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CHAPTER I
INTRODUCTION

If S is a semigroup and a € S, the semigroup (S, 0) defined by x o y = zay
for all x,y € S is called the variant of S induced by a and it is denoted by (5, a).
Variants of abstract semigroups were first studied by Hickey [2] in 1983. In fact,
variants of concrete semigroups of relations were earlier considered by Magill [9]
in 1967. Hickey [1, 2, 3, 4, 5] introduced various results relating to variants of
semigroups. Khan and Lawson [8] determined an element a in a regular semigroup
and an inverse semigroup such that (.5, a) is a regular semigroup.

Isomorphism theorems are considered important in every algebraic structure.
It is interesting to know when two variants of a certain semigroup are isomorphic.
It is clear that if S is a semigroup with identity and a is a unit of S, then (S,a) = S
through the mapping x — ax. In particular, any variant of a group G is isomorphic
to G.

For a nonempty set X, let T(X), P(X) and I(X) denote the full transforma-
tion semigroup, the partial transformation semigroup and the symmetric inverse
semigroup on X, respectively. Notice that T'(X) and I(X) are subsemigroups
of P(X). If X is a finite set containing n elements, let T,,, P, and I,, stand for
T(X),P(X) and I(X), respectively. For 6 € P, and k € {1,...,n}, let

ty = |{y € ranb | \y9_1| = k}|.

The n-tuple (t1,ta,...,t,) is called the type of 6. In 2003-2004, Tsyaputa [12,
13] provided the remarkable results on the variants of I,,, 7T, and P, as follows:
for 01,05 € I, (I,,01) = (I,,09) if and only if |ranf,| = |ranbs|; for 01,0, €
Ty, (Ty,01) = (T, 0-) if and only if ; and 6, have the same type and this is also
true for the variants of P,.

The purpose of this research is to give necessary and/or sufficient conditions



for two variants of the semigroups of our interest to be isomorphic.

This research is organized as follows:

Chapter II contains basic definitions, notations and quoted results which are
needed for this research.

Chapter III deals with some multiplicative and additive semigroups of inte-
gers. We give necessary and sufficient conditions for two variants of the following

semigroups to be isomorphic:
(Na ')7 (Nka +) and (kNv +>

where N is the set of all natural numbers (positive integers) and Ny, = {k, k +
1,k +2,...}. Note that N = N; = IN. It is shown that ((N,-),a) = ((N,-),b)

Tk

if and only if either a = b = 1 or a = pi'py*-- - p; 1y

and b = ¢i'¢y? - -+ q;" for
some distinct primes p1, po, . . ., pr and some distinct primes ¢, gs, . . . , ¢x and some
1,72, ..., 7k € N. We show that ((Ng,+),a) = ((Ng,+),b) if and only if a = b.
This is also true for the variants of (kN, +). In addition, necessary conditions for
being isomorphic of two variants of (Z,-) are provided where Z is the set of all

integers.

It is shown in Chapter IV that ((Z,,-),a) = ((Zx,-),b) if and only if (a,n) =
(b,n). Dirichlet’s theorem for primes in arithmetic progression in number theory
is useful to prove this fact. We also show that if ((kZ,,),ka) = ((kZ,,-), kb),
then (k3a,n) = (k3b,n).

In Chapter V, the following semigroups of transformations of X are considered

where X is a nonempty set which need not be finite:

I(X), M(X), E(X) and T(X)

where
M(X)={aeT(X)|ais 1-1},
E(X)={aeT(X)|aisonto}.

We consider when two variants of 1(X) are isomorphic. Using the technique of

the proof given in [12] and the generalized continuum hypothesis, we obtain nec-

essary conditions as given in [12] as follows: for 61,0, € I(X), if (I(X),6;) =



(I(X),02), then |ranf;| = |ranf,|. Moreover, we give an example to show
that the converse is not true in general. However, we also give sufficient con-
ditions for two variants of I(X) are isomorphic as follows: for 0,60, € I(X), if
|ran 6| = |ran 6|, | X N ran6,| = | X \ranfy| and | X \ dom 6| = | X \ dom 6|,
then (I(X),601) = (I(X),60). Sufficient conditions for any two variants of the
M(X), E(X) and T(X) to be isomorphic are provided. The following results are
shown for an infinite set X. If 61,60, € M(X) and | X \ran#,| = | X \ran 6|, then
(M(X),60,) = (M(X),6y). If 6,,6, € E(X) and the partition of X induced by 6,
and the partition of X induced by 65 are equivalent, then (E(X),0;) = (E(X),0s).
For 01,0, € T(X), (T'(X),6,) = (T(X),0,) if both the above sufficient con-
ditions are satisfied. Note that the partition of X induced by 0 € T(X) is
{x0~' | z € ran @} and the partition of X induced by #; and the partition of X in-
duced by 6, are said to be equivalent if there exists a bijection ¢ : ran #y — ran 6,
such that |20, !| = |(z¢)0; | for all € ran fs.

In the last chapter, the semigroup Lg(V') under composition of all linear trans-
formations from a vector space V' over a field F into itself is considered. Tsya-
puta’s works mentioned above motivate us to consider variants of Lp(V') where
V' is finite-dimensional and F' is finite. The following result is obtained. If V' is
finite-dimensional and F is a finite field, then for 6,0y € Lp(V), (Lrp(V),0;) =
(Lr(V),0y) if and only if rank §; = rank 6. We obtain the following result as
a consequence. For a finite field F', a positive integer n and P, P, € M, (F),
(Mn(F),-), P1) = (Mu(F),-), P,) if and only if rank P, = rank P, where M, (F)
denotes the set of all n x n matrices over F. From a lemma of the proof of
the main result of this chapter, we obtain sufficient conditions for two vari-
ants of Lp(V) to be isomorphic as follows: for 0;,0, € Lg(V), if rank 6, =
rank 0y, dimpker§; = dimp ker 0, and dimg(V/ran6;) = dimg(V/ran6,), then
(Lp(V),0,) = (Lp(V),02). In particular, if V' is a finite-dimensional vector space
over I’ and rank ¢, = rank 0y, then (Lp(V),0,) = (Lp(V),02). We obtain as a
consequence of this fact that if Py, P, € M, (F') are such that rank P, = rank P,
then (M, (F),-), P1) = (M,(F),-), P,). In addition, we give sufficient conditions



for two variants of the following subsemigroups of Lg(V") to be isomorphic:

Mp(V) ={a € Lp(V) | a is 1-1}
(={a € Lp(V)|kera={0}}),
Ep(V) ={a € Lp(V) | a is onto}
( (V)

={a € Lp(V)|rana =V}).

For an infinite-dimensional vector space V', we obtain the following results: if
61,05 € Mp(V) are such that dimp(V/ran6;) = dimp(V/ran 6s), then (Mp(V'), 61)
= (Mp(V),0,); if 01,05 € Er(V) are such that dimg ker ¢, = dimp ker 65, then
(Ep(V),01) = (Ep(V),0,).



CHAPTER I1
PRELIMINARIES

The cardinality of a set X is denoted by |X|. The value of a mapping « at z
in the domain of « shall be written as za. The notation U stands for a disjoint
union. The identity mapping on a set A is denoted by 14.

Denote by N and Z the set of all natural numbers (positive integers) and the set
of all integers, respectively. For a,b € Z and a # 0, a|b means that b is divisible
by a. In this research, we use the generalized continuum hypothesis on cardinal
numbers. It follows that if @ and b are cardinal numbers such that 2% = 2°, then
a="b ([11], p. 142).

In a semigroup S, we can adjoin an extra element 0 and define 0x = 20 = 0
for all z € S. Then S U {0} becomes a semigroup with zero 0. For a semigroup

S, we let

50 Su{0} if |S| =1 or S has no zero,

S otherwise.

A semigroup S is called a left [right] zero semigroup if every element of S is a
left [right] zero, i.e., xy = x [xy = y| for all z,y € S. A semigroup S with zero 0
is called a zero semigroup if xy = 0 for all x,y € S.

A Kronecker semigroup is a semigroup S with zero 0 such that for all z,y € S,

x ifx=y,

0 ifx#y.

Ty =

If S is a semigroup with identity 1 and a € S, then a is called a unit of S if

ab = ba = 1 for some b € S. We can see that the element b is unique and it is



denoted by a~!. Note that the set of all units of S forms a subgroup of S, which
is the greatest subgroup of S containing 1 and it is called the group of units of S.
An element a of a semigroup S is called an idempotent if a®> = a. The identity
of a group G is exactly one idempotent of G. We denote the set of all idempotents
of a semigroup S by E(S).
An element a of a semigroup S is called regular if a = azxa for some = € S and
S is called a regqular semigroup if every element of S is regular. A semigroup S is

1

called an inverse semigroup if for every x € S, there is the unique 7" in S such

that x = x27 'z and 7! = 2~ ez~ !,

If S is a semigroup and a € S, then the semigroup (5, o) defined by zoy = zay
for all z,y € S is called the variant of S induced by a and it is denoted by (.5, a).
It is clear that if S has a zero 0, then 0 is the zero of the variant (S5, a) of S.

For semigroups S and S, S = S’ means that S is isomorphic to S, i.e., there
exists a bijection ¢ : S — S’ such that (zy)¢ = (z¢)(yp) for all z,y € S. Notice
that we also have S’ = S through ¢~!. Therefore we have that for a,b in a
semigroup S, (S,a) = (S, b) if and only if there is a bijection ¢ : S — S such that
(xay)p = (xp)b(yp) for all x,y € S. In addition, for semigroups S, 5" and S”, if
S =S5 and S = S” through ¢ and ¢/, respectively, then S = S” through @'
The notation S % S” means that S and S’ are not isomorphic.

The following facts relate to being isomorphic of variants which will be used

later.

Proposition 2.1. Let S be a semigroup with identity and a,b units of S. Then
(S,a) = (S,b) through the mapping x — axb~'. In particular, (S,a) = S through
the mapping x v+ ax and S = (S,a) through the mapping x — xa~'. Hence for

any group G, (G,a) = G for all a € G.

Proof. Define ¢ : S — S by x¢ = axb™! for all € S. Since a and b are units, ¢
is clearly 1-1. If z € S, then (a'xb)p = a(a 'zb)b™! = x. If x,y € S, then

(zay)p = a(zay)b™" = (axb™")b(ayb™") = (x¢)b(ysp).

Hence ¢ is an isomorphism from (S, a) onto (S,b), as desired. O



Proposition 2.2. Let S be a semigroup with identity and a,b € S. If there are
units u,v in S such that uav = b, then (S,a) = (S,b).

Proof. Define ¢ : S — S by zo = vtazu~! for all z € S. Since u and v are units,
@ is clearly 1-1. If z € S, then (vru)p = v (veu)u™ = z. If 2,y € S, then

(ray)p = v~ (zay)u™"

= (v o Huav(v tyu™)
= (v 'wu (v tyu)

= (zp)b(yp)-

Thus ¢ is an isomorphism from (5, a) onto (.S,b). O

Theorem 2.3 ([2]). If S is a semigroup and a € S such that (S, a) has an identity,
then

(i) S has an identity,
(i) a is a unit and

(ii) (S,a) = S.

Hence for a semigroup S with identity and a € S,(S,a) = S if and only if a is a

unit.

Note that Hickey [2] proved Theorem 2.3 by using a fact of Green’s relations on

semigroups.

For a nonempty set X, let T'(X), P(X) and I(X) denote the full transforma-
tion semigroup, the partial transformation semigroup and the symmetric inverse
semigroup (the 1-1 partial transformation semigroup) on X, respectively. Note
that 7'(X) and I(X) are subsemigroups of P(X). The domain and the range
(image) of @ in P(X) are denoted by dom « and ran «, respectively. We have that
for o, 5 € P(X),

dom(aB) = (rana N dom B)a~ C dom a,

ran(af) = (ranaNdom )3 Cran S and



forx € X,z € domaf & = € doma and xa € dom 5.

It is well-known that P(X) and T'(X) are regular semigroups and I(X) is an
inverse semigroup ([6], p.4). We see that 1x (the identity mapping on X) is the
identity of P(X),T(X) and I(X) and the empty transformation 0 is the zero of
P(X) and I(X). For a € P(X),« is an idempotent of P(X), i.e., a® = q, if and
only if rana C dom « and za = z for all z € ran «. It follows that for o € I(X), «
is an idempotent of I(X) if and only if « is the identity mapping on dom a, i.e.,
@ = lgoma-

If X is finite and | X| =n, let T,,, P, and I, stand for T'(X), P(X) and I(X),
respectively. For § € P, and k € {1,2,...,n}, let

tr ={y €ran | [y0~"| = k}|,
ie.,

tr = {y € rand | |[{z € dom 0 | 20 = y}| = k}|.

The n-tuple (t1,ts,...,t,) is called the type of 6. The following remarkable iso-
morphism theorems for the variants of [,,7, and P, were given by Tsyaputa

12, 13].

Theorem 2.4 ([12]). For 01,05 € I,,,(1,,01) = (I,,02) if and only if |ran6,| =

| ran 05

Theorem 2.5 ([12]). For 61,05 € T,,,(T,,,01) = (T,,,02) if and only if 61 and 6,

have the same type.

Theorem 2.6 ([13]). For 01,05 € P,,(P,,0,) = (P,,0s) if and only if 6, and 0,

have the same type.

For convenience, we may write a € P(X), by using a bracket notation. For

example,

a

c d

stands for the mapping « with dom o = {a, b}, ran o = {¢, d},



ac = ¢ and ba = d,

A x
stands for the mapping 4 with dom g = X,

/
TEXNA

a

a if x €A,
ran = {a}U{2' |z € X N\ A} and z0 =

z if xe X A

xa !

By the above notations, a mapping « can be written as o =

X
reran o

We shall give some examples of being isomorphic for the variants of the fol-
lowing semigroups: left zero semigroups, right zero semigroups, zero semigroups

and Kronecker semigroups.

Example 2.7. (1) If S is a left zero semigroup, a € S and ¢ is a bijection on S,
then for all z,y € S, (xay)p = xo = (xp)(yp). Hence ¢ is an isomorphism from
(S,a) onto S. This shows that (S,a) = S for all a« € S. It follows that for all
a,be S, (S,a) = (S,b).

(2) It can be shown dually to (1) that for a right zero semigroup S, (S,a) = S for
all a € S. Consequently, (5,a) = (5,b) for all a,b € S.

(3) If S is a zero semigroup with zero 0, a € S and ¢ is a bijection on S such
that Op = 0, then for all z,y € S, (zay)py = 0p = 0 = (z¢)(yp). Therefore ¢ is
an isomorphism from (5, a) onto S. This shows that (S,a) = S for all @ € S and
hence (S,a) = (5,b) for all a,b € S.

(4) Let S be a Kronecker semigroup with zero 0, i.e.,

x ifx =y,

0 ifx#y.

Ty =
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Assume that |S| > 1. Since (.5, 0) is a zero semigroup, it follows that (.5, 0) %
S. Claim that for a € S\ {0}, (S,a) = Sif and only if |S| = 2. Let ¢ : (S,a) — S
be an isomorphism and assume that |S| > 2. Let b € S\ {0,a}. Then O0p =
(bab)p = (byp)(bp) = by, so b = 0, a contradiction. This shows that if (S,a) = S,
then |S| = 2. If |S| = 2, then it is clearly seen that the identity mapping on S is
an isomorphism from (S, a) onto S.

Next, assume that |S| > 2. Claim that for all a,b € S~ {0}, (S,a) = (S,0b).
Let a,b € S\ {0} and define ¢ : S — S by

a b x
99:
b a x
zeS~{a,b}

Then ¢ is a bijection on S and for z,y € S,

ap if x=a=y,
(Tay)p = 4
0 otherwise,

b if z=a=y,

0 otherwise,

b it zp=0b=yp,

0 otherwise,
\

= (z0)b(y»).

Hence ¢ is an isomorphism from (S, a) onto (S, b), as desired.

For k € N, let
Ny={k,k+1,k+2,..} ={k+1]|leNU{0}}.

Then (Ng,+) and (kN, +) are ideals of (N, +). Note that (kN, +) is the infinite
cyclic semigroup generated by k. Recall that all of the infinite cyclic semigroups

are isomorphic.
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For a,b € Z, not both 0, let (a,b) denote the g.c.d. of @ and bin Z. For n € N,
let Z,, be the set of integers modulo n. For x € Z, let T be the congruence class

modulo n containing x. Then |Z,| = n and
Z,={0,1,....n—1}={7 |z € Z}.

We have that for a € Z,

and |aZ,| =

The following powerful theorem in number theory will be used to characterize

when ((Z,,),a) and ((Z,,-),b) are isomorphic for a,b € Z.

Theorem 2.8 ([10], p.258). (Dirichlet : Primes in Arithmetic Progression)! If
a,m € Z with (a,m) = 1, then there are infinitely many primes p of the form

p = a(mod m).

Let X be a nonempty set and

G(X) ={a € T(X) | a is bijective}.

We can see that G(X) is the group of units of 7(X), P(X) and I(X). By
Proposition 2.1, we have (G(X),a) = G(X) for all « € G(X). Hence for all
a, f € G(X), (G(X),a) = (G(X), 5).

Next, let

M(X)={aeT(X)|ais 1-1},

E(X)={aeT(X)|aisonto}.

which are subsemigroups of 7'(X) containing G(X). Notice that M(X) = G(X)

!The author is very grateful to Associate Professor Dr. Paisan Nakmahachalasint
for introducing me this theorem in order to obtain Theorem 4.1 in Chapter I'V.
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[E(X) = G(X)] if and only if X is finite. In addition, G(X) is the group of units
of M(X) and E(X).

Let 6 € T(X). The partition of X induced by 6 is defined to be
P(O) ={2607' | x € ranb}.

Then

W= U z67 1.

xE€ran

For 6,,0, € T(X), we say that the partition P(#;) and the partition P(fy) are
equivalent if there exists a bijection ¢ : ranf, — rané; such that |z6,'| =
[(xp)0;!| for all 2 € ranf,. If this is the case, we write P(6;) ~ P(6;). No-
tice that = is an equivalence relation on the set of the partitions of X induced by
0 € T(X). By our definitions, we can see that if X is finite, then for 6;, 0, € T'(X),
¢, and 60y have the same type if and only if P(6;) ~ P(f2). Then Theorem 2.5

can restate as follows:

Theorem 2.9. For a finite nonempty set X and 01,0, € T(X), (T'(X),0,) =
(T(X), 02) if and only if P(0y) ~ P(6s).

We recall some basic knowledge in linear algebra. Let V and W be vector
spaces over a field F'. Let Lg(V, W) be the set of all linear transformations o : V- —
W and Lp(V) stand for Lp(V, V). Then Lp(V) is a semigroup under composition.
For a € Lp(V, W), let ker a denote the kernel of a. We call dimp ran a the rank
of a and it is denoted by rank «. For a subset A of V| let (A) denote the subspace
of V' spanned by A.

The following facts in linear algebra will be used in our research. The proofs

are omitted.

Remark 2.10.
(1) For a € Lp(V, W),

dimp V = dimp ker o + rank o.
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(2) If Bis a basis of V, a € Lp(V, W) are such that a, is 1-1 and Ba is a linearly

independent subset of W, then « is a monomorphism.

(3) If B is a basis of V, B’ is a basis of W and « € Lp(V,W) is such that

a|, : B — B'is a bijection, then « is an isomorphism from V" onto .

(4) If o € Lp(V,W), By is a basis of kera, By is a basis of rana and for each

v € By, let v/ € va™!, then By U{v' | v € By} is a basis of V.

(5) If a« € Lp(V,W), By is a basis of kerav and B is a basis of V' containing By,

then (B~ Bj)a is a basis of ran o and for any distinct u,v € B\ By, ua # va.

(6) If U is a subspace of V', By is a basis of U and B is a basis of V' containing
By, then {v+U |v e B~ B} is a basis of the quotient space V/U and
u—+U # v+ U for all distinct u,v € B\ By. Hence dimp(V/U) = |B \ By].

(7) If B is a basis of V, then

ILe(V, W)l = {ala: B— W} =W

(8) If V is finite-dimensional, then V' = F4mrV a9 vector spaces over F.
(9) If W is finite-dimensional, then
|LF(V, W)| — |FdimF W|dimFV - |F|(dimp V) (dimpg W)'

In particular, |Lp(V, W)|= | F|(dime V)(dime W) < o6 if I/ is also finite-dimensional

and F' is a finite field.

For a positive integer n and a field F', let M, (F') be the set of all n x n matrices

over F.

Theorem 2.11 ([7], p.330-337). If V is finite-dimensional and dimp V' = n, then
there exists a semigroup isomorphism ¢ : Lp(V) — (M, (F),-) which preserves

ranks.
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Let
Grp(V)={a € Lp(V) | a is an isomorphism}.

ThenG (V) is the group of units of Lr(V'). By Proposition 2.1, we have (Gg(V),«)

= Gp(V) for all a € Gp(V). Thus for o, 5 € Gp(V), (Gr(V),a) = (Gp(V), 5).
Next, let Mp(V) and Ep(V) be the set of all 1-1 linear transformations

(monomorphisms) of V' and the set of all onto linear transformations (epimor-

phisms) of V', respectively. Then
Mp(V)y={a € Lp(V) | kera = {0}},
Er(V)={a € Lp(V) |rana=V}
which are subsemigroups of Lz(V') containing Gg(V). Moreover, it is well-known

that dimp V' < oo if and only if Mp(V) = Gp(V) [Er(V) = Gr(V)]. In addition,
Gr(V) is also the group of units of the semigroups Mp(V) and Ep(V).



CHAPTER III
MULTIPLICATIVE AND ADDITIVE
SEMIGROUPS OF INTEGERS

In this chapter, we determine when two variants of the following semigroups

of integers are isomorphic:
(N, ), (N, +) and (kN,+)
where k € N and recall that
Ny ={k,k+1,k+2,..}={k+1|1eNU{0}}.

Then (N,+) = (N;,+) = (1IN, +) and we can see that Ny = N[kN = N] if and
only if £ = 1. Note that (Z,+) is a group. Then ((Z,+),a) = (Z,+) for alla € Z
(Proposition 2.1). This chapter also includes necessary conditions for two variants

of (Z,-) to be isomorphic.

To obtain an isomorphism theorem for the variants of (N, ), the following

lemma is needed.

Lemma 3.1. Let a,b € N and ¢ : N — N. Then ¢ : ((N,:),a) — ((N,-),b) is an

isomorphism if and only if ¢ : (N, ) — (N, ) is an isomorphism such that ap = b.
Proof. Let ¢ : ((N,-),a) — ((N,-),b) be an isomorphism. Then
(zay)p = (x)b(yp) forall z,y €N,
SO
(NaN)y = (Np)b(Nyp) = NbN.

Since NN = N, it follows that (aN)p = bN. But b € bN, so (am)p = b for some
m € N. We have that
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ap = (Lal)p = (1p)b(lp) = (1p)*b > b.
If ap > b, then (19)%b > b, so 1 > 1. Consequently,
b= (am)e = (lam)p = (1p)b(my) > b,

a contradiction. Hence ap = b. This implies that (19)*h = b, so 1p = 1. If
x,y € N, then

so (zy)p = (z¢)(yp) since (N,-) is cancellative. This proves that ¢ : (N,-) —
(N, +) is an isomorphism such that ap = b.

For the converse, let ¢ : (N,-) — (N, ) be an isomorphism such that ap = b.
Then for all x,y € N,

(zay)p = (xp)(ap)(yp) = (29)b(yp).

Hence ¢ : ((N,-),a) — ((N,-),b) is an isomorphism. O

I%¢

Theorem 3.2. Fora,be N, ((N,:),a)
(i) a=b=1 or

((N,-),b) if and only if either
(i) a = pi'py? - -pf and b= qi*qy* - - - qF for some distinct primes p1,ps, ..., Dk,

some distinct primes qq,qo, . .., qr and some r1,79,...,7x € N,

Proof. Let ¢ : ((N,-),a) — ((N,-),b) be an isomorphism. By Lemma 3.1, ¢ :
(N,-) — (N,-) is an isomorphism such that ap = b. Since 1 is the identity of
(N, ), 1o = 1. Therefore if @ = 1, then b = ap = 1p = 1. Assume that a > 1 and
let a = pi'py? - - - pi* where py, pa, ..., py are distinct primes and rq,7,..., 7 € N.

Then
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Tk

b=ap = (p'py> - pF)e = (p19)" (p20)™ - - - (Prp)"™.

It remains to show that pip, pag, ..., prp are distinct primes. Since ¢ is 1-1, it
suffices to show that if p is a prime, then py is also a prime. Let p be a prime
number and suppose that pp = mn for some m,n € N~ {1}. Since ¢ is a bijection
and 1y = 1, it follows that m'¢o = m and n’¢ = n for some m’,n’ € N~ {1}.
Then pp = (m'p)(n’p) = (m'n’)p which implies that p = m/n’, a contradiction.
Hence pyp is a prime. This shows that if @ > 1, then (ii) holds.

For the converse, assume that (i) or (ii) holds. It is trivial if (i) holds. Assume
that @ and b satisfy (ii). Let P be the set of all prime numbers in N. Then

[P~ Apu,p2, - oedl = |1PSAas g, an ] Let o 0 P A{p1,pa, - ok} —
P~A{q,q,-..,q} be a bijection. Define ¢ : P — P by

_ pi x
SO:
qi TP ) ic{1,2,. k},
€ P~A{p1,p2,-.,Dk }

Then ¢ is a bijection on P. Let 6 : N — N be defined by
10=1"and (si'sy - 5,7)0 = (510)"(520)" -+ - (sm®P)"™

for any primes sq,S9,...,8, € N and tq,%9,...,t,, € N. Then af = b. From the
definition of @ and the fact that every element of N~ {1} can be written uniquely
as a product of primes, we have that # is an isomorphism from (N, -) onto itself.
From Lemma 3.1, 6 : ((N,-),a) — ((N,-),b) is an isomorphism.

Hence the proof is completed. n

Example 3.3. From Theorem 3.2, we have that

((Na ')7 6) = ((N7 ')7 35) and ((Na ')7 6) % ((N7 ')7 12)

since 6 =2-3,35=5-7and 12 = 22 3.

The following lemma is needed to obtain an isomorphism theorem for the

variants of (Z, ).
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Lemma 3.4. Let a,b € Z ~ {0} and ¢ : Z — Z. Then ¢ : ((Z,-),a) — ((Z,-),b)

1s an isomorphism if and only if ¢ satisfies the following three conditions:

(i) ¢ is a bijection;
(i) ap = b;
(iit) for all x,y € Z, (xy)p = (x9)(yp) or for all z,y € Z, (xy)p = —(x¢)(yp).

Proof. Assume that ¢ : ((Z,-),a) — ((Z,-),b) is an isomorphism. Then (i) holds.
But for all z,y € Z, (xay)p = (z¢)b(yp) and ZZ = Z, so we have

(aZ)p = (ZaZ)p = (Zp)b(Zyp) = ZDZ = VL.
Thus (am)p = b for some m € Z, so |(am)p| = |b]. We have that
lag| = [(1al)y| = [(1p)b(10)] = (19)*[b] > [b].
If |ap| > |b], then (1¢)?|b| > |b] which implies that [1p| > 1, so
|(am)ep| = |(Lam)g| = [(1p)b(me)| > [b],

a contradiction. Thus |ap| = |b|. Hence ap = b or ap = —b. Since (1p)?|b| =
lap| = |b], (1p)* = 1. Thus ap = (lal)p = (1p)?b = b and 1p = +1. Hence (ii)
holds.

Case 1: 1o =1. If x,y € Z, then

which implies that (zy)p = (x¢)(yp).
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Case 2: 19 = —1. If x,y € Z, then

so (vy)e = — () (yp).

Hence (iii) holds.
Conversely, assume that (i), (ii) and (iii) hold. To show that ¢ : ((Z,-),a) —

((Z,-),b) is an isomorphism, from (i) it remains to show that ¢ is a homomorphism.

Case 1: (zy)p = (z¢)(yyp) for all z,y € Z. If x,y € Z, then

(zay)p = (zp)(ap)(yp) = (z)b(yp)
since ap = b by (ii).

Case 2: (zy)p = —(z¢)(yp) for all z,y € Z. If x,y € Z, then

(zay)p = =((za)p)(yp) = —(=(z¢)(ap))(Ye) = (zE)b(yp).

Therefore the lemma is proved. n

Theorem 3.5. For a,b € Z, if (Z,-),a) = ((Z,-),b), then one of the following

conditions holds.

(i) a=b=0.

() |a] = o] = 1.

(111) a = pi'py? -+ - pF and b= q1*qy* - - - qF for some distinct primes py,pa, . . ., Pk
wn 7, some distinct primes qi,qo, ..., qx in Z, some ri1,ra, ..., 7, € N and

fori,je{1,2,...,k}, if p = —pj, then ¢ = —q;.



20

Proof. Assume that ¢ : ((Z,-),a) — ((Z,-),b) is an isomorphism. Since 0 is the
zero of ((Z,-),a) and ((Z,-),b), 0p = 0. It is clearly seen that ((Z,-),a) is a
zero semigroup if and only if @ = 0. It follows that @ = 0 if and only if b = 0.
Assume that a # 0. Then b # 0. By Lemma 3.4, ¢ is a bijection, ap = b and

(xy)e = (zp)(yp) for all x,y € Z or (zy)p = —(x¢p)(yp) for all z,y € Z. Since
b=ap=(lal)p = (lp)’b and b=ap = ((—a(-1))¢ = ((=1)p)*b,

we have that 1¢ = £+1 and (—=1)¢ = £1. Thus {—1,0,1}¢ = {—1,0,1} and
Op = 0.

Assume that |a| = 1. Then |b| = |ap| = 1.

Next, assume that |a| > 1. Then |[b| > 1. Let a = pi'py*---p,* where

P1, P2, ..., px are distinct primes in Z and rq,7s,...,7r, € N. Then

1,72

b=ap = (p'py - P ) = £(P1p)" (p20)™ - - - (Prp)"™.

It remains to show that pip, po, ..., prp are distinct primes in Z. Since ¢ is 1-1,
it suffices to show that if p is a prime in Z, then py is also a prime in Z. Let p be
a prime in Z and suppose that pp = mn for some m,n € Z ~ {—1,0,1}. Since ¢
is a bijection and {—1,0,1}p = {—1,0,1}, it follows that m'¢o = m and n'p = n
for some m/,n’ € Z ~{—1,0,1}. Then pp = (m'e)(n'p) = £(m'n")e.

Case 1: pp = (m'n')¢. Then p = m/n’, a contradiction.

Case 2: pp = —(m/n’)p. If 1o = 1, then by the proof of Case 1 of the “only
if” part in Lemma 3.4, (xy)p = (zp)(yp) for all z,y € Z. Since 1p =1, (=1)p =

—1, so

It follows that p = —m/n’, a contradiction. If 1o = —1, then by the proof of Case
2 of the “only if” part in Lemma 3.4, we have that (zy)p = —(zp)(yp) for all
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x,y € Z. Since 1o = —1, (=1)p =1, so

!/

pp = —((=1)gp(m'n")p)

which implies that p = —m/n’, a contradiction.
Finally, let 4,5 € {1,2,...,k} be such that p; = —p;. If 1p =1, then (—1)p =
—1 and (zy)p = (zp)(yp) for all z,y € Z, so

pip = (—p;)e

Hence (iii) holds. O

Example 3.6. From Theorem 3.5, we have that

since 6 =23, —12 = 2%. (=3) and 25 = 5°.

It is natural to ask whether ((Z,-),a) and ((Z,-), —a) are isomorphic. The

answer is positive and the proof is given by making use of Lemma 3.4.

I

Theorem 3.7. Fora € Z, ((Z,-),a) = ((Z,-), —a) through the mapping x — —zx.
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Proof. Define ¢ : Z — 7Z by xp = —x for all x € Z. Then ¢ is a bijection and
ap = —a, so p satisfies (i) and (ii) of Lemma 3.4. If 2,y € Z, then

(zy)p = —(zy) = —(—2)(~y) = —(2¢)(yp),

so ¢ satisfies (iii) of Lemma 3.4. Therefore by Lemma 3.4, ¢ : ((Z,-),a) —

((Z,-), —a) is an isomorphism. O

Theorem 3.8. For k,a,b e N, (N, +),a) = ((Ng, +),b) if and only if a = b.

Proof. Let ¢ : ((Ng, +),a) — ((Ng, +),b) be an isomorphism. Since Ny +a + k =
{a+2k,a+2k+1,a+2k+2,...} and for all i € N, Ny +a+ (k+i) CNy+a+k,
it follows that

Ne+a+Ny=|JMNe+a+ (k+i)=Ni+a+k
i=0
Therefore we have that
(N +a+k)p=(Ng+a+ Ny
= (Nkp) +b + (Niyp)
=Ni + b+ Ng (since ¢ is onto)

=Ny +b+ k.
Since ¢ : Ny — Ny is a bijection,
(Ne N~ (Np+a+k)p =Ny~ (N +b+ k),

o INg N (Ng+a+k)|] =[Ny~ (Ng+b+ k)|, ie, {kk+1,....k+(k+a—1)=
a+2k—1} =|{k,k+1,... ., k+(k+b—1)=b+2k —1}|. Hence k+a =k +0,
so a = b. ]

As a consequence of Theorem 3.8, we have the following result.

Corollary 3.9. Fora,b € N, (N, +),a) = (N, +),b) if and only if a = b.
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We can see that for £ € N, (kN, +) is the infinite cyclic semigroup generated
by k. Since (N, +) is the infinite cyclic semigroup generated by 1, it follows that
(kN,+) = (N,+). Therefore from Corollary 3.9, the following result is directly

obtained.

Corollary 3.10. For k,a,b € N, ((kN,+),a) = ((kN,+),b) if and only if a = b.



CHAPTER IV
THE MULTIPLICATIVE SEMIGROUP 7%,

In this chapter, we deal with isomorphism theorems for the variants of the
semigroups (Z,, ) and (kZ,,-). We characterize when two variants of (Z,, ) are
isomorphic and give a necessary condition for being isomorphic of two variants of

(kZ,, -).

Recall that

kZ, = (k,n)Z,
— 40, (), 20k, ) 1) (k)
- I 7n7 777’7 ) (k,n) 7n I
|Z,,| =n and |kZ,| = (lj—) Note that [Z = [T for all [,x € Z and for any [ € Z,
N

1Z,, = 1Z,. In addition, we have that
{Z|x€Z and T is a unit of (Z,,")} ={Z | v € Z and (z,n) = 1}.
The following main result uses Theorem 2.8 as the main tool.
Theorem 4.1. For a,b € Z, ((Zy,),a) = ((Zy,-),b) if and only if (a,n) = (b,n).

Proof. Let ¢ : ((Zy,-),a) — ((Zy,-),b) be an isomorphism. Then for all z,y € Z,

(zay)e = (20)b(jp).

This implies that (Z,aZ,)p = (Zn@)b(Znp) = ZpbZ,. Since Z,Z, = Zn, it follows
that

(aZy)p = bZy,.



But since ¢ is 1-1, we have that |aZ,| = |bZ,|. Hence "~ " hich
a,n
implies that (a,n) = (b,n).

For the converse, assume that (a,n) = (b,n). Then
aZy, = (a,n)Zy = (b,n)Zy, = bZy,

so a = bz for some x € Z. This implies that n|(a —bz). Hence

Since (a,n) = (b,n), (a,n)|b. Therefore

((a?”) B (a,bn) x)> and so

(a,n)

CORICON (mOd <afln>) |

b

(a,n)

a b n
— x

@) T (am - @ny e ( <a7n>)

n a

n n
d l it foll that . H
an (x, (C%n)) ‘ () it follows tha <x, (a,n)) ’ () ence

(””’ <a7n>>‘<<afbn>’<;n>)- o (mﬁ)zl 0 ("””ﬁ)zl

By Theorem 2.8, there are infinitely many primes p of the form

p=r (mOd <a7,1n>> |

Then there exists a prime ¢ > n such that

1= (mOd <a77n>) '

Let | € Z be such that

X

Thus

and hence
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This implies that

a = bg(mod n),
so @ = bg. Since ¢ > n and ¢ is a prime, we have that (¢,n) = 1. Thus § is a unit
of (Zy,-). By Proposition 2.2, we have that ((Z,,),a) = ((Zy,-),b). O

Example 4.2. From Theorem 4.1, we have that

((Zl?v )72) = ((Z127 ')’ 1 ) % ((Zl?v )721)

since (2,12) =2 = (10,12) and (4,12) = 4.

Theorem 4.3. For a,b € Z, if (kZ,,),ka) = ((kZ,,-),kb), then (k3a,n) =
(k3b,n).

Proof. Let ¢ : ((kZy,-),ka) — ((kZy,-),kb) be an isomorphism. Then for all
T,y €Z,

((kz)(ka) (ky))p = ((kz)) (kD) ((kg)e).

Since ¢ is onto, ((kZ,)(ka)(kZ,))e = (kZ,))(kb)((kZ,)e) = (kZ,)(kb)(kZ,).
It follows that

(K*aZ,)p = K*0Z,.

Since ¢ is 1-1, we have that |k*aZ,| = |k*bZ,|. Hence (l{:?’Z, o (/{:37;, m which

implies that (k3a,n) = (k3b,n). O

Example 4.4. Consider (2Zs,-). Since (23 -1,12) = 4 # 12 = (23 - 3,12), by
Theorem 4.3, we have that ((2Z12,-),2 1) % ((2Z12,),2 - 3), i.e., ((2Z12,-),2) 2
((2Z12,+),6).



CHAPTER V
SEMIGROUPS OF TRANSFORMATIONS OF SETS

In this chapter, some transformation semigroups on sets are considered. We
are motivated to study isomorphism theorems for the variants of I(X) and T'(X)
by Theorem 2.4 and Theorem 2.5 given by Tsyaputa, respectively, where X is
an infinite set. In addition, M (X) and F(X) are also considered. We obtain
a necessary condition for two variants of I(X) to be isomorphic. A sufficient

condition for this case is provided. We give sufficient conditions for the variants

of M(X),E(X) and 7(X) in the same manner.

Recall the following notations:

I(X) = the symmetric inverse transformation semigroup on X
(the 1-1 partial transformation semigroup on X),
MX)={a: X - X | ais 1-1},
E(X)={a:X — X | aisonto},
T(X) = the full transformation semigroup on X.
The following facts are also recalled: G(X) is the group of units of all above
transformation semigroups; if G is a group, then (G,a) = G for all a € G;
M(X)=G(X) [E(X) =G(X)] if and only if X is finite.
Throughout this chapter, we assume that X is infinite.
To prove that for 0,60, € I(X), [ran6,| = |ran6y| if (1(X),01) = (1(X),0s),
the following lemma is needed. Note that X need not be required to be infinite

in the lemma.
Lemma 5.1. For 0 € I[(X),|E(I(X),0)| = olran |

Proof. We claim that E(1(X),0) = {(07'), | A Cranf}. Let a € I(X) be such

that @« = afa. Then ran o C dom . To show that ran af C dom «, let x € ran af.
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Then there exists y € doma# such that ya = . But domaf C doma, so
y € doma. Since o = afa, we have that ya = yaba. Thus ya = (yab)a = za.
Since « is 1-1, it follows that x = y € dom a. Hence we have ran af C dom «. If

x € dom «, then

1

r = (ra)at = (rafa)a! = rablioma = o € ranb,

so doma C ranf and af = 1gome. Since rana C dom 6,

o = Ozldomg = 0499_1 = 1d0ma0_1 = (9_1)

|doma'

To prove the reverse inclusion, let A C ran . Then

Hence (071), € E(/(X),0).
If A, B C ranf are such that A # B, then

dom(6~Y), = A £ B = dom(67Y),

5
This implies that
(0™, | A C ran8}] = [{A| A C zang}| = 2l
From the claim, we have
IE(I(X),0)| =2/™  forall 0 € I(X),

as desired. O

Theorem 5.2. For 01,0, € I(X), if (I(X),0,) = (I(X),0s), then |ranfy| =

| ran 0y

Proof. Assume that (I(X),6,) = (I(X),6,). Then |[E(I(X),0,)| = |E(1(X),6s)],
so by Lemma 5.1, 2/"n01l = 2lranf:2l " Hence |ran | = |ran | by the generalized

continuum hypothesis. O]
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Example 5.3. Let ay,as,... € X be such that a; # a; if i # j. Let

A, =Aa,as,...ax}

for all k € N. Then |ranly,| =k, so |ranl,,| # |ranly,| for all distinct k,[ € N.
By Theorem 5.2, (I(X), 14,) 2 (I(X), 14,) for all distinct k,/ € N. This also
shows that there are infinitely many variants of (X)) such that any two of them

are not isomorphic.

The following example shows that the converse of Theorem 5.2 is not true in

general.

Example 5.4. Let a € X. Then |X| = |X ~{a}|. Let 6 : X — X \ {a} be a
bijection. Then 6 € I(X) ~ G(X), so € is not a unit of 7(X). By Theorem 2.3,
(I(X),0) 2 I(X). Then (I(X),0) % (1(X),1x) but |ranf| = | X \ {a}| = |X]| =

|ran 1x].

Theorem 5.5. For 0,60, € I(X), if |ran ;| = |ran 6|, | X \ran ;| = | X \ran 6s|
and | X ~ dom 0| = | X ~ dom O], then (I(X),0;) = (1(X),02).

Proof. Assume that |ran6,| = |ran6y|, |X \ ranf;| = |X \ran6y| and | X ~
dom#,| = |X ~ dom#,|. Then there are bijections ¢; : ranfy — ranfy, s :
X ~ranfh — X ~ranf; and ¢; : X ~domb; — X ~domb,. Let 1), = 91g01’192’1.
Then 1) : dom #; — dom 6, is a bijection. Define ¢ and ¢ € G(X) by

x x
@ = Y and Y v

TP1 YP2 xrE€ran fo xwl y¢2 zeX ~dom 61
yEX \ran 0 yEdom 61

It follows that
Yy = 1Potly  and  brp = baop.
Hence

91 = 91 1ram 01
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= ‘91@1_14,01

= 0101 Lrang, 1
= 010105 O
= (61705 1)ba01
= hal2¢1

= (V202) 1

= (1)1

= Y(0201)

= 1p(02p)

= Yt

Since ¢ and 1 are units of 1(X), by Proposition 2.2, (I(X),6,) = (I(X),6,). O

Example 5.6. Let a,b be distinct elements of X. Then

|ran 13| =1 =|ran 1y,
| X Nranlggy| = | X N {a}]| = |X] = [X N {b}] = | X N ran 1y,
| X N dom Iy | = | X N {a}| = | X| = | X ~A{b} = | X \ dom 1.
By Theorem 5.5, ([(X), 1) = ({(X),14). We can show similarly that

(I(X),1xay) = (I(X),1x). Notice that by Theorem 5.2, (I(X), 1) #
(I(X),1xqa) for all @ € X. In addition, we have that

{HI(X), 1iay) [ @ € X}| = | X[ = {(1(X), 1x(a}) | @ € X},

Theorem 5.7. For 6,0, € M(X), if |X ~ranb| = |X ~ranby|, then
(M(X),0,) = (M(X),02).

Proof. Assume that |X \ran6;| = | X \ranfy|. Since ¢, and 05 are 1-1, |ran 6| =
| X| = |ranfy|. Let ¢7 : ranfy — ranf; and ¢y : X N\ ranfy — X ~\ ran6; be

bijections. Define ¢ € G(X) by
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T Yy
90 =
Y1 Ypa xE€ran O2
y€X ~ran s

Let ¢ = 019705, We can see that 1 € G(X) and 69 = ;. Then

01 = 011rane,
=017 ¢
= 0107 Liang, 1
= 017 05 0001
= Y21
= Yl

By Proposition 2.2, we have that (M (X),60;) = (M(X),0s). O

Example 5.8. Since X is infinite, | X x X| = |X|]. Let ¢ : X x X — X be a

bijection. Since

X x X = | J({a} x X),

aeX

it follows that

X = | J(({a} x X))

aeX

and |({a} x X)p| = |[{a} x X| = |X| for all a € X. For each a € X, let
X, = ({a} x X)p. Then

X=|[JX, and |X,[=|X| forallacX.

aeX

For each a € X, let 6, : X — X, be a bijection. Then 6, # 6, for all distinct
a,b € X. We also have that
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| X N ranf,| = U Xp| = | X|.

beX~{a}

By Theorem 5.7, (M(X),0,) = (M(X),0) for all a,b € X. This shows that there
is a set V of variants of M (X) such that
(1) |V| > |X]| and

(2) any two variants in V are isomorphic.

Theorem 5.9. For 0,0, € E(X), if P(01)~ P(02), then (E(X),0,)=(E(X),0s).

Proof. Assume that P(61) ~ P(03). Then there is a bijection ¢ : ranfy(= X) —
ranf;(= X) such that |26, = |(zp)0;!| for all z € ranfy(= X), so we have
¢ € G(X) and

x2 | oot = | @oor.

zEran fg zeX

For each x € X, let 1, : (vp)8; " — 265" be a bijection. Define ¢ : X — X by

y¢m rzeX
ye(z0)0y !

It follows that v € G(X). If z € X and y € ()0 ", then yip, € 265", so
Yibap = ytubhp = ((y1s)02)p = vp = yb.

This shows that ¥f0yp = 0;. Therefore (E(X),6,) = (E(X),602) by Proposition
2.2. [

Example 5.10. From Example 5.8, X can be written as

X=|JX. and [X,|=|X| forallaeX.

aceX
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Let a € X. Since | X N\ X,| = | X| = | X ~ {a}|, there is a bijection ¢, : X \ X, —
X ~ {a}. Define 6, € E(X) by

Xa
0, — 4

a
YPa yEX~ X,

Then |af, | = | X,| and |26, '] =1 for all z € X \ {a}. Notice that 6, # 6, for all
distinct a,b € X. Claim that P(6,) ~ P(t) for all a,b € X. Let a,b € X. Define
p: X — X by

a b x
gp:
b a x
zeX~{a,b}

Then ¢ : ran (= X) — rand,(= X) is a bijection and
(bp)0; | = lab, | = | Xu| = |X| = [X,] = |06,
If x € X \ {b}, then z¢ # a, so
(@p)0, =1 =[af, "],

Hence we have the claim. By Theorem 5.9, (E(X),0,) = (E(X),6,). This indi-
cates that there is a set V of variants of E(X) such that
(1) |V| > |X] and

(2) any two variants in V are isomorphic.

Theorem 5.11. For 01,60, € T(X), if |X ~ran6;| = | X \ ranby| and P(0;) =~
P(62), then (T'(X),0,) = (T(X),6s).

Proof. Assume that | X \ ran6;| = |X \ ranfy| and P(6;) ~ P(h). Let ¢y :
X Nranfy — X ~ ran#; be a bijection and s : ranfy — ranf; be a bijection

such that |26, | = |(z¢2)0;"| for all € ran 6. Define ¢ : X — X by
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T Y
90 =
TP1 YP2 ) zeX~ranbs
yEran O

Then ¢ € G(X). For each x € ranfy, let 1, : (vp2)0;" — 265" be a bijection.
Note that X = U T U (zp2)07*. Define ¢ : X — X by

r€ran 02 xE€ran Oo

Y

Z/% zEran 02
yE(wp2)07"

We can see that ¢ € G(X). Claim that ¥yp = 6,. Let z € ranfy and y €
(202)07". Then yi, € 260, ", so

yhso = ythpbap = (yhy02) = xp = T2 = Yyb.

Hence we have the claim. By Propostion 2.2, (7'(X),6,) = (T(X), #2), as desired.
[l

Example 5.12. From Example 5.8, X can be written as

X=[JX, and |X,[=|X| forallacX.

aeX

For a € X, choose @’ € X \ {a} and define 0, : X — X by

Xo XN X,

a a’

Then 6, # 6, for all distinct a,b € X since

1%} ifa#0,
al ' =X, and a9b’1:

a

XX, ifa=V.
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If a,b € X, then
| X Nranf,| = | X ~ {a,d'}| = |X]| = | X ~{b,V'}| = | X N ranb,|.

Define ¢ : ran 6§, — ranf, by

Then

|(b)02 | = 1ad; 1] = |Xu| = |X| = [X,] = |06 "]
and
(V)0 = a0 = 1X N Xl = |X| = [X N X] = 06,71,
This proves that P(6,) =~ P(6,). Then by Theorem 5.11, (T(X),0,) = (T'(X), 6y).
Hence we have a set V of variants of 7'(X) such that
(1) |V| > |X]| and

(2) any two variants in V are isomorphic.



CHAPTER VI
SEMIGROUPS OF LINEAR TRANSFORMATIONS

The main result of this chapter is to determine when two variants of the
semigroup Lg(V') are isomorphic where V' is a finite-dimensional vector space over
a finite field F. This idea relating to finiteness is motivated by Tsyaputa’s works
(Theorem 2.4, Theorem 2.5 and Theorem 2.6). As a consequence, we characterize
when two variants of (M, (F'),+) are isomorphic where F is a finite field. However,
we obtain some theorems of sufficiency for this matter when V' or F' is arbitrary.
The semigroups (M, (F'),) where F is any field, Mp(V) and Er(V) are also

considered in this chapter.

Recall that Lg(V) is the semigroup under composition of all linear transfor-
mations « : V. — V| Mp(V) and Ep(V) are subsemigroups of Lg(V') defined
by

) (V) Taris 1-1}

( (V) [ kera'={0}}),
Ep(V)={a € Lp(V) | ais onto}

( (V) [rana = V})

and M, (F) is the set of all n x n matrices over F'. Also, we recall that Gp(V) is
the set of all isomorphisms from V' onto itself and Gp(V) is the group of units of
Lp(V),Mp(V) and Ep(V).

Throughout, let V' be a vector space over a field F' and n € N.

To prove the main result, the following two lemmas are needed.

Lemma 6.1. For 6,,0, € Lp(V), if rank 6, = rank 6,, dimp ker ¢; = dimp ker 0,
and dimp(V/ranby) = dimp(V/ranby), then there ezist isomorphisms ¢, €
Lr(V) such that 100 = 0;.
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Proof. Let B; and B, be bases of ker; and ker 6, respectively, and let B; be
a basis of V containing B; and B, a basis of V containing B,. It follows that
(B1 ~ B1)f; and (B, ~\ By)fy are bases of ranf; and ran#,, respectively. We
also have that uf, # v#; for distinct u,v € By ~ By and ufl, # vf, for distinct
u,v € By~ By. Then

|(Bl AN Bl)gl‘ = |B1 AN Bl| and |(BQ AN B2>62| = |BQ AN B2|

Next, let él be a basis of V containing (B~ B;)#; and B:2 a basis of V' containing
(By \ By)fy. By assumption, |(B; \ B;)0;| = rank 0; = rank 6y = |(Bs ~\ Bs)0,|
and |B;| = dimpker§; = dimp ker 6y = |By|. Then |B; \ By| = |By \ By|. Let
Y1 1 By — By and 1y : By~ By — By ~\. By be bijections. Define 1 € Lp(V) on
By by

u v
uhy v | e,
veBI~B;

Then v, : B, — B, is a bijection, so we have that ¢ € Gp(V). Since
dimp(V/ran6;) = dimg(V/ran6y), it follows that |B; ~ (B, ~ B1)8;| = |Bs ~
(By~\B)fs|. Let 7 : §2\(BQ\B2)92 — él\(gl\Bl)Hl be a bijection. Note that
By = ((By ~ Bs)0) U (Bs ~ (By ~ B)s) = ((By ~ B1)102) U (Bs ~ (B ~ Bs)bs).
Define ¢ € Lp(V) on By by

Wy v7) wesn,
’UGB_2 \(B_Q \32)92

Since w‘gl\Bl =10y : Bi\ B} — By~ By is a bijection and (By) N (By ~\ By) = {0},

we have that ¢ is well-defined. Since (B;) N (B; \ By) = {0}, it follows that for

w,v € By ~ By, uby = vé; if and only if v = v. Thus e is a bijection from Eg
2

onto B;. Hence ¢ € Gp(V). Claim that ¥fsp = 0;. If u € By, then ui) € By

which is a basis of ker #,, so
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uhlap = (uhhy)p = 0p = 0 = ub;.

If u € By~ By, then by the definition of o, u1yp = ub;. It follows that 1)y = 6,
on B;. Therefore we have 10,0 = 6, as desired. O

Lemma 6.2. Assume that V is finite-dimensional. If 01,0 € Lp(V) are such
that rank 01 = rank 6, then there exist p,1) € Gp(V') such that V00 = 6.

Proof. Since dimp ker 0, 4 rank #; = dimp V' = dimpg ker 65 4 rank 0y, dimp V' is
finite and rank #; = rank 60y, it follows that dimpg ker §; = dimpg ker 6,. Also, we
have dimg(V/ran ;) = dimp V —rank 6¢; = dimp V —rank 65 = dimg(V/ran ).
Hence by Lemma 6.1, the desired result follows. O]

Theorem 6.3. Assume that V is finite-dimensional and F is a finite field. Then
for 01,05 € Lp(V), (Lp(V),01) = (Lr(V),02) if and only if rank 6, = rank 0.

Proof. First, assume that (Lgp(V),6,) = (Lp(V),6;) through an isomorphism .
Let 0y be the zero mapping on V. Then Oy is the zero of both (Lg(V),6;)
and (Lp(V),62), so we have that Oy = Oy. We claim that af; = (6, if
and only if (ap)by = (Bp)ds for all a,f € Lp(V). Let o, € Lp(V) and as-
sume that afy = B60;. Then ab) A = 01X for all A € Lp(V), it follows that
(ap)B2(Ap) = (Bp)Ba(Ap) for all X € Lp(V). Since (Lp(V))p = Lp(V), we
have (ap)ly = (ap)baly = (Bp)hly = (Bp)b. But since ¢! is an isomor-
phism from (Lp(V),02) onto (Lr(V),01), if (ap)ly = (Bp)ba, then from the
above proof we have similarly that (ap)e™10; = (Bp)p~t6, ie., aby = (6.
Therefore we prove that «f; = (6, if and only if (ap)fy = (Bp)fz. In par-
ticular, if 6 = Oy, then af; = 0y if and only if (ap)fy = 0y. This proves
that for every a € Lp(V), af; = 0Oy if and only if (ap)fy = 0y. It follows
that rana C ker6; if and only if ranap C kerfy for all « € Lp(V). This
proves that (Lg(V kerf))p = Lgp(V, kerfy) since a is an arbitrary element in
Lp(V). Consequently, |Lp(V,ker6;)| = |Lr(V,ker6y)|. By Remark 2.10(9),
|Lp(V, ker 0,)] = |F|(dmeV)(dimeker01) and |Lp(V, ker 6y)| = |F|(dimeV)(dimp kerfz)
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It follows that dimg ker #; = dimy ker 5. Hence rank 6; = dimp V —dimp ker 6 =
dimg V — dimp ker 85 = rank 6.
The converse follows directly from Proposition 2.2 and Lemma 6.2.

The proof is thereby completed. O]

Corollary 6.4. Assume that F is a finite field. Then for Py, P, € M,(F),
(M, (F),-), P) = (M,(F),-), P») if and only if rank P, = rank P.

Proof. Let V be a vector space over F' of dimension n. Then by Theorem 2.11,
there exists a semigroup isomorphism ¢ : Lp(V') — M, (F') which preserves ranks.
Let 01,0, € Lrp(V) be such that 610 = P, and 0y = P,. Then for all a,( €
Lp(V),

(ab1B)p = (ap)Pi(Bp) and  (abyf)p = (ap)P(By).

Since ¢ : Lp(V) — M, (F) is a bijection, it follows from the above equalities that
¢ is an isomorphism from (Lg(V'),60;) onto ((M,(F),-), P1) and an isomorphism
from (Lp(V),02) onto ((M,(F),:), Ps), i.e., (Lp(V),0;) = ((M,(F),-),P;) and
(Lr(V),02) = (Mn(F),-), P).

First, assume that ((M,(F),-),P1) = ((M,(F),-),P,). This implies that
(Lp(V),01) = (Lp(V),02). By Theorem 6.3, rank ¢, = rank #,. Since ¢ pre-
serves ranks, it follows that rank P, = rank Ps.

Conversely, assume that rank P, = rank P,. Then rank #; = rank 6y since
¢ preserves ranks. By Theorem 6.3, (Lp(V),0;) = (Lr(V),0). Consequently,
(M (F),-), P1) = (Mn(F), -), P)- O

From Proposition 2.2 and Lemma 6.1, the following theorem is obtained.

Theorem 6.5. If 01,05 € Lp(V) are such that rank 6; = rank 65, dimpg ker 6, =
dimgkerfy and dimp(V/ran6;)=dimp(V/ranby), then (Lp(V'),01)=(Lp(V),0s).

Example 6.6. Let V be an infinite-dimensional vector space over F' and let B

be a basis of V. Then B can be written as
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B = UB” and |B,|=|B| forallve B
veB
(see Example 5.8). For each v € B, let ¢, : B — B, be a bijection and let
6, € Lp(V') be such that (0,)|, = ¢,. Then for every v € B, §, is a monomorphism
whose range is (B,). We also have that 0, # 0, if v # w. Therefore ker 6, = {0}
and rank 6, = |B,| and

dimp(V/ran6,) = | | J B.|=|BI.

weB~{v}

By Theorem 6.5, (Lp(V),0,) = (Lp(V),0,,) for all v,w € B. Hence there is a set
V of cardinality at least dimp V' of variants of Lg(V') such that all variants in V

are isomorphic.

The following theorem is directly obtained from Proposition 2.2 and Lemma
6.2.
Theorem 6.7. Assume that V is finite-dimensional. If 01,60, € Lp(V) are such
that rank 61 = rank Oy, then (Lp(V),01) = (Lp(V),6,).

From Theorem 6.7 and the proof of Corollary 6.4, the following result holds.
Corollary 6.8. If P, P, € M,(F) are such that rank P; = rank P, then

(Mn(F),-), Pr) = (Mo (F), ), Po).

Example 6.9. Let F' be a field of characteristic greater than 8. Define Py, P, P53 €

M, (F) by
1 2 3 4 1 2 3 4 1 2 3 4
02 3 4 0 2 3 4 0 2 3 4
b= , P= and P3 =
00 3 4 00 3 4 0 2 3 4
0000 0 0 3 4 0 4 6 8
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Then rank P; = 3 = rank P, and rank P; = 2. By Corollary 6.8, ((My(F),-), P1) =
((M4(F)7 '>’ PQ)'

If F is a finite field, then by Corollary 6.4, we have that ((My(F),-), P1) %
((My(F), ), P).

Theorem 6.10. For 0,05 € Mp(V), if dimp(V/ran6,) = dimp(V/ran6y), then
(Mp(V),01) = (Mp(V), 62).

Proof. Let B be a basis of V. Since 6; and #, are monomorphisms, Bf; and
B0y are bases of ranf; and ran6,, respectively, and |B6;| = |B| = |Bfs|. Let
By be a basis of V' containing Bf; and B, a basis of V' containing Bf,. By
assumption, |By \ (Bb6;)| = dimg(V/ranf;) = dimp(V/ranfy) = |By \ (B6y)|.
Let @1 : By — B0y and ¢y : By ~ (Bfy) — By ~ (B6;) be bijections. Define
p € Lp(V) on By by
u oW
0=

uwp1 VL2 ) 4eBo,
vEBa~\(Bb2)

Then |, : By — By is a bijection, so we have that ¢ € Gp(V). Since vlyp =
vhypq for all v € B, it follows that fyp = Oyp1. Define v € Lr(V) on B by
Y = 010705, We can see that Y, : B — B is a bijection, so ¢ € Gp(V). If
v € B, then

Uel = U911391
= vh107 ¢
= v0107 1o, 01

= 0010705 O

(017105 ") bapr
= vYbhpy

= vy (ba4p1)

= vbhyp.
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Hence 6; = 60 on B. Consequently, #; = ¥f,p. By Proposition 2.2, we have

Example 6.11. From Example 6.6, we can see that 6, € Mp(V). By Theorem
6.10, we have that (Mp(V),0,) = (Mp(V),0,,) for all v,w € B. Therefore there is
a set V of cardinality at least dimp V' of variants of Mp(V') such that all variants

in V are isomorphic.

Theorem 6.12. For 6,,0, € Er(V), if dimpkerf; = dimpker6fy, then
(Ep(V),61) = (Ep(V), 02).

Proof. Let B; be a basis of ker #; and By a basis of kerfy. By assumption, |B;| =
|Bs|. Let ¢, : B — By be a bijection. Let B; be a basis of V' containing B; and
By a basis of V containing B,. Since f; and 6, are epimorphisms, (B; \ B;)f; and
(By\By)0y are bases of V. Let ¢ € Lp(V) such that ¢ : (By~By)fy — (B1~\B1)b;
be a bijection. Then ¢ € Gp(V). For v € (B; ~ B))f;, let v/ € v0;"' and
for v € (By N\ Ba)fy, let v € vy, Then By U{v' | v € (B; \ By)f;} and
By U{v" | v € (By ~ By)fs} = By U{(ve™1)" | v € (By \ By)f,} are bases
of V. Since |(B; \ By)0i| = |(By ~ By)f,| and ¢ is a bijection, it follows that
{v' | v e (BixB)0i} = [{v" | v € (BaxBa)ba}| = [{(vp™)" | v € (BixB1)01}].
We can see that the mapping 1, defined by v/ = (vp™!)" for all v € (By \ By)0;
is a bijection from {v' | v € (By~ By)6;} onto {(ve™)" | v € (By~ B1)6; }. Define
Y € Lp(V) on the basis B; U{v' | v € (By ~\ By)0,} by

U v’

/
upy V'Y ) uep,
1}6(31\31)91

Then the restriction of ¢ to By U {v' | v € (By ~ B;)f} is a bijection from
BiU{v' | v € (B~ By} onto By U{(ve™1)" | v € (By \ By)f}, so we have
1 € Gp(V). Notice that v = v'1)y = (v ™1)" for all v € (By \ By)6;. If v € By,
then vy = vi)y € By, so
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vt =0 = 0p = (vipba)p = v(Ybap).
Ifve (Bl AN Bl)Hl, then
V0 == (vp e = (vp™ 1) "o = V'Pbp.

This proves that ; = 16y on the basis By U {v' | v € (B~ By)#;}. Hence
0, = Ybhyp, as desired. Therefore (Ep(V),6,) = (Er(V),02), by Proposition
2.2. [

Example 6.13. Let v, B and B, be as in Example 6.6. Since for each v € B,
|B,| = | B], there exists a bijection v, : B, — B. Define 0/ € Lr(V) on B by

uw B~ B,
u,

0 =

(v

UEB'U

Then for every v € B,ranf, = (BU{0}) =V, s0 0, € Er(V). We can see that

ker @, = (B~ B,) for all v € B, so dimpker¢, = [B\ B,/ =| | ) B.| =B
weB~{v}

for all v € B and 6, # 0/, if v # w. By Theorem 6.12, (Er(V),0)) = (Er(V),0.,)
for all v,w € B. Hence we have that there is a set V of cardinality at least dimpg V'

of variants of Er(V') such that all variants in V' are isomorphic.
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