

(1) |V| ≥ |X| and

(2) any two variants in V are isomorphic.

Theorem 5.9. For θ1, θ2 ∈ E(X), if P(θ1)≈ P(θ2), then (E(X), θ1)∼=(E(X), θ2).

Proof. Assume that P(θ1) ≈ P(θ2). Then there is a bijection ϕ : ran θ2(= X)→

ran θ1(= X) such that |xθ−1
2 | = |(xϕ)θ−1

1 | for all x ∈ ran θ2(= X), so we have

ϕ ∈ G(X) and

X =
⋃̇

x∈ran θ2

(xϕ)θ−1
1 =

⋃̇
x∈X

(xϕ)θ−1
1 .

For each x ∈ X, let ψx : (xϕ)θ−1
1 → xθ−1

2 be a bijection. Define ψ : X → X by

ψ =

 y

yψx


x∈X
y∈(xϕ)θ−1

1

.

It follows that ψ ∈ G(X). If x ∈ X and y ∈ (xϕ)θ−1
1 , then yψx ∈ xθ−1

2 , so

yψθ2ϕ = yψxθ2ϕ = ((yψx)θ2)ϕ = xϕ = yθ1.

This shows that ψθ2ϕ = θ1. Therefore (E(X), θ1) ∼= (E(X), θ2) by Proposition

2.2.

Example 5.10. From Example 5.8, X can be written as

X =
⋃̇
a∈X

Xa and |Xa| = |X| for all a ∈ X.
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Let a ∈ X. Since |X rXa| = |X| = |X r {a}|, there is a bijection ϕa : X rXa →

X r {a}. Define θa ∈ E(X) by

θa =

Xa y

a yϕa


y∈XrXa

.

Then |aθ−1
a | = |Xa| and |zθ−1

a | = 1 for all z ∈ X r {a}. Notice that θa 6= θb for all

distinct a, b ∈ X. Claim that P(θa) ≈ P(θb) for all a, b ∈ X. Let a, b ∈ X. Define

ϕ : X → X by

ϕ =

a b x

b a x


x∈Xr{a,b}

.

Then ϕ : ran θb(= X)→ ran θa(= X) is a bijection and

|(bϕ)θ−1
a | = |aθ−1

a | = |Xa| = |X| = |Xb| = |bθ−1
b |.

If x ∈ X r {b}, then xϕ 6= a, so

|(xϕ)θ−1
a | = 1 = |xθ−1

b |.

Hence we have the claim. By Theorem 5.9, (E(X), θa) ∼= (E(X), θb). This indi-

cates that there is a set V of variants of E(X) such that

(1) |V| ≥ |X| and

(2) any two variants in V are isomorphic.

Theorem 5.11. For θ1, θ2 ∈ T (X), if |X r ran θ1| = |X r ran θ2| and P(θ1) ≈

P(θ2), then (T (X), θ1) ∼= (T (X), θ2).

Proof. Assume that |X r ran θ1| = |X r ran θ2| and P(θ1) ≈ P(θ2). Let ϕ1 :

X r ran θ2 → X r ran θ1 be a bijection and ϕ2 : ran θ2 → ran θ1 be a bijection

such that |xθ−1
2 | = |(xϕ2)θ−1

1 | for all x ∈ ran θ2. Define ϕ : X → X by
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ϕ =

 x y

xϕ1 yϕ2


x∈Xrran θ2
y∈ran θ2

.

Then ϕ ∈ G(X). For each x ∈ ran θ2, let ψx : (xϕ2)θ−1
1 → xθ−1

2 be a bijection.

Note that X =
⋃̇

x∈ran θ2

xθ−1
2 =

⋃̇
x∈ran θ2

(xϕ2)θ−1
1 . Define ψ : X → X by

ψ =

 y

yψx


x∈ran θ2
y∈(xϕ2)θ−1

1

.

We can see that ψ ∈ G(X). Claim that ψθ2ϕ = θ1. Let x ∈ ran θ2 and y ∈

(xϕ2)θ−1
1 . Then yψx ∈ xθ−1

2 , so

yψθ2ϕ = yψxθ2ϕ = (yψxθ2)ϕ = xϕ = xϕ2 = yθ1.

Hence we have the claim. By Propostion 2.2, (T (X), θ1) ∼= (T (X), θ2), as desired.

Example 5.12. From Example 5.8, X can be written as

X =
⋃̇
a∈X

Xa and |Xa| = |X| for all a ∈ X.

For a ∈ X, choose a′ ∈ X r {a} and define θa : X → X by

θa =

Xa X rXa

a a′

 .

Then θa 6= θb for all distinct a, b ∈ X since

aθ−1
a = Xa and aθ−1

b =

∅ if a 6= b′,

X rXb if a = b′.
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If a, b ∈ X, then

|X r ran θa| = |X r {a, a′}| = |X| = |X r {b, b′}| = |X r ran θb|.

Define ϕ : ran θb → ran θa by

ϕ =

b b′

a a′

 .

Then

|(bϕ)θ−1
a | = |aθ−1

a | = |Xa| = |X| = |Xb| = |bθ−1
b |

and

|(b′ϕ)θ−1
a | = |a′θ−1

a | = |X rXa| = |X| = |X rXb| = |b′θ−1
b |.

This proves that P(θa) ≈ P(θb). Then by Theorem 5.11, (T (X), θa) ∼= (T (X), θb).

Hence we have a set V of variants of T (X) such that

(1) |V| ≥ |X| and

(2) any two variants in V are isomorphic.



CHAPTER VI

SEMIGROUPS OF LINEAR TRANSFORMATIONS

The main result of this chapter is to determine when two variants of the

semigroup LF (V ) are isomorphic where V is a finite-dimensional vector space over

a finite field F . This idea relating to finiteness is motivated by Tsyaputa’s works

(Theorem 2.4, Theorem 2.5 and Theorem 2.6). As a consequence, we characterize

when two variants of (Mn(F ), ·) are isomorphic where F is a finite field. However,

we obtain some theorems of sufficiency for this matter when V or F is arbitrary.

The semigroups (Mn(F ), ·) where F is any field, MF (V ) and EF (V ) are also

considered in this chapter.

Recall that LF (V ) is the semigroup under composition of all linear transfor-

mations α : V → V , MF (V ) and EF (V ) are subsemigroups of LF (V ) defined

by

MF (V ) = {α ∈ LF (V ) | α is 1-1}

( = {α ∈ LF (V ) | kerα = {0}}),

EF (V ) = {α ∈ LF (V ) | α is onto}

( = {α ∈ LF (V ) | ranα = V })

and Mn(F ) is the set of all n× n matrices over F . Also, we recall that GF (V ) is

the set of all isomorphisms from V onto itself and GF (V ) is the group of units of

LF (V ),MF (V ) and EF (V ).

Throughout, let V be a vector space over a field F and n ∈ N.

To prove the main result, the following two lemmas are needed.

Lemma 6.1. For θ1, θ2 ∈ LF (V ), if rank θ1 = rank θ2, dimF ker θ1 = dimF ker θ2

and dimF (V/ ran θ1) = dimF (V/ ran θ2), then there exist isomorphisms ϕ, ψ ∈

LF (V ) such that ψθ2ϕ = θ1.
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Proof. Let B1 and B2 be bases of ker θ1 and ker θ2, respectively, and let B̄1 be

a basis of V containing B1 and B̄2 a basis of V containing B2. It follows that

(B̄1 r B1)θ1 and (B̄2 r B2)θ2 are bases of ran θ1 and ran θ2, respectively. We

also have that uθ1 6= vθ1 for distinct u, v ∈ B̄1 r B1 and uθ2 6= vθ2 for distinct

u, v ∈ B̄2 rB2. Then

|(B̄1 rB1)θ1| = |B̄1 rB1| and |(B̄2 rB2)θ2| = |B̄2 rB2|.

Next, let ¯̄B1 be a basis of V containing (B̄1 rB1)θ1 and ¯̄B2 a basis of V containing

(B̄2 r B2)θ2. By assumption, |(B̄1 r B1)θ1| = rank θ1 = rank θ2 = |(B̄2 r B2)θ2|

and |B1| = dimF ker θ1 = dimF ker θ2 = |B2|. Then |B̄1 r B1| = |B̄2 r B2|. Let

ψ1 : B1 → B2 and ψ2 : B̄1 r B1 → B̄2 r B2 be bijections. Define ψ ∈ LF (V ) on

B̄1 by

ψ =

 u v

uψ1 vψ2


u∈B1

v∈B̄1rB1

.

Then ψ|B̄1
: B̄1 → B̄2 is a bijection, so we have that ψ ∈ GF (V ). Since

dimF (V/ ran θ1) = dimF (V/ ran θ2), it follows that | ¯̄B1 r (B̄1 r B1)θ1| = | ¯̄B2 r

(B̄2rB2)θ2|. Let π : ¯̄B2r(B̄2rB2)θ2 → ¯̄B1r(B̄1rB1)θ1 be a bijection. Note that

¯̄B2 = ((B̄2 rB2)θ2) ∪̇ ( ¯̄B2 r (B̄2 rB2)θ2) = ((B̄1 rB1)ψθ2) ∪̇ ( ¯̄B2 r (B̄2 rB2)θ2).

Define ϕ ∈ LF (V ) on ¯̄B2 by

ϕ =

(uψ)θ2 v

uθ1 vπ


u∈B̄1rB1,

v∈ ¯̄B2r(B̄2rB2)θ2

.

Since ψ|B̄1rB1
= ψ2 : B̄1 rB1 → B̄2 rB2 is a bijection and 〈B2〉∩〈B̄2 rB2〉 = {0},

we have that ϕ is well-defined. Since 〈B1〉 ∩ 〈B̄1 r B1〉 = {0}, it follows that for

u, v ∈ B̄1 r B1, uθ1 = vθ1 if and only if u = v. Thus ϕ| ¯̄B2
is a bijection from ¯̄B2

onto ¯̄B1. Hence ϕ ∈ GF (V ). Claim that ψθ2ϕ = θ1. If u ∈ B1, then uψ ∈ B2

which is a basis of ker θ2, so
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uψθ2ϕ = (uψθ2)ϕ = 0ϕ = 0 = uθ1.

If u ∈ B̄1rB1, then by the definition of ϕ, uψθ2ϕ = uθ1. It follows that ψθ2ϕ = θ1

on B̄1. Therefore we have ψθ2ϕ = θ1, as desired.

Lemma 6.2. Assume that V is finite-dimensional. If θ1, θ2 ∈ LF (V ) are such

that rank θ1 = rank θ2, then there exist ϕ, ψ ∈ GF (V ) such that ψθ2ϕ = θ1.

Proof. Since dimF ker θ1 + rank θ1 = dimF V = dimF ker θ2 + rank θ2, dimF V is

finite and rank θ1 = rank θ2, it follows that dimF ker θ1 = dimF ker θ2. Also, we

have dimF (V/ ran θ1) = dimF V − rank θ1 = dimF V − rank θ2 = dimF (V/ ran θ2).

Hence by Lemma 6.1, the desired result follows.

Theorem 6.3. Assume that V is finite-dimensional and F is a finite field. Then

for θ1, θ2 ∈ LF (V ), (LF (V ), θ1) ∼= (LF (V ), θ2) if and only if rank θ1 = rank θ2.

Proof. First, assume that (LF (V ), θ1) ∼= (LF (V ), θ2) through an isomorphism ϕ.

Let 0V be the zero mapping on V . Then 0V is the zero of both (LF (V ), θ1)

and (LF (V ), θ2), so we have that 0V ϕ = 0V . We claim that αθ1 = βθ1 if

and only if (αϕ)θ2 = (βϕ)θ2 for all α, β ∈ LF (V ). Let α, β ∈ LF (V ) and as-

sume that αθ1 = βθ1. Then αθ1λ = βθ1λ for all λ ∈ LF (V ), it follows that

(αϕ)θ2(λϕ) = (βϕ)θ2(λϕ) for all λ ∈ LF (V ). Since (LF (V ))ϕ = LF (V ), we

have (αϕ)θ2 = (αϕ)θ21V = (βϕ)θ21V = (βϕ)θ2. But since ϕ−1 is an isomor-

phism from (LF (V ), θ2) onto (LF (V ), θ1), if (αϕ)θ2 = (βϕ)θ2, then from the

above proof we have similarly that (αϕ)ϕ−1θ1 = (βϕ)ϕ−1θ1, i.e., αθ1 = βθ1.

Therefore we prove that αθ1 = βθ1 if and only if (αϕ)θ2 = (βϕ)θ2. In par-

ticular, if β = 0V , then αθ1 = 0V if and only if (αϕ)θ2 = 0V . This proves

that for every α ∈ LF (V ), αθ1 = 0V if and only if (αϕ)θ2 = 0V . It follows

that ranα ⊆ ker θ1 if and only if ranαϕ ⊆ ker θ2 for all α ∈ LF (V ). This

proves that (LF (V, ker θ1))ϕ = LF (V, ker θ2) since α is an arbitrary element in

LF (V ). Consequently, |LF (V, ker θ1)| = |LF (V, ker θ2)|. By Remark 2.10 (9),

|LF (V, ker θ1)| = |F |(dimF V )(dimF ker θ1) and |LF (V, ker θ2)| = |F |(dimF V )(dimF ker θ2).
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It follows that dimF ker θ1 = dimF ker θ2. Hence rank θ1 = dimF V −dimF ker θ1 =

dimF V − dimF ker θ2 = rank θ2.

The converse follows directly from Proposition 2.2 and Lemma 6.2.

The proof is thereby completed.

Corollary 6.4. Assume that F is a finite field . Then for P1, P2 ∈Mn(F ),

((Mn(F ), ·), P1) ∼= ((Mn(F ), ·), P2) if and only if rank P1 = rank P2.

Proof. Let V be a vector space over F of dimension n. Then by Theorem 2.11,

there exists a semigroup isomorphism ϕ : LF (V )→Mn(F ) which preserves ranks.

Let θ1, θ2 ∈ LF (V ) be such that θ1ϕ = P1 and θ2ϕ = P2. Then for all α, β ∈

LF (V ),

(αθ1β)ϕ = (αϕ)P1(βϕ) and (αθ2β)ϕ = (αϕ)P2(βϕ).

Since ϕ : LF (V )→Mn(F ) is a bijection, it follows from the above equalities that

ϕ is an isomorphism from (LF (V ), θ1) onto ((Mn(F ), ·), P1) and an isomorphism

from (LF (V ), θ2) onto ((Mn(F ), ·), P2), i.e., (LF (V ), θ1) ∼= ((Mn(F ), ·), P1) and

(LF (V ), θ2) ∼= ((Mn(F ), ·), P2).

First, assume that ((Mn(F ), ·), P1) ∼= ((Mn(F ), ·), P2). This implies that

(LF (V ), θ1) ∼= (LF (V ), θ2). By Theorem 6.3, rank θ1 = rank θ2. Since ϕ pre-

serves ranks, it follows that rank P1 = rank P2.

Conversely, assume that rank P1 = rank P2. Then rank θ1 = rank θ2 since

ϕ preserves ranks. By Theorem 6.3, (LF (V ), θ1) ∼= (LF (V ), θ2). Consequently,

((Mn(F ), ·), P1) ∼= ((Mn(F ), ·), P2).

From Proposition 2.2 and Lemma 6.1, the following theorem is obtained.

Theorem 6.5. If θ1, θ2 ∈ LF (V ) are such that rank θ1 = rank θ2, dimF ker θ1 =

dimFkerθ2 and dimF (V/ran θ1)=dimF (V/ran θ2), then (LF (V ), θ1)∼=(LF (V ), θ2).

Example 6.6. Let V be an infinite-dimensional vector space over F and let B

be a basis of V . Then B can be written as
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B =
⋃̇
v∈B

Bv and |Bv| = |B| for all v ∈ B

(see Example 5.8). For each v ∈ B, let ϕv : B → Bv be a bijection and let

θv ∈ LF (V ) be such that (θv)|B = ϕv. Then for every v ∈ B, θv is a monomorphism

whose range is 〈Bv〉. We also have that θv 6= θw if v 6= w. Therefore ker θv = {0}

and rank θv = |Bv| and

dimF (V/ ran θv) =

∣∣∣∣∣∣
⋃̇

w∈Br{v}

Bw

∣∣∣∣∣∣ = |B|.

By Theorem 6.5, (LF (V ), θv) ∼= (LF (V ), θw) for all v, w ∈ B. Hence there is a set

V of cardinality at least dimF V of variants of LF (V ) such that all variants in V

are isomorphic.

The following theorem is directly obtained from Proposition 2.2 and Lemma

6.2.

Theorem 6.7. Assume that V is finite-dimensional. If θ1, θ2 ∈ LF (V ) are such

that rank θ1 = rank θ2, then (LF (V ), θ1) ∼= (LF (V ), θ2).

From Theorem 6.7 and the proof of Corollary 6.4, the following result holds.

Corollary 6.8. If P1, P2 ∈ Mn(F ) are such that rank P1 = rank P2, then

((Mn(F ), ·), P1) ∼= ((Mn(F ), ·), P2).

Example 6.9. Let F be a field of characteristic greater than 8. Define P1, P2, P3 ∈

Mn(F ) by

P1 =


1 2 3 4

0 2 3 4

0 0 3 4

0 0 0 0

 , P2 =


1 2 3 4

0 2 3 4

0 0 3 4

0 0 3 4

 and P3 =


1 2 3 4

0 2 3 4

0 2 3 4

0 4 6 8

 .
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Then rank P1 = 3 = rank P2 and rank P3 = 2. By Corollary 6.8, ((M4(F ), ·), P1) ∼=

((M4(F ), ·), P2).

If F is a finite field, then by Corollary 6.4, we have that ((M4(F ), ·), P1) 6∼=

((M4(F ), ·), P3).

Theorem 6.10. For θ1, θ2 ∈MF (V ), if dimF (V/ ran θ1) = dimF (V/ ran θ2), then

(MF (V ), θ1) ∼= (MF (V ), θ2).

Proof. Let B be a basis of V . Since θ1 and θ2 are monomorphisms, Bθ1 and

Bθ2 are bases of ran θ1 and ran θ2, respectively, and |Bθ1| = |B| = |Bθ2|. Let

B1 be a basis of V containing Bθ1 and B2 a basis of V containing Bθ2. By

assumption, |B1 r (Bθ1)| = dimF (V/ ran θ1) = dimF (V/ ran θ2) = |B2 r (Bθ2)|.

Let ϕ1 : Bθ2 → Bθ1 and ϕ2 : B2 r (Bθ2) → B1 r (Bθ1) be bijections. Define

ϕ ∈ LF (V ) on B2 by

ϕ =

 u v

uϕ1 vϕ2


u∈Bθ2
v∈B2r(Bθ2)

.

Then ϕ|B2
: B2 → B1 is a bijection, so we have that ϕ ∈ GF (V ). Since vθ2ϕ =

vθ2ϕ1 for all v ∈ B, it follows that θ2ϕ = θ2ϕ1. Define ψ ∈ LF (V ) on B by

ψ = θ1ϕ
−1
1 θ−1

2 . We can see that ψ|B : B → B is a bijection, so ψ ∈ GF (V ). If

v ∈ B, then

vθ1 = vθ11Bθ1

= vθ1ϕ
−1
1 ϕ1

= vθ1ϕ
−1
1 1Bθ2ϕ1

= vθ1ϕ
−1
1 θ−1

2 θ2ϕ1

= v(θ1ϕ
−1
1 θ−1

2 )θ2ϕ1

= vψθ2ϕ1

= vψ(θ2ϕ1)

= vψθ2ϕ.
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Hence θ1 = ψθ2ϕ on B. Consequently, θ1 = ψθ2ϕ. By Proposition 2.2, we have

that (MF (V ), θ1) ∼= (MF (V ), θ2).

Example 6.11. From Example 6.6, we can see that θv ∈ MF (V ). By Theorem

6.10, we have that (MF (V ), θv) ∼= (MF (V ), θw) for all v, w ∈ B. Therefore there is

a set V of cardinality at least dimF V of variants of MF (V ) such that all variants

in V are isomorphic.

Theorem 6.12. For θ1, θ2 ∈ EF (V ), if dimF ker θ1 = dimF ker θ2, then

(EF (V ), θ1) ∼= (EF (V ), θ2).

Proof. Let B1 be a basis of ker θ1 and B2 a basis of ker θ2. By assumption, |B1| =

|B2|. Let ψ1 : B1 → B2 be a bijection. Let B̄1 be a basis of V containing B1 and

B̄2 a basis of V containing B2. Since θ1 and θ2 are epimorphisms, (B̄1 rB1)θ1 and

(B̄2rB2)θ2 are bases of V . Let ϕ ∈ LF (V ) such that ϕ : (B̄2rB2)θ2 → (B̄1rB1)θ1

be a bijection. Then ϕ ∈ GF (V ). For v ∈ (B̄1 r B1)θ1, let v′ ∈ vθ−1
1 and

for v ∈ (B̄2 r B2)θ2, let v′′ ∈ vθ−1
2 . Then B1 ∪̇ {v′ | v ∈ (B̄1 r B1)θ1} and

B2 ∪̇ {v′′ | v ∈ (B̄2 r B2)θ2} = B2 ∪̇ {(vϕ−1)′′ | v ∈ (B̄1 r B1)θ1} are bases

of V . Since |(B̄1 r B1)θ1| = |(B̄2 r B2)θ2| and ϕ is a bijection, it follows that

|{v′ | v ∈ (B̄1rB1)θ1}| = |{v′′ | v ∈ (B̄2rB2)θ2}| = |{(vϕ−1)′′ | v ∈ (B̄1rB1)θ1}|.

We can see that the mapping ψ2 defined by v′ψ2 = (vϕ−1)′′ for all v ∈ (B̄1 rB1)θ1

is a bijection from {v′ | v ∈ (B̄1 rB1)θ1} onto {(vϕ−1)′′ | v ∈ (B̄1 rB1)θ1}. Define

ψ ∈ LF (V ) on the basis B1 ∪̇ {v′ | v ∈ (B̄1 rB1)θ1} by

ψ =

 u v′

uψ1 v′ψ2


u∈B1

v∈(B̄1rB1)θ1

.

Then the restriction of ψ to B1 ∪̇ {v′ | v ∈ (B̄1 r B1)θ1} is a bijection from

B1 ∪̇ {v′ | v ∈ (B̄1 r B1)θ1} onto B2 ∪̇ {(vϕ−1)′′ | v ∈ (B̄1 r B1)θ1}, so we have

ψ ∈ GF (V ). Notice that v′ψ = v′ψ2 = (vϕ−1)′′ for all v ∈ (B̄1 rB1)θ1. If v ∈ B1,

then vψ = vψ1 ∈ B2, so



43

vθ1 = 0 = 0ϕ = (vψθ2)ϕ = v(ψθ2ϕ).

If v ∈ (B̄1 rB1)θ1, then

v′θ1 = v = (vϕ−1)ϕ = (vϕ−1)′′θ2ϕ = v′ψθ2ϕ.

This proves that θ1 = ψθ2ϕ on the basis B1 ∪̇ {v′ | v ∈ (B r B1)θ1}. Hence

θ1 = ψθ2ϕ, as desired. Therefore (EF (V ), θ1) ∼= (EF (V ), θ2), by Proposition

2.2.

Example 6.13. Let v,B and Bv be as in Example 6.6. Since for each v ∈ B,

|Bv| = |B|, there exists a bijection ψv : Bv → B. Define θ′v ∈ LF (V ) on B by

θ′v =

 u B rBv

uψv 0


u∈Bv

.

Then for every v ∈ B, ran θ′v = 〈B ∪ {0}〉 = V , so θ′v ∈ EF (V ). We can see that

ker θ′v = 〈B rBv〉 for all v ∈ B, so dimF ker θ′v = |B rBv| =

∣∣∣∣∣∣
⋃̇

w∈Br{v}

Bw

∣∣∣∣∣∣ = |B|

for all v ∈ B and θ′v 6= θ′w if v 6= w. By Theorem 6.12, (EF (V ), θ′v)
∼= (EF (V ), θ′w)

for all v, w ∈ B. Hence we have that there is a set V of cardinality at least dimF V

of variants of EF (V ) such that all variants in V are isomorphic.
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