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CHAPTER I
INTRODUCTION

2 ’
Let (X, d) be a metric spa @‘ % self map. We say that x € X is a
\C\u )a

fixed point of T if x = T@am@tal @xed point theory is the Banach

contraction principle W( \ ‘on‘map on a complete metric space
has a fixed point. Several exte i ult have appeared in subsequent papers.

In 2003, one of the interes

mani [17]. They exte

the union of two subse ) : ! 1etri atisfying the cyclic condition,

ANB =@ and T is j cli i ng the concept of best proximity

points. They showed : at, on a nonempty closed and “Convex subset of a uniformly

convex Banac 3 ﬂ'ﬁ o 7 i best proximity point.
And they raisﬁiﬁﬂon mﬁm‘(jﬂﬁn ﬂeﬁresult still hold or not
where X i e'eacpe‘ — v

In %Oﬁﬁaﬁ ﬂimu u\;]egansal:]ar@eﬂf this question

by adding some conditions. Moreover, they introduced a new class of maps, called
cyclic p-contractions, which contains the cyclic contraction mapping as a subclass. The
existence and convergence results of a best proximity point are obtained on a nonempty
closed and convex subsets of a uniformly convex Banach space. They also raised the
question that, in reflexive Banach space the existence of best proximity points still hold

for the case of a cyclic p-contraction mapping or not.



In the first part of this thesis, we extend the result of Al-Thagafi and Shahzad to a
metric space with the property UC (introduced in 2009 by Suzuki, Kikkawa and Vetro
[31]) and provide a positive answer by adding some conditions.

In the second part, we work on multi-valued maps. Let CB(X) be the family of all
nonempty closed bounded subsets of X and let 7' : X — CB(X) be a multi-valued map.
An element x € X satisfying z € Tz is called a fixed point of multi-valued map T . We
denote by H the Hausdorff metric.on €B(X) induced by metric d. The study of fixed
point theorems for multi-valued mapping has been initiated by Markin [20] and Nadler
[23]. The result usually referred to as Nadler'sfixed-point theorem and extended the
Banach contraction principle{rou single‘valued maps to multi-valued maps. Since then,
extensive literatures have been develope(ii There consist of many theorems dealing with
fixed points for multi-valuéd mappings, see |2, 3, 10, 11}, 22, 24, 26, 27]. Most of these

cases require the image offeagh point_ to beiclosed and bounded. In others words, to
: S

be compact. In this part, we study‘Theo‘f‘éms on multi-valued maps. We extend the

FhAd
H

#

cyclic condition to multi-valued mag)s deﬁf;igfjdon the union of two subsets A and B of
a metric space, i.e., Tz € CB(B) égd Ty ELB‘(A) for all z € A and y € B, and gave
the existence of a best proximify point for Ifr?"t-ﬂﬁ-valued cyclic map.

This study was ‘-\oi_ig;’ anized into 6 _chapters as follows: \-i%]hapter I is an introduction

to the research probfe-}n-. Chapter II is concerned with some well known definitions and

useful results that will be used in our research.

In ChaptenTll wé exterid theTheotem of Al{Thagafitand Shiahzad to a metric space
with property WC and provide a positive answer for the question of them by adding
some conditions:

In Chapter IV, we prove that the Picard projection iteration sequence converges to
a fixed point, with a rate of convergence is given. The generalize Collage Theorem for
a special class of multi-valued mappings is also proved.

In Chapter V, we extend the cyclic condition to multi-valued mappings and study
the existence of a fixed point and the existence of a best proximity point.

In Chapter VI, we study data dependence problem for a special class of multi-valued

mappings.



CHAPTER 11
PRELIMINARIES

In this chapter, we collect informa ; will be needed for understanding of the
research work. Almost all of them ¢ _~ ne ithout proof, since if can be found

in many standard text boo Xa in

—=
-
o

metric space with metric . ILJ “ b a}nd r is a positive real number, the

The closed ball B[] is daelﬁne by

L
FIUE dNELI NN T
U
A subset G. the metric_space X fs called an n sef if given‘any point z in G,
there ea;tﬁ‘p’:)liﬁgaﬂujf)MSu m:}r( )%jﬁ f X is called a
closed .?et if the complement F¢ of F' is open. A subset C' of X is called a bounded
set if there exists a positive real number M such that d(x,y) < M for all z,y € C.
Let X be a metric space with metric d, and let {x,} be a sequence of points in X. We
say that {x,} is convergent if there exists a point x in X such that for each € > 0, we

can find a positive integer ng with

n>ng = d(z,x,) <e.



We usually symbolize this by writing x,, — = or lim z, = x, and express it verbally
n—oo

by saying that {z,} converges to x. The point z is called the limit of the sequence

Theorem 2.1. A subset F' of a metric space X 1is closed if and only if

{zp} CF and lim z, =2z =2z € F.

wce if for each € > 0, there exists a
is quence. A complete metric

A sequence {z,} in X is a

positive integer ng such that

space is a metric space i ry-Gatichy seque -v\-‘ is convergent. The following

Theorem 2.2. Every clo éé of ‘d complete netric space is itself complete.

Let X and Y be metri : Sa4wi '—_" dy and do, respectively, and let T be

a mapping of X into Y. T is. said 1 ' be ous at a point xg in X if for each

o Tl
L)
¥

€ > 0, there exists 4. >

)

, T'o) ﬂf-

A mapping of ﬂ 1‘ ?ﬂﬁ?iz{ﬂﬁ continuous at each point in its
LA

domain X. A " of X called" nomexpans f

AT VIV Y

A mapping T of X into Y is called contractive if

do(Tz,Ty) < dy(z,y) forall z,y € X.

A mapping T of X into Y is called c-contraction if there exists a positive number

¢ < 1 with the property that

do(Tx,Ty) < cdy(z,y) for all x,y € X.



It is obvious that such mappings are continuous.
Let (X,d) be a metric space and let T': X — X be a map. We say that z € X is a
fixed point of T if Tx = x. There are some well-known results on fixed point theorems

for a mapping on a complete metric space. For instance,

Theorem 2.3. [/] (Banach Contraction Theorem) Let (X, d) be a complete metric space

. Then T has a unique fized point.

and T : X — X be a c-contraction ma

Theorem 2.4. [5, [6] (Colla ' ) be a complete metric space and

where x* is the fized

Theorem 2.5. [§/(
and Ty, To : X — X 0T ANAPPUNGS, U action factors c¢; and co and

fized points 7 and x5,

Theorem 2.6. [1j] @a orem) L \ bmz complete metric space and
T : X — X. If there ezists,a real numbergbywith 0 < b < I such that, d(Tz,Ty) <

R L
oy ;féiﬁ ApIbV RN | TAEY ﬂ

cld(x, Ty) +d(y,Tx)] for all z,y € X. Then T has a unique fized point.

Let X be a nonempty set. A class F of subsets of X is called topology on X if it

satisfies the following conditions:
1. X € Fand @ € F;

2. the union of every class of sets in F is a set in F;



3. the intersection of every finite class of sets in F is in F.

A topological space consists of two objects: A nonempty set X and a topology F on
X. The set in the class F are called the open sets of the topological space (X, F).
It is customary to denote the topological space (X, F) by the symbol X which is used
for its underlying set of points. A closed set in a topological space is a set whose
complement is open. Let (X, d) be any metric space, and let the topology be the class
of all subsets of X which are open in the sense of the definition in the metric space.
This is called the usual topoloegy on a metrie space, and we say that these sets are the
open sets generated by the metric‘ii on the space. Let X be a topological space
and let A be a subset of Xe#A elosure Z. of a subset A is defined to be the intersection
of all closed subsets of AFwhich contain; AL A class {Fy, : 1 € D} of open subsets of
X is said to be an opencover of A’if es;‘cfi: point in A belongs to at least one of F),’s,

that is, U Fu D A. A subclass of‘an opeg cover which is itself an open cover is called

pneD id
a subcover. A subset A of a topologlcal spa@e X is called compact if every open cover

of A has a finite subcover and 1t *1s~ called' helatwely compact if A is compact . In

#

L
particular, if X is compact, X Tssmid-to bejcompact space. This definition applies

to metric space as Well In this ¢ case there i$ a ¢ ﬂharacterlzatlon of compactness.
J

Theorem 2.8. A subbet A of a metric space X s compa__(.;t-\'if and only if any sequence

{zn} of points of A has a subsequence {xy, ; which conuerges to a point of A.

A normed linearsspace; is-a linearspace, X=inswhich to-each, vector x there corresponds

a real number, denoted by ||z|| ‘and called the norm of z, in such a manner that
1. ||z 20 and x| =0 <=y 0;
2. ezl = fed||=]};
3. |l +yl < ||z|| + |ly||, for any z and y in X and for any o € R.

It is easy to verify that the normed linear space X is a metric space with respect to the
metric d defined by d(x,y) = ||z — y||. A subset C of a normed linear space is said to
be convex if Az + (1 —\)y € C for each z,y € C and each scalar A € [0,1]. A Banach

space is a complete normed linear space.



Let X be a Banach space, and let T : X — R be a linear functional, that is,
T(ax + By) = oT'(z) + BT (y) for all z,y € X and o, € R. In addition, T is called
bounded if there exists a real number K > 0 with the property that |T'(z)| < K ||z for
all z € X. It is not difficult to see that if T is continuous then T is bounded but the
converse is not true. If 7" is a linear functional, then the following conditions on 7" are

all equivalent to the other.

1. T is continuous;

2. T is bounded;

3. T is continuous M /l

We now denote the set

x € X and f € X* defi

ot :,.rf;‘iﬂ ,
the weak topology, tﬁt is 11m =

subset C' of X is w close topology. The weakly open

sets are now taken as Bose sets ents are@eakly closed. Sets which are

compact in this topologyrare said to be weakly compact.

thoorem 2. fH0 ;Jmm WHANT,.. c o sonin i
AR ERIM ANy ey

Theorem 2.10. Let {x,} be a sequence in a Banach space X. If x, — xo, then {z,}

18 a bounded set.

Theorem 2.11. Let {x,} be a sequence in a Banach space X. If x, — xo, then

|zo|| < liminf ||z,

Theorem 2.12. Let X be a Banach space. Then X is reflexive if and only if every

bounded closed convex subset of X is weakly compact.



Convexity of Banach Spaces : Let X be a Banach space. Then X is strictly convex

if for all z,y,p € X and R > 0,
le—pll <Ry —pl <R z#y= |2 <R
This condition is equivalent to the following:

x| =1yl =1, £y = [z +y| <2

A Banach space X is uniforml ny two sequence {z,}, {y,} in X such

that

then lim, oo ||Tn —
Theorem 2.13. Let I Then owing conditions are equivalent:

1. X is uniformly

’V-

As a direc

UEANENINEINT e
g BT A

Remark 2.15. The converse of Theorem 2.1/ is not true (see [21] in page 451).

foranyﬁeXu‘tﬂz—lly—lwmy | > e.

Let X be a Banach space. Then we define a function ¢ : [0,2] — [0, 1] called the
modulus of convexity of X as follows:

. r+y
o0 =int {150 el < 1yl < 1wl 2 ).

It is obvious that 0 is a nondecreasing function. That is, if €; < €2, then d(e1) < d(ea).

We also have the following:



Theorem 2.16. Let X be a Banach space. Then E is uniformly conver if and only if
d(e) > 0 for all e > 0.

The following theorem is really useful.

Theorem 2.17. Let X be a uniformly convexr Banach space. Then, for any r and €

with 0 < € < r, the inequalities ||z|| <, |ly|| < r and ||x — y|| > € imply 5(;) >0 and

¥

AULINENINYINT
PAIATUAMINYAE




CHAPTER I11
CYCLIC p-CONTRACTION MAPPING

In this chapter, we study theo s

B be nonempty subsets of a metr . § )mapping T:AUB — X is said to

be a cyclic mapping if 7

clic ¢-contraction mapping. Let A and

In 2003, Kirk, Srinivasan, eramani |1 e Banach contraction theorem
for self map to a map 7' dgfified on pion of two su hsets A and B of a metric space
and satisfying the cyclic condi /Tlie tesnlt ¢ nsure. hal AN B # @.

Theorem 3.1. [17] Leét A

ts of a complete metric space
(X,d) and let T : AU B — If there exists k € (0,1) such
that

A andy € B. (3.1)

and T is a cyclic contmtlon mapping by using the con@at of a best proximity point.

A mapping T éu B —"A®@B is said to bl ﬁclzc contraction if T is a cyclic and

ere s o g b dl | ﬁl NINnEIN3
T ST Ny gy o

A point ac in AU B is called a best prozimity point of T if d(z,Tz) = d(A, B), where
d(A,B) = inf{d(z,y) : = € A,y € B}. Obvious that in case of AN B # &, (3.1) and
(3.2)) are equivalent and a best proximity point of T is a fixed point of 7. Theorem

is an extension of Theorem 3.1

Theorem 3.2. [13] Let A and B be nonempty closed and convez subsets of a uniformly

convex Banach space X and T : AUB — AU B be a cyclic contraction mapping. Then
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for every xg € A, there exists a unique z € A such that z is a best proximity point and

Ton — 2 where Tpp1 = Txy,.

Question 1 : In their paper, Eldred and Veeramani raised the problem that the con-
clusion of Theorem [3.2 still hold or not if X is a reflexive Banach space.
In 2009, Suzuki, Kikkawa and Vetro[31] prove the existence of best proximity points for

a special map which contains the cyclic contraction mappings as a subclass on a metric
space with the property UC. Lgt a C”/ mpty subsets of a metric space (X, d).
(A, B) is said to satisfy the &gwing holds:

If {x,,} and {z],} arvw' | a sequence in B such that

en lim d(z,,z)) = 0.
n—oo

Example 3.3. [31] metric space (X,d).
1. Let d(A, B) =

2. Let A" and B' be'no subsets A " and d(A,B) = d(A',B'). If

also satisfies the property UC.

3. Let X be a uniformly co b = . Assume that A is convex. Then

4. Let X be a stri at A is convex and relatively

compact, and t closure of B is weakly compact; hen (A, B) has the property

ﬂUH')WHWﬁWH’Wﬂ‘i

Theorem 3.4/ is @/result of

VG R BN LAY B v

of X suh that (A, B) satisfies the property UC. Let T be a cyclic mapping on AU B
and there exists r € [0,1) such that

d(Tz, Ty) < rmax{d(z,y),d(z, Txz),d(y, Ty)} + (1 — r)d(A, B) (3.3)

forallz € A andy € B. Fized xog € A and define xp+1 = Tx, for each n > 0. If A is
complete, then there exists a unique z € A such that xo, — z, T?2 = z and z is a best

proximity point.
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Al-Thagafi and Shahzad[l] provided a positive answer of question 1 by adding some

conditions.

Theorem 3.5. [1] Let A and B be nonempty closed convex subsets of a reflexive strictly
convex Banach space X, and T : AUB — AU B be a cyclic contraction mapping. If
(A—A)N(B—B) = {0}, then there exists a unique z € A such that z is a best proximity

point and T?z = z.

Theorem 3.6. [1] Let A an

,w/gbsets of a reflexive Banach space X

such that A is closed conve be a cyclic contraction mapping.

Then there exists a besM int z A of the following conditions is
satisfied: N
(a) T is weakly c
(b) T satisfies the
en ||z — Tz| = d(A, B).

Moreover, Al-Thagafi and yzad- 1 ' duced & class of maps, called cyclic ¢-

contraction, which contains the‘_j:y’j‘;‘;’ﬁ conty ,' fion-mapping as a subclass.

Definition 3.7. Lel A and B be nonempty subset. metric space (X,d). Let T :
AUB — AUB be cyc@ and @ |0 be stm’@/ increasing. The mapping T

s said to be cyclic ¢- cqz@ctwn if

ﬂuum&mmmm
R TN TN INYIA Y

Since ¢ it strictly increasing and T is cyclic, we have the Proposition [3.8.

Proposition 3.8. Let A and B be nonempty subsets of a metric space (X,d). If T :
AUB — AU B is a cyclic -contraction mapping, then d(T?x,Tz) < d(Tx,z) for all

r € AU B. Furthermore, d(Txz,Ty) < d(x,y) for allz € A andy € B.

Convergence and existence criterion of best proximity point for cyclic ¢-contraction

mappings are obtained in Theorem
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Theorem 3.9. [1] Let A and B be nonempty subsets of a uniformly convex Banach
space X such that A is closed and convexr and let T : AUB — AU B be a cyclic ¢-
contraction mapping. Let xg € A and xpy1 = Tx,. Then there exists a unique z € A

such that x2, — z, T?2 = z and z is a best proximity point of T.
Al-Thagafi and Shahzad[I] also raised the following question:

to /z@a@e with the property UC in the

Question 2. Do the Theorem 3.5 and till hold for the case of a cyclic p-contraction

mapping ?
In this chapter, we extend
Theorem [3.13. In addition,
Banach space in Theo

Question 2.

3.1 Cyclic yp-co 5 '_? | ith rbperty ucC

In this section, we exten
Theorem [3.13/ . We begin Jsome lenm; hich are related to the context of our

results.

Lemma 3.10. Let .' 7 - Bbe nonempty su

(A, B) satisfies the pr@frty UC

map. Let z € A. Then the gllowz'ngs are eq&zyalent:

- EUEINENTNYING
RTRAT MU INYA Y

In this case, Tz is a best proximity point of T in B.

JB — fm B be a cyclic p-contraction

Proof. We first show that (i) implies (i7). Assume that z is a best proximity point of

T. Since ¢ is strictly increasing and T is cyclic, by Proposition 3.8, we have

d(A,B) < d(T?z,Tz)
< d(Tz,z)

d(A, B).
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Thus, d(T?z,Tz) = d(A, B) = d(Tz,z). This implies that Tz is a best proximity point
of T in B and by the property UC, we have d(T?z,z) = 0. Hence T2z = z, that is z is
a fixed point of T2.

To prove (ii) implies (i), we assume that z is a fixed point of T2 and z is not a best

proximity point of 7. Hence

d(A, B) < d(z,T>2). (3.4)

'%/'g and T is p-contraction, we have
—

By (3.4) and the facts that ¢ is

which is a contradiction. es '. mi oint of T O

Lemma 3.11. [i] Let A g néner ; _' bse a metric space (X,d) and let
l for any fixed xo € AU B and

Tpy1 = 1Ty, we have lim

Lemma 3.12. Let A and B be . y subsets of a metric space (X,d) such that
(A, B) satisfies the prope ' dletT : A B be a cyclic g-contraction

map. Then, for ang ‘ o we have {zan} is a Cauchy

e "L p 1241117 Pbven
. ;amﬁiﬁﬁmﬁmw UOAEL - sam

lim d(xgnk,m‘an_H) = d(A, B) (35)

k—o00

From the property UC of (A, B), we obtain

lim d(x2n+t2,z2,) = 0. (3.6)

n—oo

From (3.5)), (3.6) and the fact that
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d(A, B)

IN

d(xan+1; $2mk)

IN

d(z2on,+1, Tang+2) + d(Ton, 42, Tong44) + -

ot d(Tomy—as Tomy—2) + A(T2my—2, Tamy, )-

Thus
, < , (3.7)
Hence lim d(zom,,Ton,+1) ‘ /
From this fact, the equality (3.5) a1 : & (A, B), we have
This contradicts the ass flon h . \ . Therefore {za,} is Cauchy. O

Theorem 3.13. Let metric space (X,d) such that

(A, B) satisfies the prope :AUB — AU B be a cyclic

p-contraction map. The

(ii) z is a uniquefited point of T= in /

(i1i) T has at least OB best pre

R AN “?W?f“fﬁ P

Proof. (i) Fix 249/€ A and let 11 = Txn By LemmaBjﬂl7 {zon} i 1s a Cauchy sequence

e Sﬂ Wﬁ@ﬁﬂ?ﬂmﬁﬂﬁ“ﬂﬁﬁ "

Hence, Lemm and the fact that
d(A, B) < d(z,xon—1) < d(z,x2n) + d(x2n, T2n-1),

we have

lim d(z,xon—1) = d(A4, B). (3.8)

n—oo
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Since {x2,} belongs to A, Tz € B and Proposition 3.8, we have
d(A,B) < d(xon,Tz)
= d(Txon-1,T%) (3.9)

d(l’zn_l, Z)

IN

Therefore, letting n — oo in (3.9) and (3.8), we have

(3.10)

In order to show the uni ‘ e another best proximity point of 7" in A.

By Lemma 3.10, we h Proposition 3.8, we have

Thus
(3.11)

G

Next we will show tha gl ",'j
| |

ﬂuﬂaﬂﬁﬁsﬁ%ﬁﬂﬁ

Suppose that d(&/,Tz) > d(A, B). Then

QRARIUIRINENAE

< d(Z,T2) — @(d(7,Tz)) + ¢(d(A, B))

(3.12)

< d(,T=z),
which contradictions to (3.11). Hence (3.12) holds. It follows from (3.10), (3.12) and
the property UC of (A, B) that d(z,2’) = 0. Thus z = 2.
The conditions (ii) and (iii) follow from (i) and Lemma [3.10.

(iv) is obtained in the proof of (i). O
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Remark 3.14. In case of d(A, B) =0, we know that (A, B) satisfies the property UC.
Hence we obtain the existence and uniqueness of the fized point of a cyclic ¢ -contraction

map.

Remark 3.15. For nonempty subsets A and B of a uniformly convex Banach space X,
we know that (A, B) has the property UC if A is convex. By this fact, it is obvious that

Theorem [3.9 is a consequence of Theorem3.13. But the converse is not true (see [21]

The following examples sh ot here Xi@contraction maps which do not
satisfy (3.3). 7 »

Example 3.16.

in page 451).

1. Let X := R witl g/ , defineT: AUB — AUDB

by Tz = " is a cyclic p-contraction map

1+
([1]). We see that

ced, suppose there exists r € [0,1)

such that

(T Ty) Sl di, ) y} + (1= 1)d(A, B).
Ify="Tx, th :% J
y =Tz, then we h : m

T;ﬁﬁ (1413113 niik A
AAIBIANA NN

i.e.,
T T
142 142z

T
|§7’|a7—1+—$|+(1—7“)0

1
This implies . <r for every x € (0,1].
x

Hence, as x — 0, r > 1 which is a contradiction.
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2. Let X = R with the usual metric. For A = [0,1] and B = [-1,0], define
T:AUB - AUB by Tz = —~ ife e Aand Tz = —— ifax e B. If

) 1+zx 1—2z
o(t) = fort > 0, then T is a cyclic p-contraction map ([1]) and by the

1+t
same arqument of the above example, we see that T does not satisfy (3.3).

It follows from the above examples that, there exist pairs of (A, B) with the property

UC such that the existence of a best p ’i' ity point cannot be obtained from Theorem

Assume that A 1s co V :

x=T2%x. m

NN b E_lf’;w_mmm S
e WAl T

coximity point of T in A, then

A48 < |TEET gy
_ ‘|T2:L'—Tx+m—T33H
2 2
< d(A,B),

which is a contradiction. Thus T?%z = z. O
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Lemma 3.18. Suppose that A and B are nonempty subsets of a strictly convex Banach
space X such that A is convex and d(A,B) > 0. Let T : AUB — AU B be a cyclic

p-contraction map, x € A. Then the followings are equivalent:
(i) x is a proximity point of T.

(ii) x is a fized point of T?.

Moreover, such point x is unique

To show the uniquene ’ est proximity point of T'in Ai.e., ||'-T2'|| =
d(A, B). Then by Lemha 347 \ave- T2

From this, we have

Thus ™
,; (3.13)
J )
Next we will s "ﬂi p s |
HYINININYING
YU o ||ac"— Tz|| = d(Ai). | o (3.14)
Suppozaqtmlla @oﬂﬂ(ﬁmum f] ’J W EJ ’] a EJ
1Tz —z| = |T2"—T%|
< l2" =Tzl — o(|[(2', Tz]]) + ¢(d(A, B))

A

||dl'/ - TJI”,
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x4+

which contradiction to (3.13). Hence (3.14) holds. Since A is convex, ceA It
follows from the strict convexity of X that
/
a4,B) < |55 T

B ”m—Tac N :c’—TmH

B 2 2

< d(A,B),
which is a contradiction. Hence z O

subsequence {xap, } cOx

(i) Since T is ~ ¢ B. $2nl+1} converges weakly

to Tz € B. Thereform%i — Top,;+1 COL tmz Tz. Hence ||z — Tx| <

DETRR T TE LT A

Hence by the the proximal propertyfwe get that |fm— Tz = d(A,B).

when Rk Gt I b i Tt :

Remark 3.20. In case d(A, B) = 0, the result of Theorem 3.19 follows from Theorem

liminf ||xg,, —

(i) Since

3.15.
To prove the Theorem [3.22 we need the following lemma.

Lemma 3.21. [18] Let A and B be nonempty closed convez subsets of a reflexive Banach

space X. If A is bounded, then there exists (z,y) € A x B such that |z —y|| = d(A, B).
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Theorem 3.22. Let A and B be nonempty closed convex subsets of a reflexive strictly
convex Banach space X such that A is bounded, d(A,B) >0 and letT : AUB — AUB

be a cyclic and

|Tx —Ty|| < |lx —y| forall x€ A and y € B. (3.15)

If (A—A)N(B—DB) = {0}, then T has a unique best proximity point x € A. Furthermore

x is a fired point of T2.

Proof. By Lemma 3.21), t ) @h that ||z —y|| = d(4, B).
~ d

Hence

This implies
(3.16)

Suppose that there exists ,Y) # (z,y) and |2’ — /|| =
d(4, B).
CaselL.z—y=1a' A)N (B —B) = {0}. This

‘.

show that  — 2’ = g7y = 0. I i, (z,y) = («',y') which is a

Case Il. v — y # o/ —y‘&nceAandeigconvex EA dy+y e€eB. It

ot s L34 ERBHLE TS TV E) ﬁ 9
ammn‘immmqaa

which is a contradiction.

contradiction.

Thus there exists a unique order pair (x,y) € A x B such that ||z — y|| = d(A, B). By
this fact and (3.16), we have + = Ty and y = Tz. Hence ||z — Tz|| = d(A, B) and

T2z = x. |
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Corollary 3.23. Let A and B be nonempty closed convex subsets of a reflexive strictly
conver Banach space X such that A is bounded, d(A,B) >0 and letT : AUB — AUB
be a cyclic p-contraction map. If (A — A)N (B — B) = {0}, then T has a unique best

prozimity point x € A. Furthermore x is a fived point of T?.

Remark 3.24. In case d(A, B) = 0, the result of Corollary!3.23 follows from Theorem

3.15.

Remark 3.25. In case of A and E are the following example shows that

Theorem 3.26. Let A Nel ity closed eonvex subsets of a reflexive Banach

space X, and let T : A M‘ 3 ' ). Assume that for fired xg € A, a

(2) hm [ eﬁ'—.':_'_‘f_':_;'"

)
= d(mB).
Proof. Fix zg kﬁ ,uﬂdgjnw"ﬂ (ﬂiﬁwﬁj ej ﬂB , there exists {wn, }

converges weaklyjto x € A and hm H:Egn — Xop,+1 From this fact and the

RN IUNINLNAY

we obtain that {xap,+1} is bounded. Thus there exists subsequence {l‘gnij L1} converges

Then there exists (z, 3& A x

weakly to y € B. Therefore Ton;, — Lan; 4, converge weakly to x —y. Hence ||z —y| <

lim inf ||332mj - xgninH =d(A, B), so ||z —y|| = d(4, B). O



CHAPTER IV
MULTI-VALUED WEAK CONTRACTION MAPPING

Let P(X) be the family of subsets of X and let T' be a multi-valued
/ uch that x € Tz is called a fixed

[ mll

mapping, i.e., T : X — P(

point of T. We denote by
of X, K(X) the class o(‘ amp: w
points of T, i.e., Fp = F \.

of X and A, B are nonem X, tl ' ] \\\

empty closed bounded subsets
X and Frp the set of all fixed
metric space. If zq is a point

between x and A defined by

the distance between

Let h(A, B) = sup{d(a, e Hausdorff-Pompeiu generalized function

on P(X) induced by d

‘IAA B) ma,x{f@ B),

e EMEANENINUADS .o
TR I e

A) <d(z,y) +d(y, A

3. d(z,A) < d(z,y) + d(y, B) + h(B, A),
4. d(z,A) < d(z,B) + h(B, A),
5. if x € A, then d(z, B) < H(A, B).

The following property of the functional H are well-known.
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Lemma 4.1. Let (X,d) be a metric space, A,B € P(X) and q € R,q > 1 be given.
Then for every a € A there exists b € B such that d(a,b) < ¢H(A, B).

Theorem 4.2. Let X be a metric space, then H is a metric on CB(X).

Theorem extends the Banach Contraction Theorem from single-valued maps to
multi-valued maps.

A multi-valued mapping 7' : X — P(J called a c-contraction mapping if there

exists a constant ¢ € (0,1) suc

yEX.

Theorem 4.3. [23](Nadl a_complete metric space and T

X — CB(X) be a multi- has at least one fived point
Given a point x € X a w that there exist a* € A such
that d(z,a*) = d(z, A). h ‘metr rojection of the point  on the set A

and denote it by a* = 7o) 1isn n que but we choose one of it.

Let T : X — P(X) tisvalued suel: 2 is nonempty and compact for

In 2007, Kunze, La” orre a tended @worem 2.3-Theorem 2.5 to a

compact multi-valued c—qargactlon mappln

meoen 1 45 B NENEINT

Theorem 4.4. ﬂ__ﬂ] Let (X,d) be @ complete metric space anddr: X — K(X) be

o mui) FARID SOAN SV A O ers s

ztemtwn sequence {xn}22, converges to some z* € Frp.

Theorem 4.5. [19] Let (X,d) be a complete metric space and T : X — K(X) be a

multi-valued c-contraction mapping. Then

1
d(zo, Fr) < 3—d(z0, Tz0),

for all xg € X.
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Theorem 4.6. [19] Let (X,d) be a complete metric space and T1,Ts : X — K(X) be
multi-valued contraction mappings with contraction factors c1 and ca, respectively. If

Fr, and Fr, are compact, then

doo(Th, T5)

H(Fp, F
(Fry, Fr) < 1 — min{ec, ca}’

where doo(Th,Ts) = sup H(Thz, Tox).
zeX

4.1 Multi-Valued

In 1972, Zamfirescu[33] intr S ! s need not continuous called Zam-

firescu mapping. We giv

Definition 4.7. [35] — X is called Zamfirescu

1

mapping if there exi atisfying a < 1, b < 5 and

c< %, such that, for ea 'aﬁé 18% ' owings is true:

(23) d(TSC,Ty) < tlnl 1F 7 1

Theorem 4.8 is the m ¢

Theorem 4.8. [33] Let{)&d ) be a comple%metm’c space and T be a self map on X.

vr o i) R AIWBIRT

Zamfirescu’ theorem (Theorem 4.8) s a generalization of Banach’8.theorem (Theorem
29, ) L VR BT X A Fa X TN
In this sectlon we extend the definition of Zamfirescu mappings for multi-valued map-

pings.

Definition 4.9. Let (X,d) be a metric space and T : X — CB(X) be a multi-valued
mapping. T is said to be a multi-valued Zamfirescu mapping if there exist positive
real numbers a,b and c satisfying a < 1, b < % and ¢ < %, such that, for each z,y € X

at least one of the followings is true:
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(21) H(T{E, Ty) < ad(m, y),
(22) H(Tz,Ty) < bld(z, Tx)+ d(y, Ty)],
(23) H(Tz,Ty) < cld(z,Ty) + d(y, Tz)].

Theorem 4.12/ and Theorem [4.13] are main results of this section. It basically shows that
any multi-valued Zamfirescu mapping has a fixed point. To do this, we begin with the

following lemmas.

there exists a positive W  that-d(Z, ) < ad(Tp—1,2y) for alln € N,

then {x,} converges gl o ith \\ wing estimates

Proof. Let {z,} be a sequ -f _-57;5;1_;__ : there exists a positive number o < 1

o .
J \

such that d(xy,, Tnt+1) < ad(@i—q @) § L a

By mathematical induchion—we-liave -
y L7 AY |

' i
E d(Tn, Tpy1) < a"d(xo, x1), I N

(4.1)
" respe“”ﬂ U El ANYNTNYINT
. A(Tppk—1, Tnik) < d (T 1,wn ke NU (4.2)
So, foriyn pfl@bq([gjm mw’]q waj"] a EJ
d(xnaxn-i-p) < n—fld(mkaxlﬂ-l)
=
< Z akd(mo,xl)
k=n
< - @ m). (4.3)

1«
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Since 0 < a < 1, it yields that ™ — 0 (as n — o0), which together with (4.3) implies
that {z,}°2, is a Cauchy sequence. Since (X,d) is complete, {z,}>2, converges to
some u € X.

By (4.2), we have

p
d((l?n, xn—l—p) < Z d(a7n+k—1a Tn+k, )

(4.4)

From (4.3) and (4.4), b we have the estimations (1) and (2). O

— CB(X) be a multi-valued

Zamfirescu mapping a € wr-sequen e ' that for allm = 0,1,2,.

’ +d .Tn+1,TU
£ w).

In case T,,u sa .-§,f_,,__‘_—_' ; "
E d(u Tu) < d(’U/V.'L'n{_]_) —i— ad(ﬂ u). (4.5)

““’"’“Sﬁ‘ﬂyuﬁl‘ﬂﬂw INYINT

d(u, Tu) < d(u, #n+1) + bld(zgel'vy) + d(u, Tw)s
QRN NABIIRIANLIRY .

Suppose that z,,u satisfy (Z3). Then

du,Tu) < d(u,xny1) + c[d(zy, Tu) + d(u, Txy))

< d(u, xpy1) + cld(zn, Tu) + d(u, Tpy1)]. (4.7)

Therefore, letting n — oo in (4.5), (4.6, (4.7), we get d(u, Tu) = 0.

Since T is closed, u € Tu. Hence u is a fixed point of T'. O
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Theorem 4.12. Let (X,d) be a complete metric space and T : X — CB(X) be a
multi-valued Zamfirescu mapping. Then T has at least one fixed point.

1 1 qb qc
do= L
AL —} and @ = max{qa, Al —

Note that 0 < aa < 1. Let g € X and z; € T:I:o.

Proof. Choose g be such that 1 < g < mln{

1.

If H(T'zo,Tz1) =0 then Txg = T'zy, i.e., 1 € Txy. This means that Fr # @.

Suppose that H(Txg,Tz1) > 0. By L a 4.1l there exists x9 € Tz such that

/Tml

end'z; —h Z9 € T'zo. Hence T has a fixed

For 1 and z9, if H(T'z1,

point. Let H(Tx1,Tx2) ‘ ‘.‘\ N there exists 3 € Tzo such that
N

By this procedure, we
Firstly, if there is k" pr = 0, then z, is a fixed point.

Secondly, we obtain a se uch the €'z, and

orall neN.

)

d(zp,x

If z,,_1, z, satis

(4.8)
If 21, T satlsfyg ) then
AUt InEningnas,
AR \aenaf b (B
d(n, Tpy1) < ( YA(Tp—1, ). (4.9)

1-— qb
For the last case, if x,,_1, x, satisfy (Z3), then
d(xp, 2pnt1) < qold(xp—1,Txy) + d(xp, Tan—1)]
= qcd(xp—1,Txy)
< qed(Tn-1,Tn1)

< qc[d(wn—la wn) + d(fl?n, xn+1)]~



29

Thus
qc
d(xp, Tpt1) < (1 Yd(Tp—1,Tn). (4.10)
—qc
From (4.8), (4.9), (4.10), we have
d(p, Tpt1) < ad(zp_1,Tn), n=12,,3,....

Hence by this fact and Lemma [4.10, {z,} converges to some v € X. By Lemma

4.11), w is a fixed point of T ‘ W |

&ﬁsmtion sequence of a multi-valued
eLge to its fixed point.

nd T : X — K(X) be a multi-

The next theorem shows th

Zamfirescu mapping

Theorem 4.13. Let

valued Zamfirescu m

(1) for any x¢ € v sequence {x,}5°, converges to

some x* € Frp;

2,,3,...

hold, for a n-constant U< o Y]
Proof. Let T be a mum—value amfirescu mapping, i.m for each z,y € X satisfying
at least one condition ( ), and@@z is compact for all z € X.
ot ofl 1839 ﬁli'lél oI Db b bt projction tesaion
sequence.

Foamaﬁﬂim UNIINYAY

d(.’L‘L.’IJz) = d(:L‘l,P.’Dl) = d(.’L‘l,TSCl) S h(T:IJo,T:L‘l) S H(T:L‘o,T.’L‘l).
If g,z satisfy (21), then d(x1,z2) < ad(xg, z1).

In case that xg,x; satisfy (Z2), then

d(.’L’l,CCQ) < b[d(wo,Two) + d(.%'1,T.’L’1)]
= bld(zo,x1) + d(x1, z2)].
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Hence d(zy,m2) < %}d(%,xl)

Suppose that zg, 21 satisfy (Z3). Thus
d(z1,22) < cld(xo,Tz1)+ d(z1,Tx0)]
= cd(zo,Tx1)
< cd(zo,z1) + d(x1, Txq)]

0,21) + d(z1, 22)].

This implies

A2y 7\ NN T

Consequently, for eac

Hence by this fact and L some u € X. Thus by Lemma

4.11, we have u is a fixed p 2) holds from Lemma 4.10! O

In example 4.14, we give er’s fixed point theorem can not

be applied while ; use Theore ] l{"‘ as a fixed point.

Example 4.14. Letzﬂ: [0,1] and T : X —>CB( ) be defined by

ﬂ‘UEI’JJ/l NANNNT

0,3 ;=1
e ARSI WAV AN AN E - -
and y E?O 1). Note that Tz = [0,3] and Ty = [0,3]. Thus d(z,Ty) = d(1,[0,1]) = 2
and H(Tz,Ty) = H([0, 3],[0,1]) = 1.

Hence
H(Tz,Ty) =

W= Wl =
N[V

[d(x, Ty) + d(y, Tz)].
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Therefore T' is a a multi-valued Zamfirescu mapping. By Theorem 4.12, T has a fized
point. Fory = 1,z € [2,1), we observe that H(Txz,Ty) = 1+ > |x — y|. This implies
that T is not a multi-valued c-contraction for any ¢ € (0,1). Then we can not apply

Nadler’s theorem with this example.

Proposition 4.15. Let (X,d) be a complete metric space. If T is a multi-valued Zam-

firescu mapping then Fp is complete.

Proof. Let {z,}22, be a Cau

wyénce X is complete then there exist

u € X such that lim z, = byJJ 1s a fixed point of T'. Therefore

n—oo

we have the theorem. 7 A O
4.2 Multi-val

In 2007, one of interestin 172 ' s fixed point theorem was given
by Berinde [7]

Definition 4.16. [7] Let - clric spoce and T : X — CB(X) be a multi-
valued mapping. T is said to b alued weak contraction or multi-valued

nd L > 0 such that

for lzyeX.

Remark 4.17, Jt js kgufjﬁ%a gﬁ %(wgr ,ﬁg ﬁ ‘ﬁeak contraction.

Theorem 4. 1&”]/ Let (X,d) be a metmc space and T:X — CB ) be a multi-valued

AW RPTUUNTINGIR Y

In this sectlon we prove that the Picard projection iteration sequence converges to a
fixed point, give a rate of convergence and generalize Collage Theorem (Theorem 2.4

and Theorem 4.5) for the case of multi-valued weak contraction.

Lemma 4.19. Let (X,d) be a complete metric space, T : X — CB(X) be a multi-
valued (0, L)-weak contraction mapping and let {x,} be a sequence in X such that for

alln=0,1,2,..., Tpy1 € Tay. If lim x, = 2%, then x* is a fized point of T.
n—oo
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Proof. Assume that lim x,, = 2*. Thus we have
n—oo

*

d(z*,Tx") x5 Tpa

IN

d + d($n+17 Tx* )

IN

d(z*,zpy1) + H(Txp, Tx*)

IN
.

AN

d

( )
( )
(2%, Xpy1) + 0d(xn, 2*) + Ld(2*, Txy)
(@*, Tny1) + 0d(@n, %) + Lld(z", 2ni1) + d(@ns1, Tan)]
( ) &

d

foralln=0,1,2,...

ince Tx* is closed, z* € Tx*.

O
The next Proposition is i btained from Demma 4.19.
Proposition 4.20. L / o g ne » we. If T is a multi-valued weak
contraction mapping th ‘
Theorem 4.21. Let (X etes ' pace and T : X — K(X) be a multi-

(1) for any zo € X, t eguence {xn}o2, converges to

some ¥ € F; v_ 7 i ‘
H |

1 I
(2) the following estiinates -

AUBINENINY AT
ARSI TINE A

Proof. Fix g € X and {z,}72, the Picard projection iteration.

hold.
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For each n € N we see that,

d(Tpn, Tpy1) = d(zp, Pry)
=d(zp, Txy)
< H(Tzp-1,Txy)
< 0d(zp—1,xn) + Ld(xp, Txp—1)

(4.11)

By this fact and Lemma [4:40, {2, & z* € X. Thus by Lemma 4.19,

u is a fixed point of T
O

Corollary 4.22. (Genér ' ) be a complete metric space

and T : X — K(X) b ton mapping. Then

for all xg € X.

Proof. Let g € X B it z* € Fp such that the

Picard projection i evat 7 ‘ , by Theorem [4.21(2), w

i |
have ) . ,3]

guidnninena. .
ANNTUAMINGIAY

Theoreth 4.23. Let (X,d) be a complete metric space and Ty, T : X — K(X) be multi-
valued weak contractions with parameters (61, L1) and (62, L2), respectively. If Fr, and

Fr, are closed and bounded, then

doo(T1,T2)
- 1- max{Hl, 92}

H(FT17FT2)

where doo(Th,Ts) = sup H(Thz, Tox).
zeX
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Proof. Let z € Fr,. By Corollary 4.22, we have
(1 —09)d(x, Fp,) < d(z,Tox) < H(Tiz,Tox) < doo (T, T2).
Take the supremum with respect to € Fr,, we get
(1 —62)h(Fry, Fr,) < doo(T1,T3).

” btain
23 - TlaTZ)-
_d

Next, upon interchanging Fr, with

. Hence

O
Remark 4.24. Sinc ion. s aj ( k contraction, Theorem 4.4 can be
deduced from Theore e deduced from Corollary 4.22)
The next corollary is immed
Corollary 4.25. Let (X,d) '- complete metric space and T, : X — K(X) be a
sequence of multi- »4; d we . ons w oRtTe ctivity constants 6,, such
that sup,, 0, = 0 <' ippose ‘ “‘J ¢ dss and T is a compact

multi-valued weak conmction. Then Fr, — Fr in the fmlsdorﬁ metric.

e AN I NGNS

Corollary 4. 26! [19] Let (X,d) b? a complete metric space an, T X — K(X)

QY RO RHHIN SR VB . e e

sup,, an a < 1. Suppose that T,, — T with the metric doo and T is a compact

multi-valued contraction. Then Fr, — Fr in the Hausdorff metric.

The next theorem shows that a multi-valued Zamfirescu mapping is a multi-valued weak

contraction. Hence Theorem 4.13| follows immediately from Theorem 4.21.

Theorem 4.27. Let (X,d) be a metric space and T : X — CB(X) be a multi-valued

Zamfirescu mapping. Then T is a multi-valued weak contraction.
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Proof. Let T be a multi-valued Zamfirescu mapping and x,y € X. Then at least one of
(1), (%2) or (23) is true with parameters a,b and c, respectively.
If x and y satisty (21), then H(Tz,Ty) < ad(z,y).

In case that x and y satisfy (22) we see that

H(Tz,Ty) < bld(z,Tz)+ d(y,Ty)]
< b[ld(z, Ty) + H(Tz, Ty)] + [d(y, ) + d(z, Ty)]]

If x and y satisfy (23
H(Tz,Ty) <

<

Thus H(Txz,Ty) <
Let

Then we have 0 < 6 <

V. ]

Hence T' is a mul ion. m O

The following example shows, that a multi-valued weak contraction may not be a Zam-

frescn mappir% UBINENINEINS
j:;“ﬁ ﬁnﬁgﬁ ﬁﬂiﬂ ﬁiﬁzﬁ g] ,ﬁha‘%ﬁzj o multi-valued

H(Tx,Ty) = H({z},{y})
=d(z,y)

=0d(z,y) + (1 —0)d(z,y)
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for € (0,1). Then T is a (6,1 — 6)-weak contraction for all § € (0,1). If T' is a multi-
valued Zamfirescu mapping, Then there exist positive real numbers a, b and c satisfying
a<l1lb< % and ¢ < %, such that, for each z,y € X at least one of the followings is

true:
(21) H(T:Ea Ty) S ad(.’L‘, y)v

(22) H(Tw,Ty) < bld(e, Ta) + d(y:d

This is impossible, since "is not a multi-valued Zamfirescu

mapping. O

.E!
AULINENINYINT
ARIAATAUNNIING A Y



CHAPTER V
CYCLIC MULTI-VALUED MAPPING

In this chapter, we extend t

f roperty of single-valued mapping to multi-
valued mapping and investigaf ﬁxed point and the existence of a
best proximity point.

To establish our res S stod I _wass of multi-valued mappings.

Definition 5.1. Let /

- qg (3 Y ‘: 'f . .

5.1 Fixed pomt f yc]a‘g,:

__, j.g"‘f) I d’ -
multi-valued mapplnﬁ which satlsfy a cd’ntr'

Theorem 5.2. Let metric space (X,d). Sup-

pose T is a cyclic(on"A and B) multi-valued mapping with nonempty closed bounded

V) ) () T

H(Tz,Ty) <kd}y foralla:EAandyeB

ThenﬂWl@pﬁeﬂﬁmM%ﬂ NYIAE

Proof. Let o > 1 be such that ak < 1. Let o € A and 1 € Txg C B.

If H(Txo,Tx1) =0, then Taxg = T, i.e., x1 € Tz which actually means that Fp # &.
Assume that H(Tzg,Tz1) > 0. By Lemma 4.1, there exists o € T'z1; C A such that
d(zy,x9) < aH(Txg,Tx1). By the definition of T', we have d(x1,x2) < akd(zg,z1).
Next, if H(Tx1,Tx2) = 0, then Tx; = Tx9, i.e., xo € Txo. This means that Fr # &.

If H(Tx1,Tx2) > 0, by Lemma 4.1, there exists 3 € Txo C B such that d(x2,z3) <
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akd(xi,z2).
Continue this procedure, we have two cases.
Case I. There is k" procedure such that H(Txp_1,Txg) = 0. Then zy is a fixed point.

Case II. There exists a sequence {x,} such that zo, € A, x9,+1 € B and for all n € N,

d mnaxn—l-l < akd xn 171'71

Since 0 < ak < 1, by Lemma 'f;iy)es Let x := lim z,. Note that
n+17 TCIZ‘

gv .’E 5 -l ny 1)

By letting n — oo, wi osed, x € T'z. Therefore x is

a fixed point of T. To X, Topy1 — . Since A and

B are closed, z € AN B O
Theorem can be ‘ finite « ain of nonempty closed subsets of X.

Theorem 5.3. Let {A;}], be af “of nonempty closed subsets of complete

&= ."“'Mz A

metric space. Supp ed hounded valued satisfying the

following conditions. (Wi )

(a)TaigAi-i-l;fOEZiE A; and 1<% <'n; -m

(b) 3k € (0,1) such dhat H(Tx,Ty) <dkd(x,y) for all x € A; and y € Aiy1, for

e AUEINENINENNS

Then T hasqgt lest one fized point in (i, A-

Thgrmmmmumq IR

Similarly, the proof of Theorem 5.2 we can extend to next theorem.

Theorem 5.4. Let A and B be nonempty closed subsets of a complete metric space
(X,d). Suppose T is a cyclicfon A and B) multi-valued mapping. If there exist two

constants 6 € (0,1) and L > 0 such that

H(T'z,Ty) < 6d(z,y) + Ld(y, Tx)
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and

H(Tz,Ty) < 0d(z,y) + Ld(x, Ty}

forallz € A and y € B, with closed bounded valued. Then T has at lest one fized point

in AN B and Fr is complete.

Proof. The proof of existence of a fixed point are essentially similar to those of Theorem

and, therefore, are omitted here.

To show that Fr is complete, i ‘ that Fr is closed. Let {z,}72, be

a sequence in Fp, which inc B and AN B is closed, we have

d(w, x) + d(xp, Txy))
.y
Therefore, letting n — oo, we get- AT ince Tu is closed, u € Tu. Hence Fr

is closed. O

. !.'
The next Corollary 5.5 icorem [5.4.

Corollary 5.5. Let A afld B be nonempty closed subsets of a complete metric space

(X,d). Supp0ﬂ7u 8@%@%@%&] Wﬂimst two constants 0 ¢

(0,1) and L >0 such that H(Tx 1‘”3/) < fd(x, y) + Lmin{d( y,T:L') d(xz,Ty)} for all

< RARTRAMITUAR T YA B B ot o

ANB.

Remark 5.6. Theorem 4.18 is a consequence of Corollary|5.5.

5.2 Best proximity point of cyclical multi-valued mapping

In this section, we extend the results of the Theorem to the case of disjoint sets

with property UC.
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Definition 5.7. Let A and B be nonempty subsets of a metric space (X,d), and T a
multi-valued mapping cyclic on A and B. Then T is said to be k-contraction if there

exists a constant k € (0,1) such that
H(Tz,Ty) < kd(xz,y) + (1 — k)d(A,B) forallze A andy € B.

To prove the main result of this section, we shall need a lemma.

Lemma 5.8. Let A and B be none sets of a metric space (X,d) with the

property UC and let {x,} be a equence e exists a sequence {y,} in B such

that lim d(zy,y,) = d( and i =d(A, B), then {z,} is a Cauchy
n—oo

=

Proof. By the property

sequence.

Suppose that {z,} i ' ichy sequenc -\ e, there is € > 0 such that for

each k € N, Imy, > ny, >

(5.1)
By the assumption, we have
(5.2)
Note that '
d(A, B) ﬁ d(Yny,> Ty, |
< W@, Tn,) + d(xnmmk)
Al Uehd NBRINE DG o
Let‘ping k — 00, we have 7 “7 7 - Y
PAINSAI /NN Y
< lm d(yn,, on,)
= d(A,B).
Hence
lim d(yn,,m,) = d(A, B). (5.3)

k—oc0

From (5.2), (5.3) and property UC, we have klim d(xp,,Tm,) = 0. This contradicts to
—00
(5.1). O
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Theorem 5.9. Let A and B be nonempty subsets of a metric space (X,d) such that
(A, B) satisfies the property UC and A is complete. Let T be a cyclic(on A and B)
k-contraction multi-valued mapping, with closed bounded valued. Then T has a best

proximity point z in A.

Proof. Fix xg € A. Let 1 € Txg C B. There exists xo € Tx1 C A such that

Similarly, there exists x3

—

Continue this proces at {xon} C A, {zon+1} C B,

Tp+1 € Ty and

d(zp, Tnt1) <
<
< 1—k)d(A,B) + k"
= K (A, B) + k"1 + (1 — k)d(A, B) + k"
Inductively, we &y" Y ‘

d(x;ﬂm < k"d(wo, 1) + (1— k“)dﬂ B) + k™.

o R ANBRINEINT
ARSI S T A

Since {xan} C A, {zon+2} C A and {z2,4+1} C B, by Lemma /5.8 we have {x29,} is a
Cauchy sequence.
Since A is complete, there exists z € A such that lim d(z,z2,) = 0.

n—oo

From this fact and the fact that

d(A7B) < d(zax?n—l)

S d(Z, an) + d(xQna xQn—l);
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we have lim d(z,z2,-1) = d(A, B).

n—oo
Since
d(Aa B) < d(x2na TZ)
< H(T$2n—17 TZ)
< kd(a’:zn_l, Z) +(1- k)d(A, B)
< kd(.’L'Qn_l, Z) + (1 - k)d(x?n—l) Z)
we have d(z,Tz) = d(A, B), point of T in A. O

1. In case of d(A, I AL sfie \\ UC. By this fact we see that

Theorem is

2. For nonempty st 4B | o, uadiforn {"“-,‘.-.._4 Banach space X, we know
that (A, B) has the pyoperty UC'if Alis convex.. 0 Theorem 3.2 is a consequence

of Theorem[5.9.

LTI

\Z
i
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CHAPTER VI
DATA DEPENDENCE

In this chapter, we study a :

data dependence for a special class of

multi-valued mappings. Th C g ce problem is well known

> exi he property H(Tyz,Tox) < n
S & Pronie

lem of finding an upper bound of

N

H(Fr,, Fp,).
In 2003, Rus, Pet 1portant abstract notions as

follows.

each x € X and any y € Tz, there {zn}02y such that

_ )
(ii) xpi1 € Ty formlnzo,l,Q... and m

Remark 6.2. sequence {xn}lg Satisfying conditions (i) and (ii) in Definition 6.1
e RN GH WAV

Definition 6.3. Let (X,d) be a metric space and T : X — P(X) be a MWP mapping.

(i) zo =z, x1=

Then we define the multi-valued mapping T : G(T) — P(Fr) where G(T) = {(x,y) :
x € X,y € Tz}, by the formula;
T (z,y) := {z € Fp| there exists a sequence of successive approximations of T

starting from (z,y) which converges to z }.
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Definition 6.4. Let (X,d) be a metric space, T : X — P(X) be a MWP mapping and
¢>0. Then T is a c—multi-valued weakly Picard (briefly c-MW P ) mapping if for every

(x,y) € G(T) there exists a selection t>°(x,y) in T (z,y) such that d(x,t*(z,y)) <

cd(z,y).

We shall present some examples of c-MW P mappings given in [30]. (See more

details in ([11], [23]-[28]).

Example 6.5. Let (X,d) be //

1. Let T : X — CB(

forallz,y € X. The Sy MW E ping with ¢ = (1—~)[1— (a+B+7)] L.

3. LetT : X — CB(X wpping for which there exist positive

real numbers @ v

0

¢ o H(Tx, Ty) < adfx,y) + Bd(y, Ty),

for all fﬂ uv&lg;ﬂ &L”i m’]ﬂ jg with ¢ = (1 - B)[1 —

AJ& TSN INEIAY, ..,

d(zo,z) < 1} be a multi-valued mapping for which there exist a, 3,7 € Ry and

a+ B+ <1 such that

(i) HTz,Ty) < ad(x,y) + fd(z, Tx) + ~vd(y, Ty), Y,y € B(xo,r)
(ii) §(zo, Txo) < [1 — (a+ B+7)](1 —7)"tr.

Then T is a c-MW P mapping with ¢ = (1 —~)[1 — (a + B +7)] L.
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Now we introduce an important abstract notion of Collage mapping as follow.

Definition 6.6. Let (X,d) be a metric space, T : X — P(X), Fr # @. Then T is a
Collage multi-valued mapping if there exists ¢ > 0 such that d(x, Fr) < cd(x,Tx) for
allz € X.

Remark 6.7. It is obvious that a c-MWP mapping(in Definition [6.1) is a Collage

multi-valued mapping. ' /
The following example %ltl-valued mapping may not be a

c-MWP mapping.

Example 6.8. Let T ' =3, T(2) = 2 and
T(3) = 1. It obvious 1l ' / Y \ ' that Frp = {2}, d(z,Tz) =2

c_we \4 ose ¢ > 0 with satisfying d(x, Fr) <
cd(z,Tx) for all x € {1, k e# (‘(_ s

i
Our main results are she i IO@F

and d(z, Fr) = 1 where 2

0 K\' ulti-valued mapping.

|
T,T : X — P(X) be two multi-valued

&
JvJJ

i o
Theorem 6.9. Let (X,d) be a g&i space.
. = 7 AT
mappings. Suppose that: ==

e— -
(i) T; is a ci-Colv 31 and

(ii) there exists n >Esuch that H(Tz, T2a:) <mn, for ﬂ r e X.

Then”%ﬂ%&%i@?lﬂﬂﬁwmﬂ‘i

Proof. We note that
q Wf] QFT T,) = max{ supw(f]l;'g Y,l]pﬂ f]’qﬁ El
e a€Fp, " beR i) 2

Since T; is a ¢;-Collage multi-valued mappings, for ¢ € {1, 2},

H(Fr,, Fr,) < max{ sup c1d(a,Tia), sup cad(b,T2b)},
a€FT2 bEFTl

that is

H(Fr,, Fr,) < max{ci, ca} max{ sup d(a,T1a), sup d(b,T2b)}.
a€Fr, beF T,
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Since a € Toa and b € T5b,

H(Fr,, Fr,) < max{ci, co} max{ sup H(Tra,T1a), sup H(T1b,T>b)}.
a€Fr, beF T,

Therefore, by assumption we have H(Fr,, Frp,) < nmax{ci,ca}. Then we complete

the proof. O

Corollary 6.10. Let (X,d) be a complete metric space and T,, : X — CB(X) be a

sequence of Collage multi-val / nstants ¢, such that sup,, ¢, < 00.
' 1€ doo é ' '
| —

Suppose that T,, — T wi a Collage multi-valued mapping.
Then Fr, — Fr with the

Proof. This is obviou A\ \ : N » O

Let us consider sev v hich follow by Example 6.5,

Remark and Theore : -i \

Corollary 6.11. Let (X G SPay : : X — CB(X) be two multi-
valued mappings for which the /4__;4.;5« it bers i, B; and v, a;+ G+ < 1

such that

2 (y, Ty),

for all z,y € X and i «

{1 2}

Suppose that aﬁﬁm (VICHWWE]‘W lzeX.
ﬁ AYNININNAIINYINY

Corollary 6.12. Let (X,d) be a metric space and T1,T> : X — CB(X) be two multi-
valued mappings for which there exist positive real numbers a; and 3;, oy + Bi+ < 1

such that

H(Tiz, Tiy) < oyd(x,y) + Bid(y, Ty),
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forallx € X, ye€Tx and i € {1,2}.
Suppose that there exists n > 0 such that H(Tix,Tox) <n for all z € X.

Then H(Fr,, Pr,) < nmax{cy, co}, with ¢; = (1 — 3)[1 — (o + B:)] 71, i € {1,2}.

Corollary 6.13. Let xo € X and r > 0. Let T : B(zg,7) — CB(X), where B(zq,r) =

{z € X : d(zo,x) < r} be a multi-valued mapping for which there ezist o, 3,7 € R4 and

a+ B +v <1 such that

(i) HTz,Ty) < ad(z,y)
(ii) §(xo, Txo) < [1 — (v

Suppose that there exi for all x € X.

Then H(Fr,, Fr,) < nafia —(a+ B+

24
-
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