CHAPTER IV

RESULT AND DISCUSSION

The 1.5 Kg of dried heartwood A.lakoocha Roxb. was macerated with petroleum ether and chloroform, respectively. From petroleum ether extract, AA-4 and BB-2 was obtained by column chromatography. The concentrated chloroform extract was dissolved in the mixture of water:ethanol (7:3) and then partition with hexane. From hexane part, BB-2 and BB-3.3 was obtained by column chromatography. During partition CC-1 was precipitated out.

The yield of AA-4, BB-2, BB-3.3 and CC-1 were 4.8x10⁻³ %, 11.8x10⁻³ %, 2.47x10⁻³ % and 1.63x10⁻¹ %, respectively, based on dry weight of <u>A.lakoocha Roxb. powder</u>.

1. Structure Elucidation of AA-4

Compound AA-4 was white plate that gave positive result with Libermann-Burchard reagent. Its melting point was 136-137°C. The melting of AA-4 after acetylation (AA-4Ac) was 124-125°C. The IR spectrum of AA-4 (Figure 2) showed the pattern of the functional group as table 8.

Range of absorption (cm ⁻¹)	Assignment
3600-3100 (broad)	O-H stretching
2950-2800 (strong)	C-H stretching
1640 (weak)	C=C stretching
1460,1380 (medium)	C-H bending of CH3
1070 (medium)	C-O stretching
950,800 (weak)	C-H bending out of plane

The IR spectrum of AA-4Ac was shown in Figure 3. From two IR spectra, melting points and Libermann-Burchard reaction implied that AA-4 was steroid. The ¹³C NMR spectrum of AA-4 was shown in Figure 4 and its chemical shift compared with standard β -sitosterol and standard stigmasterol shown in table 9 (Wright et al, 1978)

The MS spectrum of AA-4 and β -sitosterol shown in Figure 5 The fragment of AA-4 comprised characteristic fragment of β -sitosterol and stigmasterol. The peak at m/z 414 and 412 were molecular peak of β -sitosterol and stigmasterol, respectively. The scheme 6 showed the fragmentation pathway of β -sitosterol and stigmasterol (Biemann,1962).

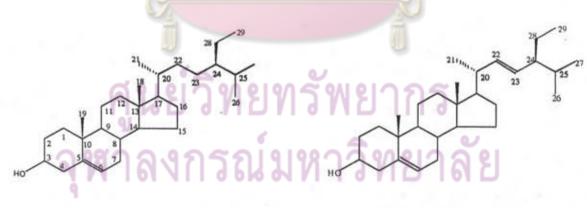
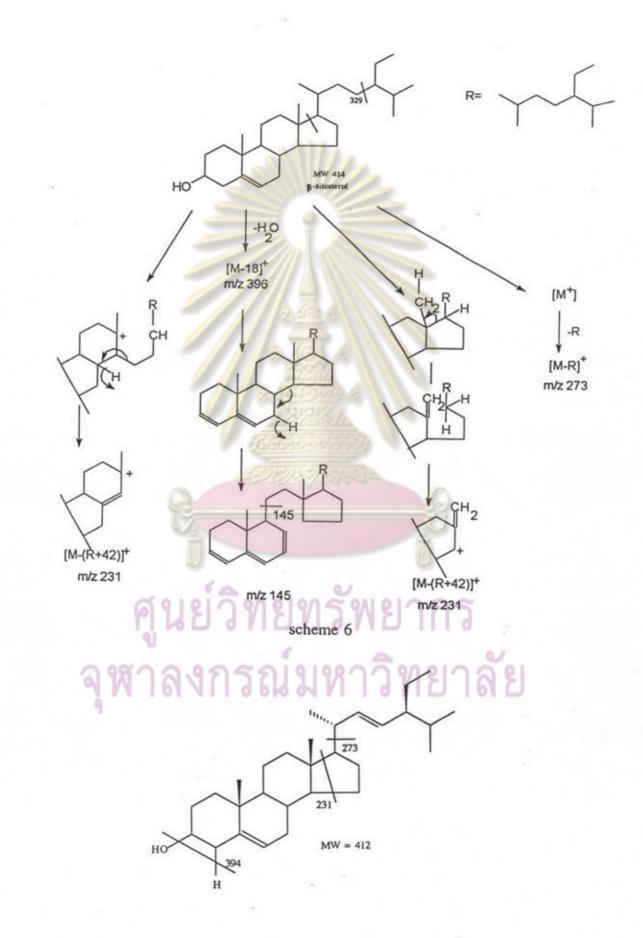

No. of	δ (ppm) of	δ (ppm) of	δ (ppm) of
carbon	β- sitosterol	stigmasterol	AA-4
1	37.31	37.31	37.25
2	31.57	31.69	31.65
3	71.69	71.81	71.79
4	42.25	42.35	42.32
5	140.75	140.80	140.76
6	121.59	121.69	121.69
7	31.92	31.94	31.91
8	31.92	31.94	31.91
9	50.17	50.20	50.14
10	36.51	36.56	36.50
11	21.11	21.11	21.08
12	39.81	39.74	39.78
13	42.33	42.35	42.30
14	56.79	56.91	56.77
15	24.32	24.39	24.29
16	28.26	28.96	28.23
17 9 W	6 V 56.11 6 6 6	NN 56.06 ME	56.07
18	11.87	12.07*	11.85, 11.99*
19	19.40	19.42	19.38
20	36.17	40.54*	36.14, 39.78*

Table 9 The chemical shift of ${}^{13}C$ NMR of β -sitosterol,stigmasterol and

No. of carbon	δ (ppm) of β- sitosterol	δ (ppm) of stigmasterol	δ (ppm) of AA-4
21	18.82	21.11*	18.77, 21.08*
22	33.95	138.37*	33.96,138.12*
23	26.13	129.32*	26.11,129.28*
24	45.85	51.29*	45.85, 51.23*
25	29.18	31.94*	29.18, 31.91*
26	19.84	21.26*	19.80, 21.08*
27	19.07	19.02	19.03
28	23.09	25.44*	23.07, 25.38*
29	12.32	12.27	11.99


Table 9 continued.

All data proposed that AA-4 was the mixture of β -sitosterol (2) and stigmasterol (3).

(3)

(2)

2 Structure Elucidation of BB-2

Compound BB-2 was yellow needle crystal that melted at 259-261°c. When it reacted with 5%AlCl₃ solution in ethanol on TLC, giving fluorescent yellow spot in long wave UV light. The UV absorption spectrum (Figure 6) showed characteristic band II (λ_{max} = 292) and band I (λ_{max} = 368) of flavones. The high intensity absorption in long wavelength region (band I) was attributed to the maximum conjugation of B-ring with chromone ring because of the coplanarity of this two ring. These implied that BB-2 was flavonoid. The UV absorption of BB-2 with shift reagent was shown in Figure 7. When sodium methoxide was added to BB-2 solution (in MeOH), its spectra showed bathochromic shift. This was an indicator of 4'OH of flavones and flavonols. And when BB-2 + AlCl₃ and BB-2 +AlCl₃+ HCl spectra were measured and compared with BB-2 spectrum. The three alike spectra revealed that BB-2 was possibly 5-OH with substitute group on C-6 of flavones and flavonols (Markham, 1982) (see (4)).

จุฬาลงกรณ์มหาวิทยาลัย

The IR spectrum of BB-2 (Figure 8) showed the pattern of functional groups as table 10.

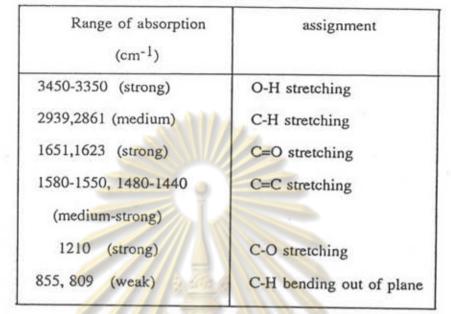
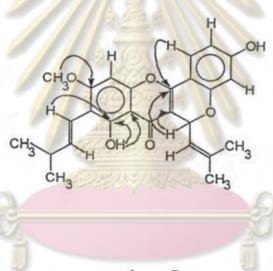


Table 10 The IR spectrum assignment of BB-2.

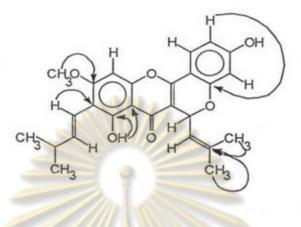
The BB-2 ¹H NMR spectrum (Figure9) showed sixteen signals of twenty-six protons. The protons were divided into seven aromatic or olefinic protons, seventeen sp³ protons and two protons bonding with oxygen. The position of proton was assigned by H-H COSY (Figure 10) as followed. Six protons at signal δ 1.1ppm(dd,J=6.8,1.5Hz) could be assigned as the signal of 3H-19 and 3H-20 protons that vicinal coupled (J=6.8Hz) with H-18 and geminal coupled (J=1.5Hz) with their protons (Figure 11a). One sp³ proton signal at δ 2.47ppm (m,J=7,6.8,1.1) could be assigned as H-18 that vicinal coupled (J=7Hz) with H-17 (& 6.7ppm,dd,J=16,7Hz); vicinal coupled (J=6.8Hz) with 3H-19 and 3H-20 and long range coupled (J=1.1Hz) with H-16 (86.55 ppm,dd,J=16,1.1Hz) (Figure 11b). The H-16 and H-17 were coupled each other, their vicinal coupling constant equaled to 16Hz (Figure 12). The signal at δ 5.48ppm (dt,J=9.2,1.2Hz) could be assigned as H-12 that vicinal coupled with H-11 (\delta 6.22 ppm,d,J=9.2Hz) and long range coupled with two vinyl methyl proton H-14 (δ 1.9 ppm,d,J=1.2Hz) and H-15 (δ 1.6ppm,d,J=1.2Hz) (Figure 11c). The singlet signal at δ 3.94ppm was assigned as the methoxyl proton (7-OCH₃). Its chemical shift was higher

than the other methyl group since it bounded to oxygen which had high electronegativity.


The aromatic proton signal at δ 6.57ppm was assigned as H-5' (dd, J=8.5,2.1Hz) that ortho-coupled with H-6' (δ 7.63ppm,J=8.5Hz) and meta-coupled with H-3' (δ 6.45ppm,d,J=2.1Hz) (Figure 12). The singlet signal at δ 6.48ppm was assigned as the aromatic proton at ring A (H-8). The phenolic proton signals at δ 9.83ppm and 13.53ppm could be assigned as 4'-OH and 5-OH, respectively. The latter was downfield caused it had hydrogen bonded with carbonyl group at C-4.

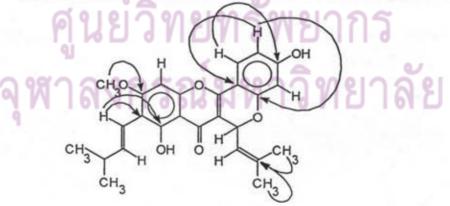
The BB-2 ¹³C NMR spectrum (Figure 13) showed twenty-five signals of twenty-six carbons. There was an equal signal of carbon atom. They were divided into twelve quaternary carbons (all of them were sp^2), methine carbons (seven sp^2 and two sp^3) and five methyl carbons (see DEPT, Figure 14). The methyl signal at δ 55.68ppm was characteristic of methoxyl signal. From C-H COSY (Figure 15), the methyl signal at δ 18.32ppm and 25.57ppm belonged to C-14 and C-15, respectively. The δ 22.38 ppm signal had high intensity thus it contained two equal methyl groups that assigned to C-19 and C-20. The aromatic carbon at C-8,C-3',C-5' and C-6' shown signal at δ 115.40, 104.11, 89.45 and 124.82ppm. The olefinic carbons at C-12. C-16 and C-17 showed signal at δ 120.89, 109.87 and 142.06ppm. The methine signal at δ 32.75 and 69.27ppm was C-18 and C-11, respectively. The latter signal was downfield because it bounded to oxygen atom.

From 4Hz,8Hzand 12Hz COLOC spectrum (Figure 16,17;18,19 and 20,21), it confirmed the carbon position and defined the quaternary carbon as follow (see scheme 7,8 and 9,respectively).


¹ Η (δ ppm)	¹³ C (δ ppm)		
5-OH (δ13.53)	C-5(8158.68),C-10(8105.20)		
СН ₃ O(δ3.94)	C-7(δ162.05)		
Η-11(δ6.22)	C-2(8155.46),C-3(8109.03)		
Η-16(δ6.55)	C-5(8158.68)		
H-6'(7.63)	C-2(155.46)		

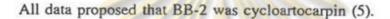
scheme 7

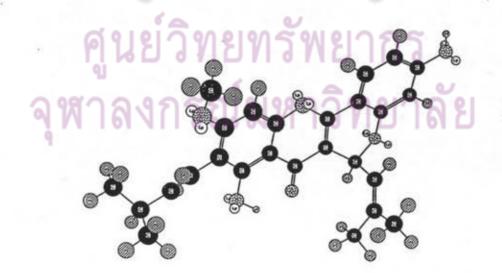
Table 12 The ¹H (δ ppm) correlated with ¹³C (δ ppm) at 8Hz.


¹ Η (δ ppm)	¹³ C (δ ppm)		
5-OH (δ13.53)	C-5(δ158.68),C-10(δ105.20)		
CH ₃ O(δ3.94)	C-7(δ162.05)		
Η-14(δ1.9)	C-13(δ138.26)		
Η-15(δ1.6)	C-13(δ138.26)		
Η-16(δ6.55)	C-6(δ109.38)		
Η-5'(δ6.57)	C-2'(δ154.88)		

scheme 8

Table 13 The ¹H (δ ppm) correlated with ¹³C (δ ppm) at 12Hz.


¹ Η (δ ppm)	13C (δ ppm)	
CH ₃ O(δ3.94)	C-7 (δ162.05)	
Η-14(δ1.9)	C-13(δ138.26)	
Η-15(δ1.6)	C-13(δ138.26)	
Η-16(δ6.55)	C-5(8158.68),C-6(8109.38)	
Η-5'(δ6.57)	C-1'(δ107.03),C-2'(δ154.88)	
Η-6'(δ7.63)	C-4'(δ162.92)	


scheme 9

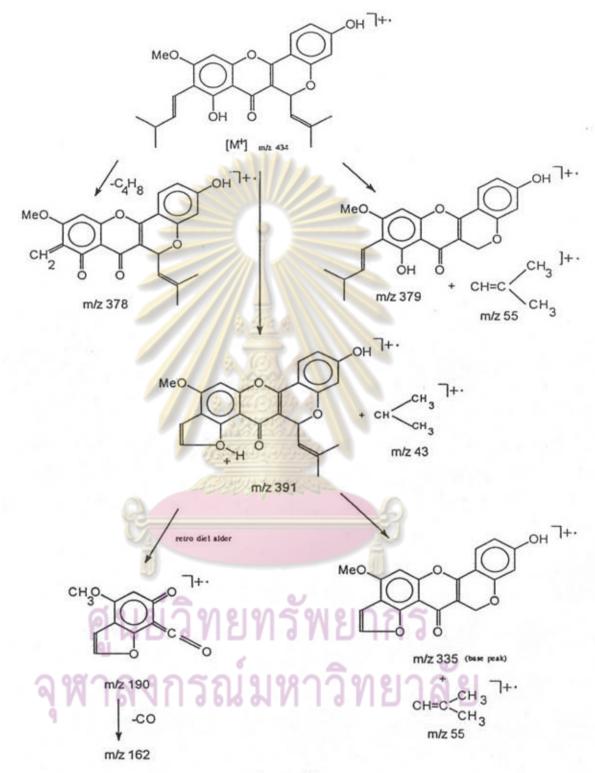
The most downfield signal at $\delta 178.14$ ppm was assigned as carbonyl carbon (C-4) and $\delta 157.43$ ppm was assigned as C-9. All protons and carbons assignment of BB-2 were shown in table 14. The elucidated structure of BB-2 was confirmed by MS spectrum (Figure 22). It showed fragmentary peak at m/z 434 [M]⁺, m/z 391 [M-(CH₃)₂CH]⁺, m/z 378 [M-(C₄H₈)]⁺, m/z 379 [M-(CH₃)₂C=CH]⁺, m/z 335 [m/z 391-H-(CH₃)₂C=CH]⁺ (base peak) and m/z 190, 162 from retro diel-alder (see scheme 10).

(5)

1

position δ (ppm) of C		δ (ppm) of H (multiplicity,J Hz)		long range from H to C	correlation in COLOC	
			J=4Hz	· J= 8 Hz ·	J= 12 Hz	
1		oxygen	11/2	-	-	
2	155.46	-				
3	109.03	-	1		-	
4	178.14		-		-	
5	158.68				-	
6	109.38		5.	-	-	
7	162.05		- A.	-	-	
8.	115.40	6.48 (s)	Dung e		-	
9	157.43	111664	13112	-	-	
10	107.03	- 400000	2/13/1-1-			
11	69.27	6.22(d, 9.2)	C-2,C-3	Q		
12	120.89	5.48(dt,9.2,1.2)	-	12.	-	
13	138.26		-			
14	18.32	1.9 (d, 1.2)	กรัญเด	C-12,C-13,	C-12,C-13,	
	- M	19119	119115	C-15	C-14	
15	25.57	1.6 (d, 1.2)	มหาวิ	C-12,C-13, C-14	C-12,C-13	
16	109.87	6.55(dd,16,1.1)	C-5	C-6, C-18	C-5,C-6,C-16	
17	142.06	6.7 (dd,16,7)	-		-	
18	32.75	2.47(m,7,6.8,1.1)				
19	22.38	1.1 (dd,6.8,1.5)	C-19	C-19	C-17,C-19	

Table 14 ¹H and ¹³C assignment of BB-2.


 \cap

maniarw

position δ (ppm) of C	δ (ppm) of H (multiplicity,J Hz)	long range from H to C		correlation in COLOC	
		J= 4Hz	J= 8 Hz	J= 12 Hz	
20	22.38	1.1 (dd,6.8,1.5)	11/20	C-20	C-20
1'	105.20			1.1	-
2'	154.88			- '- I	-
3'	104.11	6.45 (d,2.1)	1		
4'	162.92		-	I	-
5'	89.45	6.57 (dd,8.5,2.1)	C-3'	C-2',C-6'	C-1',C-2'
6'	124.82	7.63 (d,8.5)	C-2	-	C-1',C-4'
5-OH	-	13.53(s)	VIII A	C-5	-
7-0CH3	55.68	3.94(s)	OCH3	C-7	C-7
4-OH	-	9.83(s)	Wildia.		·*.

Table 14 continued

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

scheme 10

3 Structure Elucidation of BB-3.3

Copmpound BB-3.3 was yellow crystal. Its melting point was 133-134°C. The IR spectrum of BB-3.3 (Figure 23) shown the pattern of functional groups as table 15 and its UV spectrum was shown in Figure 24.

Range of absorption	assignment
3500-2500 (strong)	O-H stretching
1632 (strong)	C=O stretching
1620-1580,1490-1440(strong)	C=C stretching
1230 (strong)	C-O stretching
900-675 (strong)	C-H bending out of
and the state	plane
720-670 (strong)	

Table 15 The IR spectrum assignment of BB-3.3

The BB-3.3 ¹HNMR spectrumn Figure 25,26,27,28showed four signals of four protons. The singlet signal at δ 9.69ppm (H-1,s) was assigned as proton of aldehyde. The 1H signal at δ 6.45ppm (dd,J=8.56,2.29Hz) could be assigned as H-5 that orthocoupled with H-6 (δ 7.48ppm,d,J=8.54Hz) and meta coupled with H-3 (δ 6.28 ppm,d,J=2.14Hz). Due to using a deuterated protic solvent (CD₃OD), the deuterium exchanged (scheme 11) phenomena occured and the signals of phenolic protons were disappear. But the signal of CD₃OH (δ 3.32ppm) and HDO (δ 4.85ppm) were detected. The signal at δ 5.50 and δ 7.11ppm were impure signal.

$R-OH + CD_3OD \iff R-OD + CD_3OH$

scheme 11

From DEPT 135 (Figure 29b), there were four signals of methine carbon (C-H) and three signals of quarternary carbon. From C-H COSY (Figure 30), it confirmed that δ 195.47ppm was carbonyl carbon of aldehyde. The carbon signals at δ 136.81, 109.94 and 103.30ppm were assigned to C-6, C-5 and C-3, respectively. This results from correlation with hydrogen signal at δ 7.48, 6.45 and 6.28ppm, respectively (see C-H COSY).

The quarternary carbons were assigned by 12Hz COLOC (Figure 31). The correlation of aldehydric proton at δ 9.64ppm to δ 116.23 and 165.60ppm confirmed that the former was C-1 and the latter was C-2. The H-3 and H-6 protons showed the correlation to quarternary carbon at δ 167.28ppm thus this carbon was assigned as C-4 carbon. The correlation pattern (H to C) of BB-3.3 was shown below.

scheme 12

Position	δ (ppm) of C	H (ppm) (multiplicity,J Hz)	long range correlation from H to C in COLOC (J = 12 Hz)
1	116.28		-
2	165.60		· ·
3	103.30	6.28 (d,2.14)	C-1, C-2, C-4, C-5
4	167.28		
5	109.94	6.45 (dd,8.56,2.14)	- · ·
6	136.81	7.48 (d,8.56)	C-2, C-4
1-CHO	195.47	9.69 (s)	C-1, C-2, C-6

Table 16 ¹H and ¹³C assignment of BB-3.3.

The MS spectrum (Figure 32) and the fragmentation pattern (Scheme 13) confirmed the structure of BB-3.3. The m/z 138 fragment was molecular ion $[M]^+$. The α -clevage of $[M]^+$ aldehyde resulted in stable fragment, m/z 137 $[M-1]^+$, that continued lossing carbon monoxide (-CO) giving m/z 109. The dehydration of $[M]^+$ gave m/z 120 and gave m/z 110, when it loss (-CO).

All data proposed that BB-3.3 was 2,4-dihydroxybenzaldehyde (6).

จุฬาลงกรณ์ เราะกาวิทยาลัย

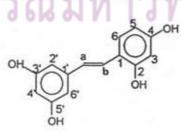
(6)

- .*

4 Structure Elucidation of CC-1

Compound CC-1 was yellow needle. Its melting point was 203°C. The IR spectrum of CC-1 (Figure 33) shown the pattern of the functional groups as table 17.

Range of absorption (cm ⁻¹)	assignment	
3500-3000 (strong)	O-H stretching	
1660-1590,1500-1450	C=C stretching	
(strong)		
1200-1100 (strong)	C-O stretching	
980-960 (strong)	C-H bending out of plane	
827 (strong)	С-Н "	
720-670 (strong)	C-C "	


Table	17	The IR spectrum assignment of CC-1	

The CC-1 ¹H NMR spectrum (Figure 34,) showed ten signals of twelve protons. The singlet signal at δ 8.22ppm was assigned as two equal hydroxyl groups (3-OH and 5-OH). The two singlet signal at δ 8.42 and δ 8.60ppm could be assigned as 2'-OH or 4'-OH. The signal at δ 6.52ppm (d,J=2.1Hz) was assigned as two equal protons at H-6 and H-2 that meta coupled with H-4 (δ 6.24ppm, t,J=2.1Hz). The signal at δ 6.38ppm (dd,J=8.3,2.4Hz) could be assigned as H-5' that ortho-coupled with H-6' (δ 7.39ppm,d,J=8.3Hz) and meta-coupled with H-3' (δ 6.44ppm,d, J=2.4Hz). The signals at δ 7.33ppm was vicinal coupled with δ 6.88ppm equaling to 16.8 Hz. They were trans to each other because the vicinal coupling constant was high. The signal at δ 7.33 and 6.88ppm was assigned to be Ha and Hb, respectively, by comparision with the model of sorocein B (Messana et al.,1991). The Ha was downfield by the resonance effect of hydroxyl groups at C-2' and/or C-4'. The signals at δ 2.06 and 3.18 ppm were signals of acetone and H₂O, respectively. The assignment of protons of CC-1 was shown in table 18.

position	δ (ppm), (multiplicity, J= Hz)
1'	
2'-OH	8.42 (s)
3'	6.44 (d, 2.4)
4-OH	8.60 (s)
5'	6.38 (dd,8.3,2.4)
6'	7.39 (d, 8.3)
1	Mathalan Martin
2,6	6.52 (d, 2.1)
5 ,3 -diOH	8.22 (s)
4	. 6.24 (t, 2.1)
Ha	7.33 (d, 16.8)
HUND	6.88 (d, 16.8)

Table 18 ¹H assignment of CC-1.

All data proposed that CC-1 was 3,5,2',4'-tetrahydroxystilbene (7).

(7)

