CHAPTER V

CONCLUSION

Ninety-four percent of ninety strains of \underline{B} . $\underline{fragilis}$ group produced β -lactamase. The expression of the β -lactamases was constitutive. Only few strains resisted to cefoxitin where as more than 50 percent of the strains resisted to ampicillin and penicillin G.

From the study on minimum inhibitory concentration, 64 percent of <u>B. fragilis</u> group resisted to ampicillin, 63 percent resisted to penicillin, and 6 percent resisted to cefoxitin. The B-lactamase producing strains may not resist to ampicillin. There were many factors which affected the resistance of the bacteria.

The β -lactamase activity determined by chromogenic cephalosporin was not associated with the MIC of \underline{B} . $\underline{fragilis}$ group to ampicillin and penicillin G.

 β -lactamase mediated ampicillin resistance was transferable in 3 strains of \underline{B} . \underline{ovatus} using \underline{B} . $\underline{vulgatus}$ as recipient. Transconjugants with higher levels of β -lactamase production can be found associated with higher ampicillin and penicillin MIC. The plasmid was not detectable in one strain of donor and all transconjugants. The resistant genes were not associated with extrachromosomal DNA but may associate with transposons or episome.

The isoelectric focusing study of β -lactamases from \underline{B} . $\underline{fragilis}$ revealed the same pI as SAR-1 β -lactamase but no evidence of transferation and with constitutive property therefore the β -lactamase of \underline{B} . $\underline{fragilis}$ seemed to be chromosome borne. The isoelectric focusing study of β -lactamases from the species other than \underline{B} . $\underline{fragilis}$ did not fit in the aerobic classification scheme.

ิตูนยวทยทฐพยากร จหาลงกรณ์มหาวิทยาลัย

Table 1. Properties of Plasmid Mediated β-Lactamases by Various Investigators.

Type of β-lactam-		Re	lative Hydro	Rate Olysis			Inh	ibitio By ^d	n	рI ^е	M. W.	Example Organisms	Ref.
ase ^a	Pen	Amp			Meth	Cep ^C	Clox	РОМВ	NaC1	96	(dal- tons)	which known . to produce the enzyme	
TEM-1	100	106	10	5	0	76	S	R	R	5.4	28500 7	Enterobac-	[20]
TEM-2	100	107	10	5	0	74	S	R	R	5.6	28500	teriaceae	[20]
SHV-1	100	212	8	0	0	56	S	S/R	R	7.6	17000	E. coli	[20]
HMS-1	100	253	14	0	0	183	S	S	R	5.2	21000	P. mirabilis	[20]
TLE-1	100	67	13	4	5	52	S	- /	R	5.55	19800	E. coli	[33]
ROB-1	100	186	25	6	-	24	S	-	R	8.1	-	H. influenzae	[37]
LCR-1	-	-	-		-	-	-	-	-	5.85	44000	Ps. aeruginosa	[35]
OXA-1	100	382	30	197	332	30	R	PS	S	7.4	23300	E. coli	[20]
OXA-2	100	179	15	646	23	37	R	R	S	7.45	44600	P. mirabilis	[20]
OXA-3	100	178	10	336	29	44	R	R	S	7.1	41200	K. pneumoniae	[20]
OXA-4	100	438	39	220	711	194	S	-	R	7.5	23000	E. coli	[33]
OXA-5	100	188	40	210	109	89	R	-	S	7.62	27000	Ps. aeruginosa	[33]
OXA-6	100	596	46	1048	585	149	S	-	R	7.68	40000	Ps. aeruginosa	[33]
OXA-7	100	545	48	702	424	136	R	-	S	7.65	25300	E. coli	[33]
PSE-1	100	90	97	0	0	18	R	S	-	5.7	28500		[20]
PSE-2	100	267	121	317	803	32	R	S	S	6.1	12400	Pseudomonas	[20]
PSE-3	100	101	253	/ -	-	10	-	R	-	6.9	12000	species	[20]
PSE-4	100	88	150	8	16	40	-	R	-	5.3	32000		[20]
NPS-1	100	223	18	40	<0.1	3	-	-	-	6.5	25000	Ps. aeruginosa	[43]
AER-1	-	-	-	-	-	-	-	-	-	5.9	22000	A. hydrophila	[35]
CEP-1	100	5	-	0	-	325	-	R	R	8.1	31800	P. mirabilis	[20]
CEP-2	100	LOW	48	-	, in the second	108	R	R	-	8.1	36200	Achromobacter	[20]
SAR-1	100	63	122	-	0	21	S	R	-	4.9	33700	V. cholerae	[46]

a TEM, Temoniera; SIV, Sulphydryl variable; IMS, Hedges Matthew and Smith; TLE, TEM like enzyme; ROB, <u>Haemophilus influenzae</u> type b strain ROB; OXA, oxacillin hydrolyzing; PSE, <u>Pseudomonas</u> specific enzyme; NPS, New <u>Pseudomonas</u> specific enzyme; AER, <u>Aeromonas</u>; CEP, Cephalosporin hydrolyzing.

b The rates of hydrolysis are expressed as a function of the benzylpenicillin rate.

c Abbreviations: Pen, benzylpenicillin; Amp, ampicillin; Carb, carbenicillin; Oxa, oxacillin; Meth, methicillin; Cep, cephaloridine; Clox, cloxacillin; PCMB, p-chloromercuribenzoate.

d S, Susceptible; R, resistant; PS, partially susceptible.

e pI, isoelectric point.

Table 2. The Isoelectric Points of β -Lactamases from <u>Bacteroides</u> fragilis Group.

Species	Isoelectric points	References
B. fragilis	4.6	[12]
	4.8	[9]
	4.9	[57, 82-86]
	4.9, 5.1	[9]
	4.7, 4.8	[112]
	6.9	[58]
B. distasonis	4.8	[12]
	4.9	[84]
	5.1	[83]
	5.4	[82]
	5.6	[9]
B. ovatus	4.3, 4.6, 4,8, 7.1	[82]
	4.0, 4.6	[12,85]
	5.1	[9]
	6.7	[83]
	6.3, 7.1	[84]
B. thetaiotaomicron	4.3	[9,82,84,85]
No. 1	4.5	[83]
	4.6	[12]
	4.3, 5.3, 6.7	[82]
B. vulgatus	4.4, 4.9	[82]
	4.5	[9]
	4.6	[12,83]
	4.7	[85]
	4.5, 4.9	[84]

Table 3. Properties of B-Lactamases from B. fragilis Group.

Species	No. of		Re	lative	Rates of	Hydroly	sis ^a		I	nhibiti	on by		pΙ	M. W.	Ref.
	Strains	Pen	Amp	Clox	Сер	Fox	Com	Clox	Fox	РОМВ	Clav	Sulb		(doltons)	
B. fragilis	1	100	60	10	13,800		4,100	S	S	S	S	•	5.55	- 1	
"	1	100	65	25	8,800	-	3,500	S	S	S	S	•	5.30	- }	[113
"	1	100	55	20	12,100	0	3,500	S	S	S	S	•	5.25	30,000	
	1	100	30	80	7,700		2,100	S	S	S	S	•	5.05	-)	
,	1	100	20	-	160	-	-	S	-	-	-	-	•		[55]
" -	2	100	-	-	3,000	0	1,400		-	-	-	-	4.9	•	[62]
	3	100	40	0	5,000	-	25	S	-	S	-	-	4.9	- }	
	1	100	240	0	3,000	-		S		S	-	-	5.6	40,000	[57]
	1	100	350	270	. 70	0	-	-	S	S	S	•	6.9	41,500	[58]
"	3	100	500		360	70		S	S	S	-	•		- }	
n (s	2	100	0		3,000	1,000		S	S	S	- /	n -		- }	[14]
	1	100	120	120	40	20	30			S	R	R	4.8	26,000	[112
	1	100			5,200		1,800		-	S	S	S	4.7	32,000	
	3	100	50	3	3,100	•		s		S	-	-	•	30,000	[59]
. uniformis	1	100		-	1,500	0	570	-0	,-		-		-	- 1	[62]
	1	100	6	9 ;	3,000	0	5,700	15	-	191	91	1	•	_ 1	
. ovatus	1			-			i i	S			s	s	-	- }	[97]
. vulgatus	- 6			A	9 2		119	s			s	R		9- 5	

a Abbreviations : Pen, benzylpenicillin ; Amp, ampicillin ; Clox, cloxacillin;

Sulb, sulbactam.

Cep, cephaloridine ; Fox, cefoxitin ; Cxm, cefuroxime ;

POMB, p-chloromercuribenzoate; Clav, clavulanic acid;

Table 4. Test Concentrations of Antibiotics [96]

Antibiotic	disc	No. of discs	Calculated
200	concentration	per tube	test conc./ml.
Penicillin G	10 units	1	2 units
Ampicillin	10 µg.	2	4 дд.
Cefoxitin	30 µg.	3	18 µg.

- คุนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

Table 5. Sources of Bacteroides Strains in this Study.

Species	No. of	Sources								
	Strains	Blood	Pus	Genito-Urinary	Oral cavity	other				
B. <u>fragilis</u>	57	13	27	7	0	10				
B. ovatus	18	6	4	3	0	5				
B. distasonis	8	0	5	0	1	2				
B. vulgatus	. 7	1	2	3	0	. 1				
Total	90	20	38	13	1	18				

์ ศูนย์วิทยทรัพยากร จพาลงกรณ์มหาจิทยาลัย

Table 6. B-Lactamase Activity of <u>Bacteroides</u> Strains Isolated from the Clinical Specimens.

Organisms	No. of tested	β-lactama		No. of s				
	strains	No. of strains	Percent	+++	++	+	_	
B. fragilis	57	55	96	9	27	19	2	
B. ovatus	18	18	100	2	8	8	0	
B. distasonis	8	8	100	1	5	2	0	,
B. vulgatus	7	4	57	0	3	1	3	
Total	90	85	94	12	43	30	5	

^{+++,} strongly β -lactamase detection

^{++,} moderately β -lactamase detection

^{+,} slightly β -lactamase detection

^{-,} no β-lactamase detection

Table 7. Minimum Inhibitory Concentration of <u>Bacteroides fragilis</u> Group from the Clinical Isolates.

Antibiotics	Species (No. of teste	ed Strains)		No. c	of stra	ins wit	h indi	cated	MIC (ug	g./ml.)	
			2	4	8	16	32	64	128	256	>256
Ampicillin	B. fragilis	(57)		4	2	19	20	7	1		4
	B. ovatus	(18)				1	5	10			2
	B. distasonis	(8)		1		1	4	1			1
	B. vulgatus	(7)		1	1	2	2				1
Penicillin G	B. fragilis	(57)				18	27	3	3	1	5
	B. ovatus	(18)				5	3	5	1		4
	B. distasonis	(8)				4	2		1		1
	B. vulgatus	(7)	2			4				1	
Cefoxitin	B. fragilis	(57)		15	22	10	7	3			
	B. ovatus	(18)				2	14		2		
	B. distasonis	(8)			5	1	2				
	B. vulgatus	(7)		2	2	2	1				

Table 8. The Range of MIC, ${\rm MIC}_{50}$ and ${\rm MIC}_{90}$ of <u>Bacteroides fragilis</u> Group to B-Lactam Antibiotics *

Antibiotics	Species		MIC (ug./ml.)
		Range	MIC ₅₀	MIC ₉₀
Ampicillin	B. fragilis	4 - >256	16	64
	B. ovatus	16 - >256	32	>256
	B. distasonis	4 - >256	32	>256
	B. vulgatus	4 - >256	16	>256
Penicillin G	B. fragilis	16 - >256	16	128
	B. ovatus	16 - >256	32	>256
	B. distasonis	16 - >256	16	>256
	B. vulgatus	2 - 256	8	128
Cefoxitin	B. fragilis	4 - 64	8	32
	B. ovatus	16 - 128	32	64
	B. distasonis	8 - 32	8	32
	B. vulgatus	4 - 32	8	16

^{*} The break point for ampicillin and penicillin G are 16 µg./ml., cefoxitin is 32 µg./ml. Breakpoints are the concentration above which an organism is considered resistant and at or below which an organism is classified as susceptible. [114]

Table 9. Number of Bacteroides Strains with Indicated β -Lactamase Activity and MIC to β -Lactam Antibiotics.

Antibiotics	B-Lactamase		No.	of stra	ains wi	th ind	icated	MIC (ıg./ml	.)
	Activity*	2	4	8	16	32	64	128	256	>256
Ampicillin	+++	0	2	1	2	0	1	0	0	6
	++	0	3	1	14	14	8	1	0	2
	+	0	0	1	5	16	8	0	0	0
	-	0	1	0	2	1	1	0	0	0
Penicillin G	***	0	0	0	1	4	1	0	0	6
	++ // //	0	0	0	20	6	1	1	2	3
	• //	1	0	. 0	8	10	6	4	0	1
	-	1	0	0	2	2	0	. 0	0	0
Cefoxitin	+++	0	1	1	1	4	3	2	0	0
	++	0	9	14	8	12	0	0	0	C
	•	0	6	12	4	8	0	0	0	0
	_	0	2	2	1	0	0	0	0	0

^{+++,} strongly B-lactamase detection

^{++,} moderately β -lactamase detection

^{+,} slightly β-lactamase detection

^{-,} no B-lactamase detection

Table 10. Correlation of β -Lactamase Activity and MIC Range, MIC $_{50}$ MIC $_{90}$ of $\underline{\text{B.}}$ fragilis Group

Antibiotics	B-Lactamase Activity	No. of Strains	MIC Range (µg./ml.)	30	MIC ₉₀ (µg./ml.)
Ampicillin		12	A >256	lik ye	
Ampicilin	+++	12 43	4 - >256	64	>256
			4 - >256	16	64
	**////	30	8 - 64	32	64
		5	4 - 64	16	64
Penicillin G	+++	12	16 - >256	64	.>256
	++/ @	43	16 - >256	16	256
	+ 42	30	2 - >256	32	128
	8	5	2 - 32	16	32
Cefoxitin	+++	12	4 - 256	32	64
		43	4 - 32	8	32
		30	4 - 32	8	32
	189958	5	4 - 16	4	16

Table 11. Transferability study of Ampicillin Resistance from <u>Bacteroides fragilis</u> Group to <u>E. coli</u> and <u>B. vulgatus</u>.

Part	Donors	No.	Recipients	Method	Transferability
I	B. fragilis	7	1. <u>E</u> . <u>coli</u> K12 J53	Broth-mating	Negative
	B. ovatus	5	2. E. coli C600 Nali _R	1. BHIB	Negative
			3. <u>E</u> . <u>coli</u> C600 Rif _{R*} ,	2. Chopped meat	Negative
11	B. fragilis	9	E. coli K12 J53	filter mating	Negative
	B. ovatus	1			Negative
	B. distasonis	1			Negative
I	Enhanced plasm	id			
	copies c 64 ug	./ml.			
	B. fragilis	4	E. coli K12 J53	filter mating	Negative
	B. ovatus	2			Negative
	B. distasonis	1			Negative
,	B. fragilis	11	B. vulgatus Rif _{R**}	filter mating	Negative
	B. ovatus	7			Negative
	B. ovatus	3			Positive
	B. distasonis	3			Negative

^{*} Nalidixic acid resistance

^{**} Rifampicin resistance

Table 12. Minimum Inhibitory Concentration and B-lactamase Properties of Donors,
Recipient, and Transconjugant.

	Str	ains	l	MIC (ng.	/ml.)	β-1ac	tamase
			Amp	pen	G Fox*	Activity	pI vatue
Donor		B. ovatus No.30	128	>256	32	++	4.3
Recipient	:	B. vulgatus No.48	4	2	8	-	-
Transconjugant	:	T. No.30	128	>256	32	++	4.3
Donor	:	B. ovatus No.32	>256	>256	128	+++	4.3, 4.6
Recipient	:	B. vulgatus No.48	4	2	8	<u>-</u>	-
Transconjugant	:	T. No.32	>256	>256	32	+++	4.3, 4.6
Donor	:	B. ovatus No.51	>256	>256	128	+++	4.3, 4.6
Recipient	:	B. vulgatus No.48	. 4	2	8	-	-
Transconjugant	:	T. No.51	>256	>256	32	+++	4.3, 4.6

^{*} Amp, Ampicillin

Fox, Cefoxitin

Pen G, Penicillin G

Table 13. The Isoelectric Point of β-Lactamases from B. fragilis Group.

	No. of Strains	No. of Strains at β-lactamase activity			pI Value	pI Value from Other Investigators
		B. fragilis	30	8	22	0
5	1		4	0	4.9, 5.1	4.9, 5.1 [9]
19	0		0	19	non-detectable	
B. ovatus	9	0	7	2	4.3	4.3, 4.6, 4.8, 7.1 [82]
	5	2	1	2	4.3, 4.6	
	4	0	0	4	non-detectable	
B. distasonis	2	1	1	0	4.8	4.8 [12]
	3	0	3	0	4.8, 4.9	
	3	0	1	2	non-detectable	
B. vulgatus	2	0	2	0	4.5	4.5 [9]
	2	0	1	6 1	non-detectable	

์ คู่นยวิทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 1. Microscopic Morphology of B. fragilis (1,000 x)

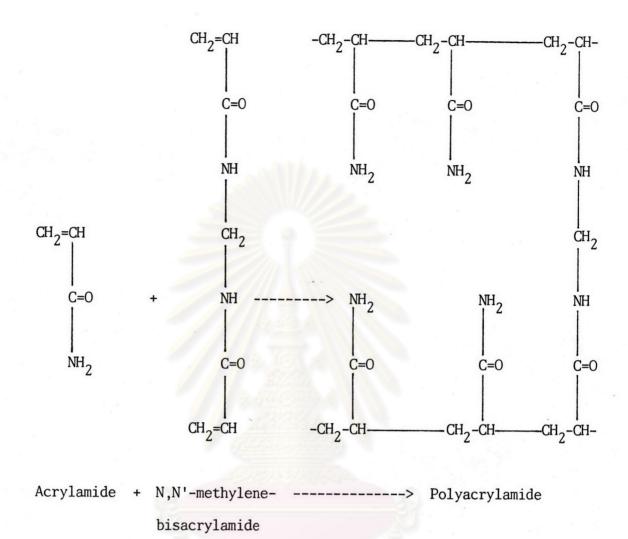
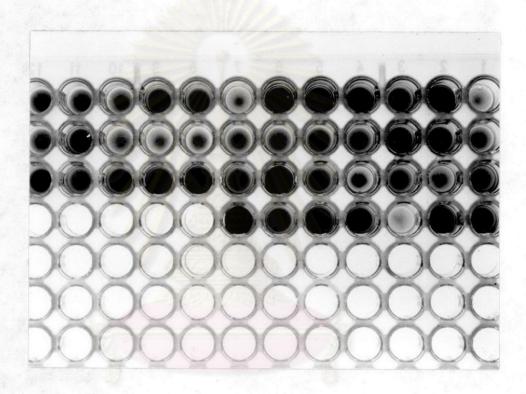



Figure 2. The polymerization reaction of polyacrylamide. The structure of acrylamide, and the crosslinking,

N,N'-methylene-bisacrylamide is shown. A section of the crosslinked polyacrylamide is also shown.

ทูนยาทยทวพยากว สาลงกรณ์มหาวิทยาลัย

Figure 3. Structure of chromogenic cephalosporin before and after enzymatic hydrolysis. The absorption peak of the solution will change from 386 nm. to 482 nm.

ะ ผูนยวทยทวพยากว เพาลงกรณ์มหาวิทยาลัย

Figure 4. The color of nitrocefin after incubated with \underline{B} . $\underline{fragilis}$, the result showed both positive (red) and negative (yellow).

Donor : Bacteroides with MIC of Ampicillin ≥64 µg./ml.

Recipient : \underline{B} . $\underline{vulgatus}$ \underline{Amp}^S \underline{Rif}^R

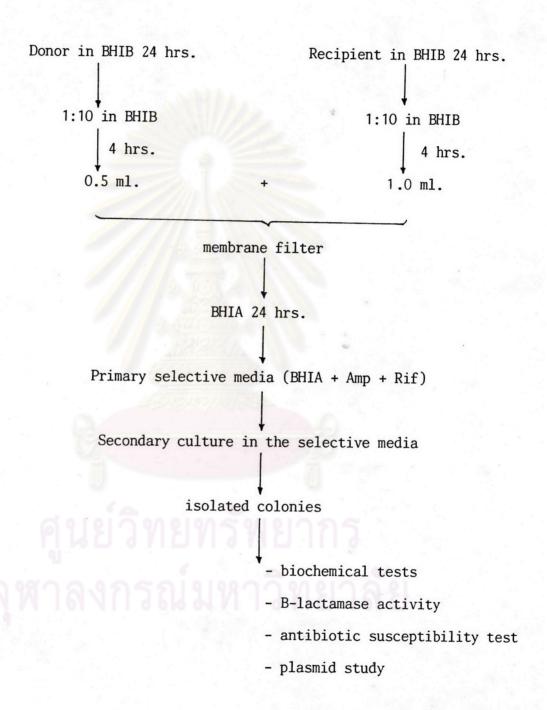


Figure 5. The method of bacterial conjugation.

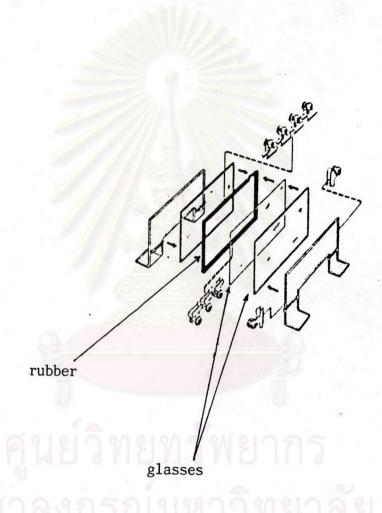


Figure 6. Diagram of the cassette for casting polyacrylamide gels.

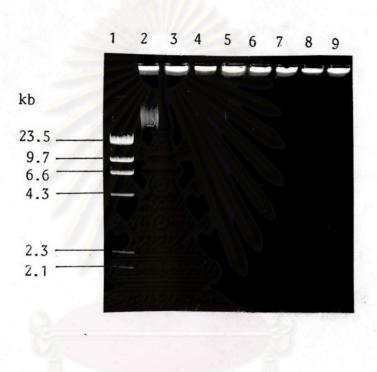


Figure 7. Agarose gel electrophoresis of plasmid DNA of donors, transconjugants, and recipient.

Lane 1 contained reference fragments resulting from Hind III digestion of bacteriophage Lambda.

Lane 2,4,7 were donors No. 30, 32, and 51 respectively.

Lane 3,5,6,8 were transconjugants No. 30, 32, 32, 51 respectively. Lane 9 was recipient.

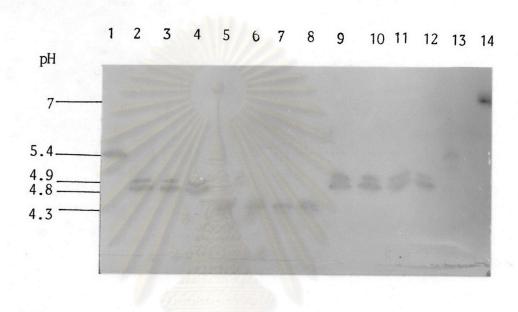


Figure 8. Isoelectric focusing of B-lactamases from various strains of \underline{B} . $\underline{fragilis}$ group (ampholine pH 3.5-10)

Lane 1, 13 = TEM-1

Lane 2,3,4 = B-lactamases from various strains of

B. distasonis

Lane 5,6,7,8 = B-lactamases from various strains of \underline{B} . ovatus Lane 9,10,11,12 = B-lactamases from various strains of

B. fragilis

Lane 14 = Haemoglobin