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CHAPTER I

INTRODUCTION

In [1], P. Chaoha introduced the notion of virtually nonexpansive selfmaps of

a metric space and proved that various types of nonexpansive maps are virtually

nonexpansive. Moreover, for any virtually nonexpansive map f , F (f) is a retract

of C(f). Hence, we can predict some topological properties of F (f) if we know

the properties of C(f). In particular, it has been shown in [2] that, for certain

kinds of virtually nonexpansive maps, their convergence sets are star-convex and

hence their fixed point sets are contractible.

In this thesis, we will extend the notion of virtually nonexpansive maps to

virtually stable maps in a more general setting and explore some properties of

their convergence sets to obtain topological properties of their fixed point sets.



CHAPTER II

PRELIMINARIES

In this chapter, we recall some basic terminology and concepts used throughout

the work. For more details, please consult [3], [4], [5], [6], [7], and [8].

Definition 2.1. Let X be a nonempty set and T a collection of subsets of X such

that

1. X ∈ T , and φ ∈ T ;

2. any union of members of T is also a member of T ;

3. any finite intersection of members of T is also a member of T .

Then T is called a topology on X, elements of T are called open sets of X,

and (X, T ) is called a topological space. Sometimes we omit specific mention

of T if no confusion will arise. A subset A of a topological space X is said to be

closed in X if the set X − A is open in X. And, for x ∈ X, a neighborhood

of x is an open set containing x.

Definition 2.2. Let X be a nonempty set and B a collection of subsets of X such

that

1. for each x ∈ X, there is U ∈ B such that x ∈ U ;

2. for all U, V ∈ B, if x ∈ U ∩V , then there is G ∈ B such that x ∈ G ⊆ U ∩V .

Then B is called a basis for a topology on X, and the set

{G ⊆ X : ∀g ∈ G,∃U ∈ B such that g ∈ U ⊆ G}, denoted by < B >, is a topology

on X and we call it the topology generatedbyB.
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Given a subset A of a topological space X, the interior of A, denoted by

IntA, is defined as the union of all open sets contained in A, and the closure

of A, denoted by A, is defined as the intersection of all closed sets containing A.

Obviously, Int A is an open set and A is a closed set; furthermore, Int A ⊆ A ⊆ A.

If A is an open set, A = Int A; while if A is closed, A = A.

Definition 2.3. Let (X, T ) be a topological space and Y a subset of X. Then

the collection TY = {Y ∩ U : U ∈ T } is a topology on Y , and we call it the

subspace topology. In addition, (Y, TY ) is called a subspace of X.

Definition 2.4. A metric on a set X is a function d : X × X → X such that

1. d(x, y) ≥ 0 for all x, y ∈ X, and the equality holds if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

Given a metric d on X and x, y ∈ X, d(x, y) is often called the distance

between x and y with respect to the metric d. Given ε > 0, the set Bd(x, ε) =

{y ∈ X : d(x, y) < ε} is called the ε − ball centered at x. Let Td =

{G ⊆ X : ∀a ∈ G,∃ε > 0 such that Bd(a, ε) ⊆ G}. Then Td is a topology on X.

The topology Td is called the topology inducedby themetric d and (X, d) is

called a metric space. Sometimes we omit specific mention of d if no confusion

will arise.

Definition 2.5. A topological space (X, T ) is said to be metrizable if there exists

a metric d on X such that T is a topology induced by d, and in this case we can

denote (X, T ) by (X, d).

Example 2.6. The usualmetric on Rn is the metric d defined by

d(x, y) =

√

n
∑

i=1

(xi − yi)
2, for x = (x1, ..., xn) and y = (y1, ..., yn) in Rn.

Definition 2.7. Let X and Y be topological spaces. We say that a function

f : X → Y is continuous at apoint x in X if for each neighborhood U of f(x)



4

there is neighborhood V of x such that f(V ) ⊆ U . If f is continuous at every

point x in A ⊆ X, then f is said to be continuous onA. If f is continuous on

X, then we simply say that f is continuous.

Theorem 2.8 (Intermediate value theorem). Let f : R → R be continuous on a

closed interval [a, b] where a, b ∈ R and a ≤ b. If N is a real number between f(a)

and f(b), then there is c ∈ [a, b] such that f(c) = N .

Definition 2.9. Let X be a topological space and Y a nonempty subset of X.

We say that Y is connected if and only if there is no pair of subsets U , V of X

such that

1. U ∪ V = Y ;

2. U ∩ Y 6= φ, and V ∩ Y 6= φ;

3. U ∩ V = φ, and U ∩ V = φ.

Definition 2.10. Let X be a topological space and Y a nonempty subset of X.

We say that Y is path connected if for each pair of points x, y in Y , there is a

continuous map f : [a, b] → X of some closed interval [a, b] in the real line into

the subspace Y of X such that f(a) = x and f(b) = y.

Remark 2.11. Let X be a topological space. Then the relation on X defined by

x ∼ y if x and y belong to the same (path-)connected subset of X

is an equivalence relation. The equivalence classes of this relation are called the

(path−)components of X.

Theorem 2.12. Let X be a topological space. Then every connected component

of X is closed.

Theorem 2.13. Let X and Y be topological spaces, and f : X → Y a continuous

map. If A is a (path-)connected subspace of X, then f(A) is (path-)connected.
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Definition 2.14. Let (X, dX) and (Y, dY ) be metric spaces. A family F of con-

tinuous maps on X to Y is said to be equicontinuous at x ∈ X if for each ε > 0,

there is δ > 0 such that for every u ∈ X and f ∈ F , dY (f(x), f(u)) < ε whenever

dX(x, u) < δ.

Definition 2.15. A subset A of a topological space X is said to be dense in X

if A = X.

Example 2.16. The set Q of all rational numbers is dense in the space R.

Definition 2.17. A subset A of a topological space X is called a Gδ − set in X

if it is an intersection of a countable collection of open subsets of X.

Definition 2.18. Given a set X, we define a sequence in X to be a function

x : N → X. We often denote the value of x at i by xi rather than x(i), and denote

x itself by the symbol (xn).

Definition 2.19. A sequence (xn) of real numbers is called a strictly increasing

sequence if xn < xn+1 for all n ∈ N, and it is called a strictly decreasing sequence

if xn > xn+1 for all n ∈ N.

Definition 2.20. Let X be a topological space. A sequence (xn) in X is said to

converge to a point y in X if for each neighborhood U of y, there is N ∈ N such

that xn ∈ U whenever n ≥ N . We denote this by lim
n→∞

xn = y or xn → y.

Theorem 2.21. Let X and Y be topological spaces, and f : X → X a continuous

map. If (xn) is a sequence in X such that xn → x′ for some x′ ∈ X. Then

f(xn) → f(x′).

Definition 2.22 (Monotone convergence theorem). Let (xn) be a strictly increas-

ing sequence or a strictly decreasing sequence in an interval [a, b] ⊆ R where a ≤ b.

Then (xn) converges to some element in [a, b].

Definition 2.23. Let (X, d) be a metric space. A sequence (xn) in X is said to

be a Cauchy sequence if for each ε > 0, there is N ∈ N such that d(xn, xm) < ε

whenever n,m ≥ N .
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Definition 2.24. A metric space (X, d) is said to be complete if every Cauchy

sequence in X converges(to a point) in X.

Example 2.25. The space R with the usual metric is a complete metric space,

but its subspace Q is not.

Definition 2.26. A topological space X is called a Hausdorff space if for each

pair of distinct points x, y in X, there exist open sets Ux and Uy such that x ∈ Ux,

y ∈ Uy, and Ux ∩ Uy = φ.

Definition 2.27. Let X be a topological space such that one-point sets are closed

in X. Then X is said to be regular if for each pair of a point x ∈ X and a

closed set B ⊆ X disjoint from x, there exist disjoint open sets containing x and

B, respectively.

Theorem 2.28 (Urysohn metrization theorem). Every regular topological space

X with a countable basis is metrizable.

Definition 2.29. Let X be a topological space. We say that X is contractible

if there exist x ∈ X and a continuous map H : X × [0, 1] → X such that

1. H(y, 0) = y for all y ∈ X;

2. H(y, 1) = x for all y ∈ X.

Definition 2.30. Let X be a topological space and A ⊆ X. A retraction of X

onto A is a continuous map r : X → A such that r|A is the identity map of A. If

such a map r exists, we say that A is a retract of X.

Definition 2.31. Let X be a topological space and f : X → X a selfmap.

The convergence set of f is defined to be the set

C(f) = {x ∈ X : the sequence (fn(x)) converges inX}

and the fixedpoint set of f is defined to be the set F (f) = {p ∈ X : f(p) = p}.
We call p ∈ F (f) a fixedpoint of f . If p ∈ F (f), then we define

Cp(f) = {x ∈ X : fn(x) → p}. Moreover, for each x ∈ C(f), the continuity of f

implies that
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f( lim
n→∞

fn(x)) = lim
n→∞

f(fn(x)) = lim
n→∞

fn(x).

That is lim
n→∞

fn(x) ∈ F (f) and hence we naturally obtain a well-defined map

f∞ : C(f) → F (f) given by f∞(x) = lim
n→∞

fn(x) for each x ∈ C(f).

Note that for a Hausdorff space X, a continuous selfmap f : X → X and a

fixed point p, F (f) is closed in X, but C(f) and Cp(f) need not be closed in X.

For example, consider the map g : R → R defined by g(x) = −x3 for all x ∈ R, and

the map h : R → R defined by h(x) = x2 for all x ∈ R. Then C(g) = (−1, 1] and

C0(h) = (−1, 1). Since we always have f∞(x) = x for any x ∈ F (f), the map f∞

will be a retraction whenever it is continuous. Moreover, when f∞ is continuous,

any retraction from a superset of C(f) onto F (f) that satisfies a certain condition

is simply a continuous extension of f∞ by the following theorem.

Theorem 2.32. Let X be a topological space and f : X → X a continuous

selfmap. Suppose f∞ is continuous and R : C(f) → F (f) is any retraction. If

R ◦ f = R, then R = f∞.

Proof. See Theorem 1.1 in [1].

Definition 2.33. Let (X, d) be a metric space, and f : X → X a continuous

selfmap.

• f is called nonexpansive if d(f(x), f(y)) ≤ d(x, y) for any x, y ∈ X.

• f is called quasi − nonexpansive if d(f(x), p) ≤ d(x, p) for any x ∈ X

and p ∈ F (f).

• f is called asymptotically nonexpansive if there is a sequence (kn) of

real numbers converging to 1 such that d(fn(x), fn(y)) ≤ knd(x, y) for any

x, y ∈ X and n ∈ N .

• f is called asymptotically quasi− nonexpansive if there is a sequence

(kn) of real numbers converging to 1 such that d(fn(x), p) ≤ knd(x, p) for

any x ∈ X, p ∈ F (f) and n ∈ N.
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• f is called virtually nonexpansive if {fn : n ∈ N} is equicontinuous on

C(f).

• f is called periodic if fn = 1X for some n ∈ N.

• f is called recurrent if for each ε > 0 there exists n ∈ N such that for all

x ∈ X, d(fn(x), x) < ε.

Notice that

1. Nonexpansive maps, quasi-nonexpansive maps and asymptotically nonex-

pansive maps are asymptotically quasi-nonexpansive;

2. Periodic maps are recurrent.

Theorem 2.34. An asymptotically quasi-nonexpansive map is virtually nonex-

pansive.

Proof. See Theorem 1.9 in [1].

Definition 2.35. A topological R − linear space V is a vector space (V, +, ·)
over a topological field R which is endowed with a Hausdorff topology such that,

the vector addition + : V × V → V and scalar multiplication · : R × V → V are

continuous functions.

Definition 2.36. Let V be a topological R-linear space, v ∈ V and A a nonempty

subset of V . We define A − v = {a − v : a ∈ A}.

Definition 2.37. Let V be a topological R-linear space, X a nonempty subset of

V and x0 ∈ X. We say that X is x0 − star − convex if for each x ∈ X,

{tx + (1 − t)x0 : t ∈ [0, 1]} ⊆ X
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Definition 2.38. [2] Let X be a 0-star-convex subset of a topological R-linear

space, f : X → X and φ : [0, 1] → [0, 1] continuous selfmaps. We will call f a

φ − homogeneousmap, if for each t ∈ [0, 1] and x ∈ X,

f(tx) = φ(t)f(x).

Proposition 2.39. Let X be a 0-star-convex subset of a topological R-linear space,

and f : X → X a non-constant φ-homogeneous map. Then we have the followings:

1. φ(st) = φ(s)φ(t) for all s, t ∈ [0, 1],

2. {0, 1} ⊆ F (φ),

3. 0 ∈ F (f).

Proof. See Proposition 2.4 in [2].

Theorem 2.40. Let X be a 0-star-convex subset of a topological R-linear space,

and f : X → X a φ-homogeneous map with C(φ) = [0, 1]. Then C(f) is 0-star-

convex.

Proof. See Theorem 2.5 in [2].



CHAPTER III

VIRTUALLY STABLE MAPS

From now on, if not otherwise state, X is a nonempty Hausdorff space and

f : X → X a continuous selfmap.

Definition 3.1. A fixed point x of f is said to be virtually f − stable if for each

neighborhood U of x, there exists a strictly increasing sequence of natural numbers

(kn) and a neighborhood V of x satisfying fkn(V ) ⊆ U for all n ∈ N. We simply

call f virtually stable if every fixed point of f is virtually f-stable.

Definition 3.2. A fixed point x of f is said to be uniformly virtually f − stable

if there exists a strictly increasing sequence of natural numbers (kn) such that for

each neighborhood U of x, there exists a neighborhood V of x with fkn(V ) ⊆ U

for all n ∈ N. We simply call f uniformly virtually stable if every fixed point

of f is uniformly virtually f-stable with respect to the same (kn).

Notice that a map f whose every fixed point is uniformly virtually f -stable

may not be uniformly virtually stable, and any uniformly virtually stable map

is virtually stable. Moreover, it is easy to see that a periodic map is uniformly

virtually stable while a virtually nonexpansive map is uniformly virtually stable.

Proposition 3.3. A recurrent selfmap of a metric space is always uniformly vir-

tually stable.

Proof. Let (X, d) be a metric space and f : X → X a recurrent map. Since f is

recurrent, the set

{

k ∈ N : d(fk(x), x) < 1
n

for all x ∈ X
}

is infinite for each n ∈ N. Hence there is a strictly increasing sequence of natural

numbers (kn) such that d(fkn(x), x) < 1
n

for all x ∈ X and n ∈ N. Let x ∈ F (f),
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m ∈ N and y ∈ Bd(x, 1
2(m+1)

). We will show that fkn(Bd(x, 1
2(m+1)

)) ⊆ Bd(x, 1
m

)

for all n ≥ 2(m+1). For each n ≥ 2(m+1), d(fkn(y), x) ≤ d(fkn(y), y)+d(y, x) ≤
1
n
+ 1

2(m+1)
≤ 1

2(m+1)
+ 1

2(m+1)
< 1

m
. Since fki is continuous for i = 1, ..., 2m+1, there

exists a neighborhood U of x such that fki(U) ⊆ Bd(x, 1
m

) for i = 1, ..., 2m + 1.

Hence, Bd(x, 1
2(m+1)

)∩U is a neighborhood of x such that fkn(Bd(x, 1
2(m+1)

)∩U) ⊆
Bd(x, 1

m
) for all n ∈ N. We have that x is uniformly virtually f -stable with respect

to (kn) and f is uniformly virtually stable with respect to (kn) as desired.

The next example shows that there exists a virtually stable map (indeed a

periodic map) that is not virtually nonexpansive.

Lemma 3.4. Suppose X is a topological space whose topology is generated by a

basis A. If every element of A is closed in X, then X is regular.

Proof. Let F be a closed subset of X and x ∈ F c. Then there exists P ∈ A such

that x ∈ P ⊆ F c. By assumption P is open and closed, it follows that P and P c

are disjoint neighborhoods of x and F , respectively. Hence X is regular.

Example 3.5. Let A = {[p, q) ⊆ R : p, q ∈ Q and p < q} and f : R → R be

defined by f(x) = −x for all x ∈ R.

We will show that (R, < A >) is metrizable by showing that A is a countable

basis for a topology on R, and (R, < A >) is regular. Clearly, A is countable. For

each r ∈ R, there exist p, q ∈ Q such that p < r < q; i.e., r ∈ [p, q) ∈ A. For each

x ∈ [p1, q1) ∩ [p2, q2), where [p1, q1), [p2, q2) ∈ A, we have x ∈ [p1, q1) ∩ [p2, q2) =

[max {p1, p2} ,min {q1, q2}) ∈ A. Thus A is a countable basis for a topology on R.

Clearly, one-pointed sets are closed. Let [p, q) ∈ A and x /∈ [p, q).

If x ∈ (−∞, p), then there exist a, b ∈ Q such that a < x < b < p; i.e.,

x ∈ [a, b) ⊆ (−∞, p).

If x ∈ [q,∞), then there exists c ∈ Q such that x < c; i.e., x ∈ [q, c) ⊆ [q,∞).

Therefore, [p, q)C is open and, by Lemma 3.4, (R, < A >) is regular. By Urysohn

metrization theorem, (R, < A >) is metrizable.

It is clear that f is periodic and hence recurrent. Thus f is uniformly virtu-

ally stable. We will prove that f is not virtually nonexpansive by showing that
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{fn : n ∈ N} is not equicontinuous at 0. Let E ∈ A be a neighborhood of 0 and

k ∈ E for some k ∈ R+. Let q ∈ Q+. Since f 2n+1(k) = −k /∈ [0, q) for all n ∈ N,

f 2n+1(E) * [0, q) for all n ∈ N. Thus {fn : n ∈ N} is not equicontinuous at 0.

The next theorem guarantees that f∞ is always a retraction of C(f) onto F (f)

whenever X is regular and f is virtually stable.

Theorem 3.6. Suppose X be a regular space and f a virtually stable selfmap.

Then f∞ : C(f) → F (f) is continuous and hence F (f) is a retract of C(f).

Proof. Let x ∈ C(f) and U a neighborhood of f∞(x) in F (f). Since X is regular,

so is F (f). Then, there is a neighborhood W of f∞(x) in X such that

W ∩F (f) ⊆ W ∩F (f) ⊆ U . Now, by virtual stability, there exist a neighborhood

V of f∞(x) in X and a strictly increasing sequence (kn) of positive integers such

that fkn(V ) ⊆ W for all n ∈ N. Since V is a neighborhood of f∞(x), there is

N ∈ N such that fN(x) ∈ V . Let K = f−N(V )∩C(f). Then K is a neighborhood

of x in C(f) such that

f∞(K) =
{

lim
n→∞

fn(x) : x ∈ K
}

=
{

lim
n→∞

fn(fN(x)) : x ∈ K
}

⊆
{

lim
n→∞

fn(x) : x ∈ V ∩ C(f)
}

=
{

lim
n→∞

fkn(x) : x ∈ V ∩ C(f)
}

⊆ W ∩ F (f)

⊆ U.

Thus f∞ is continuous and F (f) is a retract of C(f).

To explore the connectedness of convergence sets and fixed point sets of vir-

tually stable maps, we begin with Corollary 3.7.

Corollary 3.7. Let X be a regular space. If f is virtually stable and C(f) is

(path-)connected, then F (f) is (path-)connected.



13

Proof. By Theorem 3.6, f∞ : C(f) → F (f) is continuous. Then F (f) is

(path-)connected by Theorem 2.13.

Corollary 3.8. Let X be a regular space and f virtually stable. If F (f) is a finite

set, then C(f) is disconnected.

Proof. Let F (f) be a finite set. Since X is a Hausdorff space, F (f) is disconnected.

If X is a finite set, then we are done. Now we consider the case that X is an infinite

set. Suppose that C(f) is connected. By Theorem 3.6, F (f) is connected, which

is a contradiction. Hence, C(f) is disconnected.

The next example show that if f is not virtually stable, then the condition

F (f) is a finite set does not guarantee that C(f) is disconnected.

Example 3.9. Consider f : R+
0 → R+

0 defined by f(x) = x2. It is easy to show

that 1 is not a virtually f -stable fixed point, C(f) = [0, 1], and F (f) = {0, 1}.

By considering the next example, we will face the fact that although f is

nonexpasive, neither C(f) nor F (f) must be connected. Moreover, Cp(f), where

p ∈ F (f), may not be connected.

Example 3.10. Let L = R2 − {(0, 0), (0, 1), (0,−1)} and L be equiped with the

usual metric. Now we consider the map g : L → L defined by

g(x, y) =











(−x, y), if y < 0,

(−x,−y), if y > 0

, for all (x, y) ∈ L.

It is easy to obtain the results that g is nonexpansive,

C(g) = {(x, y) ∈ L : x = 0}, F (g) = {(x, y) ∈ L : x = 0 and y < 0},
and C(x,y)(g) = {(0, y), (0,−y)} for all (x, y) ∈ F (g).

The next theorem provides sufficient conditions that can guarantee the con-

nectedness of convergence sets.

Theorem 3.11. Let f : X → X be a continuous map satisfying one of the

following conditions:
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1. Cp(f) is connected for all p ∈ F (f),

2. for each component A of C(f) there is hA ∈ N such that

fhA(A) ∩ A 6= φ.

If F (f) is connected, then C(f) is connected.

Proof. Let f satisfies (1) and F (f) is connected. Suppose on the contrary that

C(f) is not connected. Then F (f) ⊆ A for some component A of C(f) and there

exists component B of C(f) such that B∩A = φ. Let x ∈ B. Then lim
n→∞

fn(x) = p

for some p ∈ F (f). Since Cp(f) ∩ A 6= φ and Cp(f) ∩ B 6= φ, then Cp(f) is not

connected. This contradicts to the assumption.

Assume that (2) is true and F (f) is connected. Since F (f) is connected,

F (f) ⊆ A for some component A of C(f). Suppose that C(f) is not connected.

Hence, there exists the component B of C(f) such that B ∩ A = φ. Since

fhB(B)∩B 6= φ and fhB(B) is connected, we get that fnhB(B) ⊆ B for all n ∈ N.

Since lim
n→∞

fnhB(x) = lim
n→∞

fn(x) ∈ F (f) ⊆ C(f) for all x ∈ B and, by Theorem

2.12, B is closed in C(f), we have lim
n→∞

fn(x) = lim
n→∞

fnhB(x) ∈ B for all x ∈ B.

Hence F (f) ∩ B 6= φ, which is a contradiction.

Lemma 3.12. Let f : X → X be continuous. If Cp(f) is path connected for all

p ∈ F (f) and F (f) is path connected, then C(f) is path connected.

Proof. Suppose on the contrary that C(f) is not path connected. Then F (f) ⊆ A

for some path component A of C(f) and there exists path component B of C(f)

such that B ∩ A = φ. Let x ∈ B. Then lim
n→∞

fn(x) = p for some p ∈ F (f).

Since Cp(f) ∩ A 6= φ and Cp(f) ∩ B 6= φ, then Cp(f) is not path connected. This

contradicts to the assumption.

Some properties of convergence sets of virtually stable maps can be seen in

the following results.
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Lemma 3.13. For each x ∈ X, we have x ∈ C(f) if and only if the sequence

(fn(x)) has a subsequence (fnk(x)) converging to a fixed point of f and

sup {nk+1 − nk : k ∈ N} < ∞.

Proof. (⇒)Obvious.

(⇐)Let sup {nk+1 − nk : k ∈ N} = h and 1 ≤ i ≤ h. Suppose lim
k→∞

fnk(x) =

p ∈ F (f). Since f is continuous, we have p = f i(p) = f i( lim
k→∞

fnk(x)) =

lim
k→∞

f i+nk(x). To show that fn(x) → p, we let U be a neighborhood of p. Since

lim
k→∞

f i+nk(x) = p and lim
k→∞

fnk(x) = p, there exists N ∈ N such that f i+nl(x) ∈ U

and fnl(x) ∈ U for all l ≥ N . Let j ≥ nN+1. Then there exists r′ ≥ N + 1 such

that nN+1 ≤ nr′ ≤ j ≤ nr′+1. Hence j = nr′ + s for some 0 ≤ s ≤ h and we have

f j(x) ∈ U for all j ≥ nN+1.

Theorem 3.14. Let p be a uniformly virtually f-stable fixed point with respect to

(kn) and x ∈ X. Suppose there exist r, h ∈ N with kr+i = ki + h; i ∈ N. Then

x ∈ Cp(f) if and only if there exists a sequence of natural numbers (rn) such that

for each n ∈ N there exists m ∈ N with

rn = ki+m−1 + r1 − ki,∀i ∈ N and f rn(x) → p.

Proof. (⇒) Since fn(x) → p, fnh(x) → p. By the assumption, ki + h = ki+r for

all i ∈ N. Hence ki + nh = ki+(n−1)r + h for all i ∈ N. By letting, rn = nh and

m = (n − 1)r + 1, we are done.

(⇐) To show that fn(x) → p, let U be a neighborhood of p. Then there exists

a neighborhood V of p such that fkn(V ) ⊆ U for all n ∈ N. Since f rn(x) → p,

there exists N ∈ N such that f rN (x) ∈ V . Thus f rN+ki(x) ∈ U for all i ∈ N. By

the assumption, there exists M ∈ N such that ki + rN = ki+M−1 + r1 for all i ∈ N.

Then fki+r1(x) ∈ U for all i ≥ M . Hence fkn+r1(x) → p. Since ki+nr = ki + nh

for all i > 0, n ≥ 0, we have knr+i+1 − knr+i = ki+1 − ki for all 1 ≤ i ≤ r and

n ≥ 0. Thus sup {kn+1 − kn : n ∈ N} = sup {kn+1 − kn : 1 ≤ n ≤ r}. By Lemma

3.13, fn(x) → p.
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Corollary 3.15. Suppose (X, d) is a metric space, f is virtually nonexpansive,

x ∈ X and p ∈ F (f). Then, x ∈ Cp(f) if and only if (fn(x)) has a subsequence

converging to p. Hence, Cp(f) = {x ∈ X : d(O(f, x), p) = 0}, where O(f, x) =

{fn(x) : n ∈ N}.

Proof. All notations follow Theorem 3.14. Since f is virtually nonexpansive, we

can set kn = n for all n ∈ N, h = 1 and r = 1. Let (rn) be any strictly

increasing sequence of natural numbers such that f rn(x) → p and n′ ∈ N. Then

rn′ = i + (rn′ − r1 + 1)− 1 + r1 − i = ki+(r
n′−r1+1)−1 + r1 − ki for all i ∈ N. Hence

we get the result by Theorem 3.14.

Theorem 3.16. Suppose (X, d) is a metric space, p is a uniformly virtually f -

stable fixed point with respect to the sequence (nh) for some h ∈ N and

x ∈ Cp(f). Then for each ε > 0, there exists δ > 0 with fnh(Bd(x, δ)) ⊆
Bd(f

nh(x), ε) for all n ∈ N.

Proof. Let ε > 0. By uniformly virtual stability, there exists r ∈ (0, ε
2
) such that,

for each n ∈ N, fnh(Bd(p, r)) ⊆ Bd(p,
ε
2
). Since x ∈ Cp(f), there exists N ∈ N

such that fnh(x) ∈ Bd(p, r) for all n ≥ N . By the continuity of fh, ..., fNh, there

exists δ > 0 such that fNh(Bd(x, δ)) ⊆ Bd(p, r) and fnh(Bd(x, δ)) ⊆ Bd(f
nh(x), ε)

for n ≤ N . Thus, for each n ∈ N and y ∈ Bd(x, δ), we consider the following 2

cases:

Case 1 : n ≤ N .

By the property of δ above, we have fnh(Bd(x, δ)) ⊆ Bd(f
nh(x), ε).

Case 2 : n > N .

Suppose n = N + i for some i ∈ N. Then

d(fnh(y), fnh(x)) = d(f (N+i)h(y), f (N+i)h(x))

≤ d(f (N+i)h(y), p) + d(p, f (N+i)h(x)).

Since fNh(x), fNh(y) ∈ Bd(p, r), d(fnh+Nh(y), p) < ε
2

for each n ∈ N.

Thus d(f (N+i)h(x), p)+d(p, f (N+i)h(y)) < ε
2
+ ε

2
= ε. Hence, we get the result.
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The next theorem generalizes Theorem 1.2 in [2].

Theorem 3.17. Suppose (X, d) is a complete metric space and f is uniformly

virtually stable with respect to the sequence (nh) for some h ∈ N. Then C(f) is a

Gδ-set.

Proof. By Theorem 3.16, for every x ∈ C(f) and m ∈ N, there exists δx,m > 0

such that fnh(Bd(x, δx,m)) ⊆ Bd(f
nh(x), 1

m
) for every n ∈ N. Let K =

⋂

m∈N

⋃

x∈C(f) Bd(x, δx,m). Clearly, K is a Gδ-set. We will show that K = C(f).

It is clear that C(f) ⊆ K. To show that K ⊆ C(f), we let k ∈ K and n ∈ N.

Then there exist x ∈ C(f) and δx,4n > 0 such that d(k, x) < δx,4n. Hence,

d(fmh(k), fmh(x)) < 1
4n

for all m ∈ N. Since x ∈ C(f), there is pn ∈ F (f) and

Nn ∈ N such that d(fmh(x), pn) < 1
4n

for all m > Nn. Then d(fmh(k), pn) ≤
d(fmh(k), fmh(x)) + d(fmh(x), pn) < 1

4n
+ 1

4n
= 1

2n
for every m > Nn, and

d(fm′h(k), fmh(k)) ≤ d(fm′h(k), pn) + d(pn, f
mh(k)) < 1

2n
+ 1

2n
= 1

n
for all

m′,m > Nn. Hence, (fnh(k))n∈N is a Cauchy sequence and fnh(k) → p′ for some

p′ ∈ X. We will prove that p′ ∈ F (f) by showing that pn → p′. Let n ∈ N and

l ≥ n. Then d(fmh(k), pl) < 1
2l

for all m ≥ Nl. Since fnh(k) → p′, there is Ml ∈ N

such that Ml > Nl and d(fMlh(k), p′) < 1
2l

. Hence,

d(pl, p
′) ≤ d(pl, f

Mlh(k)) + d(fMlh(k), p′) < 1
2l

+ 1
2l

= 1
l
≤ 1

n
.

Since F (f) is closed, p′ ∈ F (f). By Lemma 3.13, k ∈ C(f).

Corollary 3.18. Let (X, d) be a complete metric space and f virtually nonexpan-

sive. Then C(f) is a Gδ-set.

Theorem 3.19. Suppose (X, d) is a complete metric space and f is assymptoti-

cally nonexpansive. Then C(f) is closed.

Proof. To show that C(f) is closed, let x ∈ X and (xn) be a sequence in C(f) such

that xn → x. We will show that (fn(x)) is a Cauchy sequence. Let m ∈ N. Since

f is assymptotically nonexpansive, there exists K > 1 such that d(fn(y), fn(z)) <

Kd(y, z) for all n ∈ N and y, z ∈ X. Since xn → x, there exists M ∈ N such that
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d(x, xM) < 1
K3m

. Since xM ∈ C(f), (fn(xM)) is a Cauchy sequence. Hence there

exists M ′ ∈ N such that d(fh(xM), fk(xM)) < 1
3m

for all h, k ≥ M ′.

Then, for h, k ≥ M ′,

d(fh(x), fk(x)) ≤ d(fh(x), fh(xM)) + d(fh(xM), fk(xM)) + d(fk(xM), fk(x))

< K
1

K3m
+

1

3m
+ K

1

K3m

=
1

m
.

Thus x ∈ C(f) and C(f) is closed.



CHAPTER IV

APPLICATION TO

φ -HOMOGENEOUS MAPS

In this chapter, we will investigate some properties of φ-homogeneous maps,

their convergence sets, and their fixed point sets. We begin this chapter by ex-

tending some notions introduced in [2].

Definition 4.1. Let X be an x0-star-convex subset of a topological R-linear space,

and f : X → X and φ : [0, 1] → [0, 1] continuous selfmaps. We will call f a

φ − homogeneousmapwith respect to x0, if for each t ∈ [0, 1] and x ∈ X

f(tx + (1 − t)x0) = φ(t)f(x) + (1 − φ(t))x0.

Example 4.2. Note that C is a topological R-linear space. So it is certainly 1-star-

convex. Consider f : C → C defined by f(z) = |z − 1|2 +1. Then f(tz+(1−t)) =

|(tz + (1 − t)) − 1|2+1 = |tz − t|2+1 = t2 |z − 1|2+1 = t2(|z − 1|2+1)+(1−t2) =

t2f(z) + (1 − t2). Hence, f is a φ-homogeneous map with respect to 1 where

φ : [0, 1] → [0, 1] is a continuous selfmap defined by φ(x) = x2 for all x ∈ [0, 1].

Example 4.3. Let A,B ∈ R and A 6= 1. Since R is a topological R-linear space,

it is certainly B
1−A

-star-convex. Consider f : R → R defined by f(x) = Ax + B.

Then f is a φ-homogeneous map with respect to B
1−A

where φ is the identity map.

Example 4.4. Consider f : R+
0 → R+

0 defined by f(x) = x3. It is easy to show

that f is a φ-homogeneous map with respect to 0 where φ(t) = t3, f is not virtually

stable, C(f) = [0, 1], and F (f) = {0, 1} which is not 0-star-convex.

From Definition 4.1, notice that

1. When x0 = 0, the definition coincides with φ-homogeneous map in [2];
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2. If φ is the identity map, then F (f) is x0-star-convex;

3. Although φ is the identity map and X is a topological R-linear space, f

need not be linear.

Example 4.5. Since R is a topological R-linear space, it is certainly 1-star-convex.

Consider f : R → R defined by f(x) = |x − 1|+1. We have that f(tx+(1− t)) =

|tx + (1 − t) − 1|+1 = t |x − 1|+1 = t |x − 1|+t−t+1 = t(|x − 1|+1)+(1−t) =

tf(x) + (1 − t) for all t ∈ [0, 1]. Then f is a φ-homogeneous map with respect to

1. But f is not linear since f(1 − 1) = f(0) = 2 6= 4 = f(1) + f(−1).

Example 4.6. Recall that L2([−1, 1]) is a topological R-linear space. So it is

0-star-convex. Consider T : L2([−1, 1]) → L2([−1, 1]) defined by

T (f)(x) =

√

∫ x

−1

(f(y))2dy .

It is easy to show that T is a φ-homogeneous map with respect to 0.

Let g be the identity map on [−1, 1]. Then −g ∈ L2([−1, 1]) and

T (g + (−g))(x) =

√

∫ x

−1

(y − y)2dy = 0, but

(T (g) + T (−g))(x) =

√

∫ x

−1

(y)2dy +

√

∫ x

−1

(−y)2dy = 2
√

x3+1
3

.

Hence, T is not linear.

From now on, let X be an x0-star-convex subset of a topological R-linear space,

f : X → X and φ : [0, 1] → [0, 1] continuous selfmaps. Furthermore, we define

f ′ : X − x0 → X − x0 by f ′(x) = f(x + x0) − x0 for all x ∈ X − x0.

Lemma 4.7. Let f : X → X be a φ-homogeneous map with respect to x0. Then

f ′ : X−x0 → X−x0 is a φ-homogeneous map, C(f ′)+x0 = C(f), and F (f ′)+x0 =

F (f).

Proof. We will show that f ′ is a φ-homogeneous map. Clearly, X − x0 is an
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0-star-convex set. Let t ∈ [0, 1] and x ∈ X − x0. Then

f ′(tx) = f(tx + x0) − x0

= f(t(x + x0) + (1 − t)x0) − x0

= (φ(t)f(x + x0) + (1 − φ(t))x0) − x0

= φ(t)(f(x + x0) − x0)

= φ(t)f ′(x).

To show that C(f ′) + x0 = C(f), we observe that (f ′)n(x) = (f ′)n−1(f(x + x0) −
x0) = (f ′)n−2(f 2(x + x0) − x0) = ... = fn(x + x0) − x0 for all x ∈ X − x0 and

n ≥ 2. Hence, for each x ∈ X−x0, we have x ∈ C(f ′) if and only if x+x0 ∈ C(f).

Moreover, by the definition of f ′, x ∈ F (f ′) if and only if x + x0 ∈ F (f).

Lemma 4.8. If f : X → X is a non-constant φ-homogeneous map with respect

to x0, we have the followings:

1. φ(st) = φ(s)φ(t) for all s, t ∈ [0, 1];

2. {0, 1} ⊆ F (φ);

3. x0 ∈ F (f);

4. If φ(x) = 0, then x = 0;

5. If φ(x) = 1, then x = 1;

6. φ is a strictly increasing function;

7. C(φ) = [0, 1].

Proof. By Lemma 4.7, f ′ is a φ-homogeneous map. Then (1), (2), and the fact that

0 ∈ F (f ′) are results from Proposition 2.39. Again, by Lemma 4.7, x0 ∈ F (f).

We will show (4). By (2), t = sup {x ∈ [0, 1] : φ(x) = 0} < 1 exists. Since

φ is continuous, φ(t) = 0. Suppose on the contrary that t > 0. Then, by (1),

φ(t) = φ(
√

t
√

t) = φ(
√

t)φ(
√

t). Since
√

t > t, we have
√

t > 0. Hence, 0 = φ(t) =
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φ(
√

t)φ(
√

t) > 0, which is a contradiction.

We will prove (5). It is similar to (4) that there exists

t = inf {x ∈ [0, 1] : φ(x) = 1} such that φ(t) = 1. Suppose on the contrary that

t < 1. Since t2 < t, φ(t2) < 1. Then 1 = φ(t)φ(t) = φ(t2) < 1, which is a

contradiction.

To show (6), let s, t ∈ [0, 1] be such that s < t. Then s
t

< 1, so φ( s
t
) < 1. We

get that φ(s) = φ(t( s
t
)) = φ(t)φ( s

t
) < φ(t).

To show (7), let x ∈ [0, 1]. If x = φ(x), we are done. If x < φ(x), then for each

n ∈ N, φn(x) < φn+1(x) by (6). We obtain that (φn(x)) is a strictly increasing

sequence in [0, 1]. The monotone convergence theorem guarantees that x ∈ C(φ).

If φ(x) < x, we get that (φn(x)) is a strictly decreasing sequence in [0, 1]. Again,

we have x ∈ C(φ).

Theorem 4.9. Let f : X → X be a φ-homogeneous map with respect to x0. Then

C(f) is x0-star-convex.

Proof. If f is a constant function, we are done. Otherwise, by Theorem 2.40 and

Lemma 4.8, C(f ′) is 0-star convex. Moreover, by Lemma 4.7, C(f) = C(f ′) + x0.

Hence, C(f) is x0-star-convex.

The next example shows that the fixed point set of a φ-homogeneous map with

respect to x0 need not be x0-star-convex.

Example 4.10. Consider g : R+
0 → R+

0 defined by g(x) = x2. It is easy to show

that g is a φ-homogeneous map with respect to 0 where φ(t) = t2, C(g) = [0, 1],

and F (g) = {0, 1} which is not 0-star-convex.

The next theorem improves and generalizes Theorem 3.3 in [2].

Theorem 4.11. If f : X → X is a virtually stable φ-homogeneous map with

respect to x0 that fixes more than one point, then φ(t) = t for all t ∈ [0, 1].

Proof. By the assumption and Lemma 4.8, there is x1 ∈ F (f)−{x0}. Suppose on

the contrary that there exists t0 ∈ (0, 1) such that φ(t0) 6= t0. Then we consider

the following 2 cases:
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Case 1 : φ(t0) > t0.

By Lemma 4.8, 0 ∈ F (φ). Thus sup {t ∈ [0, t0) : φ(t) = t} exists. Let t′ =

sup {t ∈ [0, t0) : φ(t) = t}. Since F (φ) is closed, t′ must be a fixed point. Then

φ(t′) = t′ < t0 < φ(t0). By intermediate value theorem and the property of

t′, there exists t1 ∈ (t′, t0) such that φ(t′) = t′ < t1 < φ(t1) = t0. Similarly,

there exists t2 ∈ (t′, t1) such that φ(t′) = t′ < t2 < φ(t2) = t1. By continuing

this process, we obtain, for each n ∈ N, there exists tn ∈ (t′, tn−1) such that

φ(t′) = t′ < tn < φ(tn) = tn−1 and φn(tn) = t0. Hence, (tn) is a strictly decreasing

sequence in [t′, t0]. By monotone convergence theorem, there exists t′′ ∈ [t′, t0]

such that tn → t′′. Since φ is continuous, φ(t′′) = φ( lim
n→∞

(tn)) = lim
n→∞

φ(tn) =

lim
n→∞

tn−1 = t′′. Therefore, t′′ = t′. Because x1 ∈ F (f) and t′ ∈ F (φ), we

have f(t′x1 + (1 − t′)x0) = φ(t′)f(x1) + (1 − φ(t′))x0 = t′x1 + (1 − t′)x0, that is

t′x1 +(1− t′)x0 ∈ F (f). Moreover, t′x1 +(1− t′)x0 6= φ(t0)x1 +(1−φ(t0))x0 since

φ(t0) > t′ and x1 6= x0. Then there is a neighborhood U of t′x1+(1−t′)x0 such that

φ(t0)x1 + (1 − φ(t0))x0 /∈ U . We will show that the fixed point t′x1 + (1 − t′)x0

is not virtually f -stable and obtain a contradiction. Since tn → t′, we have

tnx1 + (1 − tn)x0 → t′x1 + (1 − t′)x0. It follows that, for each neighborhood

V of t′x1 + (1 − t′)x0, there exists N ∈ N such that tnx1 + (1 − tn)x0 ∈ V for

all n ≥ N . Then φ(t0)x1 + (1 − φ(t0))x0 = φn+1(tn)x1 + (1 − φn+1(tn))x0 =

fn+1(tnx1 + (1 − tn)x0) ∈ fn+1(V ) for all n ≥ N . Thus, fn+1(V ) can not be a

subset of U for each n ≥ N . Hence, U is a neighborhood of t′x1 +(1− t′)x0 having

the property that for all neighborhood V of t′x1 + (1 − t′)x0, there is no strictly

increasing sequence of natural numbers (kn) that fkn(V ) ⊆ U for all n ∈ N.

Case 2 : φ(t0) < t0.

By Lemma 4.8, 1 ∈ F (φ). We can let t′ = inf {t ∈ (t0, 1] : φ(t) = t} ∈ F (φ).

It is similar to case 1 that there exists a strictly increasing sequence (tn) in [t0, t
′]

such that tn → t′ and φn(tn) = t0 for all n ∈ N. Moreover, by imitating the

process in case 1, we obtain a contradiction that f is not virtually stable.

Hence, φ(t) = t for all t ∈ [0, 1].
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Corollary 4.12. If f : X → X is a virtually stable φ-homogeneous map with

respect to x0, then F (f) is x0-star-convex.

Proof. If f has only one fixed point, then we are done. Otherwise, by Theorem

4.11, we immediately have f(tx + (1 − t)x0) = tf(x) + (1 − t)x0 = tx + (1 − t)x0

for all t ∈ [0, 1] and x ∈ F (f). Therefore F (f) is x0-star-convex as desired.
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