## CHAPTER IV

## RESULT AND DISCUSSION



Table 8 The IR spectrum assignment of AA-4

| Range of absorption $\left(\mathrm{cm}^{-1}\right)$ |  |
| :--- | :--- |
| $3600-3100$ (broad) | Assignment |
| $2950-2800$ (strong) |  |
| $1640 \quad$ (weak) | O-H stretching |
| 1460,1380 | (medium) |
| $1070 \quad$ (mediu -H stretching |  |
| 950,800 | (wea |

The IR spect melting points and Libe ${ }^{13} \mathrm{C}$ NMR spectrum of A as $\mathrm{S}, \mathrm{di} 1 \mathrm{igu}$ id d its chemical shift compared
 1978)

The MS specu형 of AA-4 comprised characteristic fragment of $\beta$-sitosteroi and stigmasterol. The peak
 The scheme 6 stjped the fragmentation pathway of $\beta$-sitosterol and stigmasterol



Table 9 The chemical shift of ${ }^{13} \mathrm{C}$ NMR of $\beta$-sitosterol,stigmasterol and
AA-4.

| No. of carbon | $\delta(\mathrm{ppm})$ of <br> $\beta$ - sitosterol | $\delta(\mathrm{ppm})$ of stigmasterol | $\delta(\mathrm{ppm})$ of AA-4 |
| :---: | :---: | :---: | :---: |
| 1 | $37.31$ | 1)31 | 37.25 |
| 2 | $\pm$ | , | 31.65 |
| 3 |  |  | 71.79 |
| 4 |  |  | 42.32 |
| 5 |  |  | 140.76 |
| 6 |  |  | 121.69 |
| 7 |  |  | 31.91 |
| 8 |  |  | 31.91 |
| 9 | 50 | -0 | 50.14 |
| 10 | 36.51 | 骨过56 | 36.50 |
| 11 |  |  | 21.08 |
| 12 |  |  | 39.78 |
| 13 | - 42.33 | 42.35 | 42.30 |
| 14 | $\stackrel{¢}{3}^{9} 9$ | ¢5610 | 56.77 |
| 15 | $\delta_{24 d_{2}}$ | 24.35 | 24.29 |
| ${ }_{17}^{16}$ | ลง กิ่ ${ }^{25}$ 25 |  |  |
| 18 | 11.87 | 12.07* | 11.85, 11.99* |
| 19 | 19.40 | 19.42 | 19.38 |
| 20 | 36.17 | 40.54* | 36.14, 39.78* |

Table 9 continued.



## 2 Structure Elucidation of BB-2

Compound BB-2 was yellow needle crystal that melted at $259-261^{\circ}$ c. When it reacted with $5 \% \mathrm{AlCl}_{3}$ solution in ethanol on TLC, giving fluorescent yellow spot in long wave UV light |/y pbsorption spectrum (Figure 6) showed characteristic band II $\lambda_{\max }\left(\lambda_{\max }=368\right)$ of flavones. The high intensity absorption $\longrightarrow$ ave hag $\longrightarrow$ I) was attributed to the maximum conjugation vecerause of the coplanarity of this two ring. These impl 1 : 1 2 with shift reagent was
 indicator of 4 'OH of f c id
 alike spectra revealed that 3 -2



ศูนย์วิหฏิกรัพยากร จุหาลงกรณ์มหาวิทยาลัย

The IR spectrum of BB-2 (Figure 8) showed the pattern of functional groups as table 10.

Table 10 The IR spectrum assigment of BB-2.

 protons. The protons wer fed ardire or olefinic protons, seventeen $\mathrm{sp}^{3}$ protons and two prot 0 , Th6. assigned by $\mathrm{H}-\mathrm{H}$ COSY $1.1 \mathrm{ppm}(\mathrm{dd}, \mathrm{J}=6.8,1.51$ that vicinal coupled protons (Figure 11a). Gue $\mathrm{sp}^{3}$ proton signal at $\delta 2.47 \mathrm{ppm}\left(\mathrm{m}_{,} \mathrm{J}=7,6.8,1.1\right)$ could be assigned as $\mathrm{H}-8$ 分 vicinal coupled $\quad[=6.8 \mathrm{~Hz}$ ) with $3 \mathrm{H}-19$ and $3 \mathrm{H}-20$ and long range coupled ( $\mathrm{J}=1.1 \mathrm{~Hz}$ )
 each otherg their vicinal coupling constant equaled to 16 Hz (Figure 12). The signal at $\delta$ 5.48 ppm ( $\mathrm{dt}_{,} \mathrm{J}=9.2,1.2 \mathrm{~Hz}$ ) could be assigned as $\mathrm{H}-12$ that vicinal coupled with $\mathrm{H}-11$ ( $\delta$ $6.22 \mathrm{ppm}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}$ ) and long range coupled with two vinyl methyl proton $\mathrm{H}-14$ ( $\delta 1.9$ $\mathrm{ppm}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}$ ) and $\mathrm{H}-15$ ( $\delta 1.6 \mathrm{ppm}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}$ ) (Figure 11c). The singlet signal at $\delta$ 3.94 ppm was assigned as the methoxyl proton $\left(7-\mathrm{OCH}_{3}\right)$. Its chemical shift was higher
than the other methyl group since it bounded to oxygen which had high electronegativity.

The aromatic proton signal at $\delta 6.57 \mathrm{ppm}$ was assigned as $\mathrm{H}-\mathrm{S}^{\prime}$ (dd, $\mathrm{J}=8.5,2.1 \mathrm{~Hz}$ ) that ortho-coupled with ${ }^{+1} 7.63 \mathrm{ppm}, \mathrm{J}=8.5 \mathrm{~Hz}$ ) and meta-coupled with H-3' ( $\delta 6.45 \mathrm{ppm}, \mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}$ )
 signal at $\delta 6.48 \mathrm{ppm}$ was assigned as the aromatic proton $a^{+}$

8). Whe 13.53 ppm could be

The BB-2 twenty-six carbons. The y eo $12 ., 1 /$ al $c$ tom. They were divided into twelve quaternary carbon $d$ of th 2

 at $\delta 18.32 \mathrm{ppm}$ and ppm signal had high
 respectively. The $\delta 22.38$ qu methyl groups that assigned to C-19 and C-20. The aromatic carbon at $\mathrm{C}-8, \mathrm{C}-3^{\prime}, \mathrm{C}-5$ and $\mathrm{C}-6^{\prime}$ shown signal at $\delta$
 showed signal a@ $\$ 120.89,109.87$ and 142.06 ppm . The methine signal at $\delta 32.75$ and
 it boundeq to oxygen atom.

From $4 \mathrm{~Hz}, 8 \mathrm{~Hz}$ and 12 Hz COLOC spectrum (Figure 16,$17 ; 18,19$ and 20,21 ), it confirmed the carbon position and defined the quaternary carbon as follow (see scheme 7,8 and 9, respectively).

Table 11 The ${ }^{1} \mathrm{H}(\delta \mathrm{ppm})$ correlated with ${ }^{13} \mathrm{C}(\delta \mathrm{ppm})$ at 4 Hz .


| Table |  |
| :---: | :---: |
|  |  |
| $\mathrm{CH}_{3} \mathrm{O}(\delta 3.94$ | C-7(8162.05) |
| H-14(81.9) | C-13( $\delta 138.26$ ) |
| H-15(81.6) | C-13( $\delta 138.26$ ) |
| H-16(86.55) | C-6( 8109.38 ) |
| H-5'( $(66.57)$ | C-2'( $\delta 154.88$ ) |


scheme 9

The most downfield signal at $\delta 178.14 \mathrm{ppm}$ was assigned as carbonyl carbon (C-4) and 8157.43 ppm was assigned as C-9. All protons and carbons assignment of BB-2 were shown in table 14. The elucidated structure of BB-2 was confirmed by MS spectrum (Figure 22). It showed fragmentary peak at $\mathrm{m} / \mathrm{z} 434$ $\left.\left.[\mathrm{M}]^{+}, \mathrm{m} / \mathrm{z} 391\left[\mathrm{M}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]^{+}\right)\right)^{\prime} 7338 \quad\left[\mathrm{M}-\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\right]^{+}, \quad \mathrm{m} / \mathrm{z} \quad 379 \quad[\mathrm{M}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}\right]^{+}, \mathrm{m} / \mathrm{z} 335[\mathrm{r}-\mathrm{CH}]^{+}$(base peak) and $\mathrm{m} / \mathrm{z} 190$.


Table $14{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ assignment of BB-2.


Table 14 continued


scheme 10

## 3 <br> Structure Elucidation of BB-3.3

Copmpound BB-3.3 was yellow crystal. Its melting point was $133-134^{\circ} \mathrm{C}$. The IR spectrum of BB-3.3 (Figure 23) shown the pattern of functional groups as table 15 and its UV spectrum was shown in

Table 15 The $\mathbb{R} \geq$ ssi $\#$ ne $\longrightarrow 3$


The BB-3.3 ${ }^{1}$ HNMRR spectrumn Figure, $25,26,27,28$ showed four signals of four
 The 1 H signal at $\mathbb{V}^{6} 6.45 \mathrm{ppm}(\mathrm{dd}, \mathrm{J}=8.56,2.29 \mathrm{~Hz}$ ) could be assigned as $\mathrm{H}-5$ that ortho-
 $\mathrm{ppm}, \mathrm{d}, \mathrm{J}=2.24 \mathrm{~Hz}$ ). Due to using a deuterated protic solvent $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$, the deuterium exchanged (scheme 11) phenomena occured and the signals of phenolic protons were disappear. But the signal of $\mathrm{CD}_{3} \mathrm{OH}(\delta 3.32 \mathrm{ppm})$ and HDO ( $\delta 4.85 \mathrm{ppm}$ ) were detected. The signal at $\delta 5.50$ and $\delta 7.11 \mathrm{ppm}$ were impure signal.

$$
\mathrm{R}-\mathrm{OH}+\mathrm{CD}_{3} \mathrm{OD} \leftrightharpoons \mathrm{R}-\mathrm{OD}+\mathrm{CD}_{3} \mathrm{OH}
$$

scheme 11

From DEPT 135 (Figure 29b), there were four signals of methine carbon (CH) and three signals of quarternary carbon. From C-H COSY (Figure 30), it confirmed that $\delta 195.47 \mathrm{ppm}$ was carbonyl de. The carbon signals at $\delta 136.81$, 109.94 and 103.30 ppm were 10 C C-3, respectively. This results from correlation with hydro H COSY).

The quarternary
correlation of aldehydric that the former was C-1 correlation to quarternary cart carbon. The correlation pattern $(\mathrm{H}$ was shown below.

scheme 12

Table $16{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ assignment of BB-3.3.

| Position | $\delta(\mathrm{ppm})$ of $C$ | $\begin{gathered} \mathrm{H}(\mathrm{ppm}) \\ \text { (multiplicity }, \mathrm{J} \mathrm{~Hz} \text { ) } \end{gathered}$ | long range correlation from <br> H to C in COLOC $(\mathrm{J}=12 \mathrm{~Hz})$ |
| :---: | :---: | :---: | :---: |
| 1 | 116.28 |  | - |
| 2 | 165.60 | $\sim \times 111$ |  |
| 3 | 103.30 | $\underline{+}$ ¢) 9 | $C-2, C-4, C-5$ |
| 4 | 167.28 | PIII | - |
| 5 | 109.94 | /1/, ${ }_{7}$ | - |
| 6 | 136.81 | (3) 3 (1a |  |
| 1-CHO | 195.47 |  | $2, \mathrm{C}-6$ |

The MS spectrur (, ure confirmed the structure of $\mathrm{B}-3$. The $\alpha$-clevage of $[\mathrm{M}]^{+}$aldeh. CW continued lossing car gave m/z 120 and gav
 le dehydration of $[\mathrm{M}]^{+}$ gave $\mathrm{m} / \mathrm{z} 120$ and gave 1

 ล9\%คดง 9 ?
(6)


4 Structure Elucidation of CC-1

Compound CC-1 was yellow needle. Its melting point was $203^{\circ} \mathrm{C}$. The IR spectrum of CC-1 (Figure 33) shown the pattern of the functional groups as table 17.

Table 17 The IR spectrum a


The CC-1

ed ten signals of twelve protons. The singlet signal at $\delta 8.22 \mathrm{ppm}$ was assigned as two equal hydroxyl
 assigned as $2^{\prime}$-çII or $4^{\prime}-\mathrm{OH}$. The signal at $\delta 6.52 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz})$ was assigned as
 $\mathrm{t}, \mathrm{J}=2.1 \mathrm{Hq}$ ). The signal at $\delta 6.38 \mathrm{ppm}\left(\mathrm{dd}, \mathrm{J}=8.3,2.4 \mathrm{~Hz}\right.$ ) could be assigned as $\mathrm{H}-5^{\prime}$ that ortho-coupled with H-6' ( $\delta 7.39 \mathrm{ppm}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}$ ) and meta-coupled with H-3' ( $\delta$ $6.44 \mathrm{ppm}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}$ ). The signals at $\delta 7.33 \mathrm{ppm}$ was vicinal coupled with $\delta$ 6.88 ppm equaling to 16.8 Hz . They were trans to each other because the vicinal coupling constant was high. The signal at $\delta 7.33$ and 6.88 ppm was assigned to be

Ha and Hb , respectively, by comparision with the model of sorocein B (Messana et al.,1991). The Ha was downfield by the resonance effect of hydroxyl groups at $\mathrm{C}-2^{\prime}$ and/or C-4'. The signals at $\delta 2.06$ and 3.18 ppm were signals of acetone and $\mathrm{H}_{2} \mathrm{O}$, respectively. The assignment of protons of CC-1 was shown in table 18.

(7)


