Chapter Four

Results of The Calculations

The optimum binary interaction coefficients predicted by both objective functions for each equation of state are given in Table 4.1 to Table Table 4.1 and 4.2 shows the values of $K_{i, j}$ and the absolute average percent deviation (AAD) in bubble point pressures using four equations for carbon dioxide-hydrgegrbon 解ytures, whereas, Table 4.3 and 4.4 are for methane mixtures and Table 4.5 and 4.6 are for ethane mixtures. In thaselatables, N is the number of experimental data points, nged to evaluate the optimum $K_{i j}$ and "Range of P " is theninimuin and maximum pressure of the data set for the tempecatuye (T) specified in the second column. The absolute average pereent doviation (\%AAD) was calculated as

The application of the rapid fugacity method was intended to indicate its advantage of less computation time. In addition, the optimum $K_{i, j}$ values predicted from the minimization of the deviation in bubble pressure method
certainly bielded better result in bubble point calculations. Therefore, in the VLE prediction part, the optimum $K_{i, j}$ values from the bubble pressure method would be used to evaluate the bubble point pressure and vapor phase composition for each data set in all systems. These results, which include the absolute errors of all data point, are given in details in Sppendix B.

Additionally, dalien from these VLE results, the isotherm pressuee composition diagrams from experimental data and those evaluated by SW and, PT equations for each system are shown in Figunesi/4.1 to 4.6 for CO_{2} systems, Figures 4.7 to 4.11 for methane systems, and Figures 4.12 to 4.14 for ethane systemśx

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

TRRLE 4.1 Binary interaction coefficients and the deviations in bubble point pressure calculations of CO2 systeas for the four equations of state using the bubble point preswure criterion

ศูนย์วิทยทรัพยากร
 จุฬาลงกรณ์มหาวิทยาลัย

TPBLE 4.3 Binary interaction coefficients and the deviations in bubble point pressure calculations of Methane systees for the four equations of state using the bubble point pressure criterion

TAGLE 4.3 (Continued)

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

TPBLE 4.4 Binary interaction coefficients and the deviations in bubble point pressure calculations of Methane systems for the four equations of state using the fugacity criterion

TRELE 4.5 Binary interaction coefficienta arid the deoiations in bubble point pressura calculations of Ethane systeas for the four equations of state using the bubble foint prestur? oritorion

TABLE 4.6 Binary interaction coefficients and the seoiations in bubble point pressure calculations of Ethane systeas for the four equations of it ate using the fugacity criterion || | |

FIGURE 4.1 Comparison $0 f$ calculated and experimental VLE for CO_{2}-Ethane system at 250 K

ศูนยิวิททรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

FIGURE 4.2 Comparison of calculated and experimental VLE for CO_{2}-n-Propane system

FIGURE 4.3 Comparison of calculated and experimental VLE for CO_{2}-i-Butane system

FIGURE 4.4 Comparison of calculated and experimental VLE for CO_{2}-n-Pentane system

FIGURE 4.5 Comparison of calculated and experimental VLE for CO_{2}-n-Heptane system

FIGURE 4.6 Comparison of calculated and experimental VLE for CO_{2}-n-Decane system

FIGURE 4.7 Comparison of calculated and experimental VLE for Methane-Ethane system

FIGURE 4.8 Comparison of calculated and experimental VLE for Methane-n-Propane system

FIGURE 4.9 Comparison of calculated and experimental VLE for Methane-n-Butane system at 283.16 K

FIGURE 4.10 Comparison of calculated and experimental VLE for Methane-n-Pentane system at 273.17 K

FIGURE 4.11 Comparison of calculated and experimental VLE for Methane-n-Hexnae system

FIGURE 4.12 Comparison of calculated and experimental VLE for Ethane-n-Propane system

FIGURE 4.13 Comparison of calculated and experimental VLE for Ethane-i-Butane system

FIGURE 4.14 Comparison of calculated and experimental VLE for Ethane-n-Pentane system

