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 CHAPTER I  

INTRODUCTION 

 

1.1 Small Wind Turbines vs. Tandem Direct-Drive Synchronous 
Generators 

 

 Wind energy conversion system is one of the most emerging renewable energy 
technologies. It covers the wide range of power production; with a few tens of kW to 
multi-MW size wind turbines, and tends to be a mainstream of the electrical power 
production in several countries. In Thailand, it is, though, in the state of feasibility 
study for employing the wind energy as an alternative energy source, some small-
scaled wind turbine systems have been installed increasingly in some areas. On the 
other hand, in Laos, the electricity generation is mainly the conventional hydro power 
plant. However, the concept of wind energy conversion technique can be indirectly 
adapted for the small hydro power generation in the near future. 
 
 Regarding low and medium wind speeds in the Southeast Asia region, the 
small wind turbines seem to be the appropriate technology. The small wind turbines 
(SWTs) range from a few watts up to 100 kW, which includes the micro SWTs (up to 
1 kW), the mini SWTs (up to 10 kW) and the midi SWTs (up to 100 kW) [6]. The 
technology trends of SWTs are towards the use of multi-pole permanent magnet 
synchronous generators (PMSGs) with direct drives. The direct-drive (DD) 
technology can avoid the drawbacks from the utilization of bulky mechanical gearbox 
in comparison to conventional geared-machine wind turbines. 
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Fig. 1.1 Comparison of PMSG Costs between local and import DD generator. 
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 Recently, the DD motors are widely used in the home appliances, washing 
machine for instance. Such motors are the multi-pole synchronous machines which 
can be suitably applied as the generators for the micro SWTs. Fortunately, as a 
manufacturing base of home appliances, the low-cost DD machines; as for the spare 
parts, are widely available in Thailand. Fig. 1.1 provides the comparison of PMSGs 
costs between the local DD generators and the import DD generators. The figure of 
Watt/Baht indicates the local DD machine is very much cheaper than the imported 
ones. Though, the available wattage of local DD generators are quite low (up to 350 
W). In order to encourage the utilization of wind energy and to achieve the 
sustainable development by using the local DD generators,  the local DD generators 
shall be used in tandem as shown in Fig. 1.2. The generators are mechanically 
coupled on the same shaft, with this driving topology; the larger wattage of DD 
generators can be obtained. For the investment viewpoint, the using of local DD 
generators arranged in tandem still gains the benefit; consider a scenario where a 1.2 
kW wind turbine system is planned to construct, by comparison with the imported 
1.2-kW DD generator, using 4 units of 350-W local DD generator can be 4 times 
cheaper than that of the former.  
 

 
 

Fig. 1.2  Tandem Direct-Drive synchronous generators. 
 
 The literature of multi-electrical-machine drive has mostly been devoted to 
electric vehicle and railway traction drive applications. Almost all research works 
have paid attention to induction motor drives. A stator-flux-based vector control is 
proposed in [1] for the traction drives, a rotor speed of parallel motors shall be 
selected based on the driving conditions, i.e. acceleration or braking. The main 
drawback of parallel-connected generators is the circulating current which occurred 
from the inevitable mismatch of motors’ parameters. This circulating current can 
deteriorate the torque controllability. In [2], the parallel-connected dual induction-
motor drive for electric vehicles has been focused. Considering the differences of 
motor parameters, the electromagnetic torque is expressed in terms of the average 
total drive torque and the differential torque. In order to effectively control the torque, 
some suitable reference stator current and rotor flux vectors must be chosen. An 
adaptive rotor flux observer scheme was introduced in [3] and following the pioneer 
work in [2], the reference stator current vector is calculated. Subsequent research 
work in [4] has pointed out the stability problem in the unbalanced-load condition, 
and the speed regulators are modified to solve this stability obstacle. 
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In this thesis, the following subjects are conducted: 

1) Concerning the driving topology; 2 units of 350 W DD synchronous 
generators are arranged in tandem, the stator windings are parallelly 
connected and fed by a back-to-back converter, the overall implementation 
is shown in Fig. 1.3. 

2) Effects of mismatched parameters on the torque controllability are 
investigated. 

3) Maximum-Power-Point-Tracking scheme is created and the performance of 
the overall system is evaluated by the wind turbine simulator. 

  

 

 

 

 

 

 

   Fig. 1.3 Overall wind energy conversion system  

 

1.2 Objective of Research 

The main purpose of the work is devoted to 

1. Develop a direct drive of multiple parallel-connected multi-pole 
permanent-magnet synchronous generators (PMSGs). 

2. Investigate the effects on the torque unbalance and torque controllability 
due to parameter mismatches between 2 generators.   

3. Examine the performance of direct drive with the Maximum Power Point 
Tracking (MPPT) Method on Wind Energy Conversion System (WECS). 

 

1.3 Scope of Research 

The scope of this research is limited to  

1. Develop a direct drive for 2 parallel-connected multi-pole permanent-
magnet synchronous generators (PMSGs) within the power rating of 
2x350 W.  

2. Sensitivity analysis of generator’s parameter mismatches and point out the 
effects on the torque unbalance and the total torque controllability. 

3. Perform the direct drive with the simulated wind turbine system on grid 
connection. 
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1.4 Research Methodology 

1. Literature reviews of background knowledge relevant to wind energy 
conversion systems, multi-pole synchronous generators, back-to-back 
PWM converters and direct-drive concept. 

2. Identify salient features of the direct-drive fed wind turbine system. 

3. Specify the thesis’s objective and the scope of study as appropriate.  

4. Develop a direct-drive control scheme for feeding multiple multi-pole 
synchronous generators. 

5. Validate the proposed direct-drive concept of multi-pole synchronous 
generators with simulations. 

6. Construct the wind turbine emulator with AC servo drive and set up all 
mechanical parts i.e. machine base and mechanical coupling of generators. 

7. Implement the direct-drive scheme along with the Back-to-Back PWM 
converter. 

8. Assemble overall system including electrical and mechanical parts. 

9. Verify and evaluate the performance of the direct-drive fed wind turbine 
system. 

10. Analyze the experimental results and revise as necessary. 

11. Make a conclusion, and write the document for a report and publication. 

 
1.5 Expected Contribution 

1. The direct-drive scheme for feeding two multi-pole synchronous 
generators in wind turbine system. 

2. Indicate the drawback of parallel-connected generators due to parameter 
mismatches. 

3. Implementation of low-power wind energy conversion system with 
proposed direct drive scheme. 

4. Grid connection through a back-to-back PWM converter with MPPT 
algorithm. 

 



CHAPTER II 

Tandem Direct-Drive Synchronous Generators  

 

2.1 Direct Drive Synchronous Generators  

 2.1.1 Structure and specification. 

 Fig. 2.1 shows physical structure of local DD generator, the rotor is outer type 
with 48-pole permanent magnet, while the stator winding is concentrated. The back 
EMF waveform is investigated as shown in Fig. 2.2; sinusoidal back EMF waveform 
indicates that the generator is the typical Permanent Magnet Synchronous Machine; 
PMSM. The rating and specification of PMSG are given in Table 2.1.  

 

                   

Fig. 2.1 Local 350-W direct-drive synchronous generator. 
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  Fig. 2.2 Back EMF waveform (from a generator) 
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Table 2.1 Rating and specification of PMSG 

Parameter Value Unit 

Stator resistance 9.4   

Stator inductance 65 mH  

Rotor flux 0.1758 Wb  

Voltage 220 V  

Power rating 350 W  

Number of pole 48 pole  

Speed 600 rpm  

 

 2.1.2 Dynamic Model of PMSG 
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Fig. 2.3 Vector diagram of PMSG on various reference frames. 

 

 Dynamic model of a single permanent-magnet-synchronous-generator 
(PMSG), expressed on the rotating permanent-magnet-flux reference frame; 
d q axes, is given in (2.1) – (2.3):  
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 Stator equation:  

  

  
0d d d q

q q q d

v i i Lid
R L

v i i Lidt


 
         

            
       

   (2.1) 

 
  
 
 Rotor equation: 

  

    
0

d

dt

 

   

   
   

     (2.2) 

 
  
 

 Torque equation: 

     
2 2 q

p p
T i i     

 
   (2.3) 

 

2.2 Tandem Direct-Drive Synchronous Generators with Parallel 
Connection 

 In this research work, two synchronous generators are arranged in tandem as 
shown in Fig. 2.4. While the rotor shafts are mechanically coupled, the stator 
windings are electrically connected in parallel as shown in Fig. 2.5. Fig. 2.6 depicts 
the equivalent circuit of the parallel connected synchronous generators.   

 

 

 Fig. 2.4 Photo of two synchronous generators arranged in tandem 
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Fig. 2.5 Tandem synchronous generators with parallel connection. 
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Fig. 2.6 Equivalent circuit of parallel connected synchronous generators. 

 

 On the assumption that all parameters of two synchronous generators are 
definitely equal and both rotor-flux positions are completely aligned, the dynamic 
model and the resultant equivalent circuit of tandem generators are given in equations 
(2.4)-(2.6) and Fig. 2.7 respectively.  
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Stator equation:  

  
02

2 2

2

qT
d dT dT

q qT qT
dT

L
iv i iR L d

v i i Ldt
i


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  (2.4) 

 

Where   1 2

1 2
1 2

dT d d

T
qT q q

i i i
i i i

i i i
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Total toque equation: 
 

 
2 2t T qT

p p
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Fig. 2.7 Resultant equivalent circuit of tandem synchronous generators with parallel 
connected. 

 

 It should be noted that, as for the parallel connection of stator windings, the 
rotor equation for the tandem synchronous generators is as same as that of the single 
generator in equation (2.2), while the total torque is the summation of the individual 
ones. Principally, it can be treated with this approach when more than 2 synchronous 
generators are used in tandem. 

 



CHAPTER III 

CONTROL METHODOLOGY FOR WIND ENERGY 
CONVERSION SYSTEMS  
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Fig. 3.1 Tandem synchronous generators in wind energy conversion systems. 

 

 Fig. 3.1 illustrates the general control structure in wind energy conversion 
system. The vector control and Maximum Power-Point Tracking (MPPT) scheme are 
paid attention in this thesis. 

 

3.1 Direct Drive of Tandem Synchronous Generators by Vector 
Control.  

 Vector control can directly control the torque, which is well matched with the 
direct-drive generators. Vector control is based on the knowledge of synchronous 
generator’s model expressed in (2.1)-(2.3). From the torque equation in (2.4), the 
stator current should be injected in the manner shown in Figs. 3.2 and 3.3. The d-axis 
current is kept zero ( 1 2 0dT d di i i   ) in order to obtain the maximum torque per 

ampere. For the ideal case where all parameters of both generators are identical, the 
currents are balance: 
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Fig. 3.2 Vector diagram of vector control for tandem synchronous generators. 
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Fig. 3.3 Tandem synchronous generators with current feeding. 
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     1 2 2
Tii i 
 

   (3.1) 

as well as the induced torques:  

 

     
1 12

p
T i  

      (3.2) 

     
2 22

p
T i  

     (3.3) 

    1 2 2 2 2 2
qTT
ip i p

T T       



. (3.4) 

 

And the total torque is: 

 

   1 2 2 2t T qT

p p
T T T i i       

 
  (3.5) 
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Fig. 3.4 Vector control feeding 2 multi-pole synchronous generators. 

 

 Fig. 3.4 shows the block diagram of vector control for the tandem synchronous 
generators. The inner current control is used to perform as an equivalent current 
source; the phase currents are measured and transformed to The ,d q axes reference 
frame, with high-bandwidth of current loop, the d q  axes currents can be separately 
controlled. In order to help the current loop, the feed forward voltage is also added to 
compensate the cross-coupling induced voltage between the d q  axes. The 
commanded stator voltage is transformed from d q  axis reference frame to the 
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stationary frame to be the reference voltage for PWM inverter. The information of 
flux position is obtained from rotor-position detection with the attached incremental 
encoder. The outer speed loop is formed for the speed control purpose, i.e. the MPPT 
scheme that shall be discussed in the next section.   

  

3.2 Maximum-Power-Point-Tracking Scheme 

 3.2.1 Concept of MPPT 

 

 
0 10 20 30 40 50 60 70 80

0

200

400

600

800

1000

1200

1400

1600

Generator speed (rad/s)

P
ow

er
 (

W
)

 

 

6m/s

8m/s

7m/s

9m/s

10m/s

11m/s

0m

m

dP

d


 

Fig. 3.5 Wind turbine characteristic for various wind speeds. 

 

 Generally, the concept of MPPT is created by considering the characteristic of 
wind turbine as shown in Fig. 3.5. For each wind speed on the power-speed plane, 
there exists a maximum power point located at a certain rotor speed. And at the 
maximum power point, the rate of change between power and speed is zero; 

0m

m

P
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


. Hence, the MPPT scheme can be conducted in Fig. 3.6. 
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Fig. 3.6 Block diagram of MPPT methodology 
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 Fig. 3.6 shows the direct drive of tandem generators with the MPPT scheme; 
the vector control and speed control loops described in the previous section are 
located in the inner loops while the MPPT scheme is at the outer loop. Principally, the 
mechanism of MPPT is to automatically adjust the generator speed to converge to the 
optimum one where the generated power is maximized, 0e mP    . The rate of 

convergence can be satisfactorily obtained by assigning an appropriate PI gain. 
Instead of the mechanical power of wind turbine mP , the electrical power eP  at the 

generators’ terminal is used to manipulate the optimum speed. Beneficially, both 
copper and core losses of generators are also taken into optimization. 

 

 3.2.2 Power eP  and e

m

P





calculations 

 In order to avoid the effect of phase shift of filtered PWM voltage, the 
electrical power eP   is indirectly obtained from the calculated induced torque. Fig. 3.7 

shows the calculation of power eP , the current Ti


 is detected and, with the information 

of flux position  , the induced torque tT  is carried out. Finally, the electrical power 

eP   can be obtained by the product of induce torque tT  and generator speed m .  
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Fig 3.7: Power eP  calculation 

 

The calculation of e

m

P





 shall be considered in the discrete manner. The 

deviation of signal can be computed as shown in Fig. 3.8.  Using this technique, 
deviations of both power and speed ( eP  and m ) are obtained. Fig. 3.9 depicts the 

calculation of  e

m

P





 and it is fed back to form the MPPT loop as shown in Fig. 3.6 
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3.3 Simulation Results 

3.3.1 Simulation Results of Vector Control System for Tandem  
 Synchronous Generators. 

 Fig. 3.10 shows the simulation block diagram of vector control system with 
two synchronous generators in tandem. At this stage, the speed-loop control is 
investigated. The performance of vector control is evaluated in Fig. 3.11; the 
generators’ torques can efficiently response against an applied step regenerative load 
and the speed can be regulated at 40 rad/s. With this ideal case where generators’ 
parameters are matched, the currents and induced torques are equally sharing.   
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Fig 3.10 Simulation block diagram of vector-control system. 
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Fig 3.11 Simulation result of vector control driving tandem synchronous generators. 
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 3.3.2 Simulation Block Diagram of MPPT 

 The simulation block diagram of MPPT scheme is illustrated in Fig. 3.12. It is 
composed of three parts:  

 Power ( eP ) calculation in Fig. 3.12 (a), 

 e

m

P





calculation in Fig. 3.12 (b), 

 MPPT loop in Fig. 3.12 (c); a low-pass filter is inserted to obtain the 
smooth response.  
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    (c) MPPT Block 

  Fig. 3.12 Simulation block diagram of MPPT. 
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 3.3.3 Wind-Turbine Model. 

 The wind-turbine model is based on the power-speed characteristics as given 
in (3.6) 

 

  
2

3( )
,

2
Air Blade

WindTurbine p Wind

R
P C V

   
 ,  (3.6) 

 

where the power coefficient  ,pC    is  

    52
1 3 4 6, expp

i i

CC
C C C C C   

 
   

      
   

  (3.7) 

    
1

3

1 0.035

0.08 1i   


 

    
   (3.8) 

 

    m Blade

Wind

R

V

       (3.9) 

 

Table 3.1 Parameters and rating of wind turbine. 

WT Power Rating WindTurbineP  800W  1C  0.45  

Blade Pitch Angle   0  2C  90  

Air Density Air  31.184kg m  3C  0.4  

Blade Length BladeR  1.2m  4C  6.9  

Wind Speed WindV  6 9m s  5C  17.3  

  6C  0.0029  

 

Parameters and rating of using wind turbine are specified in Table 3.1. Regarding 
equations (3.6)-(3.9) and Table 3.1, the power-speed characteristics for various wind 
speed can be shown in Fig 3.13.  
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Fig. 3.13 Power-speed characteristics of wind turbine. 

 

 From the aforementioned wind turbine characteristic, the model of wind 
turbine can be created as shown in Fig. 3.14. Wind speed and generator speed are 
required as inputs, the output is the mechanical torque, mT  , which behaves as a prime 
mover for generators. 
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   Fig. 3.14 Block diagram of wind-turbine model. 
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 3.3.4 Simulation Results of Wind Energy Conversion Systems (WECS) 

 By integrating the above block diagram in section 3.3.1-3.3.3, the overall 
block diagram of WECS can then be obtained in Fig. 3.15. The wind turbine is 
included as a prime mover of tandem generators and the MPPT is located at the outer 
loop and provides commanded speed for vector control (direct drive). 
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Fig 3.15 Simulation block diagram of Wind Energy Conversion Systems. 

 

 The simulation results in Figs. 3.16 and 3.17 show the performance of direct 
drive for various wind speeds. The generators’ torque can be properly controlled 
during the sudden change of wind speed and the induced torque; also the current, of 
each generator is finely balanced. The MPPT can successfully track the maximum 
power point according to each wind speed with acceptable rate of convergence. Fig. 
3.18 gives another viewpoint, on the power-speed plane, for the operation of MPPT. 
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Fig. 3.16 Simulation result showing the performance of MPPT  
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Fig. 3.17 Simulation result showing current sharing among generators. 
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CHAPTER IV 

EFFECTS OF MISMATCHED PARAMETERS  

 

 The main drawback of tandem generators connected in parallel are the effects 
of mismatched parameters. Once any parameters are mismatched, the current among 

two generators will be unbalance ( 1 2i i
 

) with the flowing of circulating current as 

shown by the dash line in Fig. 4.1. The mismatched parameters consequently lead to 
the torque unbalance between the generators. In the i.e. subsections, the effects of 
three mismatched parameters shall be investigated, the mismatched of permanent 
magnet flux, stator resistance and stator inductance. 
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Fig. 4.1 Circulating current in tandem generators due to mismatched parameters. 

 

4.1 Effects of Mismatched Permanent Magnet Flux,    

 The mismatch of flux    can be arisen from the variation of flux excitation 
in the production process and/or the inaccuracy in the mechanical alignment of the 
zero position of both generators, especially for the multi-pole synchronous generators. 
From (2.1) and Fig. 4.1, the relationship between the flux mismatch    and the 
current difference i


 can be derived as: 

  

   
( )

J
i

RI sI J L

 


   
 

     (4.1) 

where 

   1 2Ti i i 
  

  ,  1 2i i i  
  

 

Flowing of circuiting 
current 
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 and 

   1 2

2

  
     ,  1 2    

  
 

 

 From (4.1), the vector diagram of mismatched flux versus current difference 
can be drawn in Fig. 4.2. The induced torque for each generator can be written as: 

 Torque of SG #1: 

        
1 1 12

p
T i  

   

  
2 2 2 2 2 2 2

T Tp i i i i      
        

 

     
 (4.2) 

 

 

 Torque of SG #2: 

       
2 2 22

p
T i  

   

  
2 2 2 2 2 2 2

T Tp i i i i      
        

 

     
 (4.3) 

 

 

 The total induced torque is 

        1 2tT T T   

   
1

2 2T

p
i i       
 

  
   (4.4) 

 
 

                 

 It can be observed that the mismatched flux not only causes the torque 
unbalance between the generators; 1T  and  2T  in (4.2) and (4.3) respectively, but 

also affects the overall toque controllability of the vector control; T  in (4.4). The 
effects from the mismatched flux will be focused separately on the differences in 
misalignment of flux position (Fig. 4.3) and flux magnitude (Fig. 4.4). The 
sensitivities for various operating conditions are investigated by varying the speed   

and current qi . Figs. 4.3(a) - 4.3(c) depict the current difference ( i


), torque 

unbalance ( 1T  and 2T ) and overall torque error ( T ) due to the flux-position 

mismatch. From Fig. 4.3(a), in comparison to the low-speed range, the current 
difference is larger in medium and high speed range, this manner also reflects to the 

1T

2T

T
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torque unbalance as shown in Fig. 4.3(b). In contrast to the torque unbalance, the total 
torque controllability is quite poor in the low-speed range as shown in Fig. 4.3(c).  

 

   

 

 Fig. 4.2 Vector diagram of mismatched flux and current difference. 

 

 Effects of mismatched flux magnitude are also given in Figs. 4.4(a)–4.4(c). As 
pointed out in Fig. 4.4(b), the torque unbalance is varied according to generator’s 
current, while the total torque error, in Fig. 4.4(c) is severe in low-speed range as 
same as that of the mismatched flux position in Fig. 4.3(c). The overall performance 
with WECS is evaluated and shown in Fig. 4.5, unbalanced current and torque are 
varied depending on the generator speed, this agrees well with the analysis in Fig. 
4.3(a) and 4.3(b). Nevertheless, the MPPT still works properly. It can be concluded 
that the unbalanced current and torque are the main effects of mismatched flux, 
consequently, the utilization of inverters’ current rating is degradation. 
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 (a) Current difference ( )i


 due to mismatch of flux position,  
1 20 and 10    . 
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(b) Torque unbalance (

1T   and  
2T ) due to mismatch of flux position, 

1 20  and 10     . 
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(c) Total torque error, T  due to mismatch of flux position, 1 20  and 10     . 

Fig. 4.3 Effects of mismatched flux position.   
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(a) Current difference ( )i
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(b) Torque unbalance (
1T  and

2T ) due to mismatch of flux amplitude,  
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  (c) Total torque error, T  due to mismatch of flux amplitude. 

   Fig. 4.4 Effects of mismatched flux magnitude 
   1 20.19338 and 0.15822    (10% of ). 
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Fig. 4.5 Simulation results showing the performance of WECS with mismatched flux 
position. 
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4.2 Effects of Mismatched Stator Resistance R . 

 From (2.1) and Fig 4.1, the relationship between the mismatched stator 
resistance and the current difference i


 can be derived as: 

 

    
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2 1

1 2 ( )2

R R I
i i

R R I sI J L
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Fig. 4.6 Vector diagram of current unbalance due to mismatched stator resistance. 
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 Fig. 4.7 Current differences i


 due to mismatched stator resistance,  

 1 210.34  and 8.46 R R     (10% of R ). 

 

 d (zero position of encoder) 

q 

1 2   
  

 

i

 

1i

 

2i


i




30 

 From (4.5), the magnitude of current difference is illustrated in Fig 4.7. It is 
observed that the unbalance current vastly occurred in the low-speed range especially 
at high current (torque).  

 From (4.5), the induced torque for each generator can be written as: 

 Torque of SG #1: 

         
1 1 12

p
T i  

   

    
2 2 2

Tp i i  
    

 

 
 

   (4.6) 

 
 

 Torque of SG #2: 

        
2 2 22
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2 2 2
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 
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 The total induced torque is 
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Fig. 4.8 Torque unbalance ( 1T  and 2T ) due to mismatched stator resistance 

( 1 210.34  and 8.46 R R    ). 
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Fig. 4.9 Simulation results showing the performance of WECS with mismatched 
stator resistance. 
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 The above results show that the mismatch of stator resistance has only the 
effect on the torque unbalance; (4.6)-(4.7), while the total torque controllability is not 
affected; (4.8); this is due to the cancellation of torque error among two generators. 
Fig. 4.8 indicates the torque unbalance caused by 10% stator resistance mismatch, it 
is seen that only very low-speed region is sensitive to this resistance mismatch. In 
addition, Fig. 4.9 shows that the overall performance of WECS is well acceptable 
which means the tandem generators drive is robust to the mismatched stator 
resistance. 

 

4.3 Effects of Mismatched Stator Inductance L . 

 The current difference i


 that caused by the mismatch of stator inductance can 
be simply derived as:  

 

    
 

2 1

1 2

( )

2 ( )

L L sI J
i i

R I sI J L L




 
  

   

 
  (4.9) 

 

0
10

20
30

40
50

60

-10

-5

0

5

10
0

0.2

0.4

0.6

0.8

1

Generator Speed [rad/s]

Current [A]

C
ur

re
nt

 E
rr

or
 [

A
]

 

Fig. 4.10 Current difference i


 due to mismatched stator inductance, 

1 20.0715  and 0.0585 L H L H   (10% of L ). 

 

 From (4.9), the current difference can be illustrated in Fig. 4.10 and it is seen 
that the current difference is greater in higher speed range. The conceptual vector 
diagram for this case is similar to the one shown in Fig. 4.6. In the same manner as 
that of the mismatch of stator resistance, only the torque unbalance occurs ((4.6)-
(4.7)) and there is no effect on the total torque controllability (4.8). The results from 
deviation of 10% stator inductance are given in Fig. 4.11, in contrast to the case of 
stator resistance, the torque unbalance is more sensible in the high-speed region. The 
simulation results of WECS in Fig. 4.12 also clearly demonstrate the torque unbalance 
in high-speed range when the mismatched stator inductance is taken into account.  
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 Fig. 4.11 Torque unbalance ( 1T  and 2T ) due to mismatched stator  

  inductance; 1 20.0715  and 0.0585 L H L H   (10% of L . 
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Fig. 4.12 Simulation results showing the performance of WECS with mismatched 
stator inductance. 
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4.4 Comparison of Effects of Mismatched Parameters 

 According to the sensitivity analysis in section 4.1-4.3, the effects of 
mismatched parameters can be concluded in Table 4.1. Among all mismatched 
parameter, the deviation of permanent magnet flux, especially the mismatched flux 
magnitude, causes the severe impact on both torque unbalance and torque 
controllability of the tandem generators drive. For the mismatched of stator resistance 
and inductance, there is no effect on total torque controllability, and the system is 
quite robust to the mismatched stator resistance. 

 

Table 4.1 Comparisons of effects of mismatched parameters. 

Mismatched 
parameter  

Torque controllability 
degradation 

Performance with 
mismatched parameter  

Torque 
unbalance 

Total torque 
error 

Low speed High speed 

Flux position Yes Yes Fair Fair 

Flux magnitude Yes Yes Poor Fair 

Stator resistance Yes No Fair Good 

Stator inductance Yes No Good Fair 

 






R

L



CHAPTER V 

IMPLEMENTATION AND EXPERIMENTAL RESULTS 

 

5.1 Overall experiment setup. 

 Fig. 5.1 shows the experimental set up of wind energy conversion system; 
WECS, the main components of developed system are: 1) tandem synchronous 
generators; details are given in chapter 2, 2) MPPT scheme developed on 
TMS320F2812 platform, 3) back-to-back PWM converter and 4) wind turbine 
simulator.  
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Fig. 5.1 Experiment setup of WECS 
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5.2 Back-to-Back PWM Converter. 

 As the wind turbine operates at variable speed according to available wind 
speed, the voltage generated is variable of magnitude and frequency. Therefore the 
power generated need to be processed before feeding to grid. This system uses the 
back-to-back PWM converter, which is used as linking between the generator side 
and grid. The PWM converter composes of two voltages-source inverters (VSI) and 
the capacitor which is connected in between them. The generator-side inverter is 
controlled by current-controlled vector control, and the grid side inverter is operated 
in 3-phase PWM rectifier mode with DC-Bus voltage regulation. The power flow can 
be bidirectional; either it can flow through the generator or through the grid. The LCL 
filter is also provided for the grid connection. Ratings of back-to-back PWM 
converter are listed in Table 5.1. 

Table 5.1 Rating of back-to-back PWM converter.   

Grid-side voltage: 3-phase AC, 220V, 50 Hz 

Grid-side current: 8 A 

Generator-side voltage: 3-phase AC, 0 – 220V, 0 – 600Hz 

Generator-side current:   8 A 

 

The function of generator-side converter is to track the maximum power at all 
available wind speeds. Therefore, the generator speed is controlled in order to follow 
the power-speed characteristics via the TMS320F2812 Digital Signal Processor. The 
TMS320F2812 is a single-board based which will receive current and position signals 
to calculate the commanded speed for generator-side converter.  

 

5.3 Wind-Turbine Simulator. 

5.3.1 Wind-turbine simulator by AC drive. 

 Wind turbine, in this thesis, is created by an AC drive as shown in Fig. 5.2; the 
AC drive is operated in torque control mode and it is coupled to the tandem 
synchronous generators through a torque transducer. As a commanded torque for AC 
servo inverter, the turbine’s torque is calculated from power-speed characteristic of 
wind turbine as described in section 3.3.3. This calculation task is performed by 
another TMS320LF2047 Digital Signal Processor; the rotor position is detected for 
speed calculation, while the wind speed is assigned as an input. Table 5.2 is the 
ratings of AC servo drive used in this wind-turbine simulator. 
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Table 5.2 Ratings of AC servo drive 

Motor 

Voltage: 3phase, 200V 

Power: 3.0 kW, 20.6 A 

Speed: 1500 rpm 

Inverter 

Voltage input:  200V – 240V, 50/60 Hz 

Voltage output: 0 – 240V, 0 – 600Hz 

Power output: 3.7kW, 17 A 

 

AC 
Servo
Motor

Rotor Position
Wind Turbine 

Characteristics Algorithm
TMS320LF2407

Torque Meter

Wind Energy 
Conversion 

Systems
(see Fig. 5.1)

Assigned wind 
speed

AC Servo 
Inverter

Commanded Torque

Wind Turbine Simulator

Fig. 5.2 Implementation of wind-turbine simulator. 

 

5.3.2. Evaluations of wind-turbine simulator.  

 Fig. 5.3(a) is the characteristic of turbine’s torque versus rotor speed which is 
derived from the power-speed characteristic of wind turbine. For any assigned wind 
speed 6-9 m/s, the turbine’s torque in 5.3(a) is generated, from TMS320LF2407, as 
the commanded torque for AC servo drive. Performance of wind-turbine simulator is 
evaluated and carried out in Fig. 5.4(b); the shaft torque of servo drive is measured 
and the resultant torque-speed characteristic is plotted for each wind speed. It is seen 
in Fig. 5.4(b) that the AC servo drive can nicely produce the output torques 
corresponding to the characteristic of wind turbine (Fig. 5.4(a)) and it can be 
employed as a prime mover for the testing of WECS in the next sections. 
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 (a) Commanded torque-speed characteristic generated from TMS320LF2407 
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(b) Torque-speed characteristic of wind-turbine simulator (measured from torque 
meter) 

Fig. 5.3 Evaluation of wind-turbine simulator. 
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5.4 Experimental Results of WECS with Tandem Synchronous 
Generators 

Regarding the experiment set up and wind-turbine simulator in previous 
sections, the performances of WECS with tandem synchronous generators are tested 
by means of following investigations. 

- Performance of MPPT. 

- Power gathering and current sharing of tandem generators.  

- Effects of mismatched flux position. 

 

5.4.1 Performance of MPPT 

 In Fig. 5.4, the wind speed is varied continuously and slowly, the MPPT 
scheme can effectively track the maximum power for each wind speed. The responses 
against sudden change of wind speed are depicted in Figs. 5.5-5.7. Generators’ torque 
can be properly controlled during the sudden change of wind speed. The MPPT can 
successfully track the maximum power point according to each wind speed with 
acceptable rate of convergence. 
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Fig. 5.4 Performance of MPPT on power-speed plane when wind speed is varied 
slowly. 
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Fig. 5.5 Performance of MPPT on power-speed plane when wind speed is suddenly 
changed. 

 

5.4.2 Power gathering and current sharing of tandem generators 
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Fig. 5.6 Performance of MPPT with single synchronous generators when wind speed 

is suddenly changed. 

Generator Output Power 

Generator Speed 

Shaft Torque 

Generator Current 

8 m/s 

9 m/s 

7 m/s 

6 m/s 

Operating trajectory 

6 m/s 7 m/s 8 m/s 9 m/s 
Wind speed 



42 

0 20 40 60 80 100 120 140 160 180
0

5 Nm

10 Nm

15 Nm

20 Nm

0

10 rad/s

20 rad/s

30 rad/s

40 rad/s

50 rad/s

0

100 W

200 W

300 W

400 W

500 W

600 W

700 W

800 W

 

0 20 40 60 80 100 120 140 160 180

-4 A

-2 A

0

2 A

4 A

-4 A

-2 A

0

2 A

4 A

 

Fig. 5.7 Performance of MPPT with tandem generators when wind speed is suddenly 
changed. 

 

 In order to demonstrate power gathering; which is the main advantage of 
tandem generators, Figs 5.6 and 5.7 are given. The tandem generators shown in Fig. 
5.7 can produce roughly twice the output power from single generator, as shown in 
Fig. 5.6.  Concerning current sharing, each generator’s current in, Fig. 5.7, is 
considered. The currents are quite balance at low speed with low torque (at 6 m/s of 
wind speed), however the unbalance can be clearly observed at higher speed with 
higher torque (at higher wind speed, i.e. 8m/s - 9 m/s ). This is caused by the 
mismatched of flux position which will be investigated in section 5.4.3. Experimental 

Generator Speed 

Current of SG# 1  

Current of SG#2  

Generator Output Power 

Shaft Torque 

Time [sec] 

6 m/s 7 m/s 8 m/s 9 m/s 
Wind speed 

Time [sec] 



43 

result in Fig. 5.8 is given, in addition, to show that the back-to-back converter 
successfully feeds the electrical power into the grid. It can be concluded that, the 
overall performance of WECS with tandem generators is satisfactory and it is feasible 
to employ this concept in practice. 
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Fig. 5.8 Power at grid side. 

 

5.4.3 Effects of mismatched flux position 

 Among all parameters of generators, the mismatched flux position is easily 
occurred in practice; since generators are multi-pole type, a high accuracy is required 
for the alignment of permanent-magnet poles of tandem generators. In order to 
investigate the alignment of permanent-magnet poles, the open circuit test is setup and 
the back EMF waveforms of generators are measured as shown in Fig. 5.9. The back 
EMF waveforms reflect the mismatched flux position for about 10o (electrical degree) 
and it can cause the unbalance of current especially in high-speed range as depicted in 
the experimental results in Figs. 5.7 and 5.10, and this is also confirmed by the 
simulation result in Fig. 5.11.  

 

6 m/s 7 m/s 8 m/s 9 m/s 
Wind speed 

Instantaneous Power at grid side 

After Filtering 

Time [sec] 



44 

0 0.005 0.01 0.015 0.02 0.025
-150

-100

-50

0

50

100

150

Time [sec]

V
ol

ta
ge

 [
V

]

 

Fig. 5.9 Back EMF waveforms of tandem synchronous generators.  
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Fig. 5.10 Experimental results showing current unbalance due to the effect of 
mismatched flux position ( 10  

 ) 
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Fig. 5.11 Simulation results showing current unbalance due to the effect of 
mismatched flux position ( 10  

 ) 
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CHAPTER VI 

CONCLUSIONS 

 

6.1 Significant outcomes. 

 In this thesis, the significant outcomes are listed as follows: 

- The concept of tandem generators is proposed for the direct drive of 
multiple multi-pole permanent magnet synchronous generators 
(PMSG) for wind energy conversion systems (WECS).  

- Vector control and MPPT scheme are employed to control the 
generators’ torques and to gain the maximum power from wind 
turbine. 

- Effects of mismatched parameters of generators are analyzed and it is 
revealed that among all mismatched parameters, the effect of 
mismatched flux is considerable.  

- The validity of proposed concept and analysis results are verified by 
simulation and experimental setup. 

 

6.2 Future works 

The direct drive of tandem synchronous generators is the alternative concept 
for WECS. Some issues are still left for the future work, i.e. 

- Comparing the parallel-connected tandem generators with the series-
connected topology. 

- Using three or more generators in tandem. 
- Design guideline for the PI controller of MPPT scheme. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



REFERENCES 

 

[1] Matsumoto, Y.; Ozaki, S. and Kawamura, A. “A Novel Vector Control of Single - 
inverter-multiple-induction-motors Drives for Shinkansen Traction System”. 
Power Electronics Conference and Exposition, 2001. APEC 2001 Page(s): 608 – 
614 vol. 1. 

[2] Kelecy, P. M. and Lorenz, R. D.; “ Control Methodology for Single Inverter, 
Parallel Connected Dual Induction Motor Drives for Electric Vehicles”. Power 
Electronics Specialists Conference, PESC 1994 Page(s): 987 – 991 vol. 2. 

[3] Matsuse, K.; Kawai, H.; Kouno, Y. and Oikawa, J.; “Characteristics of Speed 
Sensorless Vector Controlled Dual Induction Motor Drive Connected in Parallel 
Fed by a Single Invert”. Industry Application, IEEE Transactions on Volume: 40. 
Year: 2004 Page(s): 153 – 161. 

[4] Taniguchi, M.; Yoshinaga, T. and Matsuse, M.; “A Speed-Sensorless Vector of 
Parallel-Connected Multiple Induction Motor Drives with Adaptive Rotor Flux 
Observers”. Power Electronics Specialists Conference, PESC 2006. Page(s): 1-5. 

[5] S. Sangwongwanich, et. al., “A Unified Speed Estimation Design  Framework for 
Sensorless AC Motor Drives Based on Positive-Real Property”. Power 
Conversion Conference-Nagoya, 2007. PCC ’07. 2-5 April 2007 Page(s):1111-
1118. 

[6] M. Chinchilla, et. al., “Control of Permanent-Magnet Generator Applied to 
Variable-Speed Wind-Energy Systems Connected to the Grid”.IEEE Transaction 
on Energy Conversion, vol 21, no. 1, March 2006. Page(s):130-135. 

[7] R. K. Sharma, et. al., “Vector control of a PMSM”. India Conference, 2008. 
INCICON 2008. Annual IEEE. Vol. 1, Page(s); 81 -86, 11-13 Dec. 2008. 

[8] P. Chanthavong, S. Suwankawin, and H. Akagi, “A direct drive of multiple multi-
pole synchronous generators for wind energy conversion system”. ECTI-CON 
2010, Page(s): 1021 – 1025, 19-21 May 2010. 

[9] Frede Blaabjerg and Zhe Chen.  Power Electronics for Modern Wind Turbine. 
The Morgan and Claypool Publishers’ series. 2006. 

[10] M. Iulian, I. B. Antoneta, C. Nicolaos-Antonio, and C. Emil.  Optimal Control 
of Wind Energy Systems.  Springer-Verlag London Limited. Springer. 2008. 

[11] D. B. Fernando, H. De Battista, and J. M. Ricardo.  Wind Turbine Control 
Systems. Springer-Verlag London Limited. Springer. 2007. 

[12] F. Brenden, F. Damian, B. Leslie, J. Nick, M. David, O. Mark, W. Rechard, and 
A. L. Olimpo.  Wind Power Integration, Connection and system operational 
aspects.  The Institution of Engineering and Technology, London, United 
Kingdom, 2007 



 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 



49 

APPENDIX  

 

 

1 Hardware of Wind Energy Conversion Systems 
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2 MPPT Algorithm processed by DSP F2812 
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