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CHAPTER |

INTRODUCTION

Video surveillance systems have been widely used as a common security monitoring sys-
tem around the World. However, it isvery time consuming for browsing and analyzing any subse-
guences along the large amount of footages contained endless information. Typically, reviewing
an endless surveillance video involves manual seeking into recorded raw video. For example,
browsing for a specific people in a video of one surveillance camera requires a playback device
with capabilities for controlling frame positions such as jog/dial, backward, forward, go to, and
etc.. These common controls are time consuming methods which require human experiences and
abilities for identifying an individual activity time by time. Therefore, all those human abili-
ties will be decreased by time, which affect the overall accuracy of browsing and analyzing the

surveillance videos.
1.1 Research objectives

Thisresearch aims at building a video surveillance summarization framework as areplace-
ment of a conventional system as seenin Fig. 1.1. for help reducing the time usage for rush

exploring on the endless video surveillance contents. The objectives are:

1. To build aframework of a video summarization system.
2. To develop areal time system for summarizing a surveillance video.

3. To search human trajectory in a surveillance video.

1.2 Problem Formulation

1. Analyzing of surveillance video is atime consuming process, which requires an ability of a

human to identify objects aong the time. Thus the accuracy will be decreased in time.

2. Most summarization results of existing approaches contain all irrelevant information which

leads to an ignorance of an appropriate human ability to be used in an analyzing process.



Figure 1.1: Conventional video surveillance system that involves with an operation on human abilities.

13

14

Expected outcomes

. A framework of a video summarization that 'is extendable for the further research ap-

proaches.

. A real time video summarization system that will be widely used by many organizations.

Scopes of work

. Summarization is based on a non-PTZ video surveillance camera.
. Human is atarget object to be summarized.

. Human sizein avideo should not be less than the size of atraining set.

Experimentswill not cover a crowded pedestrian of a surveillance video.

Variance of lighting condition such as day-night lighting condition is not considered.



1.5 Related works

Various approaches of video summarization have been proposed for the same aspect, which
try to reduceirrelevant information such as space and time. The easiest time reducing techniqueis
frame skipping or video skimming (Smith, 1997), where several frames are skipped according to
user intentions such as object, color, motion, etc. Adaptive video fast forwarding was developed
for the purpose of adjusting a playback speed of a video (Peker and Divakaran, 2004; Petrovic

et a., 2005). However, the speed increases resulting in missing alot of information aswell.

In both approaches mentioned above, an entire frame is a key of summarizing. Another
technique known as video montage (Kang et al., 2006), which is a spatial-tempora approach,
considers space as an additional key. However, the effect of shifting of spatial dimension creates
unavoidable artifact on images between different objects. The later approaches use an advantage
of shifting objects through time dimension while keeping spatial locations intact, resulting in
contexts unchanged. Video condensation by ribbon carving (Li et al., 2009) is an approach for
removing ribbons (ripple framein aspatial -temporal dimension) inspired by seam carving (Avidan
and Shamir, 2007). However, ribbon only workswell with afew differencesof speed and direction
of the moving objects, since a flex parameter, which control ribbon flexibility; have a limitation
related to smoothness of stitched image after removal. Although removing ribbon result to reduce
irrelevant information in space and time, it requirestaking time for recal culating the energy of the

rest moving objects

Video synopsis has been proposed with many complex computation steps (Rav-Achaet al.,
2006; Pritch et al., 2007, 2008). Most of them are cost and energy computationsthat are organized
into online phase and response phase. In online phase, object detection is used in time space to
generate tube, then insert and remove a detected tube to and from an object queue. In response
phase, the synopsisvideo isbuilt by first constructing time lapse background, and then computing
the corresponding time of tubes in the synopsis video. And finally, rendering the tubes with
background to produce the synopsis result, which takes time for stitching moving objects to the

correspondencetime and also it depends on the amount of activity in the time period of interest.

Our recent methods for fast and robust object shifting in time space has been proposed in
(Kasamwattanarote et al., 2010), where distance map based collision detection were first applied.
Direct Shift Collision Detection (DSCD) is an object collision detection technique that can cal-
culate a shortest distance between two groups of objects within O(n). Just in Time renderer (JT



renderer) has been developed in (Kasamwattanarote et al., 2010) for help reducing the CPU us-
age by processing only necessary frames. Even though the system can produce a summarization
result, it also provides information such as trajectory of moving object for help identifying each

specific tunnel.

Location based trgjectories are more important with high consideration on a moving pat-
tern of an object. Various approaches use different information to describe anindividual trajectory
such as shape, starting and ending time, location, velocity and acceleration of a moving object.
Dynamic timewrapping (DTW) has beenimplemented in (Berndt and Clifford, 1996) which allow
time stretching for moving objects to get a better match between trgjectories. Several approaches
in (Vlachos et a., 2002b,a) use longest common sub sequence (LCS) as a similarity measure for
trgjectories. The advantage of LCS is that it alows matching of moving object subsequences.
DTW and L CS distance matching algorithms are commonly usesin widespread, however both of
them have time complexity of O(n?). Calculating atrajectories similarity by using the definition
of time and sub-sequences has been presented in (van Kreveld and Luo, 2007), where the speed
of an abject leads to temporal shifting inside the vertices which can be considered as dissimi-
lar. Problems have been categorized according to the criteria that timing is fixed and/or whether
the starting times of the sub-trajectories are equal. However, the distance function is the main
measurement and the best time complexity of an exact match similarity with various duration is
O(n?).

Another approach is based on edit distance (ED) in order to overcome the inefficiency of
the previous approach in the case of noise and obstacles on the trgjectory. Chen et a. (Chen
et al., 2005) proposed a new distance function called edit distance on real sequences (EDR).
EDR removes noise then changes one tragjectory to another before measure. Thus, this technique
increasesthe accuracy especially with the trajectories having Gaussian noise. Similarity search by
using area in-between trajectories has been proposed in (Pelekis et a., 2007). GenLIP agorithm
has been used as the spatial similarity search between trgjectories. Also, only spatial similarity

compuitation takes time complexity of O(nlogn).

Clustered synopsis of video surveillance has been proposed in (Pritch et al., 2009), which
takes the benefits of trajectory to reduce the information being summarized. Motion distanceis
defined as the similarity measure between two activities. This approach takes both appearance
distance from SIFT features and motion distance into the creation of the training set of unsu-

pervised clustering, which yields too much time consuming to search for trajectories of moving



object in a surveillance video.

We proposed a real-time trgjectory search by using direct distance transform (DDT)
(Cooharojananone et a., 2010), where distance map based for similarity measuring between tra-
jectories were first introduced, which aim for fast searching on only location definition. By gen-
erating a distance map from trgjectory information of a moving object aimsto provide afast and
direct accessing to the similarity values, which resultsto retrieve trajectory similarity by accumu-
lating values from a distance map through a specific trajectory within real-time. Also, the system
will rank up all relevant objects ordered by similarity value, which helpsincreasing the efficiency

of the activity tunnels for being analyzed.

1.6 Organization of thesis

In this paper, we present a rea-time video surveillance summarization framework built
from our previous works in (Kasamwattanarote et al., 2010; Cooharojananone et a., 2010) as a
time consuming reductive tool, which motivate by real-time approach aimed for help minimizing
time usage for browsing and analyzing activities in a security monitoring and time-critical related
tasks. We organize this paper as following. In section 1.7, we describe our framework and give
the details of frameworks architecture design as a combination of multiple components. We show
how simple, fast, and efficient of our novel algorithmswork, which categorizein recorder module
and player module, in section 2 and 3 such as DSCD, Film Map Generation, JIT Renderer, and
DDT. Also, we introduce Dynamic Region Adaptation (DRA) as a contour based background
subtraction. Then, we report results in section 4, which are in term of images captured from

summarized video and time performance. Finally, the conclusion is discussed in section 5.

1.7 Propose Framework

We realize that our goal is to build a real-time video surveillance summarization frame-
work, so we organize the processes into two core modules for balancing workloads. Therefore,
both modules can be executed independently or paraleling to handle the tasks (see Fig. 1.2).
The first module is called a recorder module. This module first captures video and detects a re-
gion of interest of objectsin each video frame. Then, all objects are analyzed and processed to
generate completed tunnels (section 2.1). Next, rectangular tunnels were performed by our DRA
background subtraction (section 2.2) to make a moving silhouette for each moving object corre-

sponded to an individual tunnel. After that, DSCD isthen used for calculating a collision distance
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(section 2.3) and finally each tunnel is recorded separately.

The second moduleis called a player module which isfor playing the summarized surveil-
lance video. This module first getsauser input of playing duration such as time period. Then, the
system collects tunnels which correspond to the specified range and also background source file
isinitialized. Film map generation is then used for making a draft version of a summarized video
without rendering while JIT renderer is used for rendering only necessary frames to be shown

(section 3.1). Finally, buffer isread out in real-time according to user seeking position.

Inside the first module, we embed all necessary information for describing an individual
tunnel such as time, moving speed, direction, and moving trajectory. For fast searching mov-
ing trajectories, we also apply the distance transform generation within the recorder module for
pre-generating the distance transform as the trgjectory information for each moving object. The
player module alows user to search for trajectories by just drawing a moving path through the
screen. Then, DDT isthen applied for searching the most similar trgjectory (section 3.2) by direct
accessing through al provided trajectory information in the player module. Also, these trgjectory

similarity results can be used for applying as atunnel filter of summarized video.
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Figure 1.3: Our schematic illustration: (a) two different tunnelsin 3D spatial-temporal volume (b) tunnels
were shifted in time space (c) frame slides of a summarized video.



CHAPTER [I

RECORDER MODULE

To provide information useful for a player module, we integrate the major processes for
recording each tunnel and pre-calculating necessary parameters in real-time. This section de-
scribes the steps through recorder module, which contains a process of making araw tunnel with
necessary information, extracting a moving silhouette, and also pre-summarizing tunnels ahead

of time with our simple, fast, and robust algorithm.
2.1 Tunnd Computing

In order to create a summarized video based on activity tunnel, each appropriate tunnel
should be detected using any object detection algorithm. In this work, we apply HOG for human
detection (Dald and Triggs, 2005) by using a default human descriptor as our main detector.

2.1.1 SliceTracking

To defineatunnel, () be an image or aframe in atime space wheret is a frame number,
N isthetotal number of frames, and 1 <t < N. A detected object O,(t) in Fig. 2.1 corresponds
to aregion of such object at frame ¢ and 5 is the index of an object detected from 7(¢). A tunnel
is composed of multiple slices S(z) as seenin Fig. 1.3 where i is a slice number, M isthe total
number of slices, 0 < i < M, and T'(n) in Fig. 2.2 isatunnel, where n isatunnel number, K is

the total number of tunnels,and 0 < n < K.

In order to track a tunnel, we need to find the closest detected object to a tunnel by Eu-
clidean distance and then check the confidence value C(m, o) by using multi attribute utility
theory (MAUT), to estimate the possibility of being the next slice of such tunnel. The confidence

equation can be described as follows

C(m, 0) = wml[m|| + w,||ol] (21)

where m isamissing frame to the last slice of atunnel, o is an overlapping area of the last

slice of atunnel with the closest slice of all detected objects, ||m|| and ||o|| are the utility values,



10
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Figure 2.1: Multiple objects can be detected in one frame.

Tunnels Volume Time Space (Top View)

T(1)

T(0)

X
(a) Analyzed Tunnels (b) Normal (¢c) Summarized

Figure 2.2: Detected tunnels: (@) tunnels of two different objects (b) top view time space (c) time space
after summarized by shifting tunnels through time while keeping spatial locations intact.
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Figure 2.3: Time space shows multiple tunnels after tracking and interpolating step.

Figure 2.4: Top view of thetime slice. (left) An unprocessed tunnel. (right) A processed tunnel.

wy, and w, arethe weight of each attribute with the property that

Wiotal = W + Wo = 1 (22)

In this work, we use w,,, = 0.3 and w, = 0.7 since our tunnel tracking emphasizes on
the overlapping area rather than the missing frame. The values of m and o are normalized to 0-1

scale. Thus, the highest and the lowest values of C'(m, o) will be 1 and O respectively.

The confidence value will be used to indicate the possibility of a new detected object to be
anew dlice of the closest tunnel, therefore, we use the threshold of 0.8 to measure which slice has
the confidence value greater than or equal to the threshold; it will be accepted as a new dlice of
that tunnel. Theresults are shownin Fig. 2.3.
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2.1.2 Tunnd Processing

An origina tunnel in Fig. 2.4(left) shows araw tunnel after being analyzed from multiple
sliceswhere many missing slices and noisy slices (peek in width or height) can be notified. These
problems are caused by object occlusion, color merging, and some noises from the camera, which
affect the result of our object detection. In the summarizing step, aprocessof calculating collision
distance will be affected a lot by most of the noisy slices because the collision should not occur

onanoisy slice.

To eliminate al the problems, tunnel processing should be performed at the video capturing
step which may result in good captured frames, low noise, clear vision, and agood detected tunnel.
However, in such cases, the overall performance will be dropped because of spending more CPU
time on it. Thus, our approach needs real time performance, and processes with araw tunnel that
usesless data than processesthe whole frame along the time space. Thereason is becauseatunnel

T'(n) isacollection of slices S(i), where each slice is arectangle composed of 4 corner points.

For example, if atunnel contains 200 slices (200 frames / 25 fps = 8 seconds, most tunnels
are within this range), then we need to process only 200 dlices x 4 points per dice or the total
of 800 points which are much fewer than the whole time space of 320-pixel width x 240-pixel
height x 200 frames or 15,360,000 pixels. Then, the result after processing a tunnel will be the
tunnel as shown in Fig. 2.4(right).

2121 Tunnd Interpolating

As it can be seen from Fig. 2.4 that there are many missing slices which are needed to
be filled, a simple interpolation approach works well for this situation (see Fig. 2.3) by using
dlice properties around the missing frame such as spatial |ocation, dimension, and slice number to

generate new slices for those gaps.
2.1.2.2 Tunne Cleansing

Many approaches for noise reduction can be applied for this step. Most of them try to
eliminate noisy data and leave only the original details. In this case, we need only the smoothest
tunnel with as less noise as possible (see Fig. 2.4(right)) for recovering from al problems that
may occur during our object detection. The most preferably method that can smooth a tunnel as

we need is the simple moving average method or SMA. This method is very simple, uses only a
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(a) A background Model (b) A people as a new foreground object  (c) Absolute differencing result (d) A result alter normalized intensity

Figure 2.5: Images show before and after object moved into an area of background. (a) A background
scene shows static object. (b) A people moving into a background area which we need to find the best
silhouette mask for the corresponding foreground. (c) Result after done an absolute differencing shows
the clear cut foreground area by our vision. (c) In computer, we still have background noise from many
possible variations such as a staff’s head, moving doors, and the affect of the flickering light source and
camera quality.

few operations, and does not require any sorting algorithms; however, it gives usthe most suitable

result over al other algorithms.
2.2 Extracting a moving foreground by Dynamic Region Adaptation

Tunnel is a composed of time-dimensional dlices bounded from region of interest of real-
time object detection, which generaly are rectangle. Shifting tunnel together in time dimen-
sion (section 2.3) is a purpose of time gap remova between moving objects, which results to
play the same activities in the shorter amount of time. Our DSCD provides two types of sum-
marized result that are non-overlapping tunnel (DSCD p,yitiplier = 1) and overlapping tunnel
(DSCDputipiier > 1). In case of non-overlapping tunnel, the collision distance in time dimen-
sion between tunnels is the minimum distance between two consecutive tunnels as seen in Fig.
2.2, whichisanillustration of shifting of rectangular tunnel. Although, thetime gap was removed,

there still exists the space gap between the particular objectsinside the rectangles.

According to our approach aimed for shifting only temporal and |efts spatial |ocation intact
to avoid making artifact asin (Kang et a., 2006). We applied a dynamic region adaptation (DRA)
for help more shifting in time dimension by subtracting the background area from the whole
rectangular image. This yields two consecutive tunnels collide closer into the particular object
as seen in Fig. 2.6, which will effect to the overall summarization period to be shorter without

overlapping tunnel.

Subtracting background from an image, we first need to know background area by finding
the differences between foreground and background. The image in Fig. 2.5c shows a result

after processed an absolute differencing of two images, we then clearly see foreground area (the
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bright pixels) on the dark background. However, it contains a lot of background noise, since a
background itself is variance due to the still objects were moved such as an opening door, the
flickering of light sources, or even an effect of low quality surveillance camera. Thus, it leads
to the masking problem since we cannot create a perfect mask for that foreground by using just

absolute differencing result (see Fig. 2.5d).

To find the clear cut area of foreground, we introduce a novel contour based foreground
extraction by using DRA. DRA isan agorithm for searching the best cutting threshold for brighter
color selection covered almost foreground area without any background noise. We organize the
algorithm into three major steps. First, area extraction is a step to process all possible thresholds
for generating series of affected amount of pixels coverage of a foreground object. Second step
is a process of data transformation, which will transform the series of area coverage into series
of dope, difference, and pulse. The last step is a process for finding the best threshold of a
corresponding foreground, which will be used to extract amost perfect foreground comparing

with and ideal foreground result.

Through all the processes for extracting a moving foreground, our approach can create a
silhouette foreground mask for any moving object as seen in Fig. 3.6. Then we applied the
best threshold for each tunnel separately for retaining the real-time performance of the overall
framework while still be able to extract the clear foreground out of slices of each tunnel (see Fig.

2.10).
2.2.1 AreaExtraction

Selecting color by using different DRA threshold on a result of absolute differencing be-
tween images as seen in Fig. 2.5¢ will effect to the coverage area of contour as seenin Fig. 2.7.
To generate an area graph (see Fig. 2.8a), we take advantages of both color information and lumi-
nance information from R, G, and B channels of RGB color space and L channel of CIE L*a*b*
color space, where color information can help us identify the high-contrast area and luminance

information will be used to identify the low-contrast area.

We process al possible thresholds to build an area graph Area(S(i)) asseenin Fig. 2.8a
that will be used for searching the best threshold, which is varies according to different fore-

grounds.
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Time Space (Top View)

X
(a) Normal tunnels (b) Summarized tunnels  (c¢) Summarized tunnels
with DSCD with DSCD + DRA

Figure 2.6: Anillustration of top view time space shows a comparison between normal, summarized, and
summarized with DRA. Where the particular objects is located inside the larger rectangular tunnels. And
At isashorter time difference with DRA.
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threshold.
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2.2.2 Data Transfor mation

Pulse(r) isapulseindex of the specified rank r, which order by ascending of the variation

ratio 2.4, that occursin the pulse graph of slice ¢ asfollow

Pulse(r) = IndexO f(Rank,(Pulseg;))) (2.3

The pulse graph of dlice can be computed by the following

Pulseg;y = Dif f(S(i))/Slope(S(i)) (2.4)

where Pulseg ;) isapulsegraphof slicei (seeFig. 2.8d), which showstherelation between
Dif f(S(4)) and Slope(S(7)), describing the variation ratio among a different value and a slope
value on the same index, where alow pulse value indicates a high variation of signal changing
on the area graph. In contrast, the pulse value near zero indicates a low variation of area graph.
Calculating the different graph Di f f(S(z)) and the slope graph Siope(S(i)) can be done by the

following

Dif£(SG)) = Dif f(Area(S(i))) (25)

Slope(S(i)) = Linear Regress(Area(S(i))) (2.6)

where Dif f(S(i)) is a different graph (see Fig. 2.8b) calculated from a simple moving
subtract method along an area graph of dlice i, and Slope(S(i)) isthe slope graph (see Fig. 2.8¢)

calculated from alinear regression method by using afilter size of 7.
2.2.3 FindingtheBest Threshold

Form our experiments; athreshold for extracting the best foreground is located at the most
stable value between the first step and the last step of an area graph, which we describe by the

following
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DRAg; =1 i ' 2.7
RAs) = IndesOf(,  min (|Slope(S(i)) @7)

where DRAg; is the best threshold value for the corresponding slice 4, which is at an

index of the minimum value between top two minimum pulses along the slope of dicez.
2.3 Summarizing by Direct Shift Collision Detection

An endless video from a surveillance camerais hard to browse and analyze without video
summarization. Summarizing the video by using object-based video summarization, which uses
the detected objects for the selection of related frames, was introduced in (Smith, 1997; Ferman
and Tekalp, 1997; Kim and Hwang, 2000). Our approach goes beyond thosetechniqueshby shifting
the objects through atime space to create the summarized video in order to make a better use of

space and time with direct shift collision detection (DSCD).

We introduce a new approach for finding the distance between a point of view and an
interested pixel without the use of any scanning methods such as tracing, or brute force method.
Our approach uses the advantage of depth map image, which is able to give the distance of an

object, for thisimplementation.

The agorithm is organized into two phases. drawing phase and checking phase. In the
drawing phase, a previous tunnel is drawn on an image to create a depth map with distance em-
bedded in a pixel. And in the checking phase, all the corners of al slices of a candidate tunnel
will be checked to find the collision distance to the previous tunnels. As a result, our approach

canrunin O(n).
2.3.1 Drawing Phase

In this phase, al dicesof aprevioustunned will be drawn on an image from thefirst diceto
the last dlice respectively as shown in Fig. 2.9. Normally, a depth map image can be represented
using a gray scale image, which is only 256 levels per pixel or an intensity of 0-255. Thus, we
try to embed other information such as slice index into those pixels by up scaling the gray shade
from an integer to adecimal precision. Theimagein Fig. 2.9 represents the normalized intensity
of our depth map image as a back view of time space. An integer part will be used to represent

the overlapping flag, and the fraction part will be used to represent a slice number. For example,
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Figure 2.8: The graphs show resultsfor each step along the DRA process on B channel of RGB color space.
(a) An areagraph calculated by tracing a coverage area of the selected contour from different thresholds. (b)
A different graph cal cul ated by simple moving subtracting on an areagraph. (c) A slope graph calculated by
passing through alinear regression method. (d) A pulse graph calculated by Dif f(S(i))/Slope(S(3)). (€)
Result after select the color by using DRA threshold. And the vertical line shows a selected DRA threshold.
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Figure 2.9: A normalized depth map shows back view tunnel in time space.
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Figure 2.10: A normalized depth map shows back view tunnel after processed with our DRA background
subtraction.



22

to draw dlices with gray intensity range from 254.000 to 254.999, it can support the slice up to
1,000 dlices per tunnel, or intensity range from 254.0000 to 254.9999 can support up to 10,000

dlices etc. For more information on up scaling, we explain more on appendix A.1.
2.3.2 Checking Phase

In this phase, instead of drawing into a depth map image, we only need to check with the
gray intensity for each point along the contour of al slices of the selected tunnel. Any point that
overlapsthe previous dice or itslocation is on the top of the previous dice; its gray intensity will
be greater than the threshold. Then the fraction portion will be used to extract a diceindex of the

collision distance.

The coallision distance between two tunnels can be computed from the closest dlices among
both tunnels giving such distance which is a minimum offset that makes both tunnels stitch to-
gether without overlapping. For implementing of checking phase, we explain more on appendix

A.2. We define a callision distance for summarizing activity tunnels as the following function

DSCD(n) = min(T(n),I(n —1)) (2.8

where DSCD(n) is a minimum distance between selected tunnel to the previous tunnel,
I(n) is a depth map image of the specified tunnel, and the minimum distance DSCD can be

implemented as algorithm 1.

Algorithm 1 Direct Shift Collision Detection
1. for all S1inT(n-1) do

2. l.draw(S1, intensity)
3 end for

4: for all S2inT(n) do
5. if Loverlap(S2) then

6: minDist = S2.frame - |.frame(S2.contour)
7: DSCD.update(minDist)

8 endif

9: end for

The time complexity of our algorithm (1) is O(n) which is faster than other closest point
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algorithm (2) that takes O(n?).

Algorithm 2 Other Closest Point
1. for all S1inT(n-1) do

2. for all S2inT(n) do

3 if Sl.overlap(S2) then

4 minDist = S2.frame - S1.frame
5: DSCD.update(minDist)

6: end if

7. end for

8: end for

The collision calculated from DSCD gives us a real-time result of a collision distance per
tunnel. When we need to summarize al tunnels of the entire range, the distances will be in-
creased accumulatively from the first tunnel of the range thus we can reduce the time during the

compression step in the player module by calculating a collision distance in advance.

To accumulate all DSCDs of the previous tunnel, we use dynamic programming and or-
ganize the collision distance into local DSCD and global DSCD. Local DSCD is the distance to
the previous tunnel, while global DSCD is an accumulated distance from the first tunnel of the
range to the previoustunnel. Dynamic programming can be used to accumul ate the previous local

distance as the following recurrence relation

DSCD¢(0) = DSCDL(0)
DSCDg(1) = DSCDL(1) + DSCD¢(0) (29)
DSCD(;(TL) = DSCDL(TL) + DSCD(;(TL — 1)

For example, tunnel A has DSC Dy = 10 and tunnel B has DSC Dy, = 5, then after
accumulating all DSCDs from the first tunnel, tunnel A has DSCDg = 10 and tunndl B has
DSCDg = 15. Thus, the global DSCD will be used as the offset distance for shifting tunnels
through time space as shown in Fig. 2.11. The DSCD distance can be used as a distance for com-
pacting tunnels without overlapping. However, we can apply a multiplier to DSCD for adjusting
an offset distance to make overlapping tunnels (DSC D pyitiptier > 1).
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Figure 2.11: Time space shows tunnels with the collision pointers, where horizontal axis is frame number.
(8) Local DSCDs for colliding with the previous tunnel (b) Global DSCDs for shifting to the summarized

position.



CHAPTER I11

PLAYER MODULE

This section proposes the playback process with result customization. We describe how
a user can interact with the system and get back his request in real-time. With pre-processed
parameters from recorder module, we can generate a summarization result instantly. Also, we
explain about how buffering system helps our playback process gains higher performance for the

whole framework and introduce a sample extension where our framework can be applied.

3.1 Playback with Film Map Generation and JIT Renderer

As mentioned earlier, packing tunnels together is the way to produce a summarized video,

thus pre-computing of an offset distance yields an advantage to a film map generation.

Film map (see Fig. 1.2) is the overall layout of a summarized video, which describes a
temporal position converted from global DSCD for each dlice of the tunnels. This step causesthe
activities to appear simultaneously while they originaly appear at different time. However, this
step does not involve with a rendering process, so it can accomplish a summarized film mapin a
few milliseconds. Film map can be described as a complete movie film and just-in-time renderer
can be described as a player. When a user wants to see a movie, he just inserts this film into the

player, and then the player will project only the frames needed to be shown on the screen.

We implement a just-in-time renderer (JT Renderer) for rendering only the necessary
frames to be shown to a user. By using film map, JIT renderer (see Fig. 1.2) will render the
video into the frame buffer according to the seek position, which gives us a real time output of
the summarized video. We also implement a FIFO frame buffering system for keeping rendered
frames. Whenever the buffer is not full, a system will use another thread to render the next frame

into it, and aframe will be removed from the frame buffer after being played.

3.2 Searching by Direct Distance Transform

Distance transform for each tunnel is the distance between any point on an image to the
points on a trajectory which we need to search for. We select trajectory information for being a
source of making a distance. In order to find the trgjectory similarity, each appropriate distance

transform for each tunnel should be generated using any distance function. In this work we use
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Figure 3.1: (top) Trajectories of tunnels. (bottom) Distance transforms.

Figure 3.2: (Ieft)Moving object with trajectory. (right) The distance transform.
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Figure 3.3: A process for making a doublelayer of adirect distance transform.

the Euclidian distance as our main distance function for calculating a distance as shown in Fig.

3.1. Two Phases Distance Transform is proposed for creating a distance transform.
3.21 Trajectory Expansion

At the time after a new tunnel is first analyzed, we plot the embedded information as a
line represents the trgjectory of such object tunnel. However, distance transform is the process
for calculating a distance from outside to inside of an object, thus we need to expand atiny line
to make it larger enough for finding the distance as mentioned. A trgjectory of a moving object
shown in Fig. 3.2(left) needs to be processed to make the direct distance transform as shown in
Fig. 3.2(right). To define a distance transform, let DT'(n) be a distance transform function using
Euclidian distance and 7'(n) be an analyzed tunnel where n is a tunnel number, K is the tota
number of tunnels, and 0 < n < K. Trajectory isthen mapped onto animage using T'raj(T'(n)).

We a so organize the distance transform into double layers which are
3211 CaplLayer

Let Cap(n) be a distance transform at the core of an object trgjectory. Particularly, this
function just draws a bold tragjectory over a gray image to represent a distance mapping as a

function of intensity. Thus, the cap layer isfor identifying the most similarity group of tragjectories
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to the user defined trajectory as shownin Fig. 3.3(top).

3.21.2 BaselLayer

Let Base(n) be a distance transform at the base of an object trgjectory. Its function is
similar to the cap layer, its main purpose is for catching the rest of trgjectories that are far away
from the cap layer. Resulting in variant of the distance be spread out to most areas on the frame
aswide as possible. We also apply asimple blur filter on the trajectory image to spread it out, and
it isdenoted as Blur(Traj(T(n))).

Because auser defined trajectory may be out inthe nearby area, it should be ableto calculate

the distance as shown in Fig. 3.3(bottom). Therefore, the equation can be described as follow

DT(n) = Cap(n) + Base(n) (3.1
Cap(n) = Draw(Traj(T(n))) (3.2
Base(n) = Draw(Blur(Traj(T(n)))) (3.3

3.2.2 Trajectory Similarity M easurement

In this phase, we apply the advantage of distance mapping as our DSCD algorithm to get
the direct distance information. To define a distance function, let D DT (RawT'raj) be a direct
distancetransform for similarity measurement between trajectoriesto be searched within therange
of summarizing tunnels, and RawTraj be atraectory model of auser specified trgjectory which
composes of a series of points, where p is the number of point falling within the range, L is
the total number of points, and 0 < p < L. We measure the distance by summing up directly
from the intensity Int of a distance transform at the position of any given points. The similarity

measurement for each tunnel can be represented as follow

L
DDT(RawTraj) = Z Int(RawTraj(p), Traj(T(n)) (3.9
p=0

The direct distance transform function can be used to sum up the similarity value for each

tunnel. This process only takes time complexity of O(n) to search onetunnel. We also normalize
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a
Figure 3.4: (a) A group of similar trgjectories. (b) The rest are unmatched.
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Figure 3.5: Time space shows multiple tunnelsin time-space.

values of the trajectories similarity into 0-1 scale for checking the ratio of similarity, where O is
low and 1 is high. Since we need to rank all tunnels for summarizing the relevant tunnels based

on trgjectory similarity asshownin Fig. 3.4, asorting algorithm is applied at this step.

Normally, the DSCD vaue of each tunnel has been calculated which is computed with
the nearby tunnels and the distances will be increased accumulatively from the first tunnel. The
tunnels are now ready to be summarized. In this case, a tunnel will not be next to each others
because some tunnels might not fall within the acceptable range of high similarity. Therefore, the
DSCD of all filtered tunnels need to be recalculated such that it can be shifted to close to each

other in time space
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Figure 3.6: Sample frames from a summarized video. (a) DSCD: 2.0, Trajectory: not specified. (b) DSCD:
1.0, Trajectory: specified. (c) DSCD: 2.5, Trajectory: specified. (d) A collection of moving silhouette for
each tunnel.
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Figure 3.7: A performance evaluation of arecorder module. The top line shows a time usage per one frame
for object detection and object tracking processes, which vary depend on the amount of new detected object
as seen in the bottom line.
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Figure 3.8: A performance evaluation of a recorder module shows the time usage to process with the
different tasks for each tunnel. The asterisk line shows the time usage of tunnel processing step, which
contains tunnel interpolating and tunnel cleansing. The cross line shows the time usage for extracting
foreground out of each individual tunnel by using DRA. The squareline showsthetime usagefor calculating
the shortest distance for shifting together between tunnels.
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Figure 3.9: The graphs show the performance evaluation of player module comparing with the amount
of detected tunnels for each video length. The asterisk line shows the speed of film mapping process to
generate adraft of summarized video. The cross line shows atime usage for finding the trgjectory similarity
by using DDT. The speed of both film mapping and trajectory search is depended on the amount of collected
tunnels. In contrast, the speed of JIT renderer is constant since it will process the frames when needed as
shown in triangular line.
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Figure 3.10: The data throughput graph shows the tunnel per minute rate (TPM) was improved after sum-
marized with our framework.
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Figure 3.11: The length comparison of each summarized video by using different algorithms. The square
line shows thetotal frame of original videos. The cross line shows the output |ength from a fast forwarding
algorithm 2x was cut by half. The triangular line shows the output length form frame skipping a gorithm.
And the dot line shows the shortest summarized results from our algorithms.



CHAPTER IV

EXPERIMENTAL RESULT

We propose a video surveillance summarization framework as shown in Fig. 1.2, which
is organized into two major modules for real-time sophisticated browsing for rush exploration
of video monitoring task. Our framework is built to support the video captured from practical
surveillance camera. However, we aso show the results that were processed from one of the
most standard sources of video for retrieval evaluation, which isthe airport scenefrom TRECVID

London Gatwick surveillance video as show in Fig. 3.6.

The experiments were implemented on anormal 1aptop powered by Intel core 2 duo T8100
with the processor speed of 2.1 GHz. Thewholeframework wasbuild with C# .NET programming
language which is enough to give us a real-time performance of our framework. We prepared
the TRECVID data named LGW_20071101 E1_CAM1.avi by splitting the original video into 25
footages of thefirst 1 minute of the video to the first 25 minutes of the video. Each video has the

resolution of 320x 240 pixelswith 25 fps.

The recorder module needs to be performed as a video capturing, object detection, object
tracking, tunnel processing, background subtraction, and recording an extracted object into an
individua file. This mode can run with the real-time performance of about 32 milliseconds per
frame (see Fig. 3.7) or about the speed of more than 30 frames per second, which is enough
for atypical surveillance camera that mostly capture the video with the frame rate of about 15
frames per second for generally web camera, 25 frames per second for PAL system camera, and

30 frames per second for NTSC system camera under an indoor lighting condition.

The player module can be run parallel or on a separate process or even on another com-
puter by accessing the tunnels information through a network. This module runs in real-time by

rendering only necessary frames as described in section 3.1.

The experimental results are summarized in Fig. 3.7 - 3.11. Thegraphin Fig. 3.7 shows
the overall frame based performance of the recorder module comparing with the amount of new
detected tunnels. We detect the human for every frames by using HOG (Dala and Triggs, 2005),
which gives us the result of region of interest for each moving human. Then, the tracking process

will handle atask of connecting pieces of each tunnel together. The combination of detection and



tracking steps, it take time approximately 32 milliseconds per frame, where the speed of detection

depends on the number of occurring tunnels.

The graph in Fig. 3.8 shows the overall tunnel based performance of the recorder module.
The process of generating tunnel will occur once only after the whole tunnel was collected. This
step includes a tunnel processing, a DRA for background subtraction, and a DSCD for objects
collision detectionin time-space. A tunnel processing step, which processesatunnel interpolating
and a tunnel cleansing, takes time about 530 milliseconds per tunnel including I/O as shown in
an asterisk line. DRA for background subtraction, which processes all the hard-working tasksin
section 2.2, takes time about 300 milliseconds per tunnel as shown in a cross line. And the core
process of our summarization is DSCD, which will detect the collision distance between tunnel,

takes time about 20 milliseconds per tunnel as shown in asquareline.

For the player module, we summarized the overall performance evaluation into the graphin
Fig. 3.9, which showsthe overall speed comparing with the total amount of detected tunnels. The
asterisk line shows the speed of making a draft of video summarization result in a film mapping
process, which increasesfrom 0.1 millisecondsto 2.25 milliseconds due to the number of detected
tunnels. Also, the DDT process was affected by the number of collected tunnels as seen in the
cross line from 0.1 to 1 millisecond, since it needs to find the best trajectory similarity from all
tunnels. However, JIT renderer can render the result constantly about 3.5 millisecond per frame

as show in atriangular line.

The result in Fig. 3.10 is to show the amount of tunnel is increased in a summarization
video. The dot line shows the data throughput of the original video, which has the rate of tunnel
per minute about 5 tpm. Then, the sguare line shows the tunnel rate in the summarized video
was increased to about 25 tpm, which means we can see the moving object passed the screen

approximately 5 times frequent than the original video.

For the data compression in Fig. 3.11, we shows a comparison on the video length after
summarized with different algorithms. The squareline showsthe length of the original video from
1 minuteor 1,500 framesto 25 minutes or 40,500 frames. Fast forwarding algorithm Petrovic et al.
(2005) is an approach which play the video by skipping consecutive frames equally. For example,
2x fast forwarding means after playing one frame, the next frame will not be played but play next
two frame instead. At thistime, we compare with 2x fast forwarding then the cross line shows

the result of the length of s summarized video was cut by half. Frame skipping algorithm Smith
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Table 4.1: The summarization results of each video lengths.

Original Length  Tunnel Count Normal TPM  SummarizeLength SummarizeTPM  Compression Ratio  Time Saved

(in minute) (in minute) (in percentage)
1 4 4.00 0.24 16.57 4.14:1 75.87
2 11 5.50 0.46 24.09 4381 77.17
3 13 433 0.48 27.35 6.31:1 84.16
4 17 4.25 0.65 26.23 6.17:1 83.80
5 20 4.00 0.75 26.71 6.68:1 85.03
6 27 4.50 1.02 26.57 591:1 83.07
7 35 5.00 122 28.72 5.74:1 82.59
8 38 475 1.32 28.76 6.05:1 83.48
9 44 4.89 1.56 28.28 5781 82.71
10 49 4.90 179 27.44 5.60:1 82.14
11 52 4.73 1.87 27.79 5.88:1 82.99
12 57 4.75 219 26.00 5.47:1 81.73
13 62 477 2.39 25.98 545:1 81.64
14 64 457 249 25.75 5.63:1 82.25
15 68 453 2.56 26.51 5.85:1 82.90
16 69 431 2.56 26.90 6.24:1 83.97
17 72 424 2.68 26.83 6.33:1 84.21
18 77 4.28 2.80 2753 6.43:1 84.46
19 87 4.58 3.27 26.59 5.81:1 82.78
20 89 4.45 3.32 26.80 6.02:1 83.39
21 93 4.43 353 26.38 5.96:1 83.21
22 101 459 3.69 27.37 5.96:1 83.22
23 108 4.70 3.89 27.73 5.91:1 83.07
24 117 4.88 4.46 26.23 5.38:1 81.41
25 125 5.00 4.60 27.18 5.44:1 81.61

(1997) is an approach to play the video by playing only the frames contain the contents such as
moving object, then skipping other frames. The triangular line shows the summarized result of

frame skipping which are shorter than video fast forwarding.

Our result in Fig. 3.11, the dot line shows the shortest summarized output for all videos?.
Table 4.1 shows the compression ratio between original video with our summarized result, which
are around 4:1 to 6:1 and it can save time for reviewing the surveillance video to about 85%.
And aso, in table 4.2 shows the summarization results based on the calculation for new detected
tunnel. The overall results are the conclusion that the length of each summarization result is
depended on the amount of new detected such as the lower number of object for each period of
time yields the shorter of summarized result. And at the 16™ minutes, the compression ratio of
Max means the algorithm can compress the video in this period of time into zero minute, since
there occurs a time-space |eft inside the 15" minutes that is enough for a tunnel of 16" minutes
to be shifted into. Our approach can summarize the surveillance video into the shorter duration
without remove any activity objects as we expected. Not only a natural speed of moving objects
were produced from our framework, but also it can increase the number of moving object within

the same period of time.

1We encourage readers to view more video examples in ftp://tppwani.dyndns.org/Video%20Summarization
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Table 4.2: The summarization results for new detected objects of each video lengths.

Origina Length New Tunnel Normal TPM  SummarizeLength Summarize TPM  Compression Ratio  Time Saved
(in minute) (in minute) (in percentage)
1 4 4.00 0.24 16.57 4.14:1 75.87
2 7 5.50 0.22 24.09 4.64:1 78.47
3 2 4.33 0.02 27.35 53.57:1 98.13
4 4 4.25 0.17 26.23 5.79:1 82.73
5 3 4.00 0.10 26.71 9.93:1 89.93
6 8 450 0.27 26.57 3.74:1 73.27
7 7 5.00 0.20 28.72 4931 79.73
8 3 4.75 0.10 28.76 9.74:1 89.73
9 6 4.89 0.23 28.28 4.26:1 76.53
10 5 4.90 0.23 27.44 4351 77.00
11 4 4.73 0.09 27.79 11.72:1 91.47
12 4 4.75 0.32 26.00 312:1 67.93
13 5 477 0.19 25.98 5.14:1 80.53
14 2 4.57 0.10 25.75 10.14:1 90.13
15 4 4.53 0.08 26.51 12.61:1 92.07
16 1 431 0.00 26.90 Max 100.00
17 3 4.24 0.12 26.83 8.38:1 88.07
18 5 4.28 0.11 27.53 8.82:1 88.67
19 10 4.58 0.47 26.59 2111 52.60
20 2 4.45 0.05 26.80 20.00:1 95.00
21 4 4.43 0.20 26.38 4.89:1 79.53
22 8 4.59 0.16 27.37 6.07:1 83.53
23 8 4.70 0.20 27.73 4.92:1 79.67
24 8 4.88 0.57 26.23 1.76:1 43.33
25 9 5.00 0.14 27.18 7.25:1 86.20




CHAPTERYV

CONCLUSION

We have proposed a novel real-time video surveillance summarization framework intended
for minimizing time usage for rushes exploration of video monitoring task based on shifting of
moving object in time-space. Our framework can produce summarization results without remove
any significant contents, while still keeping the real-time performance. The main advantage and
novelty of our proposed framework is the combination of fast and robust algorithms combined
with an efficient implementation for balancing the workflows. We also introduced DSCD for
fastest collision detection, film map generation for making a draft summarization, JIT renderer
for rendering only necessary frame, DDT for similarity measurement, and DRA for contour based

background subtraction.

Our presented approach is based on a tunneling system, which can help increasing human
ability and efficiency of browsing and analyzing of a surveillance video by reducing time usage
for reviewing the video. The earlier application for our tunneling system is to search the best
match for object trgjectory, which is one of an identifier for interesting object. The combination
of these algorithms make our framework to be not only have less computational cost, but also

responding the results by real-time performance.

In this framework, we use HOG with adefault human descriptor to detect human. For some
cases of crowded people occurred in the scene, the detection will not be able to detect any human
who is behind the others. So the framework will not be able to include all those human into the

system for making a summarized result.

The presented framework also provides a lot information described each activity tunnel
such as timing, trajectory, contour, etc. So the future release can apply al those information to
help identifying and understanding on each moving object or the overall behaviour and also, this
framework can be applied with other objects such as car, bicycle, etc. Also, tragjectory searching
can be processed with other properties such as direction, time, speed, and size of object to help
identify more exact to the interesting object. Another example is the summarized result can be
filtered and show only unusual tunnels, then the analyzing processwill be more easy for the human

to judge yielded more speed and gained up accuracy of the real-time security monitoring task.
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APPENDIX A

IMPLEMENTATION

In this chapter, we provide an implementation of depth mapping process for embedding
distance information of each tunnel. Normally, depth map image is an image illustrating the
depth of objects aligned in the z-axis of three dimensional Cartesian coordinate. The video aso
be able to explain with 3D coordinate by using time-axis instead of z-axis. The time-axis of a
video is usually counted as frame number, thus our detected object also creates a tunnel depth
in time dimension. That means an endless video from surveillance camera will create endless

amount of detected tunnels which assigned by each specific frame number in time dimension.
A.1 Depth Mapping

Depth map can be represented by using grayscale image, which contains an information of
intensity from minimum to maximum of O to 255 by using one byte or 8 bits per pixel. Storing
atunnel depth information into an image, we need a space more than 256 levels to describe a
time dimension for the whole video. Therefore, separate keeping an absolute starting frame then
embedding only arelative time-depth information of an individual tunnel is the best solution for
taking ause of depth map imageasseenin Fig. A.1. However, without modification of agrayscale
image, we can store only 256 dlices per tunnel, or only about 10 seconds per tunnel for a video
frame rate at 25 frames per second. To increase an amount of tunnel depth, we store the data on

al effective pixels by doing atrick on a data structure of image.

Starting frame: 25
Starting slice id: 0
Ending slice id: 14
Starting frame: 10 | Tunnel B |
Starting slice id: 0
Ending slice id: 20

Tunnel A |

Frame

0 5 10 15 20 25 30 35 40 45 50

Figure A.1: Thisimageillustrates the sliceid is counted relatively from 0 to the end of tunnels for be able
to storein the gray based depth map image. And storing absol ute starting frame separately.



Gray intensity

32 64 96 128 @ 255

Up Scaling

128. | 128. | 128. | 128\ 14328. | 128.  128. | 128 | 128.
0001 0002 0003 0004 Q0G5 0006 0007 0008 0009

Depth Map intensity

Figure A.2: This image shows the intensity value for each gray level comparing to the depth map value
after up scaling from a standard gray intensity.

Grayscae image normally has a depth of byte or 8 bits depth. To store more data, we
simply need more bit depth. Although we can use other data type such as int16(16-bit or 216
values), int32(32-bit or 232 values), and double(64-bit or 264 values), the OpenCV will not allow
implementing of gray value more than 256. Thus, we still be able to implement a depth mapping
image on a data type of float contained gray values from 0 to 255, which yield a capability of

storing adecimal intensity asseenin Fig. A.2.

In order to store depth information inside an image pixel, we use the fraction part of gray
intensity to keep aslice number of tunnel, which isrelative to the starting frame number of tunnel.
Hence, the integer part we use it as a flag for checking the occurrence pixels of tunnel asseenin

Fig A.3. And the value for each dice of tunnel was assigned by the following

Int(S(i)) = Flag + SliceI D;/ Precision (A2

where Int isadepth function for returning the intensity of the corresponding dlice i, Flag

isanumber between 0 to 255 to be use as aflagged valuein the integer part, Slicel D isthe dlice



Gray: 100.0137

Gray: 100.0143

“JL Gray: 100.0000

‘ €~ Gray: 100.0000
(a) (b)

Figure A.3: Back view tunnelsin time-space show the gray value was assigned differently in the decimal
part. Asyou can see, we set a flag value of integer part to be 100, and the decimal part is depends on the
slice number inside a tunnel.

number on atunnel, and Precision isthe maximum number of siceto be handled. For example,
in Fig. A.3ashows a depth map image of tunnel, which contains 144 dices. Thefirst slice hasa
gray intensity of 100.0000 for the first index, and the last slice has a gray intensity of 100.0143
for the 144" index. In the same way, in Fig. A.3b shows a depth map image of tunnel contained
138 dlices. Thefirst dice hasagray intensity of 100.0000 for the first index, and the last slice has
agray intensity of 100.0137 for the 138" index.

A.2 Checking Phasein Action

The major process of DSCD is to calculate the shortest collision distance. In this section,

we will show you how to calculate the collision distance between tunnels.

In figure A.4, we show the depth map image between two consecutive tunnels that was
drawn in the different order. For each checking phase, supposing we are in the middle between
with two tunnels T'(n — 1) and T'(n). When we look forward to T'(n — 1), we should see a back-
side of tunnel in time space as seen in Fig. A.4al and a2. In contrast, to look backward to 7'(n)
we will normally see a front-side of tunnel as seenin Fig. A.4bl and b2. So, we or the collision
detector located in between two tunnels will know the relative distance from the depth maps of
a back-side of T'(n — 1) and a front-side of T'(n). Therefore, calculating the shortest collision
distance between two tunnelsis to find the minimum distance between a back-side of T'(n — 1)
and afront-side of T'(n), or we simply say that this processis just subtracting the depth map of
T(n — 1) and T'(n) then find the position of the minimum value which is occurred at the flagged



45

(1) (2) (3)

(1) (2) (3)

Figure A.4: This figure shows depth maps while using in a process of DSCD. Row (@), the normal depth
map. Row (b), the normalized depth map for showing the depth to our vision. Column (1), the depth map
looking from a back view of T'(n —1). 'Column (2), the depth map looking from front view of T'(n).
Column (3), The absolute different result of two depth maps. The arrowsin (b1) and (b2) show the different
slice order for drawing a depth map of back view tunnel (b1) and front view tunnel (b2)

position as seenin Fig. A.4a3 and b3.
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