

CHAPTER IV

ABRIKOSOV'S SOLUTION

In this chapter we will find the solutions of the Ginzburg-Landau equations in reduced units.

First, we start from the Gibbs free energy density

$$
\begin{equation*}
\mathrm{g}=\mathrm{a}|\Psi|^{2}+\frac{1}{2} \mathrm{~b}|\Psi| \frac{1}{2 \mathrm{~m}^{*}}\left|\left(-i \hbar \nabla+\frac{\mathrm{e}^{*} \mathrm{~A}}{\mathrm{c}}\right) \Psi\right|^{2}+\frac{(\mathbf{h}-\mathbf{H})^{2}}{8 \pi} \tag{4.1}
\end{equation*}
$$

and change to reduced units by scating according to

จุหาลงภรถ์่เねาวิทยาลัย

$$
\mathbf{r} \rightarrow \xi \mathbf{r}
$$

Here, the definitions of the penetration depth λ, the coherence length ξ, and the Ginzburg-Landau parameter κ, are as following;

$$
\lambda=\sqrt{\frac{m^{*} c^{2} b}{4 \pi e^{*} d d}}
$$

The critical field H_{C} is given by ee. $\left.3: 9\right), \mathrm{H}_{\mathrm{C}}=\sqrt{ }\left(\left.4 \pi \mathrm{la}\right|^{2} / \mathrm{b}\right)$. In reduced units the upper critical field $\mathrm{H}_{\mathrm{C} 2}=1$. Note that in these units $|\Psi|=1$ in the bulk Meissner state. However, in normal units. $1 \Psi \mid \ll 1$ and we can neglect terms order $|\Psi| 6$ in the free energy.

Now, eq.(4.1) becomes

$$
\Psi=|\Psi| \mathrm{e}^{\mathrm{i} \phi}
$$

we have that

$$
\left.(-i \nabla+\mathbf{A}) \Psi\right|^{2}=|(-i \nabla+\mathbf{A})| \Psi\left|\mathrm{e}^{\mathrm{i} \phi}\right|^{2}
$$

$$
\begin{equation*}
=\left|-\mathrm{ie} \mathrm{e}^{\mathrm{i} \phi} \nabla\right| \Psi|-\mathrm{i}| \Psi \mid \text { ie } \mathrm{i} \phi \nabla \phi+\left.\mathrm{A}|\Psi| \mathrm{e}^{\mathrm{i} \phi}\right|^{2} \tag{4.3}
\end{equation*}
$$

If we set $\mathbf{Q}=\mathbf{A}+\nabla \phi$, eq. (4.3) becomes
$\left(\left.(-\mathrm{i} \nabla+\mathrm{A}) \Psi\right|^{2}=\mid-\right.$ ie io $\nabla|\Psi|+\left.|\Psi| \mathrm{e}^{\mathrm{io}} \mathrm{Q}\right|^{2}$

$$
\begin{equation*}
=(\nabla(\mid \Psi))^{2}+|\Psi|^{2} Q^{2} \tag{4.4}
\end{equation*}
$$

Q is the so-called supervelocity, which is a gauge invariant quantity. It came from the definition of the supercurrent as shown in chapter II and $\nabla \times \mathbf{Q}=\mathbf{h}$. Since \mathbf{A} and ϕ appear only in the combination of \mathbf{Q}, the form of ϕ itself is irrelevant. In fact, an arbitrary function can be added to $\phi(\mathrm{r})$ if its gradient is also subtracted from A. We will now only be interested in the amplitude $|\Psi|$, and for convinience we will denote the amplitude as Ψ

$$
\begin{equation*}
\widehat{Q}_{g} 9 \neq \Psi^{2}+\frac{1}{2} \Psi^{4}+(\nabla \Psi)^{2}+Q^{2} \Psi^{2}+\varepsilon^{2}\left(\nabla \times Q^{2}-\mathrm{H}\right)^{2} \tag{4.5}
\end{equation*}
$$

Setting the variation of g with respect to Ψ to zero gives

$$
\begin{equation*}
-\Psi+\Psi^{3}+Q^{2} \Psi-\nabla^{2} \Psi=0 \tag{4.6}
\end{equation*}
$$

This is the first Ginzburg - Landau equation in reduced units.

Minimizing $G=\int g d r$ with respect to $\mathbf{Q}(\mathbf{r})$, by the calculus of variations (Arfken, 1970), gives

$$
\begin{equation*}
\frac{\partial \mathrm{g}_{\mathrm{s}}}{\partial \mathrm{Q}_{\mathrm{i}}}-\sum_{\mathrm{j}} \frac{\partial}{\partial \mathrm{r}_{\mathrm{j}}}\left[\frac{\partial \mathrm{~g}_{\mathrm{s}}}{\partial\left(\partial \mathrm{Q}_{\mathrm{i}} / \partial \mathrm{r}_{\mathrm{j}}\right)}\right]=0 \tag{4.7}
\end{equation*}
$$

as a necessary condition.
Since

$$
\begin{equation*}
2 \tag{4.8}
\end{equation*}
$$

and by the same method used in the previous chapter (eqs.(2.20) - (2.24)), we obtain

and eq.(4.7) becomes

 $$
\kappa^{2} \nabla \times(h-H)+Q \Psi^{2}=0
$$
 จหาลงกรณม่ ร.
 This is the second Ginzburg-Landau equation in reduced units.

When the external magnetic field H is just below $\mathrm{H}_{\mathrm{c} 2}$ (which has magnetude 1 in these units), the internal magnetic field h is very close to $H\left(Q \approx Q_{0}\right)$ and the Ginzburg - Landau order parameter Ψ is very small. Therefore, in eq. (4.6) we can neglect terms of order Ψ^{3}, yielding.

$$
\begin{equation*}
-\Psi_{0}+Q_{0}^{2} \Psi_{0}=\nabla^{2} \Psi_{0} \tag{4.11}
\end{equation*}
$$

This is the linearized equation approximation, where Ψ_{0} is real and $\nabla \times \mathrm{Q}_{0}=\mathbf{H}$. We try,
and we have

So, since $H=H \hat{z}$,
and

$$
\begin{equation*}
\mathrm{Q}_{0}^{2}=\left(\frac{\nabla \Psi_{0}}{\Psi_{0}}\right)^{2}+1-\mathrm{H} \tag{4.15}
\end{equation*}
$$

We now calculate $-\Psi_{0}+\mathrm{Q}_{0}{ }^{2} \Psi_{0}$ and find that

$$
-\Psi_{0}+\mathrm{Q}_{0}^{2} \Psi_{0}=\left(\left(\frac{\nabla \Psi_{0}}{\Psi_{0}}\right)^{2}-\mathrm{H}\right) \Psi_{0}=\nabla^{2} \Psi_{0}
$$

in agreement with eq.(4.11).
If we multiply eq.(4.6) by Ψ, we find that

$$
\begin{equation*}
-\Psi^{2}+\Psi^{4}+Q^{2} \Psi^{2}=\Psi \nabla^{2} \Psi \tag{4.16}
\end{equation*}
$$

Using eq.(4.16), eq.(4.5) becomes

$$
\begin{equation*}
\mathrm{g}=-\frac{1}{2} \Psi^{4}+(\nabla \Psi)^{2}+\Psi \nabla \Psi^{2} \Psi+\kappa^{2}(\mathrm{~h}-\mathrm{H})^{2} \tag{4.17}
\end{equation*}
$$

Consider, now the identity

Since $\widehat{n} \cdot \nabla \Psi=0$ is the surface condition (Landau and Lifshitz, 1980), the average of eq.(4.17) has only two terms remaining, and

$$
\begin{equation*}
\langle\mathrm{g}\rangle=-\frac{1}{2}\left\langle\Psi^{4}\right\rangle+\kappa^{2}\left\langle(\mathrm{~h}-\mathbf{H})^{2}\right\rangle \tag{4.19}
\end{equation*}
$$

where the average value of a quantity x is defined as

$$
\langle x\rangle=\frac{1}{V} \int d r x
$$

Consider now $\Psi=\alpha \Psi_{0}$, where α is a constant, and we can choose, for H close to $\mathrm{H}_{\mathrm{C} 2}$,

The second Ginzburg-Landau equation, eq. (4.10), gives

and

$$
\begin{equation*}
\nabla \mathrm{h}=-\frac{1}{2 \kappa^{2}} \nabla \Psi^{2} \tag{4.23}
\end{equation*}
$$

The solution is

$$
h=H-\frac{1}{2 \kappa^{2}} \Psi^{2}
$$

and

Substituting eq. (4.24) in eq. (4,19) we get

where, β is defined according to

$$
\begin{equation*}
Q=Q_{H}+Q^{\prime} \tag{4.27}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{H}}=-\widehat{\mathbf{z}} \times \frac{\nabla \Psi}{\Psi} \tag{4.28}
\end{equation*}
$$

From the linearized equation eq. (4.11)
(remember that $\Psi=\alpha \Psi_{0}$, where α is a constant), and multiplying by Ψ we get

$$
\begin{equation*}
-\Psi^{2}+Q_{0}^{2} \Psi \Psi^{2}=\Psi \nabla^{2} \Psi \tag{4.30}
\end{equation*}
$$

Subtracting eq. (4.16) from eq. (4:30) yields.

$$
\begin{equation*}
\Psi^{4}+\left(Q^{2}-Q_{0}^{2}\right) \Psi^{2}=0 \tag{4.31}
\end{equation*}
$$

From the second of the Ginzburg-Landau equations, eq.(4.10) we get

Putting eq. (4.27)into eq. (4,32) and then/multiplying by Q^{\prime}, we have

$$
\begin{align*}
\left(Q_{H} \cdot Q^{\prime}+Q^{\prime 2}\right) \Psi^{2} & =\kappa^{2} Q^{\prime} \cdot(\nabla \times(H-h)) \\
& =\kappa^{2} \nabla \cdot\left((H-h) \times \mathbf{Q}^{\prime}\right)+\kappa^{2}(H-h) \cdot \nabla \times \mathbf{Q}^{\prime} \tag{4.33}
\end{align*}
$$

By taking the curl of eq (4.27), we obtain

$$
\begin{equation*}
\nabla \times \mathbf{Q}^{\prime}=-(\mathbf{H}-\mathbf{h}) \tag{4.34}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(Q_{H} \cdot Q^{\prime}+Q^{\prime 2}\right) \Psi^{2}=\kappa^{2} \nabla \cdot\left((H-h) \times Q^{\prime}\right)-\kappa^{2}(H-h)^{2} \tag{4.35}
\end{equation*}
$$

Consider the first term of the fight hand side of eq.(4.35), and by the divergence theorem, we have

$$
\int_{V} \mathrm{dr} \nabla \cdot\left((\mathbf{H}-\mathrm{h}) \times \mathrm{Q}^{\prime}\right)=\int_{\mathrm{S}} \mathrm{ds} \hat{n} \cdot\left((\mathrm{H}-\mathrm{h}) \times \mathrm{Q}^{\prime}\right)
$$

since $\hat{\mathbf{n}} \times(\mathrm{H}-\mathrm{h})=0$ on the surface (Fetter and Walecka, 1971).

We now recall (eq. 4.15)

$$
\mathrm{Q}_{0}^{2}=\left(\frac{\nabla \Psi_{0}}{\Psi_{0}}\right)^{2}+1-\mathrm{H}
$$

Squaring eq (4.27) we have

$$
\begin{equation*}
\mathrm{Q}^{2}=\mathrm{Q}_{\mathrm{H}}^{2}+2 \mathrm{Q}_{\mathrm{H}} \cdot \mathrm{Q}^{\prime}+\mathrm{Q}^{\prime 2} \tag{4.38}
\end{equation*}
$$

where
and we find that

so that

$$
\begin{align*}
& Q^{2}-Q_{0}^{2}=2 Q_{H} Q^{\prime}+Q^{\prime 2}-1+H \tag{4.41}
\end{align*}
$$

Substituting eq. (4.41) into eq. (4.31) gives

$$
\begin{equation*}
\left\langle\Psi^{4}\right\rangle+2\left\langle\mathbf{Q}_{H} \cdot \mathbf{Q}^{\prime} \Psi^{2}\right\rangle+\left\langle\mathbf{Q}^{\prime 2} \Psi^{2}\right\rangle=(1-\mathrm{H})\left\langle\Psi^{2}\right\rangle \tag{4.42}
\end{equation*}
$$

and by eq.(4.37), we get

$$
\begin{equation*}
\left\langle\Psi^{4}\right\rangle-2 \kappa^{2}\left\langle(\mathbf{H}-\mathbf{h})^{2}\right\rangle-\left\langle\mathbf{Q}^{\prime 2} \Psi^{2}\right\rangle=(1-\mathbf{H})\left\langle\Psi^{2}\right\rangle \tag{4.43}
\end{equation*}
$$

Next, from eq.(4.19) and eq.(4.25), we have that

Then eq.(4.43) becomes

$$
\begin{equation*}
\beta\left(1-\frac{1}{2 \kappa^{2}}\right)\left\langle\Psi^{2}\right\rangle^{2}-\left\langle Q^{2} \Psi^{2}\right\rangle=(1-H)\left\langle\Psi^{2}\right\rangle \tag{4.45}
\end{equation*}
$$

Then, since the second term of eq. (4.45) is small $\left(Q^{22} \Psi^{2}\right) \sim O\left(\Psi^{6}\right)$),

Substituting eq. (4.46) into eq. (4.25), we get $9 N ? \cap \delta$

Also, from eq.(4.24)

$$
\begin{equation*}
h=H-\frac{1}{2 \kappa^{2}} \Psi^{2} \tag{4.48}
\end{equation*}
$$

and we see that

$$
\begin{equation*}
B=H-\frac{(1-H)}{\beta\left(2 \kappa^{2}-1\right)} \tag{4.49}
\end{equation*}
$$

where $\mathrm{B}=\langle\mathrm{h}(\mathrm{x}, \mathrm{y})\rangle$ is the magnetic induction. $\mathrm{H}_{\mathrm{C} 2}=1$ in these units.

According to eqs.(4.47), (4.48), and (4.49), for type II superconductors, both the average Gibbs free energy density $\langle\mathrm{g}>$ and the magnetic induction B are dependent on β (the investigation of β will be described in detail in the next chapter). The value of β is approximately equal to 1.16 for a triangular lattice of flux tubes, and 1.18 for a rectangular lattice (Abrikosov 2,1957). The Gibbs free energy levels of these two states are very similar, but the triangular lattice is more stable since it occupies a lower energy level. The type I solution $(H=0, Q=0, \Psi=1$ in the bulk) has

ผ์ํํิิะฆทรัพยากร

In case of type I superconductors, the Ginzburg-Landauparameter $\kappa<1 / \sqrt{ } 2$. In the presence ofan appliedmagnetic field H , from eq. 4.50) the ayerage Gibbs free energy density would be positive if $\kappa>1 / \sqrt{2}$ and $H=1$, and equal to zero if the external field $H=H_{C}\left(H_{C}=1 / \kappa \sqrt{2}\right.$ in our units).

