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CHAPTER I

INTRODUCTION

Green’s relations are five equivalence relations that characterize the elements

of a semigroup in terms of the principal ideals they generate. These fundamen-

tal equivalence relations, definable in any semigroup, were first introduced and

studied by Green [7]. The concept of Green’s relations is a crucial notion in

semigroup theory. It has shed a great deal of light on the structure of semi-

groups in general. It is interesting to see that we can consider left [right] regu-

larity in terms of the Green’s relation L [R]. Recall that an element x of a

semigroup S is called a left [right ] regular element of S if x = yx2 [x = x2y]

for some y ∈ S, that is, xLx2 [xRx2]. Denote by LReg(S) [RReg(S)] the set

of all left [right] regular elements of S. Note that if S is commutative, then

LReg(S) = RReg(S) = Reg(S) where Reg(S) is the set of all regular elements of

S, that is, Reg(S) = {x ∈ S | x = xyx for some y ∈ S}. We have generally that

LReg(S) ∩ RReg(S) ⊆ Reg(S). As we know, regularity is an important notion

and it is very extensively studied in semigroup theory.

Left [Right] regularity of semigroups has long been studied. In 1954, Clifford

[4] proved that S is a band of groups if and only if S is both left and right regular

and Syx = Syx2 and xyS = x2yS for all x, y ∈ S. Kiss [12] generalized left [right]

regular elements of semigroups in 1972. It was shown by Anjaneyulu [1] in 1981

that in a duo semigroup S, the set of all left regular elements and the set of all

right regular elements coincide. In 1998, left regular partially ordered semigroups

and left regular partially ordered Γ-semigroups were studied by Lee and Jung [14]

and by Kwon and Lee [13], respectively. In 2005, Mitrović [18] gave a characteri-

zation determining when every regular element of a semigroup S is left regular,

that is, he characterized when Reg(S) ⊆ LReg(S) holds.

Variants of abstract semigroups were studied by Hickey [8] in 1983 and he also
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provided many results relating to variants of semigroups in many papers.

Semigroups of transformations play an important role in studying semigroups.

It is well-known that any semigroup can be realized as a semigroup of transfor-

mations, analogous to the Cayley’s theorem. This is reasonable to consider those

semigroups and their variants and connect them with left and right regularity in

which we are interested.

The purpose of this research is to characterize the left regular and right regular

elements of some semigroups of transformations of sets and linear transformations

and their variants. This research is organized into five chapters as follows:

Chapter II provides basic definitions and known results for later usage in this

research.

In Chapter III, we give characterizations of the left regular and right regular

elements of the following semigroups of transformations of an infinite set X:

M(X) = {α ∈ T (X) | α is 1-1},

M(X) rG(X) (= {α ∈ T (X) | α is 1-1 but not onto}),

E(X) = {α ∈ T (X) | α is onto},

E(X) rG(X) (= {α ∈ T (X) | α is onto but not 1-1}),

BL(X, q) = {α ∈ T (X) | α is 1-1 and |X r ranα| = q}

where q is the cardinal number greater than or equal to ℵ0,

DBL(X, q) = {α ∈ T (X) | α is onto and |xα−1| = q for all x ∈ X},

KN(X, q) = {α ∈ T (X) | α is 1-1 and |X r ranα| ≥ q},

T rf(X) = {α ∈ T (X) | ranα is finite},

P rf(X) = {α ∈ P (X) | ranα is finite},

Irf(X) = {α ∈ I(X) | ranα is finite}

where T (X), P (X), I(X) and G(X) are the full transformation semigroup, the

partial transformation semigroup, the symmetric inverse semigroup (the 1-1 par-

tial transformation semigroup) and the symmetric group on X, respectively. Note

that BL(X, q) is called the Baer-Levi semigroup of type (|X|, q), which was con-
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structed in [2] and DBL(X, q) is called the dual Baer-Levi semigroup of type

(|X|, q), which was given in [3].

Let LF (V ) be the semigroup under composition of all linear transformations

from a vector space V over a field F into itself. In Chapter IV, we consider the

following subsemigroups of LF (V ) analogous to those in Chapter III:

MF (V ) = {α ∈ LF (V ) | α is 1-1},

MF (V ) rGF (V ) (= {α ∈ LF (V ) | α is 1-1 but not onto}),

EF (V ) = {α ∈ LF (V ) | α is onto},

EF (V ) rGF (V ) (= {α ∈ LF (V ) | α is onto but not 1-1}),

BLF (V, q) = {α ∈ LF (V ) | α is 1-1 and dimF (V/ ranα) = q}

where q is the cardinal number greater than or equal to ℵ0,

DBLF (V, q) = {α ∈ LF (V ) | α is onto and dimF kerα = q},

KNF (V, q) = {α ∈ LF (V ) | α is 1-1 and dimF (V/ ranα) ≥ q},

LrfF (V ) = {α ∈ LF (V ) | dimF ranα is finite}.

In [16], BLF (V, q) is called the linear Baer-Levi semigroup on V of type q. To be

analogous to DBL(X, q), we may refer to DBLF (V, q) as the dual linear Baer-

Levi semigroup on V of type q. The results for the left regular and right regular

elements of these semigroups are obtained accordingly to those in Chapter III.

In Chapter V, the left regular and right regular elements of the variants of the

full transformation semigroup T (X), the partial transformation semigroup P (X)

and the symmetric inverse semigroup I(X) on a nonempty set X are determined.

In addition, the variants of those semigroups in Chapter III are studied in the

same manner.

The variants of the semigroup LF (V ) are considered in Chapter VI. Their

left regular and right regular elements are determined. Moreover, the left regular

and right regular elements of the variants of those semigroups in Chapter IV

are characterized. The results are obtained suitably to those of the variants of

semigroups given in Chapter V.



CHAPTER II

PRELIMINARIES

In this chapter, we review some basic materials which will be used in our later

discussion.

The cardinality of a set X is denoted by |X|. The value of a mapping α at x

in the domain of α shall be written as xα. The notation
⋃̇

stands for a disjoint

union.

If a semigroup S has an identity, set S1 = S. If S does not have an identity, let

S1 be the semigroup S with an identity adjoined, usually denoted by the symbol 1.

An element x of a semigroup S with identity 1 is called a unit of S if xy = yx = 1

for some y ∈ S. We have that such y is unique and it is denoted by x−1. Then

the set of all units of S forms a subgroup of S and it is the greatest subgroup of

S containing 1. It is usually called the group of units of S.

The Green’s relations L and R on a semigroup S are the equivalence relations

on S defined by

xLy ⇔ S1x = S1y

or equivalently, x = sy and y = tx

for some s, t ∈ S1,

xRy ⇔ xS1 = yS1

or equivalently, x = ys and y = xt

for some s, t ∈ S1.

From these definitions, we have that L and R are right and left compatible,

respectively, i.e., for all x, y, z, if xLy then xzLyz and if xRy then zxRzy.

An element x of a semigroup S is called an idempotent of S if x2 = x.

We call an element x of a semigroup S regular if x = xyx for some y ∈ S.
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An element x of a semigroup S is called left [right ] regular if x = yx2 [x = x2y] for

some y ∈ S. Then an idempotent of S is regular, left regular and right regular.

It is clear that if S has an identity, then every unit of S is regular, left regular

and right regular. If x = xyx, then xy, yx are idempotents. Thus we have that if

S contains a regular element, then S contains an idempotent. If x = xyx, then

x = x(yxy)x, so it implies that every ideal of a regular semigroup is regular. We

can see that in a commutative semigroup S, the regular elements, the left regular

elements and the right regular elements of S are identical. In terms of the Green’s

relations L and R on S, we have that

(1) x is a left regular element of S if and only if xLx2;

(2) x is a right regular element of S if and only if xRx2.

A semigroup S is called a regular semigroup if every element of S is regular.

Left [Right ] regular semigroups are defined similarly. For regularity, left regularity

and right regularity of semigroups, one does not imply the others. Some examples

can be seen later. However, if a semigroup S is both left and right regular, then S

is regular. More generally, if an element x of S is both left and right regular, then

x is regular. To show this, we first introduce some notations relating to Green’s

relations. For any x ∈ S, we let Lx be the equivalence class of L containing x

and Rx the equivalence class of R containing x. It follows from Theorem 2.16 of

[5] that if there are a, b ∈ Lx ∩ Rx such that ab ∈ Lx ∩ Rx, then Lx ∩ Rx is a

subgroup of S, i.e., Lx ∩ Rx is a subsemigroup of S which forms a group under

the operation on S. We assume that x ∈ S is both left and right regular. Then

xLx2 and xRx2. This implies that x2 ∈ Lx ∩Rx. From the above fact, Lx ∩Rx is

a subgroup of S. Then Lx ∩Rx is a regular subsemigroup of S. But x ∈ Lx ∩Rx,

so x is a regular element of S.

For a semigroup S, let LReg(S) and RReg(S) denote the set of all left regular

elements of S and the set of all right regular elements of S, respectively. From

the previous mention, LReg(S) ∩ RReg(S) ⊆ Reg(S) where Reg(S) is the set of

all regular elements of S.

A nonempty subset A of a semigroup S is called a left [right ] ideal of S if
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SA ⊆ A [AS ⊆ A]. We call S left [right ] simple if S is the only left [right] ideal

of S. Characterizations of left simple semigroups and right simple semigroups are

given as follows:

Theorem 2.1 ([19], p. 7). For a semigroup S, the following statements hold.

(i) S is left simple if and only if Sx = S for all x ∈ S.

(ii) S is right simple if and only if xS = S for all x ∈ S.

If S is a semigroup and a ∈ S, then the semigroup (S, ∗) defined by x∗y = xay

for all x, y ∈ S is called the variant of S induced by a and let (S, ∗) be denoted

by (S, a).

For a nonempty set A, let 1A be the identity mapping on A.

Let X be a nonempty set. The full transformation semigroup, the partial

transformation semigroup and the symmetric inverse semigroup (the 1-1 partial

transformation semigroup) on X are denoted by T (X), P (X) and I(X), respec-

tively. Notice that T (X) and I(X) are subsemigroups of P (X). Let G(X) be the

symmetric group on X. We have that G(X) is the group of units of P (X), T (X)

and I(X). The domain and the range (image) of α in P (X) are denoted by domα

and ranα, respectively. Recall that for α, β ∈ P (X),

dom (αβ) = (ranα ∩ domβ)α−1 ⊆ domα,

ran (αβ) = (ranα ∩ domβ)β ⊆ ranβ and

for x ∈ X, x ∈ dom (αβ)⇔ x ∈ domα and xα ∈ domβ.

It is well-known that P (X), T (X) and I(X) are regular semigroups, and moreover,

I(X) is an inverse semigroup ([9], p. 4). Recall that a semigroup S is called an

inverse semigroup if for each x ∈ S, there exists a unique x−1 ∈ S such that

x = xx−1x and x−1 = x−1xx−1. We have that the inverse function α−1 of α ∈ I(X)

is the unique element of I(X) such that α = αα−1α and α−1 = α−1αα−1. Note

that 1X is the identity of P (X), T (X) and I(X). The empty transformation 0 is

the zero of P (X) and I(X). For each α ∈ P (X), the equivalence relation πα on
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domα defined by πα = α ◦ α−1 is called the partition of domα corresponding to

α (see [5], p. 51). Then

πα = {(x, y) ∈ domα× domα | xα = yα}.

Note that for α, β ∈ P (X), if πα = πβ, then domα = dom β.

Next, let M(X) and E(X) be the subsemigroups of T (X) defined as follows:

M(X) = {α ∈ T (X) | α is 1-1},

E(X) = {α ∈ T (X) | α is onto}.

We have that G(X) is the group of units of both M(X) and E(X) and M(X) =

G(X) [E(X) = G(X)] if and only if X is finite. If X is an infinite set, then

M(X)rG(X) 6= ∅ and E(X)rG(X) 6= ∅. It is not difficult to see M(X)rG(X)

and E(X) rG(X) are ideals of M(X) and E(X), respectively.

The other important semigroups of transformations of sets are the Baer-Levi

semigroups and their duals. They were respectively defined by Baer and Levi [2]

and Chen [3] as follows:

BL(X, q) = {α ∈ T (X) | α is 1-1 and |X r ranα| = q},

DBL(X, q) = {α ∈ T (X) | α is onto and |xα−1| = q for all x ∈ X}

where |X| ≥ q ≥ ℵ0. These semigroups have the following properties.

Theorem 2.2 ([6], p. 82). If |X| ≥ q ≥ ℵ0, then BL(X, q) is a right simple and

right cancellative semigroup without idempotents.

Theorem 2.3 ([3]). If |X| ≥ q ≥ ℵ0, then DBL(X, q) is a left simple and left

cancellative semigroup without idempotents.

For convenience, we use a bracket notation to represent a mapping. For in-

stance,
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a b

c d

 stands for the mapping α with domα = {a, b}, ranα = {c, d},

aα = c and bα = d,

A x

a x′


x∈XrA

stands for the mapping β with dom β = X,

ran β = {a} ∪ {x′ | x ∈ X r A} and xβ =

a if x ∈ A,

x′ if x ∈ X r A.

By a bracket notation, a mapping α can be written as α =

xα−1

x


x∈ranα

.

Let V be a vector space over a field F . The semigroup under composition

of all linear transformations α : V → V is denoted by LF (V ). We define the

subsemigroups MF (V ) and EF (V ) similarly as follows:

MF (V ) = {α ∈ LF (V ) | α is 1-1}

( = {α ∈ LF (V ) | kerα = {0}}),

EF (V ) = {α ∈ LF (V ) | α is onto}

( = {α ∈ LF (V ) | ranα = V }).

Let GF (V ) be the set of all isomorphisms from V onto itself. We also have

that GF (V ) is the group of units of LF (V ), MF (V ) and EF (V ) and MF (V ) =

GF (V ) [EF (V ) = GF (V )] if and only if V is finite-dimensional. If V is infinite-

dimensional, then MF (V ) rGF (V ) 6= ∅ and EF (V ) rGF (V ) 6= ∅, and they are

ideals of MF (V ) and EF (V ), respectively.

The Green’s relations L andR on T (X), P (X) and LF (V ) are well-known as

follows:

Theorem 2.4 ([5], p. 52). In T (X),
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(i) αLβ if and only if ranα = ran β;

(ii) αRβ if and only if πα = πβ.

Theorem 2.5 ([10], p. 63). In P (X),

(i) αLβ if and only if ranα = ran β;

(ii) αRβ if and only if πα = πβ.

Theorem 2.6 ([5], p. 57 and [10], p. 63). In LF (V ),

(i) αLβ if and only if ranα = ran β;

(ii) αRβ if and only if kerα = ker β.

Observe that for α ∈ I(X), α ◦ α−1 = {(x, x) | x ∈ domα}. It follows that for

α, β ∈ I(X), πα = πβ if and only if domα = domβ. From this fact together with

Theorem 2.5 and its proof, we obtain the following theorem for I(X).

Theorem 2.7. In I(X),

(i) αLβ if and only if ranα = ran β;

(ii) αRβ if and only if domα = dom β.

For any vector space V over a field F with dimF V ≥ q ≥ ℵ0, we let

BLF (V, q) = {α ∈ LF (V ) | α is 1-1 and dimF (V/ ranα) = q}.

It was shown in [15] that for any α, β ∈MF (V ),

dimF (V/ ranαβ) = dimF (V/ ranα) + dimF (V/ ran β).

Then BLF (V, q) is a semigroup which is called the linear Baer-Levi semigroup on

V of type q ([16]). We define the dual linear Baer-Levi semigroup DBLF (V, q)

on V of type q similarly to the dual Baer-Levi semigroup DBL(X, q) defined

previously as follows:

DBLF (V, q) = {α ∈ LF (V ) | α is onto and dimF kerα = q}.
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Note that |vα−1| = | kerα| for all α ∈ LF (V ) and v ∈ ranα. We have that

DBLF (V, q) is a semigroup by the fact that for any α, β ∈ EF (V ),

dimF kerαβ = dimF kerα + dimF ker β,

which can be seen by the following proof. Let α, β ∈ EF (V ). We will show that

(kerαβ)α = ker β. If v ∈ kerαβ, then (vα)β = vαβ = 0, so vα ∈ ker β. Next, let

v ∈ ker β. Since α is onto, v = wα for some w ∈ V . Thus wαβ = (wα)β = vβ = 0,

so w ∈ kerαβ. Hence v = wα ∈ (kerαβ)α. This proves that (kerαβ)α =

ker β. Then α|kerαβ : kerαβ → ker β is an onto linear transformation. Thus

dimF kerαβ = dimF ker
(
α|kerαβ

)
+ dimF ker β. We can see that ker

(
α|kerαβ

)
=

kerα. Consequently, dimF kerαβ = dimF kerα + dimF ker β, as required.

In [16], the authors gave the next theorem for BLF (V, q) which has the same

result as BL(X, q).

Theorem 2.8 ([16]). If dimF V ≥ q ≥ ℵ0, then BLF (V, q) is a right simple and

right cancellative semigroup without idempotents.

Mendes-Gançalves [15] introduced the following semigroup.

KNF (V, q) = {α ∈ LF (V ) | α is 1-1 and dimF (V/ ranα) ≥ q}

where dimF V ≥ q ≥ ℵ0. This semigroup generalizes the semigroup

{α ∈ LF (V ) | α is 1-1 and dimF (V/ ranα) is infinite}

which was introduced by Kemprasit and Namnak [11]. Notice that this semigroup

is KNF (V,ℵ0). In [15], the authors proved that the prime ideals of MF (V ) are

exactly the semigroups KNF (V, q). Note that a proper ideal I of a semigroup S

is called prime in [15] if for all a, b in S, ab ∈ I implies that a ∈ I or b ∈ I. To be

analogous with KNF (V, q), we define KN(X, q) as follows:
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KN(X, q) = {α ∈ T (X) | α is 1-1 and |X r ranα| ≥ q}

where |X| ≥ q ≥ ℵ0. Since ranαβ ⊆ ran β for all α, β ∈ T (X), it follows that

KN(X, q) is a semigroup.

Finally, we define the following semigroups:

Trf(X) = {α ∈ T (X) | ranα is finite},

P rf(X) = {α ∈ P (X) | ranα is finite},

Irf(X) = {α ∈ I(X) | ranα is finite},

LrfF (V ) = {α ∈ LF (V ) | dimF ranα is finite}.

Notice if X is finite, then Trf(X) = T (X), Prf(X) = P (X) and Irf(X) = I(X).

We also have that if V is finite-dimensional, then LrfF (V ) = LF (V ).

We give some basic knowledge of linear algebra in the following remark. Their

proofs are omitted.

Remark 2.9. Let V be a vector space.

(1) If A1, A2 are disjoint subsets of V such that A1∪A2 is a linearly independent

subset of V , then 〈A1〉 ∩ 〈A2〉 = {0}.

(2) If A1 and A2 are (disjoint) linearly independent subsets of V such that 〈A1〉∩

〈A2〉 = {0}, then A1 ∪ A2 is a linearly independent subset of V .

(3) If W is a subspace of V , then dimF V = dimF (V/W ) + dimF W .

(4) For all subspaces U and W of V with W ⊆ U , we have

(V/W )/(U/W ) ∼= V/U.

(5) If U is a subspace of V , B1 is a basis of U and B is a basis of V containing

B1, then v1 +U 6= v2 +U for all distinct v1, v2 ∈ BrB1 and the set {v+U |

v ∈ BrB1} is a basis of the quotient space V/U (= {v+U | v ∈ V }). Hence

dimF (V/U) = |B rB1|.

Next, let V ′ be a vector space and α : V → V ′ a linear transformation.
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(6) If A is a linearly independent subset of V and α is 1-1, then Aα is a linearly

independent subset of V ′. In particular, if B is a basis of V and α is 1-1, then

Bα is a basis of ranα.

(7) If B is a basis of V , A ⊆ B, Aα = {0}, α|BrA is 1-1 and (BrA)α is a linearly

independent subset of V ′, then kerα = 〈A〉.

(8) If B is a basis of V , A is a linearly independent subset of V ′ and α|B : B → A

is a bijection, then α is a 1-1 linear transformation from V into V ′. In parti-

cular, if A is also a basis of V ′, then α is an isomorphism from V onto V ′.

(9) Let B1 be a basis of kerα and B a basis of V containing B1. Then for all

u, v ∈ B rB1, if u 6= v then uα 6= vα and (B rB1)α is a basis of ranα.

Hence dimF ranα = |(B rB1)α| = |B rB1|.

(10) If B1 is a basis of kerα, B2 is a basis of ranα and for each v ∈ B2, choose

v′ ∈ vα−1, then

vα−1 = v′ + kerα for all v ∈ B2

and
B1 ∪̇ {v′ | v ∈ B2} is a basis of V.

(11) If α : V → V ′ is 1-1 and W is a subspace of V , then we have that the mapping

v +W 7→ vα +Wα is an isomorphism from V/W onto V α/Wα. Hence

dimF (V/W ) = dimF (V α/Wα).



CHAPTER III

SEMIGROUPS OF TRANSFORMATIONS OF SETS

This chapter gives characterizations of the left regular and right regular ele-

ments of the following semigroups of transformations of X where X is infinite:

M(X),M(X) rG(X), E(X), E(X) rG(X),

BL(X, q), DBL(X, q), KN(X, q) where |X| ≥ q ≥ ℵ0,

T rf(X), P rf(X) and Irf(X).

First of all, we show that the left regular elements and the units of M(X) are

identical. We shall introduce the Green’s relation L on M(X) as a lemma.

Lemma 3.1. For any α, β ∈M(X),

αLβ in M(X)⇔ ranα = ran β.

Proof. Assume that α, β ∈ M(X) and αLβ in M(X). Then α = γβ and β = λα

for some γ, λ ∈ M(X). It follows that ranα = ran γβ ⊆ ran β = ranλα ⊆ ranα,

so ranα = ran β.

Conversely, assume that ranα = ranβ. Note that α−1 : ranα (= ranβ) → X

and β−1 : ranβ (= ranα) → X are bijections. Then αβ−1, βα−1 : X → X

are bijections, i.e., αβ−1, βα−1 ∈ G(X) ⊆ M(X). Since (αβ−1)β = α(β−1β) =

α1ranβ = α1ranα = α and (βα−1)α = β(α−1α) = β1ranα = β1ranβ = β, it follows

that αLβ in M(X).

Theorem 3.2. LReg(M(X)) = G(X).
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Proof. Since G(X) is the group of units of M(X), we have G(X) ⊆ LReg(M(X)).

For the reverse inclusion, let α ∈ LReg(M(X)). Then αLα2 in M(X). By

Lemma 3.1, ranα = ranα2. Thus Xα = (Xα)α. Since α is 1-1, it follows that

X = Xα, which implies that α ∈ G(X). Hence the result follows.

Next to determine RReg(M(X)), we first provide the Green’s relation R on

M(X).

Lemma 3.3. For any α, β ∈M(X),

αRβ in M(X)⇔ |X r ranα| = |X r ran β|.

Proof. Let α, β ∈ M(X) and assume that αRβ in M(X). Then α = βγ and

β = αλ for some γ, λ ∈ M(X). Consequently, (ran β)γ = ranα and (ranα)λ =

ran β. Since γ and λ are 1-1, we have that (X r ran β)γ ⊆ X r ranα and

(X r ranα)λ ⊆ X r ran β. These imply that |X r ran β| ≤ |X r ranα| and

|X r ranα| ≤ |X r ran β|. Hence |X r ranα| = |X r ran β|.

For the converse, assume that |X r ranα| = |X r ran β|. Let ϕ : X r ran β →

X r ranα be a bijection. Define γ, λ : X → X by

γ =

xβ y

xα yϕ


x∈X
y∈Xrranβ

and λ =

xα y

xβ yϕ−1


x∈X
y∈Xrranα

.

Since α and β are 1-1, we have that γ and λ are well-defined and 1-1. It follows

that γ, λ ∈ G(X), βγ = α and αλ = β. Hence αRβ in M(X), as desired.

Note that Lemma 3.3 is found later that it is a special case of Lemma 4.1 in

[20].

Theorem 3.4. RReg(M(X))= {α ∈M(X) | ranα = X or Xrranα is infinite}.
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Proof. Since RReg(M(X)) = {α ∈ M(X) | αRα2 in M(X)}, by Lemma 3.3, we

have

RReg(M(X)) = {α ∈M(X) | |X r ranα| = |X r ranα2|}.

Let α ∈ M(X) be such that |X r ranα| = |X r ranα2| and assume that

X r ranα is finite. Since ranα2 ⊆ ranα, we have X r ranα ⊆ X r ranα2.

Consequently, X r ranα = X r ranα2, which implies that ranα = ranα2. Hence

Xα = (Xα)α. But since α is 1-1, X = Xα, i.e., ranα = X.

For the reverse inclusion, let α ∈M(X) be such that ranα = X or X r ranα

is infinite. If ranα = X, then ranα2 = X, so |X r ranα| = 0 = |X r ranα2|.

Next, suppose that X r ranα is infinite. Since ranα2 ⊆ ranα and α is 1-1, it

follows that

|X r ranα2| = |X r ranα|+ | ranαr ranα2|

= |X r ranα|+ |XαrXα2|

= |X r ranα|+ |(X rXα)α|

= |X r ranα|+ |X rXα|

= 2|X r ranα|

= |X r ranα|.

The theorem is thereby proved.

The following result is a consequence of Theorem 3.2, Lemma 3.3 and Theo-

rem 3.4.

Corollary 3.5.

(i) LReg(M(X) rG(X)) = ∅.

(ii) RReg(M(X) rG(X)) = {α ∈M(X) | X r ranα is infinite}.

Proof. (i) We will prove that LReg(M(X) r G(X)) = ∅, suppose not. Let α ∈

LReg(M(X) rG(X)). Thus α ∈ LReg(M(X)). But since LReg(M(X)) = G(X)

by Theorem 3.2, it follows that α ∈ G(X), which is a contradiction.
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(ii) Let α∈RReg(M(X) rG(X)). Then α ∈ RReg(M(X)). By Theorem 3.4,

ranα = X or X r ranα is infinite. But α ∈ M(X) r G(X), so X r ranα is

infinite.

For the converse, let α ∈M(X) be such that Xrranα is infinite. By Theorem

3.4, α ∈ RReg(M(X)), so α = α2β for some β ∈ M(X). We also have that

|X r ranα| = |X r ranα2| by Lemma 3.3. Let a ∈ X r ranα be fixed. It follows

that |Xr(ranα∪{a})| = |Xrranα| = |Xrranα2|. Thus there exists a bijection

λ : X r ranα2 → X r (ranα ∪ {a}). Define the mapping γ on X by

γ =

 x y

xβ yλ


x∈ranα2

y∈Xrranα2

.

Note that (ranα2)β = Xα2β = Xα = ranα and (Xrranα2)λ = Xr(ranα∪{a}).

It follows that (ranα2)β ∩ (X r ranα2)λ = ∅. But β and λ are 1-1, so we have

γ ∈ M(X). Since α = α2β, by the definition of γ, we have for any x ∈ X,

x(α2γ) = (xα2)γ = (xα2)β = x(α2β) = xα. This means that α = α2γ. It follows

that

Xγ = (ranα2)γ ∪ (X r ranα2)γ

= ranα2γ ∪ (X r ranα2)λ

= ranα ∪ (X r (ranα ∪ {a}))

= X r {a}.

Thus γ is not onto, so γ ∈M(X) rG(X). Hence α ∈ RReg(M(X) rG(X)).

Therefore the proof is completed.

Next, the left regular and right regular elements of E(X) are considered. The

following lemma is needed. Note that it is found later that it is a special case of

Lemma 5.1 in [20].

Lemma 3.6. For any α, β ∈ E(X),

αLβ in E(X)⇔ |xα−1| = |xβ−1| for all x ∈ X.
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Proof. Let α, β ∈ E(X) be such that αLβ in E(X). Then α = γβ and β = λα

for some γ, λ ∈ E(X). Thus for all x ∈ X and for all y ∈ xαα−1, yγβ = yα = xα,

so yγ ∈ (xα)β−1. This proves that (xαα−1)γ ⊆ (xα)β−1 for all x ∈ X. But

α is onto, so (xα−1)γ ⊆ xβ−1 for all x ∈ X. Since X =
⋃̇
x∈X

xα−1 =
⋃̇
x∈X

xβ−1

and γ is onto, it follows that (xα−1)γ = xβ−1 for all x ∈ X. This implies that

|xα−1| ≥ |xβ−1| for all x ∈ X. By the assumption that β = λα, we can prove

similarly that |xβ−1| ≥ |xα−1| for all x ∈ X. Hence |xα−1| = |xβ−1| for all x ∈ X.

Conversely, assume that |xα−1| = |xβ−1| for all x ∈ X. For each x ∈ X, let

γx : xα−1 → xβ−1 be a bijection. Define γ : X → X by

γ =

 y

yγx


x∈X
y∈xα−1

.

Since X =
⋃̇
x∈X

xα−1 =
⋃̇
x∈X

xβ−1, we have that γ is onto. To show that γβ = α, let

y ∈ X. Then y ∈ xα−1 for some x ∈ X, so yγ = yγx ∈ xβ−1. This implies that

yγβ = x = yα. We can show similarly that λα = β where λx : xβ−1 → xα−1 is a

bijection for all x ∈ X and

λ =

 y

yλx


x∈X
y∈xβ−1

.

Hence αLβ in E(X).

This completes the proof of the lemma.

The following theorem is an immediate consequence of Lemma 3.6.

Theorem 3.7. LReg(E(X)) = {α ∈ E(X) | |xα−1| = |x(α2)−1| for all x ∈ X}.

Theorem 3.8. RReg(E(X)) = G(X).

Proof. Since G(X) is the group of units of E(X), we have G(X) ⊆ RReg(E(X)).
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For the reverse inclusion, let α ∈ RReg(E(X)). That is, αRα2 in E(X). Then

α = α2β for some β ∈ E(X). Hence 1X = αβ since α is onto. Thus α is 1-1, so

α ∈ G(X).

Theorem 3.7 and Theorem 3.8 yield the following two corollaries, respectively.

Corollary 3.9. For any α ∈ E(X)rG(X), α ∈ LReg(E(X)rG(X)) if and only

if α satisfies the following two properties :

(i) |xα−1| = |x(α2)−1| for all x ∈ X;

(ii) |yα−1| is infinite for some y ∈ X.

Proof. Let α ∈ LReg(E(X) r G(X)). Then α ∈ LReg(E(X)). By Theorem 3.7,

we have |xα−1| = |x(α2)−1| for all x ∈ X. Suppose that for all y ∈ X, |yα−1| is

finite. Let y ∈ X. Since y(α2)−1 = (yα−1)α−1 =
⋃̇

z∈yα−1

zα−1, it follows that

|yα−1| = |y(α2)−1| =

∣∣∣∣∣∣
⋃̇

z∈yα−1

zα−1

∣∣∣∣∣∣ =
∑

z∈yα−1

|zα−1|.

Since α is onto, zα−1 6= ∅ for all z ∈ yα−1. This shows that |zα−1| = 1 for all

z ∈ yα−1 and for all y ∈ X. But X =
⋃̇
y∈X

yα−1, so |zα−1| = 1 for all z ∈ X.

Hence α is 1-1. Thus α ∈ G(X), a contradiction.

For the converse, we assume that α ∈ E(X) such that |xα−1| = |x(α2)−1| for all

x ∈ X and |yα−1| is infinite for some y ∈ X. Let a ∈ yα−1 be given. Then

|yα−1r{a}| = |yα−1| = |y(α2)−1|. Thus there exists a bijection ϕ from yα−1r{a}

onto y(α2)−1. Fix b ∈ y(α2)−1 and let γy : yα−1 → y(α2)−1 be defined by

γy =

a c

b cϕ


c∈yα−1r{a}

.

Since aγy = b = cϕ = cγy for some c ∈ yα−1 r {a}, we have that γy is not 1-1.

For each x ∈ X r {y}, let γx : xα−1 → x(α2)−1 be a bijection. Define γ : X → X

by
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γ =

 z

zγx


x∈X
z∈xα−1

.

Since X =
⋃̇
x∈X

xα−1 =
⋃̇
x∈X

x(α2)−1, we have that γ is onto. If x ∈ X and

z ∈ xα−1, then zγ = zγx ∈ x(α2)−1, so z(γα2) = (zγ)α2 = x = zα. Since

X =
⋃̇
x∈X

xα−1, it follows that γα2 = α. Since X =
⋃̇
x∈X

xα−1 =
⋃̇
x∈X

x(α2)−1 and γy

is not 1-1, it follows that γ is not 1-1. Thus γ ∈ E(X) rG(X). This proves that

α ∈ LReg(E(X) rG(X)), as desired.

Therefore the proof is completed.

Corollary 3.10. RReg(E(X) rG(X)) = ∅.

Proof. If α ∈ RReg(E(X) r G(X)), then α ∈ RReg(E(X)), so α ∈ G(X) by

Theorem 3.8. This is impossible. Hence RReg(E(X) rG(X)) = ∅.

We recall the Baer-Levi semigroup of type (|X|, q) on the set X and its dual

as follows:

BL(X, q) = {α ∈ T (X) | α is 1-1 and |X r ranα| = q},

DBL(X, q) = {α ∈ T (X) | α is onto and |xα−1| = q for all x ∈ X}

where |X| ≥ q ≥ ℵ0.

Theorem 3.11.

(i) LReg(BL(X, q)) = ∅.

(ii) RReg(BL(X, q)) = BL(X, q).

Proof. (i) Suppose LReg(BL(X, q)) 6= ∅. Let α ∈ LReg(BL(X, q)) be given.

Then α = βα2 for some β ∈ BL(X, q). Since α is 1-1, 1X = βα. This implies

that α is onto, contradicting the definition of BL(X, q).
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(ii) We have that BL(X, q) is right simple from Theorem 2.2. By Theorem

2.1(ii), BL(X, q) = α2BL(X, q) for all α ∈ BL(X, q). Let α ∈ BL(X, q). Then

α = α2β for some β ∈ BL(X, q). Thus α ∈ RReg(BL(X, q)).

The following dual version of Theorem 3.11 can be shown in a similar manner.

Theorem 3.12.

(i) LReg(DBL(X, q)) = DBL(X, q).

(ii) RReg(DBL(X, q)) = ∅.

Remark 3.13. Since BL(X, q) and DBL(X, q) do not contain idempotents by

Theorem 2.2 and Theorem 2.3, respectively, we have that all elements of BL(X, q)

and DBL(X, q) are not regular.

Theorem 3.11 shows that every element of BL(X, q) is right regular but not

left regular. Therefore every element of BL(X, q) is right regular but neither

regular nor left regular.

From Theorem 3.12, we have that every element of DBL(X, q) is left regular

but not right regular. Then every element of DBL(X, q) is left regular but neither

regular nor right regular.

The another semigroup which has the same results as BL(X, q) is KN(X, q).

Recall that

KN(X, q) = {α ∈ T (X) | α is 1-1 and |X r ranα| ≥ q}

where |X| ≥ q ≥ ℵ0.

Theorem 3.14.

(i) LReg(KN(X, q)) = ∅.

(ii) RReg(KN(X, q)) = KN(X, q).
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Proof. (i) Suppose LReg(KN(X, q)) 6= ∅. Let α ∈ LReg(KN(X, q)) be given.

Then α = βα2 for some β ∈ KN(X, q). Since α is 1-1, 1X = βα. Thus α is onto,

which is contrary to |X r ranα| ≥ q.

(ii) Let α ∈ KN(X, q). Then |X r ranα| ≥ q, so X r ranα is an infinite set.

By Theorem 3.4, α ∈ RReg(M(X)). That is, αRα2 in M(X). By Lemma 3.3,

|Xr ranα| = |Xr ranα2|. Since Xr ranα is infinite, there are A,B ⊆ Xr ranα

such that X r ranα = A ∪̇ B and |A| = |B| = |X r ranα|. Then we have

|X r ranα2| = |A|. Let ϕ : X r ranα2 → A be a bijection. Define γ ∈ T (X) by

γ =

xα2 y

xα yϕ


x∈X
y∈Xrranα2

.

For x1, x2 ∈ X, x1α
2 = x2α

2 if and only if x1α = x2α since α is 1-1. This shows

that γ is well-defined and the mapping xα2 7→ xα (x ∈ X) is 1-1. But since ϕ

is 1-1 and Xα ∩ A = ranα ∩ A = ∅, it follows that γ ∈ M(X). We have that

α = α2γ and

ran γ = Xγ

= (ranα2 ∪̇ (X r ranα2))γ

= (ranα2)γ ∪̇ (X r ranα2)γ

= ranα ∪̇ (X r ranα2)ϕ

= ranα ∪̇ A.

Then X r ran γ = B, so |X r ran γ| = |B| = |X r ranα| ≥ q. This implies that

γ ∈ KN(X, q). Hence α ∈ RReg(KN(X, q)), and the desired result follows.

For the remainder of this chapter, we will consider the left regular and right

regular elements of Trf(X), Prf(X) and Irf(X). We recall that

Trf(X) = {α ∈ T (X) | ranα is finite},

P rf(X) = {α ∈ P (X) | ranα is finite},

Irf(X) = {α ∈ I(X) | ranα is finite}.
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We use the following lemma to prove our desired results for the left regular

elements of Trf(X), Prf(X) and Irf(X).

Lemma 3.15. Let S(X) be Trf(X), P rf(X) or Irf(X). Then for α, β ∈ S(X),

αLβ in S(X)⇔ ranα = ran β.

Proof. Let α, β ∈ S(X). Assume that αLβ in S(X). Then α = γβ and β = λα for

some γ, λ ∈ S(X)1. It follows that ranα = ran(γβ) ⊆ ran β = ran(λα) ⊆ ranα,

so ranα = ran β.

To show the converse, we assume that ranα = ran β. For each x ∈ ranα,

choose dx ∈ xβ−1. Then dxβ = x for all x ∈ ranα. Define γ : domα→ X by

γ =

xα−1

dx


x∈ranα

.

Thus γ ∈ P (X), dom γ = domα, ran γ ⊆ dom β and | ran γ| = |{dx | x ∈

ranα}| = | ranα|. If α ∈ Trf(X), then γ ∈ Trf(X). If α ∈ Prf(X), then

γ ∈ Prf(X). If α ∈ Irf(X), then γ ∈ Irf(X) since |xα−1| = 1 for all x ∈

ranα. Hence γ ∈ S(X). We also have that dom(γβ) = (ran γ ∩ dom β)γ−1 =

(ran γ)γ−1 = dom γ = domα. For x ∈ domα, x ∈ (xα)α−1, so xγβ = dxαβ = xα.

Hence α = γβ. We can show similarly that β = λα for some λ ∈ S(X). This

proves that αLβ in S(X), as desired.

The proof of the next lemma is slightly different from that of Theorem 2.4(ii)

given in [5], p. 52. It is needed to determine the right regular elements of Trf(X).

Lemma 3.16. For any α, β ∈ Trf(X),

αRβ in Trf(X)⇔ πα = πβ.

Proof. Let α, β ∈ Trf(X) be such that αRβ in Trf(X). Then αRβ in T (X), so

by Theorem 2.4(ii), πα = πβ.
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Conversely, let α, β ∈ Trf(X) be such that πα = πβ. Let a ∈ X be fixed.

Define γ : X → X by

γ =

xβ y

xα a


x∈X
y∈Xrranβ

.

Since πβ ⊆ πα, γ is well-defined. We also have that α = βγ and ran γ = ranα∪{a}

which is finite. By using πα ⊆ πβ, we obtain similarly that β = αλ for some

λ ∈ Trf(X). Therefore αRβ in Trf(X).

The following lemma enables us to give the result that LReg(Trf(X)) =

RReg(Trf(X)). Moreover, we make use of this lemma to show the result of

Prf(X).

Lemma 3.17. For any α ∈ Prf(X) and β ∈ P (X),

ranα = ranαβα⇔ πα = παβα.

In particular, for any α ∈ Prf(X),

ranα = ranα2 ⇔ πα = πα2 .

Proof. Let α ∈ Prf(X) and β ∈ P (X). Assume that ranα = ranαβα. Then

ranα = (ranα ∩ dom βα)βα, so | ranα| ≤ | ranα ∩ dom βα|. But ranα ∩ dom βα

⊆ ranα, | ranα| ≥ | ranα ∩ dom βα|. It follows that | ranα| = | ranα ∩ dom βα|.

Since ranα is finite, we have that ranα = ranα ∩ dom βα. Thus (ranα)βα =

(ranα ∩ dom βα)βα = ranαβα = ranα, so (βα)|ranα : ranα → ranα is onto.

Hence (βα)|ranα is 1-1 since ranα is finite.

Next, we will prove that πα = παβα. Since ranα ∩ dom βα = ranα, it follows

that domαβα = (ranα ∩ dom βα)α−1 = (ranα)α−1 = domα. If (x, y) ∈ πα,

then xα = yα, so xαβα = yαβα. Let (x, y) ∈ παβα. Then xαβα = yαβα. Since

(βα)|ranα is 1-1, we have that xα = yα, i.e., (x, y) ∈ πα. Hence πα = παβα.

To prove necessity, we assume that πα = παβα. This implies that
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| ranα| = the number of the equivalence classes of πα

= the number of the equivalence classes of παβα

= | ranαβα|.

Since ranαβα ⊆ ranα and ranα is finite, it follows that ranα = ranαβα.

From the previous series of lemmas, we have the following theorem for Trf(X).

Theorem 3.18. LReg(Trf(X)) = {α ∈ Trf(X) | α|ranα ∈ G(ranα)}

= RReg(Trf(X)).

Proof. By Lemma 3.15, LReg(Trf(X)) = {α ∈ Trf(X) | ranα = ranα2}. By

Lemma 3.16, RReg(Trf(X)) = {α ∈ Trf(X) | πα = πα2}. By Lemma 3.17,

LReg(Trf(X)) = RReg(Trf(X)).

Next, to prove that LReg(Trf(X)) = {α ∈ Trf(X) | α|ranα ∈ G(ranα)}, let

α ∈ Trf(X). Assume that α ∈ LReg(Trf(X)). Then ranα = ranα2 = (ranα)α.

But since ranα is finite, it follows that α|ranα ∈ G(ranα). Conversely, if α|ranα ∈

G(ranα), then ranα2 = (ranα)α = ranα, so α ∈ LReg(Trf(X)).

Hence the result follows.

We already have the lemma for determining the left regular elements of

Prf(X). To obtain the theorem for Prf(X) which is similar to that of Trf(X),

we first give the Green’s relation R on Prf(X) as a lemma.

Lemma 3.19. For any α, β ∈ Prf(X),

αRβ in Prf(X)⇔ πα = πβ.

Proof. Let α, β ∈ Prf(X) be such that αRβ in Prf(X). Then αRβ in P (X).

By Theorem 2.5(ii), πα = πβ.

For the converse, let α, β ∈ Prf(X) be such that πα = πβ. Then domα =

dom β. We define γ : ran β → X by
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γ =

xβ
xα


x∈domβ

.

If x, y ∈ dom β (= domα) are such that xβ = yβ, then (x, y) ∈ πβ, so (x, y) ∈

πα and hence xα = yα. Thus γ is well-defined. Since ran γ = (dom β)α =

(domα)α = ranα which is finite, γ ∈ Prf(X). We also have that dom(βγ) =

(ran β ∩ dom γ)β−1 = (ran β)β−1 = dom β = domα. If x ∈ domα (= dom β),

then xα = xβγ. It follows that α = βγ. It can be shown analogously that β = αλ

where λ : ranα→ X is defined by

λ =

xα
xβ


x∈domα

.

Therefore the lemma is obtained.

Theorem 3.20. LReg(Prf(X)) = {0} ∪ {α ∈ Prf(X) | ∅ 6= ranα ⊆ domα

and α|ranα ∈ G(ranα)}

= RReg(Prf(X)).

Proof. By Lemma 3.15, Lemma 3.19 and Lemma 3.17, we have respectively that

LReg(Prf(X)) = {α ∈ Prf(X) | ranα = ranα2},

RReg(Prf(X)) = {α ∈ Prf(X) | πα = πα2},

LReg(Prf(X)) = RReg(Prf(X)).

Next, we will show that LReg(Prf(X)) = {0} ∪ {α ∈ Prf(X) | ∅ 6= ranα ⊆

domα and α|ranα ∈ G(ranα)}. Let α ∈ LReg(Prf(X)) r {0}. Since ranα2 =

ranα, it follows that

| ranα ∩ domα| ≥ |(ranα ∩ domα)α|

= | ranα2|

= | ranα|

≥ | ranα ∩ domα|,
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so | ranα ∩ domα| = | ranα|. Since ranα is finite, ranα ∩ domα = ranα. It

follows that ∅ 6= ranα ⊆ domα and (ranα)α = (ranα ∩ domα)α = ranα2 =

ranα. This means that α|ranα : ranα → ranα is onto. Since ranα is finite,

α|ranα ∈ G(ranα).

The element 0 clearly belongs to LReg(Prf(X)). We assume that α ∈ Prf(X)

such that ∅ 6= ranα ⊆ domα and α|ranα ∈ G(ranα). Then ranα ⊆ domα

and (ranα)α = ranα. Thus ranα = (ranα)α =(ranα ∩ domα)α = ranα2, so

ranα = ranα2. Hence α ∈ LReg(Prf(X)), and the theorem holds.

The next two theorems show that the set of all left regular elements and

the set of all right regular elements of Irf(X) coincide. However, to determine

RReg(Irf(X)), the Green’s relation R on Irf(X) is first provided.

Theorem 3.21. LReg(Irf(X)) = {α ∈ Irf(X) | domα = ranα}.

Proof. Let α ∈ LReg(Irf(X)). Then αLα2 in Irf(X). By Lemma 3.15, ranα =

ranα2. Thus (domα)α = ranα = ranα2 = (ranα ∩ domα)α. Since α is 1-1,

domα = ranα∩domα. This means that domα ⊆ ranα. Since | domα| = | ranα|

and ranα is finite, we have that domα = ranα.

For the reverse inclusion, let α ∈ Irf(X) be such that domα = ranα. Then

ranα = (domα)α = (ranα ∩ domα)α = ranα2. Using Lemma 3.15, we obtain

αLα2 in Irf(X). Therefore α ∈ LReg(Irf(X)), as required.

Lemma 3.22. For any α, β ∈ Irf(X),

αRβ in Irf(X)⇔ domα = dom β.

Proof. If αRβ in Irf(X), then αRβ in I(X), so by Theorem 2.7(ii), domα =

dom β. Assume that α, β ∈ Irf(X) and domα = dom β. Let γ = β−1α. Then

γ ∈ I(X) and ran γ ⊆ ranα which is finite. Therefore we have that γ ∈ Irf(X)

and α = 1domαα = 1domβα = ββ−1α = βγ. If λ = α−1β, then we also have that

λ ∈ Irf(X) and β = αλ. Hence αRβ in Irf(X).
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Theorem 3.23. RReg(Irf(X)) = {α ∈ Irf(X) | domα = ranα}.

Proof. Let α ∈ Irf(X) be such that αRα2 in Irf(X). By Lemma 3.22, domα =

domα2, i.e., (ranα)α−1 = (ranα ∩ domα)α−1. Since α is 1-1, ranα = ranα ∩

domα, so ranα ⊆ domα. Since α is 1-1, | domα| = | ranα|. Thus domα = ranα

since ranα is finite.

For the reverse inclusion, assume that domα = ranα. Then domα2 = (ranα∩

domα)α−1= (ranα)α−1 = domα. By Lemma 3.22, αRα2 in Irf(X), i.e., α ∈

RReg(Irf(X)).

Remark 3.24. We have that for any α, β ∈ I(X),

ran(αβ) ⊆ ran β and ran(αβ) = (ranα ∩ dom β)β.

It follows that for all α, β ∈ I(X),

| ran(αβ)| ≤ | ran β|
and

| ran(αβ)| = |(ranα ∩ dom β)β| = | ranα ∩ dom β| ≤ | ranα|.

Consequently, Irf(X) is an ideal of I(X). Since I(X) is a regular semigroup,

Irf(X) is a regular semigroup.

It is evident from Theorem 3.21 and Theorem 3.23 that an element of Irf(X)

need be neither left regular nor right regular.



CHAPTER IV

SEMIGROUPS OF LINEAR TRANSFORMATIONS

In this chapter, V is assumed to be an infinite-dimensional vector space over

a field F . We consider the left regular and right regular elements of the following

semigroups:

MF (V ),MF (V ) rGF (V ), EF (V ), EF (V ) rGF (V ),

BLF (V, q), DBLF (V, q), KNF (V, q) and LrfF (V )

where dimF V ≥ q ≥ ℵ0.

Comparing with the results in Chapter III, the sets of left regular elements

and the sets of right regular elements of the semigroups MF (V ), MF (V )rGF (V ),

EF (V ), EF (V )rGF (V ), BLF (V, q), DBLF (V, q), KNF (V, q) and LrfF (V ) are ob-

tained accordingly in this chapter. However, each of the theorems for LReg(EF (V ))

and LReg(EF (V ) rGF (V )) is obtained in a better form. In addition, some more

lemmas are required.

Lemma 4.1. For any α, β ∈MF (V ),

αLβ in MF (V )⇔ ranα = ran β.

Proof. Note that if α ∈ MF (V ), then α−1 : ranα → V is linear. It can be seen

from the proof of Lemma 3.1 that the lemma holds.

Theorem 4.2. LReg(MF (V )) = GF (V ).

Proof. From Lemma 4.1 and the proof of Theorem 3.2, we can see that the theorem

holds.
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Lemma 4.3. For any α, β ∈MF (V ),

αRβ in MF (V )⇔ dimF (V/ ranα) = dimF (V/ ran β).

Proof. Let α, β ∈ MF (V ) be arbitrary. First, assume that αRβ in MF (V ).

Then α = βγ and β = αλ for some γ, λ ∈ MF (V ). Thus (ran β)γ = ranα

and (ranα)λ = ran β. It follows that dimF (V/ ran β) = dimF (V/V β) =

dimF (V γ/(V β)γ) = dimF (ran γ/(ran β)γ) since γ is a 1-1 linear transformation.

Consequently,

dimF (V/ ran β) = dimF (ran γ/(ran β)γ)

= dimF (ran γ/ ranα)

≤ dimF (V/ ranα).

We obtain similarly from β = αλ that dimF (V/ ranα) ≤ dimF (V/ ran β). Hence

dimF (V/ ranα) = dimF (V/ ran β).

Conversely, assume that dimF (V/ ranα) = dimF (V/ ran β). Let B be a basis

of V . Since α and β are 1-1 linear transformations, we have that Bα and Bβ

are bases of ranα and ran β, respectively. Let B′ be a basis of V containing Bβ

and B′′ a basis of V containing Bα. Since dimF (V/ ran β) = dimF (V/ ranα),

dimF (V/ ran β) = |B′ r Bβ| and dimF (V/ ranα) = |B′′ r Bα|, it follows that

|B′ r Bβ| = |B′′ r Bα|. Let ϕ : B′ r Bβ → B′′ r Bα be a bijection. Define

γ, λ ∈ LF (V ) on B′ and B′′, respectively by

γ =

vβ u

vα uϕ


v∈B
u∈B′rBβ

and λ =

vα u

vβ uϕ−1


v∈B
u∈B′′rBα

.

We have that γ and λ are well-defined and 1-1 since α and β are 1-1. Since

γ|B′ : B′ → B′′ and λ|B′′ : B′′ → B′ are bijections, we have that γ, λ ∈ GF (V ).

Hence the equalities βγ = α and αλ = β hold since vβγ = vα and vαλ = vβ for

all v ∈ B. Therefore αRβ in MF (V ), as required.
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Theorem 4.4.

RReg(MF (V )) = {α ∈MF (V ) | ranα = V or dimF (V/ ranα) is infinite}.

Proof. By Lemma 4.3, we have that

RReg(MF (V )) = {α ∈MF (V ) | dimF (V/ ranα) = dimF (V/ ranα2)}.

It suffices to show that for α ∈MF (V ), dimF (V/ ranα) = dimF (V/ ranα2) if and

only if ranα = V or dimF (V/ ranα) is infinite.

First, let α ∈ MF (V ) be such that dimF (V/ ranα) = dimF (V/ ranα2) and

assume that dimF (V/ ranα) is finite. Note that ranα2 ⊆ ranα ⊆ V . Let B1 be a

basis of ranα2, B2 a basis of ranα containing B1 and B a basis of V containing

B2. Since dimF (V/ ranα) = dimF (V/ ranα2), dimF (V/ ranα) = |B r B2| and

dimF (V/ ranα2) = |B r B1|, we have that |B r B2| = |B r B1|. We also have

that B rB2 is finite since dimF (V/ ranα) is finite. But B rB2 ⊆ B rB1, so we

have B r B2 = B r B1 and hence B1 = B2. It follows that ranα2 = ranα, i.e.,

(V α)α = V α. This implies that V α = V since α is 1-1. Thus ranα = V .

For the converse, let α ∈MF (V ) be such that ranα = V or dimF (V/ ranα) is

infinite. If ranα = V , then ranα2 = V , so dimF (V/ ranα) = 0 = dimF (V/ ranα2).

Next, we assume that dimF (V/ ranα) is infinite. Since ranα2 ⊆ ranα ⊆ V , we

have that ranα/ ranα2 is a subspace of V/ ranα2, so

dimF (V/ ranα2) = dimF

(
(V/ ranα2)/(ranα/ ranα2)

)
+ dimF (ranα/ ranα2)

= dimF (V/ ranα) + dimF (ranα/ ranα2)

= dimF (V/ ranα) + dimF (V/ ranα) (since α ∈MF (V ))

= 2 dimF (V/ ranα)

= dimF (V/ ranα).

Therefore the theorem is proved.

Corollary 4.5.

(i) LReg(MF (V ) rGF (V )) = ∅.

(ii) RReg(MF (V ) rGF (V )) = {α ∈MF (V ) | dimF (V/ ranα) is infinite}.
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Proof. (i) The proof can be obtained in the same way as that of Corollary 3.5(i)

by using Theorem 4.2 instead of Theorem 3.2.

(ii) Let α ∈ RReg(MF (V ) rGF (V )). Then α ∈ RReg(MF (V )). By Theorem

4.4, ranα = V or dimF (V/ ranα) is infinite. Since α /∈ GF (V ), dimF (V/ ranα) is

infinite.

For the reverse inclusion, let α ∈ MF (V ) be such that dimF (V/ ranα) is

infinite. Again by Theorem 4.4, α ∈ RReg(MF (V )). That is, α = α2β for some

β ∈MF (V ). Let B1 be a basis of ranα2, B2 a basis of ranα containing B1 and B

a basis of V containing B2. Then dimF (V/ ranα2) = |BrB1| and dimF (V/ ranα)

= |B r B2|. Since αRα2 in MF (V ), by Lemma 4.3, |B r B1| = |B r B2|. Note

that |BrB2| is infinite by assumption. Fix z ∈ BrB2. Then |Br (B2∪{z})| =

|B r B2| = |B r B1|. Thus there is a bijection λ : B r B1 → B r (B2 ∪ {z}).

Define γ ∈ LF (V ) on B by

γ =

 u v

uβ vλ


u∈B1
v∈BrB1

.

We claim that γ ∈ MF (V ). Since β ∈ MF (V ), we have that B1β is linearly

independent. Since α = α2β and B1 is a basis of ranα2, it follows that B1β ⊆

ranα2β = ranα, so 〈B1β〉 ⊆ 〈B2〉. We also have that (BrB1)λ = Br (B2∪{z})

and 〈B2〉 ∩ 〈B r (B2 ∪ {z})〉 = {0}. Consequently, 〈B1β〉 ∩ 〈(B r B1)λ〉 = {0}.

This implies that B1β ∪ (B r B1)λ is linearly independent (Remark 2.9(2)). It

follows that γ|B is 1-1, and hence γ ∈ MF (V ) (Remark 2.9(8)). Next, we claim

that vα2γ = vα2β for all v ∈ V . Let v ∈ V . Then vα2 ∈ ranα2. Thus vα2 can be

written as a finite sum of the form
∑
u∈B1

auu where au ∈ F and u ∈ B1. Hence

vα2γ =

(∑
u∈B1

auu

)
γ

=
∑
u∈B1

au(uγ)

=
∑
u∈B1

au(uβ)
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=

(∑
u∈B1

auu

)
β

= vα2β,

so vα2γ = vα2β = vα for all v ∈ V . Since

V γ = 〈B〉γ

= 〈B1 ∪ (B rB1)〉γ

= 〈B1γ〉+ 〈(B rB1)γ〉

= 〈B1β〉+ 〈(B rB1)λ〉

⊆ 〈B2〉+ 〈B r (B2 ∪ {z})〉

= 〈B2 ∪ (B r (B2 ∪ {z}))〉

= 〈B r {z}〉

( 〈B〉 = V,

we have that γ is not onto. Therefore γ ∈ MF (V ) r GF (V ). This shows that

α ∈ RReg(MF (V ) rGF (V )).

The proof is thereby completed.

Lemma 4.6. For any α ∈ EF (V ), kerα2/ kerα ∼= kerα.

Proof. First, we note that kerα is a subspace of kerα2. We will show that

(kerα2)α = kerα. If v ∈ kerα2, then (vα)α = vα2 = 0, so vα ∈ kerα. Let

v ∈ kerα. Since α is onto, wα = v for some w ∈ V . Thus wα2 = (wα)α = vα = 0,

so w ∈ kerα2. Hence v = wα ∈ (kerα2)α. Therefore (kerα2)α = kerα, so we

have α|kerα2 : kerα2 → kerα is an onto linear transformation. Consequently,

kerα2/ ker(α|kerα2 ) ∼= kerα. It is easily seen that ker(α|kerα2 ) = kerα. Hence

kerα2/ kerα ∼= kerα.

Lemma 4.7. For any α, β ∈ EF (V ),

αLβ in EF (V )⇔ dimF kerα = dimF ker β.
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Proof. Let α, β ∈ EF (V ) be arbitrary. Assume that αLβ in EF (V ). Then α = γβ

and β = λα for some γ, λ ∈ EF (V ). If v ∈ kerα, then vγβ = vα = 0, which

implies that vγ ∈ ker β. It follows that (kerα)γ ⊆ ker β. If v ∈ V r kerα, then

vγβ = vα 6= 0, so vγ /∈ ker β. This shows that (V r kerα)γ ⊆ V r ker β. Since γ

is onto, (kerα)γ = ker β. This means that γ|kerα : kerα → ker β is an onto linear

transformation, so dimF kerα ≥ dimF ker β. Similarly, dimF ker β ≥ dimF kerα

by the fact that β = λα.

Conversely, we assume that dimF kerα = dimF ker β. Let B1 and B2 be

bases of kerα and ker β, respectively. By assumption, there exists a bijection

ϕ : B1 → B2. Let B be a basis of V . Since α and β are onto, for each v ∈ B,

we can choose v′ ∈ vα−1 and v′′ ∈ vβ−1. Then v′α = v = v′′β for all v ∈ B.

Note that |B| = |{v′ | v ∈ B}| = |{v′′ | v ∈ B}|. We have B1 ∪̇ {v′ | v ∈ B} and

B2 ∪̇ {v′′ | v ∈ B} are bases of V . Define γ ∈ LF (V ) on B1 ∪̇ {v′ | v ∈ B} by

γ =

 u v′

uϕ v′′


u∈B1
v∈B

.

Since B1ϕ = B2 which is disjoint to {v′′ | v ∈ B}, we have that the restriction of

γ to B1 ∪̇ {v′ | v ∈ B} is 1-1. Moreover, (B1 ∪̇ {v′ | v ∈ B})γ = (B1γ) ∪̇ ({v′ |

v ∈ B}γ) = B2 ∪̇ {v′′ | v ∈ B}. These imply that γ ∈ GF (V ). If v ∈ B1, then

vγβ = vϕβ = 0 = vα since vϕ ∈ B2 ⊆ ker β. If v ∈ B, then v′γβ = v′′β = v =

v′α. These show that γβ = α. Then γ−1α = β. Hence αLβ in EF (V ).

Theorem 4.8.

LReg(EF (V )) = {α ∈ EF (V ) | kerα = {0} or dimF kerα is infinite}.

Proof. Let α∈ LReg(EF (V )). Then αLα2 in EF (V ). By Lemma 4.7, dimF kerα =

dimF kerα2. Suppose dimF kerα is finite. Since kerα ⊆ kerα2, kerα = kerα2.

Since kerα = 0α−1 and kerα2 = 0(α2)−1 = (0α−1)α−1 = (kerα)α−1 =
⋃̇

x∈kerα

xα−1

=

 ⋃̇
x∈kerαr{0}

xα−1

 ∪̇ 0α−1, it follows that
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kerα = kerα2 =

 ⋃̇
x∈kerαr{0}

xα−1

 ∪̇ 0α−1 =

 ⋃̇
x∈kerαr{0}

xα−1

 ∪̇ kerα.

This implies that kerα = {0}.

For the converse, let α ∈ EF (V ) be such that kerα = {0} or dimF kerα

is infinite. If kerα = {0}, then α ∈ GF (V ) ⊆ LReg(EF (V )). Assume that

dimF kerα is infinite. We have dimF (kerα2/ kerα) = dimF kerα by Lemma 4.6.

Thus

dimF kerα2 = dimF (kerα2/ kerα) + dimF kerα

= dimF kerα + dimF kerα

= dimF kerα.

By Lemma 4.7, αLα2 in EF (V ). Hence α ∈ LReg(EF (V )).

Theorem 4.9. RReg(EF (V )) = GF (V ).

Proof. Using the same argument as the proof of Theorem 3.8, we obtain the

desired result.

Corollary 4.10. LReg(EF (V ) rGF (V )) = {α ∈ EF (V ) | dimF kerα is infinite}.

Proof. Let α ∈ LReg(EF (V ) r GF (V )). Then α ∈ LReg(EF (V )) and α is not

1-1. By Theorem 4.8, kerα = {0} or dimF kerα is infinite. But α is not 1-1, so

dimF kerα is infinite.

Conversely, let α ∈ EF (V ) be such that dimF kerα is infinite. By Theorem

4.8, α ∈ LReg(EF (V )). Then dimF kerα = dimF kerα2 by Lemma 4.7. Let B1

be a basis of kerα and B2 a basis of kerα2 containing B1. Then B1 and B2 are

infinite and |B1| = |B2|. Fix w ∈ B1. We have |B1 r {w}| = |B1| = |B2|. This

implies that there exists a bijection ϕ from B1 r{w} onto B2. Let B be a basis of

V . For each v ∈ B, we choose v′ ∈ vα−1 and v′′ ∈ v(α2)−1. Then B1 ∪̇{v′ | v ∈ B}

and B2 ∪̇ {v′′ | v ∈ B} are bases of V . Define β ∈ LF (V ) on B1 ∪̇ {v′ | v ∈ B} by
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β =

w u v′

0 uϕ v′′


u∈B1r{w}
v∈B

.

Next, we will show that α = βα2 on B1 ∪̇ {v′ | v ∈ B}. If u ∈ B1 r {w},

then uϕ ∈ B2 ⊆ kerα2, so uβα2 = (uϕ)α2 = 0 = uα. We also have that

(wβ)α2 = 0α2 = 0 = wα and for any v ∈ B, v′α = v = v′′α2 = (v′β)α2. It follows

that α = βα2. Since (B1 ∪̇ {v′ | v ∈ B})β = {wβ} ∪ (B1 r {w})β ∪ ({v′ | v ∈

B})β = {0} ∪B2 ∪ {v′′ | v ∈ B} ⊇ B2 ∪ {v′′ | v ∈ B}, we have that

V β = 〈(B1 ∪̇ {v′ | v ∈ B})β〉

⊇ 〈B2 ∪̇ {v′′ | v ∈ B}〉

= V,

so β is onto. Since 0 6= w ∈ ker β, β is not 1-1. Consequently, β ∈ EF (V )rGF (V )

and α = βα2. Hence α ∈ LReg(EF (V ) rGF (V )).

This completes the proof of the corollary.

Corollary 4.11. RReg(EF (V ) rGF (V )) = ∅.

Proof. This can be proved in the same way as the proof of Corollary 3.10 by using

Theorem 4.9 instead of Theorem 3.8.

Next, recall that

BLF (V, q) = {α ∈ LF (V ) | α is 1-1 and dimF (V/ ranα) = q},

DBLF (V, q) = {α ∈ LF (V ) | α is onto and dimF kerα = q}

where dimF V ≥ q ≥ ℵ0.

Theorem 4.12.

(i) LReg(BLF (V, q)) = ∅.

(ii) RReg(BLF (V, q)) = BLF (V, q).
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Proof. (i) The proof can be given in the same way as that of Theorem 3.11(i).

(ii) From Theorem 2.8, the proof can be given in the same way as that of

Theorem 3.11(ii).

Lemma 4.13. DBLF (V, q) is a left simple semigroup.

Proof. Let α ∈ DBLF (V, q). We will show that DBLF (V, q) ⊆ DBLF (V, q)α.

Let β ∈ DBLF (V, q). Then dimF ker β = q = dimF kerα. Let B1 be a basis of

ker β and B2 a basis of kerα. Thus B1 and B2 are infinite and |B1| = |B2|. Let

C,D be disjoint subsets of B1 such that B1 = C ∪̇D and |C| = |D| = |B1| = q.

Thus |D| = |B2|, so there exists a bijection ϕ : D → B2. Let B be a basis of V .

For each v ∈ B, we choose v′ ∈ vβ−1 and v′′ ∈ vα−1. Then B1 ∪̇ {v′ | v ∈ B} and

B2 ∪̇ {v′′ | v ∈ B} are bases of V . Define γ ∈ LF (V ) on B1 ∪̇ {v′ | v ∈ B} by

γ =

C u v′

0 uϕ v′′


u∈D
v∈B

.

Then we have that

V γ = 〈B1 ∪̇ {v′ | v ∈ B}〉γ

= 〈(Cγ) ∪ (Dγ) ∪ ({v′ | v ∈ B}γ)〉

= 〈{0} ∪B2 ∪ {v′′ | v ∈ B}〉

= V

and hence γ is onto. By the definition of γ, γ|D ∪̇ {v′|v∈B} is a 1-1 linear transfor-

mation and (D ∪̇ {v′ | v ∈ B})γ = B2 ∪̇ {v′′ | v ∈ B}, so ker γ = 〈C〉 (Remark

2.9(7)). Since C ⊆ B1, C is a basis of ker γ. Hence dimF ker γ = |C| = q, so

γ ∈ DBLF (V, q). Next, we claim that β = γα on B1 ∪̇ {v′ | v ∈ B}. If u ∈ C,

then u ∈ B1, so uβ = 0 = 0α = (uγ)α = uγα. If u ∈ D, then u ∈ B1, so

uβ = 0 = (uϕ)α = (uγ)α = uγα. If v ∈ B, then v′β = v = v′′α = (v′γ)α = v′γα.

These show that β = γα on B1 ∪̇ {v′ | v ∈ B}, so β = γα. This implies
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that DBLF (V, q) ⊆ DBLF (V, q)α. Thus DBLF (V, q)α = DBLF (V, q) for all

α ∈ DBLF (V, q). By Theorem 2.1(i), DBLF (V, q) is left simple, as desired.

Theorem 4.14.

(i) LReg(DBLF (V, q)) = DBLF (V, q).

(ii) RReg(DBLF (V, q)) = ∅.

Proof. (i) Let α ∈ DBLF (V, q). By Lemma 4.13, DBLF (V, q) is left simple.

By Theorem 2.1(i), DBLF (V, q) = DBLF (V, q)α2. Then α = βα2 for some

β ∈ DBLF (V, q). Thus α ∈ LReg(DBLF (V, q)).

(ii) Suppose that RReg(DBLF (V, q)) 6= ∅. Let α ∈ RReg(DBLF (V, q)).

Then α = α2β for some β ∈ DBLF (V, q). Since α is onto, we have 1V = αβ. This

implies that α is 1-1, which is contrary to that dimF kerα = q.

The definition of KNF (V, q) is recalled as follows:

KNF (V, q) = {α ∈ LF (V ) | α is 1-1 and dimF (V/ ranα) ≥ q}

where dimF V ≥ q ≥ ℵ0.

Theorem 4.15.

(i) LReg(KNF (V, q)) = ∅.

(ii) RReg(KNF (V, q)) = KNF (V, q).

Proof. (i) The proof of Theorem 3.14(i) shows that (i) holds.

(ii) Let α ∈ KNF (V, q). Then dimF (V/ ranα) ≥ q, so dimF (V/ ranα) is

infinite. Since α ∈ MF (V ), we have that dimF (V/ ranα2) = dimF (V/ ranα) +

dimF (V/ ranα) (see p. 9), so dimF (V/ ranα2) = dimF (V/ ranα). Let B be a basis

of V . Since α is a 1-1 linear transformation, we have that Bα and Bα2 are bases

of ranα and ranα2, respectively. Let B′ and B′′ be bases of V containing Bα

and Bα2, respectively. Then |B′ r Bα| = dimF (V/ ranα) = dimF (V/ ranα2) =
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|B′′rBα2|. Since B′rBα is infinite, B′rBα = C ∪̇D for some C,D ⊆ B′rBα

such that |C| = |D| = |B′rBα|. But |B′′rBα2| = |B′rBα|, we have a bijection

ϕ from B′′ rBα2 onto C. Define β ∈ LF (V ) on B′′ by

β =

uα2 v

uα vϕ


u∈B
v∈B′′rBα2

.

Since α is 1-1, we have that β is well-defined. Note that Bα ∪̇ C is linearly

independent and B′′β = Bα ∪̇ C. It follows that β ∈ MF (V ) (Remark 2.9(8)).

By the definition of β, α = α2β on B, so α = α2β on V . Since β is a 1-1 linear

transformation, we have B′′β is a basis of ran β. Since B′′β = Bα ∪̇ C, we have

Bα ∪̇ C is a basis of ran β. It follows that dimF (V/ ran β) = |B′ r (Bα ∪̇ C)| =

|D| = |B′ r Bα| = dimF (V/ ranα) ≥ q. This means that β ∈ KNF (V, q) and

α = α2β. Therefore α ∈ RReg(KNF (V, q)), as desired.

Finally, recall that

LrfF (V ) = {α ∈ LF (V ) | dimF ranα is finite}.

Lemma 4.16. For any α, β ∈ LrfF (V ),

αLβ in LrfF (V )⇔ ranα = ran β.

Proof. For any α, β ∈ LrfF (V ), if αLβ in LrfF (V ), then we also have αLβ in

LF (V ). By Theorem 2.6(i), ranα = ran β.

Next, we will prove the converse by using the proof of Lemma 2 in [17]. Let

α, β ∈ LrfF (V ), B1 a basis of kerα and B a basis of V containing B1. Then

{vα | v ∈ B r B1} is a basis of ranα (= ran β). For each v ∈ B r B1, we choose

v′ ∈ (vα)β−1. Define γ ∈ LF (V ) on B by

γ =

u v

0 v′


u∈B1
v∈BrB1

.
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If u ∈ B1, then uα = 0 = (uγ)β. If v ∈ B r B1, then vγβ = v′β = vα. This

shows that α = γβ on B. Moreover, we will prove {v′ | v ∈ B r B1} is a basis of

ran γ. To verify that {v′ | v ∈ BrB1} is linearly independent, let
∑

v∈BrB1

avv
′ = 0

where av ∈ F for all v ∈ B r B1. Then
∑

v∈BrB1

av(vα) =
∑

v∈BrB1

av(v
′β) =( ∑

v∈BrB1

avv
′

)
β = 0, so av = 0 for all v ∈ BrB1. By the definition of γ, we have

that {v′ | v ∈ BrB1} is a basis of ran γ. Note that |{v′ | v ∈ BrB1}| = |BrB1|.

Since (B rB1)α is a basis of ranα and |B rB1| = |(B rB1)α| (Remark 2.9(9)),

it follows that {v′ | v ∈ B rB1} is finite. Therefore γ ∈ LrfF (V ) and α = γβ, as

required. A similar argument implies that β = λα for some λ ∈ LrfF (V ). Hence

αLβ in LrfF (V ).

Lemma 4.17. For any α, β ∈ LrfF (V ),

αRβ in LrfF (V )⇔ kerα = ker β.

Proof. Let α, β ∈ LrfF (V ) be such that αRβ in LrfF (V ). Then αRβ in LF (V ).

By Theorem 2.6(ii), kerα = ker β.

We will prove the converse by using the proof of Lemma 3 in [17]. Let B1 be

a basis of kerα (= ker β), B a basis of V containing B1. We know that (BrB1)α

and (B rB1)β are bases of ranα and ran β, respectively and dimF ranα = |(B r

B1)α| = |B r B1| = |(B r B1)β| = dimF ran β. Let B′ and B′′ be bases of V

containing (B rB1)α and (B rB1)β, respectively. Define γ ∈ LF (V ) on B′′ and

λ ∈ LF (V ) on B′ by

γ =

vβ u

vα 0


v∈BrB1
u∈B′′r((BrB1)β)

and λ =

vα u

vβ 0


v∈BrB1
u∈B′r((BrB1)α)

.

Since kerα = ker β, γ and λ are well-defined. We also have that α = βγ and

β = αλ on B. Then α = βγ and β = αλ on V . Since α, β ∈ LrfF (V ), (BrB1)α
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and (B r B1)β are finite. But ran γ = 〈(B r B1)α〉 and ranλ = 〈(B r B1)β〉,

so we have that dimF ran γ = |(B r B1)α| and dimF ranλ = |(B r B1)β|. Hence

γ, λ ∈ LrfF (V ). This proves that αRβ in LrfF (V ).

Lemma 4.18. For any α ∈ LrfF (V ) and β ∈ LF (V ),

ranα = ranαβα⇔ kerα = kerαβα.

In particular, for any α ∈ LrfF (V ),

ranα = ranα2 ⇔ kerα = kerα2.

Proof. Let α ∈ LrfF (V ) and β ∈ LF (V ). We assume that ranα = ranαβα. Let

B1 be a basis of kerα, B2 a basis of kerαβα containing B1 and B a basis of V

containing B2. Then (B r B1)α is a basis of ranα, |(B r B1)α| = |B r B1|,

(B rB2)αβα is a basis of ranαβα and |(B rB2)αβα| = |B rB2|. Since ranα =

ranαβα, it follows that

|B rB2| = |(B rB2)αβα|

= |(B rB1)α|

= |B rB1|

= |B rB2|+ |B2 rB1|.

But dimF ranα is finite, so BrB2 is a finite set. This implies that |B2 rB1| = 0.

Thus B1 = B2. Consequently, kerα = 〈B1〉 = 〈B2〉 = kerαβα.

To show the converse, assume that kerα = kerαβα. Let B1 be a basis of kerα

(= kerαβα). Then (BrB1)α is a basis of ranα, (BrB1)αβα is a basis of ranαβα

and |(BrB1)α| = |BrB1| = |(BrB1)αβα|. Thus dimF ranα = dimF ranαβα.

Since dimF ranα is finite and ranαβα is a subspace of ranα, it follows that

ranα = ranαβα.

Therefore the lemma is proved.
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Theorem 4.19. LReg(LrfF (V )) = {α ∈ LrfF (V ) | α|ranα ∈ GF (ranα)}

= RReg(LrfF (V )).

Proof. By Lemma 4.16, LReg(LrfF (V )) = {α ∈ LrfF (V ) | ranα = ranα2}. By

Lemma 4.17, RReg(LrfF (V )) = {α ∈ LrfF (V ) | kerα = kerα2}. By Lemma

4.18, LReg(LrfF (V )) = RReg(LrfF (V )).

Next, we will show that LReg(LrfF (V ))={α ∈ LrfF (V ) |α|ranα∈ GF (ranα)}.

If α|ranα ∈ GF (ranα), then ranα = (ranα)α = ranα2, so α ∈ LReg(LrfF (V )).

Let α ∈ LReg(LrfF (V )). Then ranα = ranα2. Thus (ranα)α = ranα2 = ranα,

i.e., α|ranα : ranα→ ranα is onto. Let B be a basis of ranα. Then 〈B〉 = ranα =

ranα2 = (ranα)α = 〈B〉α = 〈Bα〉. Since 〈Bα〉 = ranα2, we have that there

exists a basis C of ranα2 contained in Bα. Then |B| = |C| ≤ |Bα| ≤ |B|, so

|B| = |C| = |Bα|. Since B is finite and C ⊆ Bα, it follows that Bα = C which

is a finite basis of ranα2. Then Bα is linearly independent and vα 6= wα for all

distinct v, w ∈ B. Thus α|B : B → Bα is a bijection. This implies that α|ranα is a

1-1 linear transformation from ranα onto 〈Bα〉. But ranα = ranα2 = 〈Bα〉, so

α|ranα : ranα→ ranα is an isomorphism. Hence α|ranα ∈ GF (ranα).

The proof is thereby completed.



CHAPTER V

VARIANTS OF SEMIGROUPS OF

TRANSFORMATIONS OF SETS

In this chapter, the left regular and right regular elements of the variants of

the well-known transformation semigroups T (X), P (X) and I(X) on a nonempty

set X and those semigroups in Chapter III are determined.

Assume that X is a nonempty set. We first determine LReg(S(X), θ) and

RReg(S(X), θ) where S(X) is T (X), P (X) or I(X) and θ ∈ S(X).

Theorem 5.1. For any θ ∈ T (X),

(i) LReg(T (X), θ) = {α ∈ T (X) | ranα = ranαθα};

(ii) RReg(T (X), θ) = {α ∈ T (X) | πα = παθα}.

Proof. Let θ ∈ T (X).

(i) Let α ∈ LReg(T (X), θ). Then α = βθ(αθα) for some β ∈ T (X), so αLαθα

in T (X). By Theorem 2.4(i), ranα = ranαθα.

For the converse, assume α ∈ T (X) such that

ranα = ranαθα.

Since ranα = ranαθα ⊆ ran θα ⊆ ranα, we have that ranα = ran θα. Thus

ranαθα = (ranα)θα = (ran θα)θα = ran θαθα.

It follows that ranα = ran θαθα, so αLθαθα in T (X) by Theorem 2.4(i). Then

α = βθαθα for some β ∈ T (X). This means that α ∈ LReg(T (X), θ).

(ii) If α ∈ RReg(T (X), θ), then α = (αθα)θβ for some β ∈ T (X). By Theorem

2.4(ii), πα = παθα.
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Conversely, let α ∈ T (X) be such that πα = παθα. By Theorem 2.4(ii),

αRαθα in T (X). ButR is left compatible,(αθ)αR(αθ)αθα in T (X), so αRαθαθα

in T (X). Thus α = αθαθαβ for some β ∈ T (X). This implies that α ∈

RReg(T (X), θ).

Theorem 5.2. For any θ ∈ P (X),

(i) LReg(P (X), θ) = {α ∈ P (X) | ranα = ranαθα};

(ii) RReg(P (X), θ) = {α ∈ P (X) | πα = παθα}.

Proof. Let θ ∈ P (X).

(i) Let α ∈ LReg(P (X), θ). Then there is β ∈ P (X) such that α = βθ(αθα).

Thus αLαθα in P (X). By Theorem 2.5(i), ranα = ranαθα.

For the reverse inclusion, assume α ∈ P (X) such that

ranα = ranαθα.

Then ranα = ranαθα ⊆ ran θα ⊆ ranα, so ranα = ran θα. Thus

ranαθα = (ranα ∩ dom θα)θα = (ran θα ∩ dom θα)θα = ran θαθα.

It follows that ranα = ran θαθα. Again by Theorem 2.5(i), αLθαθα in P (X), so

there is β ∈ P (X) such that α = βθαθα. This implies that α ∈ LReg(P (X), θ),

so the result follows.

(ii) It can be proved in the same way as the proof of Theorem 5.1(ii) by using

Theorem 2.5(ii) instead of Theorem 2.4(ii).

Theorem 5.3. For any θ ∈ I(X),

(i) LReg(I(X), θ) = {α ∈ I(X) | ranα = ranαθα};

(ii) RReg(I(X), θ) = {α ∈ I(X) | domα = domαθα}.

Proof. Let θ ∈ I(X).

(i) By using Theorem 2.7(i) instead of Theorem 2.5(i), the proof is given in

the same way as that of Theorem 5.2(i).
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(ii) If α ∈ RReg(I(X), θ), then α ∈ RReg(P (X), θ), so by Theorem 5.2(ii),

πα = παθα, and hence domα = domαθα.

For the converse, assume that domα = domαθα. By Theorem 2.7(ii), αRαθα

in I(X). Then (αθ)αR(αθ)αθα in I(X). These imply that αRαθαθα in I(X).

Thus α = αθαθαβ for some β ∈ I(X). This means that α ∈ RReg(I(X), θ).

In the remainder, assume that X is infinite. We shall determine LReg(S(X), θ)

and RReg(S(X), θ) where S(X) = M(X),M(X) r G(X), E(X), E(X) r G(X),

BL(X, q), DBL(X, q), KN(X, q), T rf(X), P rf(X) and Irf(X) where |X| ≥ q ≥

ℵ0 and θ ∈ S(X).

Theorem 5.4. The following statements hold for θ ∈M(X).

(i) If θ ∈ G(X), then LReg(M(X), θ) = LReg(M(X)).

(ii) If θ /∈ G(X), then LReg(M(X), θ) = ∅.

(iii) If θ ∈ G(X), then RReg(M(X), θ) = RReg(M(X)).

(iv) If θ /∈ G(X), then RReg(M(X), θ)={α∈M(X) | |Xrranα|= |Xrranαθα|}.

Proof. Let θ ∈M(X).

(i) Assume that θ ∈ G(X). Let α ∈ LReg(M(X), θ). Then α = βθ(αθα) for

some β ∈ M(X). Thus 1X = βθαθ since α is 1-1, so βθα = θ−1 ∈ G(X). This

implies that α is onto. Hence α ∈ G(X), so α ∈ LReg(M(X)).

Conversely, let α ∈ LReg(M(X)). By Theorem 3.2, α ∈ G(X), so (θαθ)−1 ∈

G(X) ⊆M(X). Since α = (θαθ)−1θ(αθα), we have that α ∈ LReg(M(X), θ).

(ii) Assume θ /∈ G(X). Then θ is not onto. Suppose that LReg(M(X), θ) 6= ∅.

Let α ∈ LReg(M(X), θ). Then α = βθ(αθα) for some β ∈ M(X), so 1X = βθαθ

since α is 1-1. Thus θ is onto, a contradiction.

(iii) By Theorem 3.4, we have that RReg(M(X)) = {α ∈ M(X) | ranα =

X or X r ranα is infinite}. Assume θ ∈ G(X). Let α ∈ RReg(M(X), θ). Then

α = (αθα)θβ for some β ∈ M(X). Since θβ ∈ M(X), αRαθα in M(X). Then

θαRθαθα in M(X) and thus θα ∈ RReg(M(X)). This means that ran θα = X

or X r ran θα is infinite. Since θ is onto, ran θα = ranα. Therefore ranα = X or
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X r ranα is infinite. That is, α ∈ RReg(M(X)).

For the reverse inclusion, let α ∈ RReg(M(X)). Since θ is onto, ran θα =

ranα. Thus |X r ran θα| = |X r ranα|, so αRθα in M(X) by Lemma 3.3. Then

α2Rαθα in M(X). Since αRα2 in M(X), we have αRαθα in M(X). Hence

there exists β ∈ M(X) such that α = αθαβ. Then α = αθαθ(θ−1β). Since

θ−1β ∈M(X), α ∈ RReg(M(X), θ).

(iv) Assume θ /∈ G(X). Then θ is not onto. Let α ∈ RReg(M(X), θ). Then

there exists β ∈M(X) such that α = (αθα)θβ. Thus αRαθα in M(X). That is,

|X r ranα| = |X r ranαθα| by Lemma 3.3.

Conversely, let α ∈ M(X) be such that |X r ranα| = |X r ranαθα|. Then

αRαθα in M(X). Thus (αθ)αR(αθ)αθα in M(X). It follows that αRαθαθα

in M(X). Hence α = αθαθαβ for some β ∈ M(X). Since αβ ∈ M(X), α ∈

RReg(M(X), θ).

Lemma 5.5. For θ ∈M(X), if θ /∈ G(X), then RReg(M(X), θ) ⊆ RReg(M(X)).

Proof. Let θ ∈ M(X) r G(X) and α ∈ RReg(M(X), θ). By Theorem 5.4(iv),

|X r ranα| = |X r ranαθα|. We have that ranαθα = Xαθα ⊆ Xθα ( Xα =

ranα since θ is not onto and α is 1-1. Then X r ranα ( X r ranαθα. But

|X r ranα| = |X r ranαθα|, so we have X r ranα is infinite. By Theorem 3.4,

α ∈ RReg(M(X)). This proves that RReg(M(X), θ) ⊆ RReg(M(X)).

Corollary 5.6. For any θ ∈M(X) rG(X),

(i) LReg(M(X) rG(X), θ) = ∅;

(ii) RReg(M(X) rG(X), θ) = {α ∈M(X) | X r ranα is infinite and

|X r ranα| ≥ |X r ran θ|}.

Proof. Let θ ∈M(X) rG(X).

(i) Since LReg(M(X) r G(X), θ) ⊆ LReg(M(X), θ), by Theorem 5.4(ii),

LReg(M(X) rG(X), θ) = ∅.

(ii) Let α ∈ RReg(M(X) r G(X), θ). Since RReg(M(X) r G(X), θ) ⊆

RReg(M(X), θ), α ∈ RReg(M(X), θ). By Theorem 5.4(iv), |X r ranα| = |X r
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ranαθα|. We also have that α ∈ RReg(M(X)) by Lemma 5.5. But ranα 6= X, by

Theorem 3.4, X r ranα is infinite. Since ranαθα ⊆ ran θα ⊆ ranα, X r ranα ⊆

X r ran θα ⊆ X r ranαθα. It follows that |X r ranα| = |X r ran θα|. Conse-

quently,

|X r ranα| = |X r ran θα|

= |X r ranα|+ | ranαr ran θα|

= |X r ranα|+ |XαrXθα|

= |X r ranα|+ |(X rXθ)α| (since α is 1-1)

= |X r ranα|+ |X rXθ| (since α is 1-1)

= |X r ranα|+ |X r ran θ|,

which implies that |X r ranα| ≥ |X r ran θ|.

For the reverse inclusion, let α ∈ M(X) be such that X r ranα is infinite

and |X r ranα| ≥ |X r ran θ|. Since X r ranα ⊆ X r ran θα, we have that

X r ran θα is also infinite. By Corollary 3.5, θα ∈ RReg(M(X) r G(X)), i.e.,

θαR(θα)2 in M(X)rG(X), so θαR(θα)2 in M(X). By Lemma 3.3, |Xrran θα| =

|X r ran(θα)2| = |X r ran θαθα|. Since ran θαθα ⊆ ranαθα ⊆ ran θα, we have

|Xr ran θα| ≤ |Xr ranαθα| ≤ |Xr ran θαθα| = |Xr ran θα|. This implies that

|Xrran θα| = |Xrranαθα|. Since Xrranα is infinite, |Xrran θ| ≤ |Xrranα|

and α is 1-1, it follows that

|X r ran θα| = |X r ranα|+ | ranαr ran θα|

= |X r ranα|+ |XαrXθα|

= |X r ranα|+ |(X rXθ)α|

= |X r ranα|+ |X rXθ|

= |X r ranα|+ |X r ran θ|

= |X r ranα|.

Hence |X r ranα| = |X r ran θα| = |X r ranαθα|. By Theorem 5.4(iv), α ∈

RReg(M(X), θ). Thus α = (αθα)θβ for some β ∈ M(X). It follows that α =
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αθαθβ = αθ(αθαθβ)θβ = (αθα)θ(αθβθβ). Since α ∈M(X)rG(X) and M(X)r

G(X) is an ideal of M(X), we have that αθβθβ ∈ M(X) r G(X). Therefore

α ∈ RReg(M(X) rG(X), θ), as required.

Theorem 5.7. For any θ ∈ E(X),

LReg(E(X), θ) = {α ∈ E(X) | |xα−1| = |x(αθα)−1| for all x ∈ X}.

Proof. Let θ ∈ E(X) and α = βθ(αθα) for some β ∈ E(X). Since βθ ∈ E(X),

αLαθα in E(X). By Lemma 3.6, |xα−1| = |x(αθα)−1| for all x ∈ X.

For the converse, we assume that α ∈ E(X) and |xα−1| = |x(αθα)−1| for all

x ∈ X. By Lemma 3.6, we have αLαθα in E(X). Since L is right compatible,

α(θα)Lαθα(θα) in E(X). Then αLαθαθα in E(X), so α = βαθαθα for some

β ∈ E(X). This means that α ∈ LReg(E(X), θ).

Theorem 5.8. The following statements hold for θ ∈ E(X).

(i) If θ ∈ G(X), then RReg(E(X), θ) = RReg(E(X)).

(ii) If θ /∈ G(X), then RReg(E(X), θ) = ∅.

Proof. Let θ ∈ E(X).

(i) Assume that θ ∈ G(X). Let α ∈ RReg(E(X), θ). Then α = (αθα)θβ for

some β ∈ E(X). Thus 1X = θαθβ since α is onto. This implies that αθβ = θ−1 ∈

G(X). It follows that α is 1-1, which implies that α ∈ G(X). Consequently,

α ∈ RReg(E(X)).

Conversely, if α ∈ RReg(E(X)), then by Theorem 3.8, α ∈ G(X), so θαθ ∈

G(X). Hence (θαθ)−1 ∈ G(X) ⊆ E(X) and α = αθαθ(θαθ)−1. This means that

α ∈ RReg(E(X), θ).

(ii) Assume that α ∈ RReg(E(X), θ). Then α = (αθα)θβ for some β ∈ E(X).

Since α is onto, 1X = θαθβ. This implies that θ is 1-1, so θ ∈ G(X). This proves

that if θ /∈ G(X), then RReg(E(X), θ) = ∅.
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Corollary 5.9. For any θ ∈ E(X) rG(X),

(i) LReg(E(X) rG(X), θ) = {α∈E(X) rG(X) | |xα−1|= |x(αθα)−1|

for all x ∈ X};

(ii) RReg(E(X) rG(X), θ) = ∅.

Proof. Let θ ∈ E(X) rG(X).

(i) Let α ∈ LReg(E(X) r G(X), θ). Then α ∈ LReg(E(X), θ). By Theorem

5.7, |xα−1| = |x(αθα)−1| for all x ∈ X.

For the reverse inclusion, let α ∈ E(X) r G(X) be such that |xα−1| =

|x(αθα)−1| for all x ∈ X. By Theorem 5.7, α ∈ LReg(E(X), θ). Then α =

βθ(αθα) for some β ∈ E(X), so α = βθαθα = βθ(βθαθα)θα = (βθβθα)θαθα.

Since α ∈ E(X) r G(X) and E(X) r G(X) is an ideal of E(X), we have that

βθβθα ∈ E(X) rG(X). This implies that α ∈ LReg(E(X) rG(X), θ).

(ii) Since RReg(E(X) r G(X), θ) ⊆ RReg(E(X), θ), by Theorem 5.8(ii), the

result follows.

Theorem 5.10. For any θ ∈ BL(X, q),

(i) LReg(BL(X, q), θ) = ∅;

(ii) RReg(BL(X, q), θ) = BL(X, q).

Proof. Let θ ∈ BL(X, q). Then |X r ran θ| = q ≥ ℵ0.

(i) Suppose that there exists α ∈ LReg(BL(X, q), θ). Then α = βθ(αθα) for

some β ∈ BL(X, q). Since α is 1-1, 1X = βθαθ. Hence θ is onto, which is contrary

to |X r ran θ| = q ≥ ℵ0. Consequently, LReg(BL(X, q), θ) = ∅.

(ii) Let α ∈ BL(X, q). We know that BL(X, q) is right simple from Theo-

rem 2.2. By Theorem 2.1(ii), BL(X, q) = (αθαθ)BL(X, q). Then α = αθαθβ

for some β ∈ BL(X, q). This means that α ∈ RReg(BL(X, q), θ). Therefore

RReg(BL(X, q), θ) = BL(X, q).

A dual version of the previous theorem can be shown in a similar manner.
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Theorem 5.11. For any θ ∈ DBL(X, q),

(i) LReg(DBL(X, q), θ) = DBL(X, q);

(ii) RReg(DBL(X, q), θ) = ∅.

Theorem 5.12. For any θ ∈ KN(X, q),

(i) LReg(KN(X, q), θ) = ∅;

(ii) RReg(KN(X, q), θ) = {α ∈ KN(X, q) | |X r ranα| ≥ |X r ran θ|}.

Proof. Let θ ∈ KN(X, q). Then |X r ran θ| ≥ q ≥ ℵ0.

(i) If α ∈ LReg(KN(X, q), θ), then α = βθ(αθα) for some β ∈ KN(X, q),

thus 1X = βθαθ since α is 1-1 and hence θ is onto, a contradiction. Therefore

LReg(KN(X, q), θ) = ∅.

(ii) Let α ∈ RReg(KN(X, q), θ). Since KN(X, q) ⊆ M(X) r G(X), α ∈

RReg(M(X) rG(X), θ). By Corollary 5.6(ii), |X r ranα| ≥ |X r ran θ|.

For the converse, let α ∈ KN(X, q) such that |X r ranα| ≥ |X r ran θ|.

By Corollary 5.6(ii), α ∈ RReg(M(X) r G(X), θ). Then α = (αθα)θβ for some

β ∈ M(X) r G(X), so α = αθαθβ = αθ(αθαθβ)θβ = αθαθ(αθβθβ). We will

consider |X r ranαθβθβ|. Since ranαθβθβ ⊆ ran θβθβ, we have that

|X r ranαθβθβ| = |X r ran θβθβ|+ | ran θβθβ r ranαθβθβ|

= |X r ran θβθβ|+ |Xθβθβ rXαθβθβ|

= |X r ran θβθβ|+ |(X rXα)θβθβ| (since θβθβ is 1-1)

= |X r ran θβθβ|+ |X rXα| (since θβθβ is 1-1)

≥ |X rXα|

= |X r ranα| ≥ q.

From this, we obtain αθβθβ ∈ KN(X, q) such that α = αθαθ(αθβθβ). This

means that α ∈ RReg(KN(X, q), θ), as required.

Theorem 5.13. For any θ ∈ Trf(X),
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LReg(Trf(X), θ) = {α ∈ Trf(X) | (θα)|ran θα ∈ G(ran θα) and

ran θα = ranα}

= RReg(Trf(X), θ).

Proof. Let θ ∈ Trf(X) and α ∈ LReg(Trf(X), θ). Then α = βθ(αθα) for

some β ∈ Trf(X). This means that αLθαθα in Trf(X). By Lemma 3.15,

ranα = ran θαθα. Since α = βθαθα, we have θα = θβθαθα = θβ(θα)2, so

θα ∈ LReg(Trf(X)). By Theorem 3.18, (θα)|ran θα ∈ G(ran θα), which implies

that ran θαθα = ran θα. Hence ran θα = ranα.

Conversely, let α ∈ Trf(X) be such that (θα)|ran θα ∈ G(ran θα) and ran θα =

ranα. Then ran θαθα = (ran θα)θα = ran θα = ranα. By Lemma 3.15, we have

αLθαθα in Trf(X), so α = βθαθα for some β ∈ Trf(X). This means that

α ∈ LReg(Trf(X), θ).

Next, we will show that LReg(Trf(X), θ) = RReg(Trf(X), θ).

Let α ∈ LReg(Trf(X), θ). Then there exists β ∈ Trf(X) such that α =

βθ(αθα). Thus αLαθα in Trf(X). By Lemma 3.15, ranα = ranαθα. Hence

πα = παθα by Lemma 3.17. By Lemma 3.16, αRαθα in Trf(X), so α = (αθα)γ

for some γ ∈ Trf(X). Therefore α = αθαγ = αθ(αθαγ)γ = αθαθ(αγγ). This

implies that α ∈ RReg(Trf(X), θ).

For the reverse inclusion, let α ∈ RReg(Trf(X), θ). Then α = (αθα)θβ for

some β ∈ Trf(X), so αRαθα in Trf(X). By Lemma 3.16, πα = παθα. By Lemma

3.17, ranα = ranαθα. Thus we have that αLαθα in Trf(X) by Lemma 3.15, so

α = γαθα for some γ ∈ Trf(X). Hence α = γαθα = γ(γαθα)θα = (γγα)θαθα.

This means that α ∈ LReg(Trf(X), θ).

This completes the proof of the theorem.

Theorem 5.14. For any θ ∈ Prf(X),

LReg(Prf(X), θ) = {0} ∪ {α ∈ Prf(X) | ∅ 6= ranα = ran θα ⊆ dom θα

and (θα)|ran θα ∈ G(ran θα)}

= RReg(Prf(X), θ).
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Proof. Let θ ∈ Prf(X). We assume that α ∈ LReg(Prf(X), θ). Then there is

β ∈ Prf(X) such that α = βθ(αθα), so αLθαθα in Prf(X). Thus ranα =

ran θαθα by Lemma 3.15. Since θα = θβθαθα, θα ∈ LReg(Prf(X)), i.e.,

θαL(θα)2 in Prf(X). By Lemma 3.15, ran θα = ran θαθα and hence ran θα =

ranα. By Theorem 3.20, θα = 0 or ∅ 6= ranα = ran θα ⊆ dom θα and (θα)|ran θα ∈

G(ran θα). If θα = 0, then α = βθαθα = 0.

For the converse, if α = 0, then we are done. Assume that α ∈ Prf(X) and

∅ 6= ranα = ran θα ⊆ dom θα and (θα)|ran θα ∈ G(ran θα). By Theorem 3.20,

θα ∈ LReg(Prf(X)). By Lemma 3.15, ran θαθα = ran θα. Since ran θα = ranα,

we have that ran θαθα = ranα. By Lemma 3.15, αLθαθα in Prf(X), so α =

βθαθα for some β ∈ Prf(X). This means that α ∈ LReg(Prf(X), θ).

The proof of that LReg(Prf(X), θ) = RReg(Prf(X), θ) is given in the same

way as the proof of that LReg(Trf(X), θ) = RReg(Trf(X), θ) by using Lemma

3.19 instead of Lemma 3.16.

Therefore the theorem is obtained.

Theorem 5.15. For any θ ∈ Irf(X),

(i) LReg(Irf(X), θ) = {α ∈ Irf(X) | dom θα = ran θα = ranα};

(ii) RReg(Irf(X), θ) = {α ∈ Irf(X) | domα = domαθ = ranαθ}.

Proof. Let θ ∈ Irf(X).

(i) Let α ∈ LReg(Irf(X), θ). Then α = βθ(αθα) where β ∈ Irf(X), so

αLθαθα in Irf(X). By Lemma 3.15, ranα = ran θαθα. Since θα = θβθαθα,

θαLθαθα in Irf(X), so ran θα = ran θαθα. Moreover, θα ∈ LReg(Irf(X)). By

Theorem 3.21, dom θα = ran θα. It follows that dom θα = ran θα = ran θαθα =

ranα.

For the reverse inclusion, let α ∈ Irf(X) be such that dom θα = ran θα =

ranα. By Theorem 3.21, θα ∈ LReg(Irf(X)), i.e., θαLθαθα in Irf(X). We also

have that αLθα in Irf(X) by Lemma 3.15. Then αLθαθα in Irf(X). Therefore

α = βθαθα for some β ∈ Irf(X). This implies that α ∈ LReg(Irf(X), θ).

(ii) Let α = αθαθβ where β ∈ Irf(X). Then αRαθαθ in Irf(X). By Lemma
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3.22, domα = domαθαθ. We also have that αθ = αθαθβθ. This implies that

αθ ∈ RReg(Irf(X)). By Lemma 3.22 and Theorem 3.23, we have respectively

that

domαθ = domαθαθ and domαθ = ranαθ.

It follows that domα = domαθαθ = domαθ = ranαθ.

For the converse, let α ∈ Irf(X) be such that domα = domαθ = ranαθ.

By Lemma 3.22 and Theorem 3.23, αRαθ and αθRαθαθ in Irf(X), respectively.

Then αRαθαθ in Irf(X). Thus α = αθαθβ for some β ∈ Irf(X). This means

that α ∈ RReg(Irf(X), θ).



CHAPTER VI

VARIANTS OF SEMIGROUPS OF LINEAR

TRANSFORMATIONS

In the last chapter, the left regular and right regular elements of the variants

of the semigroup LF (V ) and those semigroups in Chapter IV are characterized.

Comparing with the results in Chapter V, we obtain the results in this chapter

accordingly.

Throughout this chapter, let V be a vector space over a field F .

Theorem 6.1. For any θ ∈ LF (V ),

(i) LReg(LF (V ), θ) = {α ∈ LF (V ) | ranα = ranαθα};

(ii) RReg(LF (V ), θ) = {α ∈ LF (V ) | kerα = kerαθα}.

Proof. Let θ ∈ LF (V ).

(i) Let α ∈ LReg(LF (V ), θ). Then α = βθ(αθα) for some β ∈ LF (V ). Thus

αLαθα in LF (V ). By Theorem 2.6(i), ranα = ranαθα.

For the converse, let α ∈ LF (V ) be such that ranα = ranαθα. By Theo-

rem 2.6(i), αLαθα in LF (V ). Then α(θα)Lαθα(θα) in LF (V ), so αLαθαθα in

LF (V ). Therefore α = βαθαθα for some β ∈ LF (V ). This means that α ∈

LReg(LF (V ), θ).

(ii) Let α ∈ RReg(LF (V ), θ). Then α = (αθα)θβ for some β ∈ LF (V ). Thus

αRαθα in LF (V ). By Theorem 2.6(ii), kerα = kerαθα.

Conversely, let α ∈ LF (V ) be such that kerα = kerαθα. By Theorem 2.6(ii),

αRαθα in LF (V ). Thus (αθ)αR(αθ)αθα in LF (V ). Then αRαθαθα in LF (V ),

so α = αθαθαβ for some β ∈ LF (V ). This implies that α ∈ RReg(LF (V ), θ).
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From now on, we assume that V is infinite-dimensional. We will characterize

LReg(SF (V ), θ) and RReg(SF (V ), θ) where SF (V ) = MF (V ), MF (V ) r GF (V ),

EF (V ), EF (V )rGF (V ), BLF (V, q), DBLF (V, q), KNF (V, q) and LrfF (V ) where

dimF V ≥ q ≥ ℵ0 and θ ∈ SF (V ).

Theorem 6.2. The following statements hold for θ ∈MF (V ).

(i) If θ ∈ GF (V ), then LReg(MF (V ), θ) = LReg(MF (V )).

(ii) If θ /∈ GF (V ), then LReg(MF (V ), θ) = ∅.

(iii) If θ ∈ GF (V ), then RReg(MF (V ), θ) = RReg(MF (V )).

(iv) If θ /∈ GF (V ), then RReg(MF (V ), θ) = {α ∈MF (V ) | dimF (V/ ranα) =

dimF (V/ ranαθα)}.

Proof. The proof is given in the same way as that of Theorem 5.4 by using Theo-

rem 4.2, Theorem 4.4 and Lemma 4.3 instead of Theorem 3.2, Theorem 3.4 and

Lemma 3.3, respectively.

Lemma 6.3. If θ ∈MF (V ) rGF (V ), then RReg(MF (V ), θ) ⊆ RReg(MF (V )).

Proof. Let θ ∈ MF (V ) rGF (V ) and α ∈ RReg(MF (V ), θ). By Theorem 6.2(iv),

dimF (V/ ranα) = dimF (V/ ranαθα). Since θ is not onto and α is 1-1, we have

V αθα ⊆ V θα ( V α, so ranαθα ( ranα. Suppose that dimF (V/ ranα) is finite.

Let B1 be a basis of ranαθα, B2 a basis of ranα containing B1 and B a basis of

V containing B2. Then

|B rB2| = dimF (V/ ranα)

= dimF (V/ ranαθα)

= |B rB1|

= |B rB2|+ |B2 rB1|.

Since B r B2 is finite, we have |B2 r B1| = 0, so B1 = B2. This contradicts the

fact that ranαθα ( ranα. Hence dimF (V/ ranα) is infinite. By Theorem 4.4,

α ∈ RReg(MF (V )).
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Corollary 6.4. For any θ ∈MF (V ) rGF (V ),

(i) LReg(MF (V ) rGF (V ), θ) = ∅;

(ii) RReg(MF (V ) rGF (V ), θ) = {α ∈MF (V ) | dimF (V/ ranα) is infinite and

dimF (V/ ranα) ≥ dimF (V/ ran θ)}.

Proof. Let θ ∈MF (V ) rGF (V ).

(i) Since LReg(MF (V ) r GF (V ), θ) ⊆ LReg(MF (V ), θ), by Theorem 6.2(ii),

we have that LReg(MF (V ) rGF (V ), θ) = ∅.

(ii) Let α ∈ RReg(MF (V )rGF (V ), θ). Then α∈ RReg(MF (V ), θ). By Lemma

6.3, α ∈ RReg(MF (V )). Since α is not onto, by Theorem 4.4, dimF (V/ ranα)

is infinite. Since α ∈ RReg(MF (V ), θ), by Theorem 6.2(iv), dimF (V/ ranα) =

dimF (V/ ranαθα). Since α, θ ∈MF (V ), it follows that

dimF (V/ ranα) = dimF (V/ ranαθα)

= dimF (V/ ranα) + dimF (V/ ran θα) (see p. 9)

= dimF (V/ ranα) + dimF (V/ ran θ) + dimF (V/ ranα)

= dimF (V/ ranα) + dimF (V/ ran θ).

This implies that dimF (V/ ran θ) ≤ dimF (V/ ranα).

For the reverse inclusion, let α ∈MF (V ) be such that dimF (V/ ranα) is infinite

and dimF (V/ ranα) ≥ dimF (V/ ran θ). Since α, θ ∈MF (V ), we have

dimF (V/ ranαθα) = dimF (V/ ranα) + dimF (V/ ran θ) + dimF (V/ ranα)

= dimF (V/ ranα) + dimF (V/ ranα)

= dimF (V/ ranα)

By Theorem 6.2(iv), α ∈ RReg(MF (V ), θ). Then α = (αθα)θβ for some β ∈

MF (V ). Thus α = αθαθβ = αθ(αθαθβ)θβ = (αθα)θ(αθβθβ). Since α ∈

MF (V ) r GF (V ) and MF (V ) r GF (V ) is an ideal of MF (V ), we have αθβθβ ∈

MF (V ) rGF (V ). Hence α ∈ RReg(MF (V ) rGF (V ), θ), as desired.
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Theorem 6.5. For any θ ∈ EF (V ),

LReg(EF (V ), θ) = {α ∈ EF (V ) | dimF kerα = dimF kerαθα}.

In particular, if θ ∈ GF (V ), then

LReg(EF (V ), θ) = {α ∈ EF (V ) | kerαθ = {0} or dimF kerαθ is infinite}.

Proof. Let θ ∈ EF (V ) and α ∈ LReg(EF (V ), θ). Then α = βθ(αθα) for some

β ∈ EF (V ), so αLαθα in EF (V ). By Lemma 4.7, dimF kerα = dimF kerαθα.

Conversely, we assume that α ∈ EF (V ) and dimF kerα = dimF kerαθα. Then

αLαθα in EF (V ) by Lemma 4.7, so there exists β ∈ EF (V ) such that α = βαθα =

β(βαθα)θα = (ββα)θαθα. This implies that α ∈ LReg(EF (V ), θ).

Next, assume that θ ∈ GF (V ).

Let α ∈ LReg(EF (V ), θ). By Lemma 4.7, αLαθα in EF (V ). Thus αθLαθαθ

in EF (V ), i.e., αθ ∈ LReg(EF (V )). By Theorem 4.8, kerαθ = {0} or dimF kerαθ

is infinite.

For the converse, let α ∈ EF (V ) be such that kerαθ = {0} or dimF kerαθ

is infinite. By Theorem 4.8, αθ ∈ LReg(EF (V )). Thus αθ = βαθαθ for some

β ∈ EF (V ). Since θ ∈ GF (V ), α = (αθ)θ−1 = (βαθαθ)θ−1 = βαθα, so α =

βαθα = β(βαθα)θα = (ββα)θαθα. This implies that α ∈ LReg(EF (V ), θ), as

desired.

This completes the proof of the theorem.

Theorem 6.6. The following statements hold for θ ∈ EF (V ).

(i) If θ ∈ GF (V ), then RReg(EF (V ), θ) = RReg(EF (V )).

(ii) If θ /∈ GF (V ), then RReg(EF (V ), θ) = ∅.

Proof. By using Theorem 4.9 instead of Theorem 3.8, we can prove the theorem

in the same way as the proof of Theorem 5.8.

Corollary 6.7. For any θ ∈ EF (V ) rGF (V ),
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(i) LReg(EF (V ) rGF (V ), θ) = {α ∈ EF (V ) | dimF kerα = dimF kerαθα};

(ii) RReg(EF (V ) rGF (V ), θ) = ∅.

Proof. Let θ ∈ EF (V ) rGF (V ).

(i) If α ∈ LReg(EF (V )rGF (V ), θ), then α ∈ LReg(EF (V ), θ), so dimF kerα =

dimF kerαθα by Theorem 6.5.

Conversely, let α ∈ EF (V ) rGF (V ) be such that dimF kerα = dimF kerαθα.

By Theorem 6.5, α ∈ LReg(EF (V ), θ). Thus there is β ∈ EF (V ) such that

α = βθ(αθα), so α = βθ(βθαθα)θα = (βθβθα)θαθα. Since α ∈ EF (V ) r GF (V )

and EF (V ) r GF (V ) is an ideal of EF (V ), we have βθβθα ∈ EF (V ) r GF (V ).

Therefore the desired result follows.

(ii) Since RReg(EF (V ) r GF (V ), θ) ⊆ RReg(EF (V ), θ) and θ /∈ GF (V ), by

Theorem 6.6(ii), we have RReg(EF (V ) rGF (V ), θ) = ∅.

Theorem 6.8. For any θ ∈ (BLF (V, q), θ),

(i) LReg(BLF (V, q), θ) = ∅;

(ii) RReg(BLF (V, q), θ) = BLF (V, q).

Proof. We can provide the proof in the same way as that of Theorem 5.10 by

using Theorem 2.8 instead of Theorem 2.2.

A dual version of the previous theorem can be shown in a similar manner.

Theorem 6.9. For any θ ∈ DBLF (V, q),

(i) LReg(DBLF (V, q), θ) = DBLF (V, q);

(ii) RReg(DBLF (V, q), θ) = ∅.

Theorem 6.10. For any θ ∈ KNF (V, q),

(i) LReg(KNF (V, q), θ) = ∅;

(ii) RReg(KNF (V, q), θ) = {α ∈ KNF (V, q) | dimF (V/ ranα) ≥ dimF (V/ ran θ)}.



58

Proof. Let θ ∈ KNF (V, q).

(i) Since LReg(KNF (V, q), θ) ⊆ LReg(KN(V, q), θ), by Theorem 5.12(i), the

result follows.

(ii) Let α ∈ RReg(KNF (V, q), θ). Since KNF (V, q) ⊆ MF (V ) r GF (V ), by

Corollary 6.4(ii), dimF (V/ ranα) ≥ dimF (V/ ran θ).

Conversely, let α ∈ KNF (V, q) be such that dimF (V/ ranα) ≥ dimF (V/ ran θ).

By Corollary 6.4(ii), α ∈ RReg(MF (V )rGF (V )) since dimF (V/ ranα) ≥ q. Then

α = (αθα)θβ for some β ∈MF (V )rGF (V ). Thus α = αθαθβ = αθ(αθαθβ)θβ =

αθαθ(αθβθβ). Since α, θ, β ∈MF (V ), we have that

dimF (V/ ranαθβθβ) = dimF (V/ ranα) + dimF (V/ ran θβθβ)

≥ dimF (V/ ranα)

≥ q,

so αθβθβ ∈ KNF (V, q). Hence α ∈ RReg(KNF (V, q), θ), as desired.

Therefore the result follows.

Theorem 6.11. For any θ ∈ LrfF (V ),

LReg(LrfF (V ), θ) = {α ∈ LrfF (V ) | (θα)|ran θα ∈ GF (ran θα) and

ran θα = ranα}

= RReg(LrfF (V ), θ).

Proof. Let θ ∈ LrfF (V ) and α ∈ LReg(LrfF (V ), θ). Then there is β ∈ LrfF (V )

such that α = βθ(αθα) for some β ∈ LrfF (V ). Thus αLαθα in LrfF (V ). By

Lemma 4.16, ranα = ranαθα. Thus ranα = ranαθα ⊆ ran θα ⊆ ranα, so

ran θα = ranα. Since α = βθαθα, we have θα = θβθαθα = (θβ)(θα)2, so

θα ∈ LReg(LrfF (V )). By Theorem 4.19, (θα)|ran θα ∈ GF (ran θα).

For the converse, let α ∈ LrfF (V ) be such that (θα)|ran θα ∈ GF (ran θα) and

ran θα = ranα. Then ran θαθα = (ran θα)θα = ran θα = ranα. By Lemma 4.16,

αLθαθα in LrfF (V ). This implies that α ∈ LReg(LrfF (V ), θ), as required.

Finally, we will show that LReg(LrfF (V ), θ) = RReg(LrfF (V ), θ).



59

Let α ∈ LReg(LrfF (V ), θ). Then α = βθ(αθα) for some β ∈ LrfF (V ).

Thus αLαθα in LrfF (V ). By Lemma 4.16, ranα = ranαθα. By Lemma 4.18,

kerα = kerαθα. By Lemma 4.17, αRαθα in LrfF (V ), so α = αθαγ for some

γ ∈ LrfF (V ). It follows that α = αθαγ = αθ(αθαγ)γ = αθαθ(αγγ). This implies

that α ∈ RReg(LrfF (V ), θ).

Conversely, let α ∈ RReg(LrfF (V ), θ). Then there exists β ∈ LrfF (V ) such

that α = (αθα)θβ, so αRαθα in LrfF (V ). By Lemma 4.17, kerα = kerαθα. By

Lemma 4.18, ranα = ranαθα. By Lemma 4.16, αLαθα in LrfF (V ). Hence there

exists γ ∈ LrfF (V ) such that α = γαθα. Therefore α = γαθα = γ(γαθα)θα =

(γγα)θαθα. This shows that α ∈ LReg(LrfF (V ), θ). Thus LReg(LrfF (V ), θ) =

RReg(LrfF (V ), θ).

Therefore the theorem is proved.
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