CHAPTER IV

DEPOSITIONAL ENVIRONMENT AND ECONOMIC POTENTIAL OF DIATOMITE

A depositional environment is considered as being defined by a set of values of physical, chemical, and biological variable that correspond to a particular geomorphological unit. The philosophy of the present approach to environmental analysis is basically traditional in the sense that modern depositional environments provide the "key to the past" in examining stratigraphic successions preserved in the geological record. There is clearly a close connection between the environment of deposition and the nature of the sediment deposited. It is this records of past environmental conditions preserved in the sediments that provides the basic criteria for recognizing sedimentary environments in the stratigraphic column.

T

A sedimentary environment may be a site of erosion, non-deposition, or deposition. As a broad generalization, sub-aerial environments are typically erosional while sub-aqueous environments are mostly depositional areas. Some environments alternate through time between phases of erosion, equilibrium, and deposition. Among these, depositional environment is most important because there is a sedimentary products which can be used as record for environmental analysis.

"Sedimentary facies" is defined as any areally restricted part of a designated stratigraphic unit which exhibits characters significantly different from those of other parts of the unit. The rock record of any sedimentary environment, including both physical and organic characters, is designated by the term "lithofacies" (Moore, 1949). Facies are important because their recognition and analysis provide the basis for an environmental interpretation of stratigraphic units.

In order to recognize sedimentary facies in the geological

record it is necessary to use multiple recognition criteria including

- a) sedimentary structure
- b) lithology
- c) geometric relationships of rock units
- d) character of biological content

Therefore, a facies should ideally be distinctive rock that forms under certain conditions of sedimentation, reflecting a particular process or environment. Facies may be subdivided into sub-facies or grouped into facies associations or assemblages.

For environmental reconstruction, there is a need of features that were produced at the time of deposition. However, diagenesis is also important for the study of rock history but it tends to obliterate the primary features, which can be helpful in reconstruction of the environment of deposition of a given rock. In environmental reconstruction the approach should be pluralistic. Several independent parameters should be studied before many final picture of the depositional environment is made. Environmental reconstruction is more certain if several in dependent parameters point to the same conclusion.

Facies analysis is partly controlled by depositional environment and partly dependent on tectonics. The relative importance of these controlling factors varies between different environments. In this study, an attempt has been made to reconstruct the depositional history of sedimentary sequences within the Mae Tha Sub-basin in the right of depositional environment and tectonics concerned.

4.1 Lithofacies Analysis

4.1.1 Lithofacies Analysis of Mae Sot formation

In this study the sequence of Mae Sot formation is best represented in drill-hole No. D 10. Approximately 280 m. thick of the uppermost part of Mae Sot formation in the study area is employed in the facies analysis and depositional environment reconstruction.

The general characteristics of lithofacies of the Mae Sot formation is mainly repeated cycles of greenish grey, laminated finegrained clastic sediments associated with thin bands of coal and oil shale. At least 3 cycles of these repeated sequence have been recognized. It is noted that some part of the greenish grey laminated finegrained clastic sediment is interbedded with thin layer of mediumgrained clastic sediment. Some fish fossils are found associated in this lithofacies, notably scales and fragments of operculum of Cypriniforms, and serrated spine of Siluriforms. The overall geo_ metry of the lithofacies is tabular. The lithofacies analysis of the Mae Sot formation is illustrated in Fig. 4.1.1.

4.1.2 Lithofacies Analysis of Ko Kha formation

The sequence of "Ko Kha" formation is generally characterized by the interbedding of diatomaceous clay of varying clay content and diatomite. They are found in three separated areas of various thickness ranging from 15-35 m. The boundary between Mae Sot formation and "Ko Kha" formation is transitional without any unconformity.

The diatomaceous sequence is mainly composed of frustules of Melosira granulata (EHR.) RALFS, and rarely Navicula spp. and Fragilaria spp. It is inferred that the deposit was accumulated under the particular condition favorable for Melosira granulata (EHR.) RALFS.

The diatomaceous claystone in this lithofacies frequently shows lamination (Fig. 4.1.2a). It is believed that the three separated diatomite deposits in the area under the present investigation were continuous during the time of deposition. The original geometry of this lithofacies is therefore concluded to be lentiform. The lithofacies analysis of the Ko Kha formation is illustrated in Fig. 4.1.2b.

4.1.3 Lithofacies Analysis of Mae Taeng formation

The general characteristics of the Mae Taeng Formation is mainly a sequence unconsolidated sediments i.e. gravel, sand, silt, clay with some limestone fragments. The sequence shows maximum thickness of approximately 170 m. in the central part of the area and thinning out on both eastern and western parts. The sedimentary succession shows a series of fining upward sequences from sand to clay in the lower part

Lithos	stratigraphy	Lithological		
roup	Formation	column.	Description	Facies Association
	197m		Mudstone,light olive grey,fish remains	MS- 9 Lithofacies
Н О	E O S		Shale, olive green with thin layer of sandstone	MS- 8 Lithoracies
M			Shale, semiconsolidated clay, dark greenish grey, interbedied with oil shale and coal, some interval calcareous, peat and fish remains	MS- 7 Lithofacies MS- 6 Lithofacies
2	A E		Shale, light olive grey with coal	MS- 5 Lithoracies
M A	×	$\frac{+}{1}$	Semiconsolidated clay with sand, light bluish grey some interval calcareous	MS- 3 Lithofacies
	No. Contraction		Mudstone, shale, bluish grey to olive grey interbedded with coal and oil shale, calcareous, fish remains	MS- 2 Lithofacies
	437m	$\frac{\mathbf{r} \cdot \cdot \cdot \cdot \mathbf{r}}{\mathbf{r}}$	Mudstone, interbedded with siltstone, shale, and oil shale greyish green, laminated, fish remains and pyrite	MS- 1 Lithofacies

.

Fig. 4.1.1 Lithofacies analysis of the Mae Sot formation

-

58

١.

Fig. 4.1.2a Showing the lamination of diatomaceous claystone in prospecting shaft no. 2 (S.2)

*

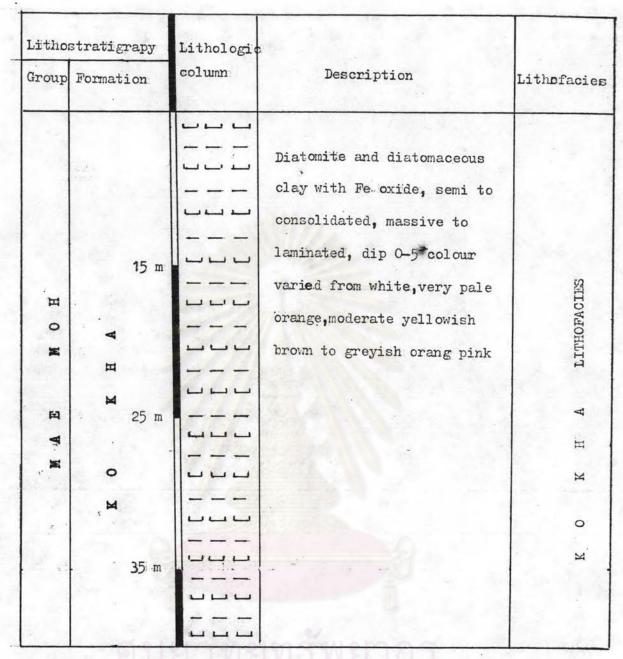


Fig.4.1.2b Lithofacies analysis of the Ko Kha formation

and gravel to clay in the upper part. The lithology of the gravel is mainly quartzite and limestone. The overall geometry of this lithofacies is lens -shaped. The lithofacies analysis of the Mae Taeng formation is illustrated in Fig. 4.1.3.

4.1.4 Lithofacies Analysis of "Top Soil" formation

The sediments are characterized by mixtures of lateritic, sandy, some quartz pebbly, limestone pebbly, clayey materials of 1-5 m. thick. This lithofacies covers extensively throughout the study area. The area of Mae Tha Sub-basin has eventually been covered by the thin veneer of this lithofacies of varying thickness. The lithofacies analysis of the "Top Soil" formation is illustrated in Fig. 4.1.4.

4.2 Reconstruction of Depositional Environment

The facies association of the upper 280 m. of Mae Sot Formation is consisting of 9 lithofacies. With regards to the depositional environment of these lithofacies, it is proposed that the laminated fine-grained clastic association with or without thin sand layer represent the lacustrine sediments of mainly central lake sub-facies and some marginal lake sub-facies of clastic lake deposits (Kukal, 1971; Picard and Hight, 1972; Reeineck and Singh, 1973; Selley, 1982; Davis, 1983). The association of thin band of coal and oil shale is believed to represent the coal swamp deposits associated with lacustrine environment (Francis, 1961; Landis and Averitt, 1978; Tucker, 1981).

It is significant to note that each cycles of lake and coal swamp deposits of appreximately 40 m. thick was deposited in the subsiding basin presumably reactivated by block-faulting. Therefore, the uppermost 280 m. thick of Mae Sot formation was deposited in the alternate environments of in-land fresh-water lake and coal swamp controlled by intermittent subsidence under the influence of blockfaulting. The environmental interpretation of facies association of Mae Sot formation are summarized and presented in Fig. 4.2.1

With respect to the depositional environment of Ko Kha lithofacies, the interpretation is essentially based on the paleoecological

Group	tratigraphy Formation	column	Description	T : + 1 - 0 :	
aroup	Formation	COLUMN	Description	Lithofacies	
	40m	600000	Gravel, sand, clay, and lime -	. ហ . មា	
	a tent		stone frangment, fining -	A C I	
	60m		upward sequences, moderate	0 F A	
		.0.0.0.0.	yellowish brown, yellowish grey, and light olive grey	E E	
	es ^{80m}		Broj fand 118.0 OIIVO Broj	н г	
	Z				
. 9	⊠ ≰ ¹⁰⁰ m	- 0°		U N E	
	E+			ТА	
	120m				
	I V			AE	
	× 14.0m			W	
		121			
	ดบ	15511	ทรพยากร		

Fig. 4.1.3 Lithofacies analysis of the Mae Taeng formation

Litno	stratigrapy	Lithologic	Lithofacie	
Group	Formation	column	Description	And the second
, ¢	1m *1 2m 0 22 30 * * 4m		Top soil, laterite, quartz, grains Fe oxide grains, (size: coarse sand to gravel, shape: angular to subangular) and clay with limestone fragments in some area colour varied from moderate yellowish brown, pale orang to dark yellowish orange	TOF SOIL LITHOFACIES

Fig.4.1.4 Lithofacies analysis of the Top Soil formation

Facies Associasion Depositional Environment	MS- 9 Lithofacies Lacustrine	MS- 8 Lithofacies Lacustrine	MS- 7 Lithofacies Lacustrine	MS6 Lithofacies Coal- swamp	MS- 5 Lithofacies Lacustrine	MS- 4 Lithofacies Coal- swamp	3 Lithofacies Lacustrine	MS- 2 Lithofacies Coal- swamp	MS- 1 Lithofacies
Lithologic column Facie		RS- RS- I				MS-	+ · · · · · · · ·		

¥

*

1

Fig. 4.2.1 The depositional environment of facies association of Mae Sot formation

condition of diatoms found supplemented by the lithofacies analysis. Although diatom is found in a wide range of climates, the very thickwall form with very coarse pore appear to be the characteristics of warm climate especially sub-tropical to tropical (Bunopas, 1981, p.355). It is a fresh-water planktonic species, and prefers eutrophic, stagmant lake deposit, warm-water, often found in cool temperate regions during the summer months (Hutchinson, et sl., 1956; Akutsu, 1972). Besides, this planktonic diatoms live in the zone below the surface of lake water down to the depth of 35 m. in order to utilize the sunlight for photosynthesis (Kadey, 1975, p.609). The chemistry of lake water which is most favorable for the organic production of diatoms is as follows; dissolved silica content of 5-25 mg./1, which is a high concentrate (Kilham, 1971 in Bunopas, 1981, p. 355) alkalinity 1-10 meq./1., which is relatively dilute (Richardson, 1978 in Bunopas, p. 355) the presence of SO, in suitable content, abundant nutrients, i.e. phosphate, nitrates, etc., free of toxic substance (Kukal, 1971). Besides, the lake must be of large shallow basins (preferrably 35 m. or less in depth) and low clastic sediments input (Kadey, 1975).

The lake in the southeastern part of Lampang Basin was eutrophic in late Tertiary. The lake had a high production of plankton and their waters were rich in organic matter. The regime of lakes was influenced by the bed-rock in the bottom and the vicinity of the lake. In the southeastern part of Lampang Basin, lake was developed on porous sediments rich in organic matter or on soils of Lampang, Volcanic and Ratburi Groups, which were easily leached and enriched the lake water with organic matter. Limnic diatomaceous sediments are, on the whole, confined to a minor part of lake, but occur in a great abundance in them. The deposition of diatomaceous sediments in lake requires the following condition to be fulfilled:

a) Suitable conditions for the growth of diatoms.

b) Absence of disturbing and masking components
A low temperature of water complies with the first requirement,
because it supports the production of diatoms and restrains the growth
of bacteria. Therefore, lake with diatomaceous sediment occurs mainly

in higher geographical latitude or higher altitudes above sea level. Mountain lake with cool clear water furnishes an ideal environment for the growth and deposition of diatoms. Diatoms can originate already at the presence of 1-5 ppm. of dissolved SiO₂ and their maximum development occurs at 5-20 ppm. of SiO₂ in water (Fig. 4.2.2). Provided that all the above mentioned conditions are fullfilled, a continuous carpet of diatom test is formed on the surface of some lake during summer. After attaining thickness of a few millimetres the carpet sinks. In this way layer of diatomaceous sediments up to 35 m. thick can originate.

The very common association of deposits of siliceous organisms, particularly diatoms, with volcanic ash has been noted by many authors (Bramlette, 1946, p.39). This association has led Taliaferro (1933, p.54) and Bramlette (1946, p. 41) among others to suggest that much of the silica and perhaps much of the other nutrients utilized by the organisms may have been released by the weathering of volcanic ash. Trask (1932, p. 237) emphasized the necessity of adequate nitrate for high organic acitivity, as in areas of turbulence or upwelling (Harvey, 1955, p. 99-101). Much of nitrate and phosphate must thus be available through the cycle of renewal and upwelling, but unusual supplies of silica from the volcanics might be critical for long-continued extraction of silica that is being permanently removed as the opaline tests of diatoms (Cressman, 1962, p. 17). In addition to extracting soluble silica from water, some diatoms are capable of obtaining silica directly from aluminosilicate mineral (Murray and Irvine, 1889, Hutchinson, 1957, p.790).

The major source of dissolved silica in the paleolake is believed to be contributed from the weathering of Permo-Triassic rhyolite, tuff, agglomerate in the eastern part of Lampang Basin. The X-ray diffractograms show the pattern of montmorillonite, kaolinite and illite occurring as impurities. These clay minerals mingle throughout the entire thickness of diatomite beds during the deposition. Ion-exchange reactions are most important after initial weathering has formed clay minerals. Berner (1971, p.173) has emphasized the

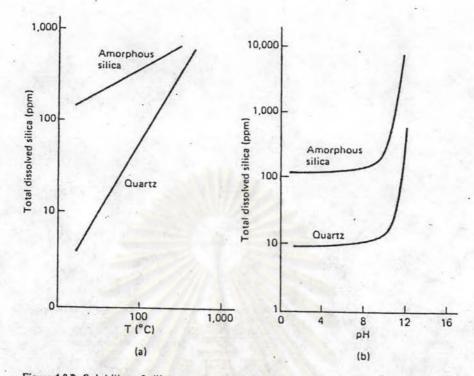


Figure 4.2.2 Solubility of silica as a function of temperature and pH: (a) solubility as a function of temperature at pH < 7; (b) solubility as a function of pH at 25°C. [(a) After Siever. © 1962 by the University of Chicago. All rights reserved. (b) After *Evolution of Sedimentary Rocks* by Garrels and Mackenzie, p. 149. Used by permission of W. W. Norton & Company. Copyright © 1971 by W. W. Norton & Company, Inc. From Krauskopf, K., 1967, *Introduction to Geochemistry*, New York: McGraw-Hill, Inc.]

Lithostratigraphy and Depositional Environment of Diatomite Deposits

in the Southeastern Part of Lampang Basin, Changwat Lampang

PONGSAK SRIPONGPHUN GEOLOGY DEPARTMENT GRADUATE SCHOOL

CHULALONGKORN UNIVERSITY 1985

importance of water flow as a controlling factor in weathering. At moderate flow rates, albite is changed to kaolinite. When flow rates are very slow, material is removed very slowly from the weathering pile and, provided Mg²⁺ is available, the product is montmorillonite. Berner (1971) pointed out that, in addition to water flow rate, the other two major factors determining the nature of the clays found in a particular area are the mineralogy of the rock being weathered and the chemical composition of the weathering solution. Feldspars tend to change to kaolinite, whereas ferromagnesium minerals provide magnesium for the formation of montmorillonite. Biotite and muscovite often weather to illite. With increasing activity (concentration) of dissolved silica, kaolinite is more stable than gibbsite, and montmorillonite is more stable than kaolinite. At high silica activities amorphous SiO, precipitates. Increasing activities for Na⁺, Ca²⁺, and K⁺ along with decreasing hydrogen ion activity (higher pH) make montmorillonite, illite and the feldspar stable relative to kaolinite. These general relationships agree with those found in nature.

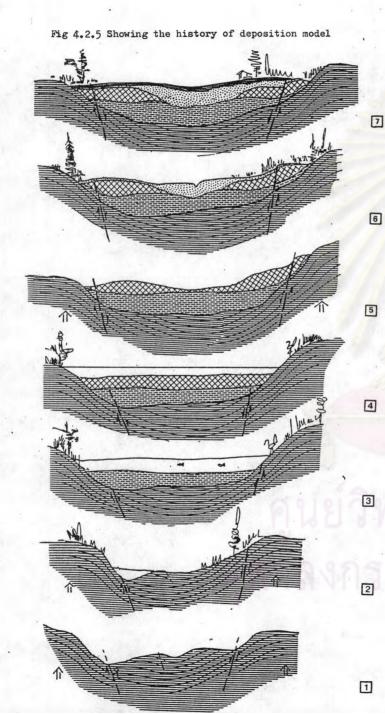
Lacustrine diatomaceous sediments in the study area show the following composition: diatom test, plant remains, available amount of coarse (sand and silty) terrigenous detritus and clay minerals. Some uppermost parts of diatomaceous sediments of Ko Kha formation which lie unconformable under the unconsolidated sediment of Mae Taeng formation also contain gypsum crystals (selenite), which originated by the oxidation of pyrite and, do not indicate an increased salinity, as could be erroneously interpreted. The depositional environment of Ko Kha lithofacies is presented in Fig. 4.2.3.

After the deposition of diatomite and diatomaceous clay, it is believed that the Mae Tha paleolake was eventually uplifted during Pleistocene tectonism. The diatomaceous deposits in Mae Tha Sub-basin was accordingly exposed sub-aerially and was subjected to partial erosion particularly in the central part by fluvial process and followed by the deposition of Quaternary deposits of Mae Taeng and "Top Soil" formations. The characteristics of Mae Taeng formation which is mainly composed of

DT 0110	stratigr			Litho-	Depositional Designation
Group	Formati	1	logic column	facies	Depositional Environment
MAEMOH	KO KH"A	15m 25m 35m		K O K H A LITHOFACIES	Lacustrine, fresh- water, cool clear water, large basin high dissolved silica ,and stagnant water

Fig.4.2.3 The depositional environment of Ko Kha lithofacies

gravel, sand, and clay of varying proportion arranged in a series of fining upward cycles. The lithofacies of Mae Taeng formation strongly suggest the deposition under the fluvial environment. This lithofacies shows the thickest zone in the central part of the study area elongated approximately N/S direction. This indicates the maximum fluvial processes in the central part of the study area which had a tendency to erode the friable diatomite deposits of the underlying Ko Kha formation. At present, the diatomite deposits which were continuous during the time of deposition are separated by the unconsolidated fluvial sediments of Mae Taeng formation. The top part of the Quaternary deposits is the thin veneer of sediments of the "Top Soil" formation characterized by laterite, lateritic soil, angular to subangular grains of quartz and iron oxide, coarse sand to gravel. The depositional environment of Quaternary facies association is presented in Fig. 4.2.4.


In conclusion, the history of deposition of sediments in the Mae Tha Sub-basin including related tectonic activity is presented as depositional model in the light of lithofacies analysis and tectonism in Table 4.2.1 and Fig. 4.2.5.

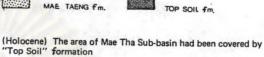

		100		71
1	stratigraphy Formation		Facies associ-	Depositional Environment
Group	Normation N Im N N N N N N N N N N N N N N N N N N N		TOP SOIL LITHOFACIES	Fluvial environment, weathering, erosion, and deposition in Holocen Epoch
	MAETAENG		AE TAENG LITHOFACIES	Fluvial environment
	14m		MA	ເລລີແພລລະ ເລລີແພລລະ

Fig. 4.2.4 The deposional environment of Quaternary facies association

Facies Association						Environmental	ma ad an i an	
Litł	nofacies	facies Lithology		Geometry Sed.Structure		Interpretation	Tectonism	
Quaternary		Top soil, laterite, gravel,sand,clay	Lense- shaped	Fining upward sequences		weathering, crosion, and deposition Fluvial	Uplift, bending of N/S faults	
Ko Kha Lithofacies		Diatomite interbedd- ed with diatomaceous clay	Lentiform	Massive to lamination dip 0 -5	<u>Melosira</u> granurata, <u>Navicula</u> spp. Fragilaria spp.	Freshwater, eutrophic, stagnant lake deposit.		
Mac Sot Facies Association	MS- 9 MS- 8 MS- 7 MS- 6 MS- 5 MS- 4 MS- 3 MS- 2 MS- 1	Mudstone, claystone ,shale, oilshale, coal ,and some sandstone,siltstone intertedded,some cal -carcous, pyrite	Tabular- shaped	Lamination, graded-bedding massive, many slip cleavage	Fish remains Cypriniforms, Siluriforms, and plant	Coal swamp deposits associated with lacustrinc environment at least 3 cycles	Extensional faults horsts & grabens, little uplif	

Table 4.2.1 Summary of depositional environment, lithofacies, and tectoniam in the study area

LAMPANG GD

Later, Ko Kha formation was subject to partial erosion by fluvial action and subsequencely infilled with fluvial sediment of Mae Taeng Formation

MAE SOT fm.

(Pleistocene) Faulting and uplift, Ko Kha formation exposed sub-aerially

(Upper Tertiary to Lower Pleistocene) Lacustrine environment continuous and Ko Kha formation deposited

(Middle to Upper Tertiary) Lacustrine developed and Mae Sot formation deposited

(Lower to Middle Tertiary) Tectonic uplifting, Extensional faults, horsts and grabens

(Late Cretaceous to Lower Tertiary) Tectonic uplifting and developed N/S trending normal fault

KO KHA fm

4.3 Palaeontology and Ecology of Diatoms in the Study Area

4.3.1 Scanning Electron Microscopic Study of the Surface Structure of Diatoms

The scanning electron microscopy is a technique of X-ray analysis. The beam of electrons from a source, a tungsten filament in a high voltage field, is swept on to the sample surface by a scanning coil similar to the television scene. A sample holder was painted with the conductive silver glue as a thin layer and a dry crushed sample was strewed on the glue. After it was dried in the air, the sample holder was placed in the fine-coat machine. The coating chamber was evacuated and the voltage of 5 kilovolts was applied. The gold particles from the coil in the coating chamber was then dispersed to coat the sample surface on the holder as a thin film. The instrument was turned off and the air was automatically released into the chamber. The coated sample holder was inserted into the sample position of the scanning electron microscope. The chamber was evacuated and the high voltage of 20 kv was applied. The coarse and fine buttons of the electron microscope were adjusted until the clear-cut image on the oscilloscope was achieved at the required magnification. The general structure of diatom is presented in Fig. 4.3.1 .

4.3.2 Palaeontology

By means of electron microscope scanning a frustules of diatoms is mainly composed of *Melosira granulata* (EHR.)RALFS. and rarely *Navicula spp*. and *Fragilaria spp*.

Description of Species Genus Melosira AGARDH, 1824 Melosira granulata (EHR.)RALFS, 1861 Melosira granulata (EHR.)RALFS. Hustedt, 1930, p.248-252, fig. 104.

Size range of measured specimens: Height of values 10 to 20μ , diameter of values 6 to 30 μ .Ratio of height to diameter, 0.4 to 2.3.

Remarks: - Hustedt's description and illustrations of

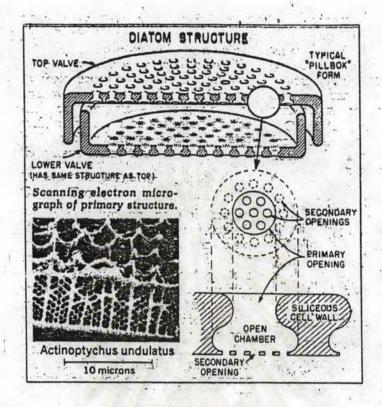
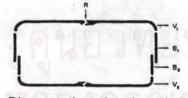



Fig.4.3.1 The general structure of diatom

. Diagrammatic section of a typical diatom frustule. $V_1, V_2 = Valves$ $B_1, B_2 = Connecting bands$

 $V_1 + B_1 = Epitheca$ $V_2 + B_3 = Hypotheca$ $B_1 + B_2 = Girdle$ R = Raphe

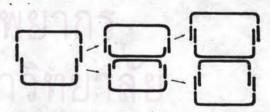


Diagram indicating the mode of division of a diatom cell showing the formation of new silica. valves. Melosira granulata (EHR.) RALFS. indicate that this species has 8-9 pore-lines in 10 μ on the valve mantle which run obliquely or parallel to pervalvar axis, and the species has long spines (Borsten) on the valve margin.

Most of the specimens studied are separated to values or fragments and have not formed filaments of values. Value mantle covered with pore -lines 6-7 in 10 μ , pore 6 in 10 μ , and pore-line run parallel to pervaluar axis, and some values have prominent spines.

In the specimens studied, the number of pore-lines and pores in 10μ are less than the description, but prominent spines characterize this species.

The ratio of height to diameter of values varies from 15 μ : 30 μ = 0.5 to 19 μ : 8 μ = 2.3, namely, drum shaped values to cylindrical values, but there are no distinct relations between height and diameter or ratio of height to diameter. Then, the specimens are all identified to the species.

The examination by electron microscope (Superscope, Japan Electron Co., resolution 4 A') shows that sieve membranes are not preserved except for its trace barely left along the edge of pores (Akutsu, 1972). From the scanning electron microscope, the surface feature of diatoms in the study area are illustrated in Figs. 4.3.2a, b, c.d

4.3.3 Ecology

From the abundant occurrences of *Melosira granulata* (EHR.). RALFS. It is inferred that the deposit was accumulated under the particular condition favorable for *Melosira granulata* (EHR.) RALFS.

Melosira granulata (EHR.)RALFS. is a freshwater planktonic species, and prefer eutrophic, warm water; often found in cool temperate regions.during the summer months (Hutchinson, et al., 1956).

Foged (1954), on the basis of studies made for those species in lakes of Denmark, gave the ecological preference of *Melosira* granulata as follows: in halobion spectra it is indifferent meaning freshwater proper; in pH spectra alkaliphilous forms, appearing at a

Fig. 4.3.2a Showing cylindrical shape of diatoms (Melosira granulata) from quarry near prospecting shaft no. 1.

A

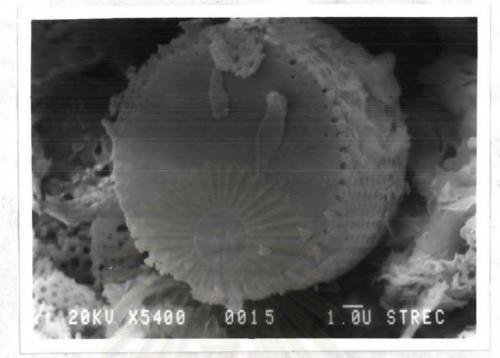


Fig. 4.3.2b Showing drum shape of *Melosira granulata* from prospecting shaft no. 2 at level 10'.

1

4

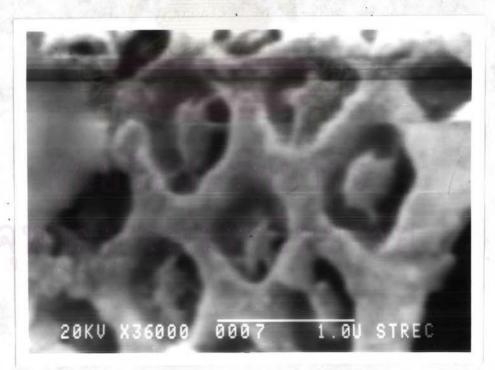
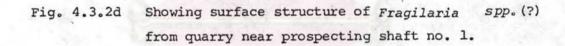



Fig. 4.3.2c Showing surface structure of Melosira granulata.

pH about 7, with their optimum above pH 7; in current spectra, it belongs to limnophilous having their optimum of development in stagnant water.

Okuno (1958) reported *Melosira granulata* (EHR.) RALFS. from the Setana Formation (Miocene), Hokkaido, Japan. The Setana assemblage is known to consist almost exclusively of this species. It is the earliest geologic occurrence so far reported from the diatomite of freshwater origin, in Japan. The species occurs also in younger formations in Japan and is still living in Japanese lakes.

Van Landingham (1964) studied the Miocene non-marine diatoms from Yakima region in south central Washington, and reported the species associated with *Melosira canadensis* HUSTEDT which may be a good marker fossil.

Van Landingham (1967) described the Miocene diatom flora of the diatomite from the Otis Basin-Juntura region of Harney and Malheur Countries, Oregon, and found Melosira granulata abundantly in some samples.

As to Melosira granulata , he (1967) stated that "The stratigraphic range is from Oligocene (?) or Miocene to Recent. This diatom is very common in marine, brackish and freshwater. This species is probably the most abundant of non-marine North American Miocene diatoms." It is of interest to note that, Okuno's studies of Japanese diatomites, absolute dominance of this species (coarse structure type) have been recorded only in those fresh-water diatomites in Miocene age. Further studies are needed, however, to validate the observation. The fact that the structure of the specimens here presented is more coarse than that of their living representatives (Hustedt, 1930) as well as of Pleistocene age (Akutsu, 1964), may bear stratigraphic importance to be studied in the future.

The conclusion regarding the palaeontological aspect of diatoms, it is significant to note that:

a.) The Melosira granulata under the present study appears

to have less pores and pore lines than the specimen identified by Hustedt (1930,p.248-252, fig. 104.)

b.) This species under the present study shows prominent spines.

c.) The ratio of height to diameter of valves is variable with drum shaped to cylindrical valves.

d.) The Melosira granulata specimen shows no seive membranes preserved, however, trace barely left along the edge of pores.

With respect to ecological condition of diatoms, the following conclusions are reached:

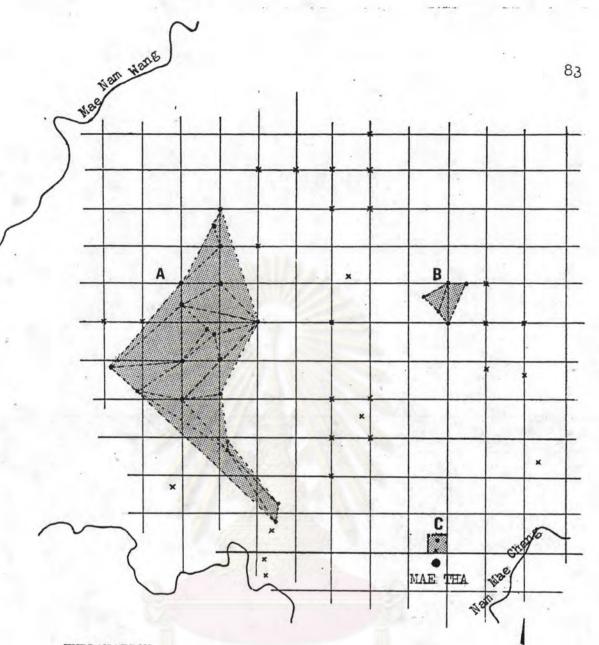
a.) Abundance occurrence of *Melosira granulata* requires special environmental condition.

b.) The species is fresh-water plankton of warm, eutrophic zone with optimum development in stagnant water.

c.) The favorable pH of the water is about 7 or slightly higher.

d.) The age of this species ranges from Miocene to Holocene.

4.4 Economic Potential of Diatomite Deposits


4.4.1 Ore Reserves

At present, the diatomite deposits in the study area are found in three separate areas (Fig. 4.4.1). From irregular spaced drill-holes, the result of ore reserves from calculation are probable (semiproven) or indicated reserves according to Leith (1933, pp. 47-48) definitions of probable reserves as follows: " Probable or semiproven ore covers extensions near at hand, where the conditions are such that ore will probably be found but where the extent and limiting conditions cannot be so precisely defined as for proved ore. Semiproven may also mean ore that has been cut by scattered drill holes too widely spaces to assure contunuity. " Besides, the use of the classification adopted by the U.S. Geol. Surv. and Bureau of Mines, definition of indicated reserves as follows: " Indicated reserves are those for which tonnage and grade are computed partly from specific measurements, samples or production data and partly from projection for a reasonable distance on geologic evidence. The sites available for inspection, measurement, and sampling are too widely or otherwise inappropriately spaced to permit the mineral bodies to be outlined completely or the grade established throughout. "

Calculation of ore reserves is computed using triangular method of 3 drill holes (Areegul. S., 1977, p. 15) as shown in Fig. 1.5.2. Firstly, compute the volume of each triangle by multiplication the area of the triangle with average thickness of 3 holes. Secondly, the sum of the volume of each triangle is the total volume of the deposit. Thirdly, tonnage of each area equals the multiplication of the total volume by average bulk density of diatomite in each area. The calculation concerned is shown as follws:

a.) Area "A"

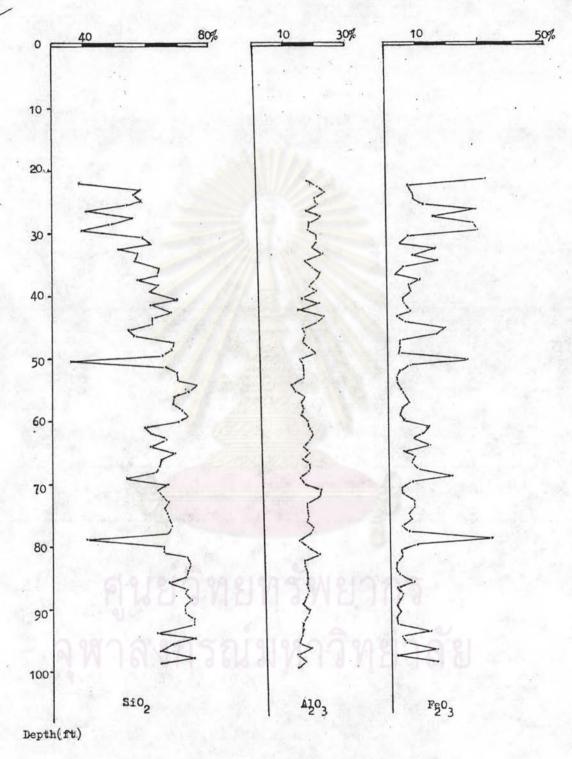
Total volume	- =	308.22x10	m ³ .
Average bulk density at 105°		0.71	-
Probable dry ore reserve of	area "A" =	218.83x10 ⁶	metric tons

EXPLANATION

- * Drill hole without diatomaceous clay
- · Drill hole or exploratory shaft with diatomaceous clay

Fig 4.4.1 Showing areas of diatomaceous clay reserves in study area

Lithostratigraphy and Depositional Environment of Diatomite Deposits in the Southeastern Part of Lampang Basin, Changwat Lampang PONGSAK SRIPONGFHUN GEOLOGY DEPARTMENT GRADUATE SCHOOL CHULALONGKORN UNIVERSITY 1985 b.) Area "B"


Total volume	=	10.88x10 ⁶ m ³ .
Average bulk density at 105°C	=	0.80 gm./cc.
Probable dry ore reserve of area "B"	=	8.71x10 ⁶ metric tons
c.) Area "C"		
Approximate total volume	-	3.43x10 ^{6' m³.}
Average bulk density at 105°C	=	0.52 gm./cc.
Probable dry ore reserve of area "C"	=	1.78x10 ⁶ metric tons

Hence probable dry ore reserve in the study area totally = 229.32x10⁶ metric tons

4.4.2 Quality of Diatomite Deposits in the Study Area

The chemical analyses of diatomite from some parts at the study area (Appendix 1) indicate that the C-deposit has the highest silica content which is used as a measure of diatom quantity. However, the iron content and alumina content which are used as 2 measures of the clay quantity are also high. Therefore, the potential utilization of this diatomite deposit is lower than it should be. If these undesirable minerals are removed, the diatomite in the study area will be more useful, e.g. as filtering media, adsorbent and solid support for chromatography. The results of the chemical analyses of diatomaceous clay in 3 exploratory shafts are extremely varied. The chemical analysis of diatomite at various depths of the same shaft as shown in the Appendix A-1 shows the fluctuation of SiO, and Al,O, contents in diatomite at various depths. Therefore, the purity of diatomite might not depend on the depth at which diatomite were deposited (Fig. 4.4.2a, 4.4.2b, 4.4.2c). The contents of alkali and alkali-earth oxides in diatomite at different levels are similar except the content of Na 0 at the upper level which is mostly higher than that of the lower level. This might be due to the different impurity of the diatomaceous clay.

The content of Al₂O₃ indicates the presence of high content of clay mineral. Assuming that all of alumina content was the composition of clay and clay was generally composed of 40% Al₂O₃ (Van O phen, 1963),

4

*

FIG. 44.2a The relationship between depth and the chemical composition of Ko Kha formation in shaft 1.

85

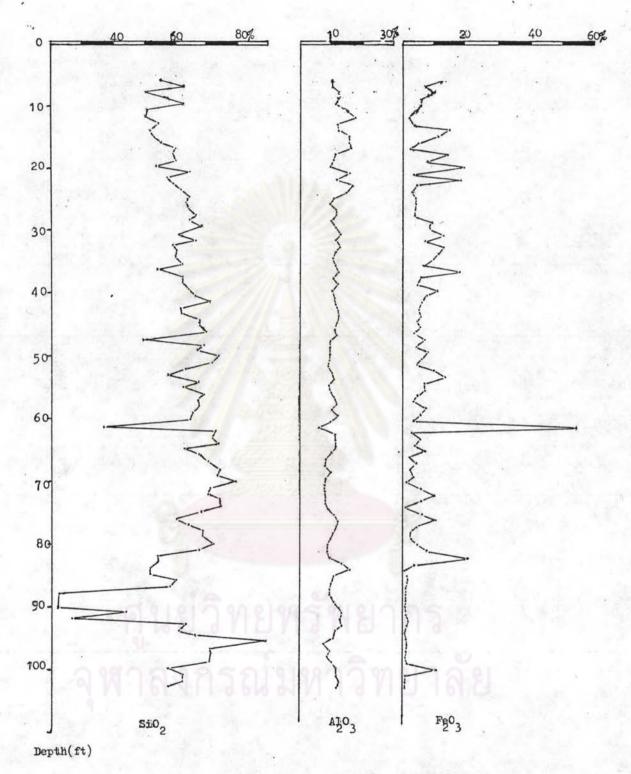
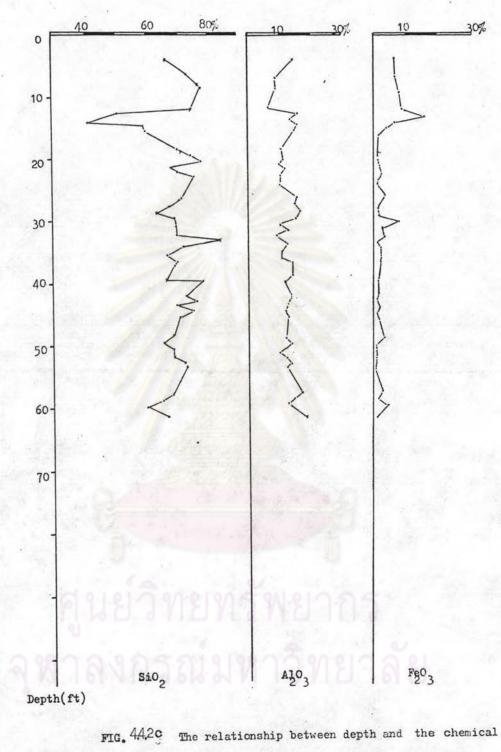



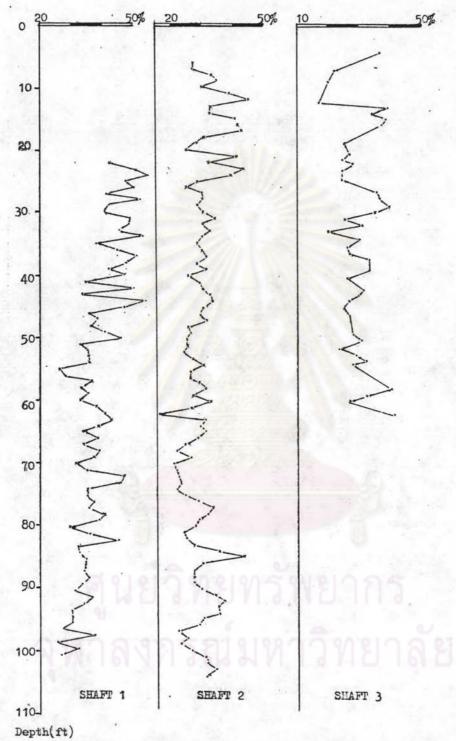
FIG.44.2b The relationship between depth and the chemical composition of Ko Kha formation in shaft 2.

*

composition of Ko Kha formation in shaft 3.

thus the calculated amount of clay in the diatomaceous clay as shown in the Appendix 1 and Fig. 4.4.2d. X-ray diffractograms show the patterns of montmorillonite, kaolinite and illite occurring as impurities in diatomite specimens. These clay minerals mingle throughout the entire thickness of diatomite beds during the deposition. It is known that the clay particles are very small ($<2\mu$ m), this reduces the surface area of diatomite because they covered the pores of diatomite structure. In addition, the surface of clay itself has an adsorptive property due to the presence of some cations.

Considering the iron content, they are quite high and could interfere the process of the flux calcination of diatomite, e.g., the excess content of iron caused the product colored. Fe₂O₃ acts as a fluxing agent, this causes the difficulty of controlling the partial fusion of diatomite. To remove the impurities from diatomite, several steps of water washing, settling, and acid treatment are required.


The higher percentage of SiO₂ and the lower percentage of Al₂O₃ can be obtained from the decantation technique. All of soluble salts which caused the clay particles flocculated and iron can be removed from the diatomite by water washing and coarse-mineral settling. The clean diatomite obtained from the mechanical separation is treated with HCl to remove the remained iron. The presence of iron in diatomite could affect to the hardness, color and surface area of the flux-calcined diatomite. If the content of iron is too high, the diatomite would be more fused than that required and might be colored of pink to brown.

4.4.3 Utilization of Diatomite

4.4.3.1 General Utilization

Diatomite deposit is usually selectively mined by open pit method. The freshly excavated material is stockpiled for initial drying in the open air. Then, three different processes are used depending upon the end product desired: natural, non-flux(straight) calcined or fluxcalcined grade.

Natural Product: The crude ore is milled, dried at relatively

Depth(ft) FIG.4A.2d The relationship between depth and estimated clay contents of the Ko.Kha formation.

*

low temperatures and classified to remove extraneous matter and to produce a variety of particle size grades. These natural powders are generally off-white in color, and may contain small percentages (usually less than 5%) of quartz.

Non-flux Calcined Product: This product is produced from the natural material by calcination at high temperatures (1,500'-1,800'F) in a rotary kiln. Depending upon the application it may be again milled and classified into different grades with selected particle size range. During calcination the organics and volatiles are removed, the color typically changes from off white to tan or pink and some of the amorphous silica is converted to crystalline silica, mainly cristobalite.

Flux-calcined Product: This product is made from the natural grade by calcining in a rotary kiln at high temperatures in the presence of a flux, generally soda ash. During flux calcination, the diatoms fuse together, considerably increasing the particle size, become white in color, and again some of the amorphous silica is converted to crystalline silica. Further milling and air separation control particle size distribution.

Recent studies by the U.S. Bureau of Mines, the U.S. Geological Survey (Schroeder, 1970; Durham, 1973) and the California Division of Mines and Geology have indicated that there are at least 350 different uses of diatomite, and possibly there could be as many as 500 different products. The uses of diatomite fall into 10 main categories viz., filters, mineral fillers, insulating materials, mild abrasives, absorbents, catalyst carriers, reactive-silica source structural materials, additive or pozzolan for concretes, and conditioners or anticaking agents,

The most important use falls into the filtering agents or filter aids. In this application, diatomite is added to a liquid for the purpose of removing suspended solids at commercially required flow rates and producing brilliant clarity. Typical uses include the filtration of sugar juices (beet, cane, corn), fruit juices, edible oils and fats, other foods and beverages, pharmaceuticals, enzymes, potable water, lubrication oil additives, beer and wines, metallurgical solution, swimming pool water, waste water, dry cleaning solvents and industrial chemicals. In these instance, diatomite functions only as a processing aid to remove undesirable solid substances from valuable liquid products and, as such , is not a food component or additive. One type of filtration using filter aids is two-step operation. First, a thin protective layer of filter aid (the precoat) is built up on the filter septum by recirculating a filter aid slurry. After precoating, small amounts of filter aid (body feed) are regularly added to the liquid to be filtered. As filtering progresses, the filter aid,mixed with the suspended solids from the unfiltered liquid, is deposited on the precoat, Thus, a new filtering surface is continuously formed; the minute filter aid particles provide countless microscopic channels which entrap suspended impurities but allow clear liquid to pass through, without clogging (Fig, 4,4,3). An efficient, economical filter aid must:

- a.) have rigid, intricately shaped, porous, individual particles;
- b.) form a highly permeable, stable, incompressible filter cake;
- c.) remove even the finest solids at high rates of flow;
- d.) be as chemically inert and insoluble as practicable to the liquid being filtered.

The second important uses are as mineral fillers. The unique physical properties of diatomite make an excellent mineral filler and formulation agent. Typical uses are as a filler in paints, rubber, plastics, paper, cardboard, insulation, concrete and asphalt; as a coating agent in fertilizers; as a carrier for catalysts, herbicides, pesticides and fungicides; as an active ingredient in polishes and cleansers.

The other uses of diatomaceous earth aggregates are as industrial absorbents, catalyst supports and as carriers for herbicides

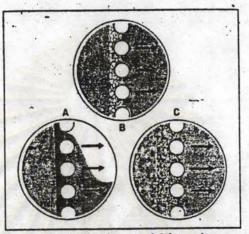


Fig. 4.4.3

Cross-Sections of typical filter element show why Celite filter aids' improve filtration.

- A If Celite is not used, fine solids form a seal over the filter surface and stop the flow of liquids.
- B The first step in the use of Celite is to build up a "precoat" of Celite filter aid on the filter medium.
- C During filtration, additional small amounts of Celite are added to keep forming a fresh filter surface.

Celite is a registered Johns-Manville trade-mark for its diatomaceous silica products. Celite powders have an exceptionally high silica content-as 94 percent. Three to four percent of combined water and an average of four percent free moisture are present in the uncalcined grades. "Natural" powders are light grey-tan, calcined material is pink while flux-calcined Celite is a high brightness white. Because it is essentially silica, Celite is inert to most chemical reactions and is resistant to extreamly high temperatures with, a softening point of about 2,600 F. The remarkable physical structure of the individual diatom skeleton is the characteristic upon which almost all of the applications of Celite functional fillers are based. It has been determined that ninety-three percent of the apparent volume of Celite consists of a myriad of tiny interconnected pores or voids, This explains the very high absorptive capacity of Celite- about 21 times its own weight. However, in spite of their exceptionally high absorptive capacity, Celite mineral fillers do not absorb any appreciable amount of moisture from the air. Celite has a high surface area. Only 210 gms. of Celite (< 2 lb.) has a surface area equal to the area of a football field (45,000 ft².)

Micro-Cel is a registered Johns-Manville trademark for its synthetic hydrous calcium silicate, produced by the hydrothermal reaction of diatomaceous silica, hydrated lime, and water. Some physical characteristics peculiar to Micro-Cel are very high liquid absorption, high surface area, excellent flowability, low bulk density and a unique particle structure. Micro-Cel grades are developed to meet specific industrial needs.

Johns-Manville have been mining and processing Celite diatomite for over 48 years. When Johns-Manville acquired the Celite Company in 1928, little was known about diatomite

Generally, the uses of Celite diatomite fall into two categories. One, as a mineral filler that is added to a process to extend a more expensive ingredient. And two as a mineral filler that is added to a

93

process because of the effect it will have on the finished product. Both uses take adventage of Celite's unique physical properties is one way or another.

> ิศูนย์จิทยทรัพยากร หาลงกรณ์มหาวิทยาลัย

Table 4.4.3.1a

Celite Mineral Filters – Average Chemical Properties													
Grade .	% Chemical Analysis*												
	Ignition Loss %	SIO1	A1203	Fe ₂ O ₃	P2O3	TIO2	CaO	MgO	Na ₂ O + K ₂ O				
Uncalcined (Natural)	3.6	85.B	3.8	1.2	0.2	0.2	0.5	0.6	1.1				
Calcined	0.5	91.1	4.0	1.3	0.2	0.2	0.5	0.6	1.1				
Flux Calcined	0.2	89.6	4.0	1.5	0.2	0.2	0.5 ·	0.6	3.3				

"The soluble portion of Cellie filter aids is extremely low. For example Hyllo Super-Cel has a total acid solubility of less than 1%.

Table 4.4.3.1b Collie Minoral Fillers ' Average Physical Properties'

Grade	Color	Scre	lysis	Absor WL Av	ption % erage	Sp Gr True	Av. % H ₁ O as	P	н	Den fba/		Refrac-	Porosity	Surface Area	Bright- ness	Free Alk.	Pa	int
Caracte			-	Water	lon		Shipped	Max.	Min.	Loose	Wet	Index		m²/gm	(Av.	Na,CO,	Bulking	Value
		150 Mesh	Av. % 325 Mesh		Gardner Coleman		-	1	mini.	Av.	Max.				T-452- m-45)		lbs/gal	gal/lt
Uncalcin	ned (Natural	1)																
FC, 289, 292, 321A, 400	Lt. Gray	0.5	5.0	229	210	2.10	, 4.0 ·	7.0	-	7.0	17.0 20.0 (321A)	All Grades Range From 1.40	All - Grades Range From 65%	All Grades Range From 10	t60	None	17.5	0.057
379	LI. Gray	0.5	4.5	195	185	2.10	-	7.0	-	8.0	-	1.46	to 85%	20	20 57	None	-	-
Snow Floss	Lt. Gray	0.05	0.3	485	175	2.10	4.0	7,0	5.0	7.5	(av.)* 22.0			69 64	69	None	-	-
209. 322	Lt. Gray	TRC	0.5	185	175	2.10	4.0	7.0	5.0	8.0	(av.) 24.0				64	None	- '	-
266	LI. Gray	TRC	0.5	185	175	2.10	4.0	7.0	5.0	8.0	(av.) 24.0				66	None	17.5	0.057
305	Lt. Gray	TRC	0.5	185	175	2.10	4.0	7.0	5.0	8.0	(av.) 24.0				66	None	-	-
Calcined							1. C. C.	100				1						-
SSC, 235	Lt. Pink	4.5	13.0	220	200	2.15	0.5	7.0	-	8.0	19.6	All Grades	All Grades	All Grades	52	None	-	-
246.	Lt. Pink	6.8	15.0	220	200	2.15	0.5	7.0 •	-	8.0	17.8	From 1.41	Range From 65%	Range From 4	-	None	-	-
315	Lt. Pink	TRC	0.3	170	150	2.15	0.5	7.0	-	8.0	27.0	1.48	10 85%	10	-	None	-	-
270	LI. Pink	-	0.5	170	150	2.15	0.5	7.0	-	8.0	28.0			1	-	None	-	-
Flux Cal	cined				*	A 14												
HSC	White	5.0	18.0	220	190	2.30	0.5	10.0	8.5	9.0	17.0	All	All Grades Range From	All	87.5		-	-
255	White	7.5	30.0	220	190	2.30	0.5	10.0	8.5	9.5	18.4	Grades		Grades Range From	-		-	-
273	White	9.0	30.0	220	190	2.30	0.5	10.0	8.5	9.5	18.4	From 1.45	65%	1	-		-	-
269	White	10.0	45.0	220	190	2.30	0.5	10.0	8.6	12.0	18.9	1.48	10 85%	10 3.5	-		-	-
319	White	12.0	50.0	220	190	2.30	0.5	10.0	8.5	12.0	18.9			1.1	-		-	-
Super Floss	White	-	0.1	150	125	2.30	0.5	10.0	8.5	8.5	30.0	•			92		19.2	0.052
165-S	White	-	-	-	105	2.30	0.5	-	-	17.3	-	0.5	5		1411		19.2	0.052
110	White	3.0	11.0	185	175	2.30	0.5	10.0	8.5	9.0	21.0				91		19.2	0.052
263	White	TRC	0.5	150	130	2.30	0.5	10.0	8.5	8.5	32.0	1	0		89		-	-
281. 388	White	0.1	1.0	160	140	2.30	0.5	10.0	8.5	8.5	24.0			ลัย	89		19.2	0.052
320	White	50.0	90.0	210	170	2.30	0.5	10.0	8.5	(av.) 19.5	(av.) 20.0	191	n a		-		-	-
Super- Fine Super Floss	White	-	0.05	140	120	2.30	0,5	10.0	8.5	8.5	27 min.	ŀΟ	16		90		19.2	0.053
499	While	-	TRC	180	160	2.30	0.5	10.0	8.5	8.5	22	1		r 1	90		19.2	0.052
219	White	0	TR	210	. 160	2.30	0.1	9.6	-	7.2	19.0	1			89		19.2	0.053
White Mist	White	0	TR	215	-160	2.30	0.1	9.6	-	8.8	20.8		1.1		90		19.2	0.053
Silver Frost K-5	White	0	TR '	150	115	2.30	0.1	9.0		7.1	29.0				88.5		19.2	0.053

"Not to be used for specifications.

"Alkaline reaction in water suspension but no free Na;CO; present.

1321A same as 321 but with average 65 brightness.

Table 4.4.3.1c Applications of J-M Collio Minoral Fillors

Product ·	Cellte Grade	Amount Suggested	Celite Properties	Product Benefits	Remarks
Acelylene Tank Filler	Celite FC	Same weight as lime	Porosily, source of reactive silica, high absorption, fine powder	Reduce explosion hazard, high porosity, no shrinkage .	Clinker composed of cement, asbestos, dia- tomite, lime and carbor
Adhesives	Snow Floss/ Super Floss	1-5% .	High absorption, fineness	Thickens adhesive, faster solvent release	Pyrogenic silica principally used
Aerosol Rug Cleaner	Celite 219	15% by weight	Absorption, abrasion	Improves scrubbing action, holds dirt for easy removal	Used in foam type cleaner sprays
Asbestos Friction Papers	Celite 319	25-40% based on asbestos pulp	Diatom structure	Faster pulp drainage, Improved friction	· Used for clutch facings
Asphalt	Cellte 292	5-10%	Diatom structure, absorption	Raises melting point, high bulk, fast solvent release	Slate dust, cheap fillers used
Asphalt Crack Filler	Celite 292	10%	High absorption, diatom structure, inert, fine powder	Improves resiliency and weathering, decreased cracking	Texas usage
Battery Box Separators (Latex-Fiber Glass)	Celite HSC	20-25%	inert, absorption, diatom structure, bulk	Lightweight and permeability	Few present producers
Catalyst Carrier (Vanadium Oxide)	Super Floss		Inert, absorption, fineness	Active material tab- letted. Used for H ₂ SO ₄ production	Only several major producers
Catalyst Carrier (Nickel Hydrogenation)	Cellte FC		Inert, absorptive, easily filtered	Powder catalyst for hydrogenation of vegetable oils	Few present producers some captive
Catalyst Carrier (Phosphoric Acid)	Celite FC		Inert, absorption, easy pelleting	Extended pellets for cracking catalyst	Only several producers
Ceramic Tile	Celite FC	5%	Diatom structure, silica filler	Dimensional stability, improved vitrification and firing	6 1. T
Ceramic Glaze	Super Floss	Up to 50% of glaze compound	Diatomaceous silica source	Lowers maturing temperature, extends temperature range, improves surface	Little used
Chemical Coating	White Mist	Various	Diatom structure	High Hegman, efficient sheen control	For use vs. talc and silicas in industrial finishes
Chromatography	All Chromo- sorb grades		Column support material		All various technical bulletins
Cleansers (Household)	Celite HSC	2-10%	High bulk, . abrasive absorption	Reduce "outage" conditioning effect, mild abrasive effect	Cheaper fillers generally used
Concrete .	Cellte for Concrete	2-5 lbs/sack of cement	Diatom structure, absorption, inert	Improved workability, more impermeable concrete	

Product	Cellte Grade -	Amount Suggested	Cellte Properties	. Product Benefits	Remarks	
Crayons	Celite 281 Snow Floss	10-25%	Bulk, mild abrasiveness	Provides good "bite", wears uniformly	Small volume	
Dental Mold Compounds	Cellte 224	25-35%	Bulk, diatom structure	Improved mold strength, easier release, reduced shrinkage, low heat conductivity	Several principal mfrs.	
Dry Fish Solubles	Celite 211 (FC) and Micro-Cel E	Dry liquids	Absorption	All "DLC" values, easy to handle, mix, ship, etc.	Combination of Celite and Micro-Cel for lower cost "DLC"	
Dental Impressions	Celite 427 (HSC)	50-60% by weight	Fluffiness, absorption	Uniform Impression	Used to make impres- sions of teeth by dentists. Dries in 2 minutes or less. Water is added to dry powder	
Embalming Compound	Cellte FC	75%	Bulk absorption	Replace viscera removed by autopsy	3-4 lbs/remains, primarily cremation. Leaves powder residue	
Tempera Poster Celite 499 Paints		15-34 lbs/gal	Fineness, oil absorption, flatting	Hiding and opacity, full dead flat, impart thickening	Provides very flat poster paint	
Fertilizer	Celite 379	1-3%	Absorption, fineness, fine particle size, inert, high surface area	Maintains free flow, absorbs deliquescent moisture	Also Kaolin Clay, . widely used	
Filter Paper	Celite 388	Probably 10-30%	Wet density, diatom structure	Drainage, clarity	No details known – one customer uses 400 tons/yr.	
Friction Papers	Celite 388	22-27%	Abrasive, wet density	Drainage and bulking	Transmission friction disc made from sulphite and asbestos pulp	
Gunite	Celite for Concrete	2-4 lbs/sack of cement	Absorption, fine particle size	Permits use of wet sand, reduces rebound, improves flnishing properties	Good swim pool potential	
Ink (Silk Screen)	White Mist	Small quantities	Diatom structure	Lowers gloss, more uniform appearance	4	
Insecticide (Wettable Powders & Dusts)	Celite 209, 400	1-25%	Absorption, fine particle size, high surface area	Anti-caking, carrier, fluffs up finished dusts	Clays, talcs, synthetic silicas	
Insulating Block (High Temperature)	Celite 202	20-30%	Diatom structure bulk, low heat conductivity	Produces lightweight block with minimum shrinkage	Usual composition is asbestos, magnesia, clay and diatomite	
Insulation (Lime Silica)	. Celite 300	25-50%	Bulk, silica source	Source of reactive silica	- 11	

Product ·	Celite Grade	Amount Suggested	Cellte Properties	Product Benelits	Remarks	
Lost Wax Castings	Super Floss 219	Gypsum 35% Silica Flour 40% Clay 10% Talc 10% Cellte 5%	Fine powder diatom structure	Prevents voids, reduces shrinkage, improves gas permeability		
Match Heads	Celite FC	10-20%	Porosity, absorption, Inert	Porosily to match head, absorbs liquid Ingredients, greater bulk		
Mold Release	Super Floss	10-15%	Diatom structure inert	Good release properties, insulation effect, uniform surface on finished product	Our only use loday is in centrifugal casting	
Paint, Flat Wall	Cellte 281, 499	1/4-1/2 lb/gal	Diatom structure, absorption, inert	Reduce gloss, controls side sheen, covers wall imperfections	See paint bulletins. Contact J-M representative.	
Paint, House	Cellte 281	½ Ib/gal	Gloss and sheen control, diatom structure	Low lustre finish, more permeability, reduced blistering		
Paint, Semi-Gloss	Celite 499 White Mist	14-14 lb/gal	499 provides 5 Hegman, SFSF 6 Hegman by disc dispersion	Celite flatting at lower cost than talc	• • •	
Paint, Traffic	Celite 110, 281	½ lb/gal	Diatom structure, inert	Better night visibility, more durable, faster dry		
Paper, Book	Celite 305	3-6%	Absorption, bulk, Devinent, structure	Provides added bulk, opacity, ink receptivity		
Paper, Boxboard	Celite 321, 388	2-6% .	Absorption, bulk, Inert, structure	Faster machine speed, better drainage, pitch control and bulk		
Paper, Mimeo	Celite 305, 263	3-7% for 305 2-4% for 263	Absorption, bulk, Inert, structure	Greater bulk and opacity	- 1	
Paper, Laminating	263	5-30%	Bulk, absorption	Improves printing, absorption of resin, provides opacity	Highly absorbent pape impregnated	
Paper, Bond	Celite 263	2%	Absorption, bulk, Inert, structure	Brightness, opacity and greater bulk		
Pastel Chalk	Celite 281, 110	10-30% by weight	Diatom structure	Provides matte finish and "bite", sharp outlines, fine color graduations, improves forming	Pastel chalk used for drawing on paper – artist use	
Phosphoric Acid	Celite 300, 448	100%	Source of reactive silica, used as reactant	Combines with fluo- rides in phosphoric acid production	Used to produce highe purity acid, used in making di-calcium phosphate	

Product ·	Celite Grade.	Amount Suggested	Cellte Properties	Product Benefits	Remarks	
Plastics, Molded Phenol- ormaldehyde)	Celile 270	10-15%	Diatom structure, inert	Conditioning effect, low moisture absorp- tion of molded product, improved surface finish	Many other lower cost fillers are used	
Plastic, Sheet and Film	Super Floss Celite 219 White Mist Silver Frost K5	Less than 14 %	Diatom structure, low refractive index	Diatom particles - protrude through surface reducing effective surface contact area	Extensively used as anti-block agent in polyethylene	
Polish	Snow Floss • Super Floss Celite 315	10-90%	Diatom structure, Inert, absorption, delicate abrasion	Easy removal, non- scratching abrasive, absorbs dirt and grime	Universally used in fine silver and auto polishes	
Pomanders	Celite 410	"As is"	Pellet shape absorption	Used to absorb perfume	Impregnated pellets placed in sachet to scent closets	
Rubber (Latex Molded)	Snow Floss	1/2-1 lb/gal water and/or alcohol slurry	Diatom structure, bulk, inert	Parting agent to facili- tate stripping molded product from form	Taic	
Rubber, Silicone	Super Floss Celite 350, 270	Varies according to formulation	Diatom structure, Inert	Semi-reinforcing filler, Improved oil resistance		
Rubber, Sponge Celite 292, 270		25% replace- ment of whiting and/or talc	Oil absorption and low specific gravity	Enables addition of more extender oil lowering amount of polymer needed — total lower cost	Although Celite is mor costly, greater volume of final product and less polymer justifies use	
Stone Stencils	Celite 219	75 ibs 435 lb batch	Diatom structure	Probably semi- reinforcing filler- toughen sheet, make easier to cut clean	Urethane sheet used to make stencils to cut designs into monumen stone by sand blasting	
Rubber Reclaiming	Celite 322	1%	Low density oil- absorption	Faster production, soaks up oil, more workable mix	Several reclaimers of old tires	
Safe Insulation	Cellte 202	About 30% of Vermiculite weight	Low bulk density, low K factor	Lighter weight, safe Insulation, good fire protection	Composition is Vermic ulite, Celite Cement and water to fill, safe as a slurry	
Seed Coating	Celite FC	20-70% Celite FC	Fine particle size , high bulk	Coat seeds for single seed planting		
Stucco	Celite 281 FC	3 lbs/sack of cement	NUSN	Fluffy, workable slippery mix for easy application, reduces guhite rebound, reduced cracking	I	
Tempera Poster Paints	Celite 499	1/3-3/4 lb/gal	Fineness, oil absorption, flatting	Hiding and opacity, full dead flat, impart thickening	Provides very flat poster paint	

Product.	Celite Grade	Amount Suggested	Cellte Properties	Product Benefits	Remarks
Tomato Dust	Celite 209	20 lbs/100 gal water	High surface area, fine particle size	While wash to prevent sunscald	Applied al 150 gals/ acro. One qt "Spreader Sticker" used per 100 gals to provide adherence
Toothpaste	White Mist	Approx 5%	Absorption, delicate abrasion	Good tooth cleaning	Specially toothpaste only
Typing Correction Fluid	Cellte 281 .	4% Celite 261, 499 on total	Flatting	Low gloss correction fluid	Used to coat typing mistakes – composed of TiO ₂ and fast drying binder
Ultamarine Blue	Cellte FC	5-10%	Reactive silica source, bulk	Desirable blue color, keeps mass porous so reaction proceeds rapidly	Single U.S. supplier uses Celite
Varnish	Celite 232-S White Mist	Varies	Diatomite structure	Good flatting efficiency at lower cost	Synthetic silicas principally used
Welding Rod Coatings	Snow Floss	15-20% on weight of coating	Diatom structure silica	Imparts fluidity to coat- ing and porosity to flux after welding, good uniformity of coating, reduced shrinkage and cracking	Not a large use

ุ สุนย์วิทยุทรัพยากร หาลงกรณ์มหาวิทยาลัย

		• .				(Georgia)		TYPIC	AL PROP	ERTIES	 								5. A	
	· ·	1999 - A		£.	s	$(\hat{a}^{\dagger},\hat{\alpha}^{\dagger})$	tin and	8			% Chemical Analysis ⁽²⁾									
	Grade	Color	Density		Screen Analysis % Retained	I	Specific Gravity Water	Water Absorption	Relative Flow Rate	Equivalent Fibra-Flo Grade	Ignition Loss	SIO2	Al ₂ O ₃	Fe ₂ O ₃	P205	T102	CaO	MgO	NaO +	
	0	0	Dry	Wet	150 Mesh	. a		24	ana	MIL O	%		106.3	1. 1. 1				1	K20	
Natural	Filter Cel	Gray	7.0	15,9	3.0	7.0	2.10	235	100	i	3.6	85.8	3.8	1.2	0.2	0.2	0.5	0.6	1.1	
D	505	Pink	8.0	21.0		7.0	2.15	170	135	3	0.4	92.8	3.3	1.3	0.2	0.2	0.4	0.5	0.8	
Calcined	Standard Super-Cel	Pink	8.0	17.2	7.0	7.0	2.15	255	200	5	0.5	91.1	4.0	1.3	0.2	0.2	0.5	0.6	1.1	
0	512	Pink	8.0	17.9	9.5	7.0	2.15	250	300	6	0.5	91.1	4.0	1.3	0.2	0.2	0.5	0.6	1.1	
	Hyflo Super-Cel	White	9.0	17.2	9.5	10.0	2.30	245	500	7	0.2	89.6	4.0	1.5	0.2	0.2	0.5	0.6	3.3	
par	501	White	9.5	16.9	15.0	10.0	2.30	250	750	8	0.2	89.6	4.0	1.3	0.2	0.2	0.5	0.6	3.3	
Calcined	503	White	9.5	17.2	15.0	10.0	2.30	240	, 900	. 9	0.2 .	89.6	4.0	1.3	0.2	0.2	0.5	0.6	3.3	
	535	White	12.0	17.6	20.0	10.0	2.30	245	1350	10	0.2	89.6	4.0	1.3	0.2	0.2	0.5	0.6	3.3	
Flux	, 545	White	12.0	18.0	20.0	10.0	2.30	240	2160	11	0.2	89.6	4.0	1.3	0.2	0.2	0.5	0.6	3.3	
-	550(1)	White	18.1	21.0	25.0	8.0	2.30	220	2380	12	0.2	89.6	4.0	1.3	0.2	0.2	0.5	0.6	3.3	
	560	White	19.5	20.0	60.0	10.0	2.30	220	7500	13	0.2	89.6	4.0	1.3	0.2	0.2	0.5	0.6	3.3	

Table 4.4.3.1d Typical properties of diatomite filter aids

NOTE (1): Celite 550 is a flux calcined grade with a unique property of hardness. Typical uses for this grade is in systems requiring a high flow rate filter aid but where filter aid breakdown may occur. Filtration of viscose liquids at pressures above 40 to 50 psi is another application.

NOTE (2): The soluble portion of Celite filter aids is extremely low. For example Hyflo Super-Cel has a total acid solubility of less than 1%.

4.5.3.2 Utilization of Diatomite in the Study Area

The diatomite from the study area is suggested to be used as solid support in gas chromatography for Chromatographic Columns (Borvornwattananont, 1984). The microstructure of diatomite from the study area was found as Melosira granulata (EHR.) RALFS which was the same as that of Gas Chrom Q. The method of benefication of diatomite from the study area by machanical means was 4-stage washing with H_O (at a solid: liquid ratio of 1:5 w/v), isolating coarse minerals and clay by decantation. The clean diatomite was 1-stage extracted with 10% v/v HCl (at a solid: liquid ratio of 1:5 w/v). The acid-treated diatomite was flux-calcined with 8.55% Na₂CO₃ at 1,000°C for 3 hours. The flux-calcined product was crushed into the required particle and silanized with 5% v/v DMCS (dimethyl dichlorosilane) in toluene solution. The prepared support showed more surface area and more adsorptive effect on the coating of 5% OV-101 than those of Gas Chrom Q. The chromatographic characteristics for separation of non-polar compound were the same. However, for the separation of intermediately polar and polar compounds, it provided better column efficiency than Gas Chrom Q. Therefore, this prepared support was proposed as an excellent solid support for gas chromatography and it was named as " Diatochrom L ".

In addition, the diatomite in this area can be used as composite raw materials for insulating bricks (DMR., 1980). It is further suggested that it can also be used as filler materials for petrochemical products, fertilizer, etc., and as silicate and alumina additives. However, it is recommended that additional benefication techniques are required prior to the maximum utilization of Lampang diatomite.

102