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CHAPTER I

INTRODUCTION

Video surveillance systems have been widely used as a common security monitoring sys-

tem around the World. However, it is very time consuming for browsing and analyzing any subse-

quences along the large amount of footages contained endless information. Typically, reviewing

an endless surveillance video involves manual seeking into recorded raw video. For example,

browsing for a specific people in a video of one surveillance camera requires a playback device

with capabilities for controlling frame positions such as jog/dial, backward, forward, go to, and

etc.. These common controls are time consuming methods which require human experiences and

abilities for identifying an individual activity time by time. Therefore, all those human abili-

ties will be decreased by time, which affect the overall accuracy of browsing and analyzing the

surveillance videos.

1.1 Research objectives

This research aims at building a video surveillance summarization framework as a replace-

ment of a conventional system as seen in Fig. 1.1. for help reducing the time usage for rush

exploring on the endless video surveillance contents. The objectives are:

1. To build a framework of a video summarization system.

2. To develop a real time system for summarizing a surveillance video.

3. To search human trajectory in a surveillance video.

1.2 Problem Formulation

1. Analyzing of surveillance video is a time consuming process, which requires an ability of a

human to identify objects along the time. Thus the accuracy will be decreased in time.

2. Most summarization results of existing approaches contain all irrelevant information which

leads to an ignorance of an appropriate human ability to be used in an analyzing process.
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Figure 1.1: Conventional video surveillance system that involves with an operation on human abilities.

1.3 Expected outcomes

1. A framework of a video summarization that is extendable for the further research ap-

proaches.

2. A real time video summarization system that will be widely used by many organizations.

1.4 Scopes of work

1. Summarization is based on a non-PTZ video surveillance camera.

2. Human is a target object to be summarized.

3. Human size in a video should not be less than the size of a training set.

4. Experiments will not cover a crowded pedestrian of a surveillance video.

5. Variance of lighting condition such as day-night lighting condition is not considered.
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1.5 Related works

Various approaches of video summarization have been proposed for the same aspect, which

try to reduce irrelevant information such as space and time. The easiest time reducing technique is

frame skipping or video skimming (Smith, 1997), where several frames are skipped according to

user intentions such as object, color, motion, etc. Adaptive video fast forwarding was developed

for the purpose of adjusting a playback speed of a video (Peker and Divakaran, 2004; Petrovic

et al., 2005). However, the speed increases resulting in missing a lot of information as well.

In both approaches mentioned above, an entire frame is a key of summarizing. Another

technique known as video montage (Kang et al., 2006), which is a spatial-temporal approach,

considers space as an additional key. However, the effect of shifting of spatial dimension creates

unavoidable artifact on images between different objects. The later approaches use an advantage

of shifting objects through time dimension while keeping spatial locations intact, resulting in

contexts unchanged. Video condensation by ribbon carving (Li et al., 2009) is an approach for

removing ribbons (ripple frame in a spatial-temporal dimension) inspired by seam carving (Avidan

and Shamir, 2007). However, ribbon only works well with a few differences of speed and direction

of the moving objects, since a flex parameter, which control ribbon flexibility; have a limitation

related to smoothness of stitched image after removal. Although removing ribbon result to reduce

irrelevant information in space and time, it requires taking time for recalculating the energy of the

rest moving objects

Video synopsis has been proposed with many complex computation steps (Rav-Acha et al.,

2006; Pritch et al., 2007, 2008). Most of them are cost and energy computations that are organized

into online phase and response phase. In online phase, object detection is used in time space to

generate tube, then insert and remove a detected tube to and from an object queue. In response

phase, the synopsis video is built by first constructing time lapse background, and then computing

the corresponding time of tubes in the synopsis video. And finally, rendering the tubes with

background to produce the synopsis result, which takes time for stitching moving objects to the

correspondence time and also it depends on the amount of activity in the time period of interest.

Our recent methods for fast and robust object shifting in time space has been proposed in

(Kasamwattanarote et al., 2010), where distance map based collision detection were first applied.

Direct Shift Collision Detection (DSCD) is an object collision detection technique that can cal-

culate a shortest distance between two groups of objects within O(n). Just in Time renderer (JIT
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renderer) has been developed in (Kasamwattanarote et al., 2010) for help reducing the CPU us-

age by processing only necessary frames. Even though the system can produce a summarization

result, it also provides information such as trajectory of moving object for help identifying each

specific tunnel.

Location based trajectories are more important with high consideration on a moving pat-

tern of an object. Various approaches use different information to describe an individual trajectory

such as shape, starting and ending time, location, velocity and acceleration of a moving object.

Dynamic time wrapping (DTW) has been implemented in (Berndt and Clifford, 1996) which allow

time stretching for moving objects to get a better match between trajectories. Several approaches

in (Vlachos et al., 2002b,a) use longest common sub sequence (LCS) as a similarity measure for

trajectories. The advantage of LCS is that it allows matching of moving object subsequences.

DTW and LCS distance matching algorithms are commonly uses in widespread, however both of

them have time complexity of O(n2). Calculating a trajectories similarity by using the definition

of time and sub-sequences has been presented in (van Kreveld and Luo, 2007), where the speed

of an object leads to temporal shifting inside the vertices which can be considered as dissimi-

lar. Problems have been categorized according to the criteria that timing is fixed and/or whether

the starting times of the sub-trajectories are equal. However, the distance function is the main

measurement and the best time complexity of an exact match similarity with various duration is

O(n2).

Another approach is based on edit distance (ED) in order to overcome the inefficiency of

the previous approach in the case of noise and obstacles on the trajectory. Chen et al. (Chen

et al., 2005) proposed a new distance function called edit distance on real sequences (EDR).

EDR removes noise then changes one trajectory to another before measure. Thus, this technique

increases the accuracy especially with the trajectories having Gaussian noise. Similarity search by

using area in-between trajectories has been proposed in (Pelekis et al., 2007). GenLIP algorithm

has been used as the spatial similarity search between trajectories. Also, only spatial similarity

computation takes time complexity of O(n log n).

Clustered synopsis of video surveillance has been proposed in (Pritch et al., 2009), which

takes the benefits of trajectory to reduce the information being summarized. Motion distance is

defined as the similarity measure between two activities. This approach takes both appearance

distance from SIFT features and motion distance into the creation of the training set of unsu-

pervised clustering, which yields too much time consuming to search for trajectories of moving
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object in a surveillance video.

We proposed a real-time trajectory search by using direct distance transform (DDT)

(Cooharojananone et al., 2010), where distance map based for similarity measuring between tra-

jectories were first introduced, which aim for fast searching on only location definition. By gen-

erating a distance map from trajectory information of a moving object aims to provide a fast and

direct accessing to the similarity values, which results to retrieve trajectory similarity by accumu-

lating values from a distance map through a specific trajectory within real-time. Also, the system

will rank up all relevant objects ordered by similarity value, which helps increasing the efficiency

of the activity tunnels for being analyzed.

1.6 Organization of thesis

In this paper, we present a real-time video surveillance summarization framework built

from our previous works in (Kasamwattanarote et al., 2010; Cooharojananone et al., 2010) as a

time consuming reductive tool, which motivate by real-time approach aimed for help minimizing

time usage for browsing and analyzing activities in a security monitoring and time-critical related

tasks. We organize this paper as following. In section 1.7, we describe our framework and give

the details of frameworks architecture design as a combination of multiple components. We show

how simple, fast, and efficient of our novel algorithms work, which categorize in recorder module

and player module, in section 2 and 3 such as DSCD, Film Map Generation, JIT Renderer, and

DDT. Also, we introduce Dynamic Region Adaptation (DRA) as a contour based background

subtraction. Then, we report results in section 4, which are in term of images captured from

summarized video and time performance. Finally, the conclusion is discussed in section 5.

1.7 Propose Framework

We realize that our goal is to build a real-time video surveillance summarization frame-

work, so we organize the processes into two core modules for balancing workloads. Therefore,

both modules can be executed independently or paralleling to handle the tasks (see Fig. 1.2).

The first module is called a recorder module. This module first captures video and detects a re-

gion of interest of objects in each video frame. Then, all objects are analyzed and processed to

generate completed tunnels (section 2.1). Next, rectangular tunnels were performed by our DRA

background subtraction (section 2.2) to make a moving silhouette for each moving object corre-

sponded to an individual tunnel. After that, DSCD is then used for calculating a collision distance
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Figure 1.2: The proposed framework.



7

(section 2.3) and finally each tunnel is recorded separately.

The second module is called a player module which is for playing the summarized surveil-

lance video. This module first gets a user input of playing duration such as time period. Then, the

system collects tunnels which correspond to the specified range and also background source file

is initialized. Film map generation is then used for making a draft version of a summarized video

without rendering while JIT renderer is used for rendering only necessary frames to be shown

(section 3.1). Finally, buffer is read out in real-time according to user seeking position.

Inside the first module, we embed all necessary information for describing an individual

tunnel such as time, moving speed, direction, and moving trajectory. For fast searching mov-

ing trajectories, we also apply the distance transform generation within the recorder module for

pre-generating the distance transform as the trajectory information for each moving object. The

player module allows user to search for trajectories by just drawing a moving path through the

screen. Then, DDT is then applied for searching the most similar trajectory (section 3.2) by direct

accessing through all provided trajectory information in the player module. Also, these trajectory

similarity results can be used for applying as a tunnel filter of summarized video.
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Figure 1.3: Our schematic illustration: (a) two different tunnels in 3D spatial-temporal volume (b) tunnels
were shifted in time space (c) frame slides of a summarized video.



CHAPTER II

RECORDER MODULE

To provide information useful for a player module, we integrate the major processes for

recording each tunnel and pre-calculating necessary parameters in real-time. This section de-

scribes the steps through recorder module, which contains a process of making a raw tunnel with

necessary information, extracting a moving silhouette, and also pre-summarizing tunnels ahead

of time with our simple, fast, and robust algorithm.

2.1 Tunnel Computing

In order to create a summarized video based on activity tunnel, each appropriate tunnel

should be detected using any object detection algorithm. In this work, we apply HOG for human

detection (Dalal and Triggs, 2005) by using a default human descriptor as our main detector.

2.1.1 Slice Tracking

To define a tunnel, I(t) be an image or a frame in a time space where t is a frame number,

N is the total number of frames, and 1 ≤ t ≤ N . A detected object Oj(t) in Fig. 2.1 corresponds

to a region of such object at frame t and j is the index of an object detected from I(t). A tunnel

is composed of multiple slices S(i) as seen in Fig. 1.3 where i is a slice number, M is the total

number of slices, 0 ≤ i ≤ M , and T (n) in Fig. 2.2 is a tunnel, where n is a tunnel number, K is

the total number of tunnels, and 0 ≤ n ≤ K.

In order to track a tunnel, we need to find the closest detected object to a tunnel by Eu-

clidean distance and then check the confidence value C(m, o) by using multi attribute utility

theory (MAUT), to estimate the possibility of being the next slice of such tunnel. The confidence

equation can be described as follows

C(m, o) = wm||m||+ wo||o|| (2.1)

where m is a missing frame to the last slice of a tunnel, o is an overlapping area of the last

slice of a tunnel with the closest slice of all detected objects, ||m|| and ||o|| are the utility values,
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Figure 2.1: Multiple objects can be detected in one frame.

Figure 2.2: Detected tunnels: (a) tunnels of two different objects (b) top view time space (c) time space
after summarized by shifting tunnels through time while keeping spatial locations intact.



11

Figure 2.3: Time space shows multiple tunnels after tracking and interpolating step.

Figure 2.4: Top view of the time slice. (left) An unprocessed tunnel. (right) A processed tunnel.

wm and wo are the weight of each attribute with the property that

wtotal = wm + wo = 1 (2.2)

In this work, we use wm = 0.3 and wo = 0.7 since our tunnel tracking emphasizes on

the overlapping area rather than the missing frame. The values of m and o are normalized to 0-1

scale. Thus, the highest and the lowest values of C(m, o) will be 1 and 0 respectively.

The confidence value will be used to indicate the possibility of a new detected object to be

a new slice of the closest tunnel, therefore, we use the threshold of 0.8 to measure which slice has

the confidence value greater than or equal to the threshold; it will be accepted as a new slice of

that tunnel. The results are shown in Fig. 2.3.
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2.1.2 Tunnel Processing

An original tunnel in Fig. 2.4(left) shows a raw tunnel after being analyzed from multiple

slices where many missing slices and noisy slices (peek in width or height) can be notified. These

problems are caused by object occlusion, color merging, and some noises from the camera, which

affect the result of our object detection. In the summarizing step, a process of calculating collision

distance will be affected a lot by most of the noisy slices because the collision should not occur

on a noisy slice.

To eliminate all the problems, tunnel processing should be performed at the video capturing

step which may result in good captured frames, low noise, clear vision, and a good detected tunnel.

However, in such cases, the overall performance will be dropped because of spending more CPU

time on it. Thus, our approach needs real time performance, and processes with a raw tunnel that

uses less data than processes the whole frame along the time space. The reason is because a tunnel

T (n) is a collection of slices S(i), where each slice is a rectangle composed of 4 corner points.

For example, if a tunnel contains 200 slices (200 frames / 25 fps = 8 seconds, most tunnels

are within this range), then we need to process only 200 slices × 4 points per slice or the total

of 800 points which are much fewer than the whole time space of 320-pixel width × 240-pixel

height × 200 frames or 15,360,000 pixels. Then, the result after processing a tunnel will be the

tunnel as shown in Fig. 2.4(right).

2.1.2.1 Tunnel Interpolating

As it can be seen from Fig. 2.4 that there are many missing slices which are needed to

be filled, a simple interpolation approach works well for this situation (see Fig. 2.3) by using

slice properties around the missing frame such as spatial location, dimension, and slice number to

generate new slices for those gaps.

2.1.2.2 Tunnel Cleansing

Many approaches for noise reduction can be applied for this step. Most of them try to

eliminate noisy data and leave only the original details. In this case, we need only the smoothest

tunnel with as less noise as possible (see Fig. 2.4(right)) for recovering from all problems that

may occur during our object detection. The most preferably method that can smooth a tunnel as

we need is the simple moving average method or SMA. This method is very simple, uses only a
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Figure 2.5: Images show before and after object moved into an area of background. (a) A background
scene shows static object. (b) A people moving into a background area which we need to find the best
silhouette mask for the corresponding foreground. (c) Result after done an absolute differencing shows
the clear cut foreground area by our vision. (c) In computer, we still have background noise from many
possible variations such as a staff’s head, moving doors, and the affect of the flickering light source and
camera quality.

few operations, and does not require any sorting algorithms; however, it gives us the most suitable

result over all other algorithms.

2.2 Extracting a moving foreground by Dynamic Region Adaptation

Tunnel is a composed of time-dimensional slices bounded from region of interest of real-

time object detection, which generally are rectangle. Shifting tunnel together in time dimen-

sion (section 2.3) is a purpose of time gap removal between moving objects, which results to

play the same activities in the shorter amount of time. Our DSCD provides two types of sum-

marized result that are non-overlapping tunnel (DSCDmultiplier = 1) and overlapping tunnel

(DSCDmultiplier > 1). In case of non-overlapping tunnel, the collision distance in time dimen-

sion between tunnels is the minimum distance between two consecutive tunnels as seen in Fig.

2.2, which is an illustration of shifting of rectangular tunnel. Although, the time gap was removed,

there still exists the space gap between the particular objects inside the rectangles.

According to our approach aimed for shifting only temporal and lefts spatial location intact

to avoid making artifact as in (Kang et al., 2006). We applied a dynamic region adaptation (DRA)

for help more shifting in time dimension by subtracting the background area from the whole

rectangular image. This yields two consecutive tunnels collide closer into the particular object

as seen in Fig. 2.6, which will effect to the overall summarization period to be shorter without

overlapping tunnel.

Subtracting background from an image, we first need to know background area by finding

the differences between foreground and background. The image in Fig. 2.5c shows a result

after processed an absolute differencing of two images, we then clearly see foreground area (the
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bright pixels) on the dark background. However, it contains a lot of background noise, since a

background itself is variance due to the still objects were moved such as an opening door, the

flickering of light sources, or even an effect of low quality surveillance camera. Thus, it leads

to the masking problem since we cannot create a perfect mask for that foreground by using just

absolute differencing result (see Fig. 2.5d).

To find the clear cut area of foreground, we introduce a novel contour based foreground

extraction by using DRA. DRA is an algorithm for searching the best cutting threshold for brighter

color selection covered almost foreground area without any background noise. We organize the

algorithm into three major steps. First, area extraction is a step to process all possible thresholds

for generating series of affected amount of pixels coverage of a foreground object. Second step

is a process of data transformation, which will transform the series of area coverage into series

of slope, difference, and pulse. The last step is a process for finding the best threshold of a

corresponding foreground, which will be used to extract almost perfect foreground comparing

with and ideal foreground result.

Through all the processes for extracting a moving foreground, our approach can create a

silhouette foreground mask for any moving object as seen in Fig. 3.6. Then we applied the

best threshold for each tunnel separately for retaining the real-time performance of the overall

framework while still be able to extract the clear foreground out of slices of each tunnel (see Fig.

2.10).

2.2.1 Area Extraction

Selecting color by using different DRA threshold on a result of absolute differencing be-

tween images as seen in Fig. 2.5c will effect to the coverage area of contour as seen in Fig. 2.7.

To generate an area graph (see Fig. 2.8a), we take advantages of both color information and lumi-

nance information from R, G, and B channels of RGB color space and L channel of CIE L*a*b*

color space, where color information can help us identify the high-contrast area and luminance

information will be used to identify the low-contrast area.

We process all possible thresholds to build an area graph Area(S(i)) as seen in Fig. 2.8a

that will be used for searching the best threshold, which is varies according to different fore-

grounds.
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Figure 2.6: An illustration of top view time space shows a comparison between normal, summarized, and
summarized with DRA. Where the particular objects is located inside the larger rectangular tunnels. And
Δt is a shorter time difference with DRA.
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Figure 2.7: Images show different thresholds, which process on B channel of RGB color space, yield
different result of the selected foreground area. And the vertical lines for each graph show the selected
threshold.
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2.2.2 Data Transformation

Pulse(r) is a pulse index of the specified rank r, which order by ascending of the variation

ratio 2.4, that occurs in the pulse graph of slice i as follow

Pulse(r) = IndexOf(Rankr(PulseS(i))) (2.3)

The pulse graph of slice i can be computed by the following

PulseS(i) = Diff(S(i))/Slope(S(i)) (2.4)

wherePulseS(i) is a pulse graph of slice i (see Fig. 2.8d), which shows the relation between

Diff(S(i)) and Slope(S(i)), describing the variation ratio among a different value and a slope

value on the same index, where a low pulse value indicates a high variation of signal changing

on the area graph. In contrast, the pulse value near zero indicates a low variation of area graph.

Calculating the different graph Diff(S(i)) and the slope graph Slope(S(i)) can be done by the

following

Diff(S(i)) = Diff(Area(S(i))) (2.5)

Slope(S(i)) = LinearRegress(Area(S(i))) (2.6)

where Diff(S(i)) is a different graph (see Fig. 2.8b) calculated from a simple moving

subtract method along an area graph of slice i, and Slope(S(i)) is the slope graph (see Fig. 2.8c)

calculated from a linear regression method by using a filter size of 7.

2.2.3 Finding the Best Threshold

Form our experiments; a threshold for extracting the best foreground is located at the most

stable value between the first step and the last step of an area graph, which we describe by the

following
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DRAS(i) = IndexOf( min
Pulse(1)→Pulse(2)

(|Slope(S(i)))|) (2.7)

where DRAS(i) is the best threshold value for the corresponding slice i, which is at an

index of the minimum value between top two minimum pulses along the slope of slice i.

2.3 Summarizing by Direct Shift Collision Detection

An endless video from a surveillance camera is hard to browse and analyze without video

summarization. Summarizing the video by using object-based video summarization, which uses

the detected objects for the selection of related frames, was introduced in (Smith, 1997; Ferman

and Tekalp, 1997; Kim and Hwang, 2000). Our approach goes beyond those techniques by shifting

the objects through a time space to create the summarized video in order to make a better use of

space and time with direct shift collision detection (DSCD).

We introduce a new approach for finding the distance between a point of view and an

interested pixel without the use of any scanning methods such as tracing, or brute force method.

Our approach uses the advantage of depth map image, which is able to give the distance of an

object, for this implementation.

The algorithm is organized into two phases: drawing phase and checking phase. In the

drawing phase, a previous tunnel is drawn on an image to create a depth map with distance em-

bedded in a pixel. And in the checking phase, all the corners of all slices of a candidate tunnel

will be checked to find the collision distance to the previous tunnels. As a result, our approach

can run in O(n).

2.3.1 Drawing Phase

In this phase, all slices of a previous tunnel will be drawn on an image from the first slice to

the last slice respectively as shown in Fig. 2.9. Normally, a depth map image can be represented

using a gray scale image, which is only 256 levels per pixel or an intensity of 0-255. Thus, we

try to embed other information such as slice index into those pixels by up scaling the gray shade

from an integer to a decimal precision. The image in Fig. 2.9 represents the normalized intensity

of our depth map image as a back view of time space. An integer part will be used to represent

the overlapping flag, and the fraction part will be used to represent a slice number. For example,
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Figure 2.8: The graphs show results for each step along the DRA process on B channel of RGB color space.
(a) An area graph calculated by tracing a coverage area of the selected contour from different thresholds. (b)
A different graph calculated by simple moving subtracting on an area graph. (c) A slope graph calculated by
passing through a linear regression method. (d) A pulse graph calculated by Diff(S(i))/Slope(S(i)). (e)
Result after select the color by using DRA threshold. And the vertical line shows a selected DRA threshold.
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Figure 2.9: A normalized depth map shows back view tunnel in time space.
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Figure 2.10: A normalized depth map shows back view tunnel after processed with our DRA background
subtraction.
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to draw slices with gray intensity range from 254.000 to 254.999, it can support the slice up to

1,000 slices per tunnel, or intensity range from 254.0000 to 254.9999 can support up to 10,000

slices etc. For more information on up scaling, we explain more on appendix A.1.

2.3.2 Checking Phase

In this phase, instead of drawing into a depth map image, we only need to check with the

gray intensity for each point along the contour of all slices of the selected tunnel. Any point that

overlaps the previous slice or its location is on the top of the previous slice; its gray intensity will

be greater than the threshold. Then the fraction portion will be used to extract a slice index of the

collision distance.

The collision distance between two tunnels can be computed from the closest slices among

both tunnels giving such distance which is a minimum offset that makes both tunnels stitch to-

gether without overlapping. For implementing of checking phase, we explain more on appendix

A.2. We define a collision distance for summarizing activity tunnels as the following function

DSCD(n) = min(T (n), I(n − 1)) (2.8)

where DSCD(n) is a minimum distance between selected tunnel to the previous tunnel,

I(n) is a depth map image of the specified tunnel, and the minimum distance DSCD can be

implemented as algorithm 1.

Algorithm 1 Direct Shift Collision Detection

1: for all S1 in T(n-1) do

2: I.draw(S1, intensity)

3: end for

4: for all S2 in T(n) do

5: if I.overlap(S2) then

6: minDist = S2.frame - I.frame(S2.contour)

7: DSCD.update(minDist)

8: end if

9: end for

The time complexity of our algorithm (1) is O(n) which is faster than other closest point
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algorithm (2) that takes O(n2).

Algorithm 2 Other Closest Point

1: for all S1 in T(n-1) do

2: for all S2 in T(n) do

3: if S1.overlap(S2) then

4: minDist = S2.frame - S1.frame

5: DSCD.update(minDist)

6: end if

7: end for

8: end for

The collision calculated from DSCD gives us a real-time result of a collision distance per

tunnel. When we need to summarize all tunnels of the entire range, the distances will be in-

creased accumulatively from the first tunnel of the range thus we can reduce the time during the

compression step in the player module by calculating a collision distance in advance.

To accumulate all DSCDs of the previous tunnel, we use dynamic programming and or-

ganize the collision distance into local DSCD and global DSCD. Local DSCD is the distance to

the previous tunnel, while global DSCD is an accumulated distance from the first tunnel of the

range to the previous tunnel. Dynamic programming can be used to accumulate the previous local

distance as the following recurrence relation

DSCDG(0) = DSCDL(0)

DSCDG(1) = DSCDL(1) +DSCDG(0)

DSCDG(n) = DSCDL(n) +DSCDG(n− 1)

(2.9)

For example, tunnel A has DSCDL = 10 and tunnel B has DSCDL = 5, then after

accumulating all DSCDs from the first tunnel, tunnel A has DSCDG = 10 and tunnel B has

DSCDG = 15. Thus, the global DSCD will be used as the offset distance for shifting tunnels

through time space as shown in Fig. 2.11. The DSCD distance can be used as a distance for com-

pacting tunnels without overlapping. However, we can apply a multiplier to DSCD for adjusting

an offset distance to make overlapping tunnels (DSCDmultiplier > 1).



24

Figure 2.11: Time space shows tunnels with the collision pointers, where horizontal axis is frame number.
(a) Local DSCDs for colliding with the previous tunnel (b) Global DSCDs for shifting to the summarized
position.



CHAPTER III

PLAYER MODULE

This section proposes the playback process with result customization. We describe how

a user can interact with the system and get back his request in real-time. With pre-processed

parameters from recorder module, we can generate a summarization result instantly. Also, we

explain about how buffering system helps our playback process gains higher performance for the

whole framework and introduce a sample extension where our framework can be applied.

3.1 Playback with Film Map Generation and JIT Renderer

As mentioned earlier, packing tunnels together is the way to produce a summarized video,

thus pre-computing of an offset distance yields an advantage to a film map generation.

Film map (see Fig. 1.2) is the overall layout of a summarized video, which describes a

temporal position converted from global DSCD for each slice of the tunnels. This step causes the

activities to appear simultaneously while they originally appear at different time. However, this

step does not involve with a rendering process, so it can accomplish a summarized film map in a

few milliseconds. Film map can be described as a complete movie film and just-in-time renderer

can be described as a player. When a user wants to see a movie, he just inserts this film into the

player, and then the player will project only the frames needed to be shown on the screen.

We implement a just-in-time renderer (JIT Renderer) for rendering only the necessary

frames to be shown to a user. By using film map, JIT renderer (see Fig. 1.2) will render the

video into the frame buffer according to the seek position, which gives us a real time output of

the summarized video. We also implement a FIFO frame buffering system for keeping rendered

frames. Whenever the buffer is not full, a system will use another thread to render the next frame

into it, and a frame will be removed from the frame buffer after being played.

3.2 Searching by Direct Distance Transform

Distance transform for each tunnel is the distance between any point on an image to the

points on a trajectory which we need to search for. We select trajectory information for being a

source of making a distance. In order to find the trajectory similarity, each appropriate distance

transform for each tunnel should be generated using any distance function. In this work we use
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Figure 3.1: (top) Trajectories of tunnels. (bottom) Distance transforms.

Figure 3.2: (left)Moving object with trajectory. (right)The distance transform.
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Figure 3.3: A process for making a double layer of a direct distance transform.

the Euclidian distance as our main distance function for calculating a distance as shown in Fig.

3.1. Two Phases Distance Transform is proposed for creating a distance transform.

3.2.1 Trajectory Expansion

At the time after a new tunnel is first analyzed, we plot the embedded information as a

line represents the trajectory of such object tunnel. However, distance transform is the process

for calculating a distance from outside to inside of an object, thus we need to expand a tiny line

to make it larger enough for finding the distance as mentioned. A trajectory of a moving object

shown in Fig. 3.2(left) needs to be processed to make the direct distance transform as shown in

Fig. 3.2(right). To define a distance transform, let DT (n) be a distance transform function using

Euclidian distance and T (n) be an analyzed tunnel where n is a tunnel number, K is the total

number of tunnels, and 0 ≤ n ≤ K. Trajectory is then mapped onto an image using Traj(T (n)).

We also organize the distance transform into double layers which are

3.2.1.1 Cap Layer

Let Cap(n) be a distance transform at the core of an object trajectory. Particularly, this

function just draws a bold trajectory over a gray image to represent a distance mapping as a

function of intensity. Thus, the cap layer is for identifying the most similarity group of trajectories
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to the user defined trajectory as shown in Fig. 3.3(top).

3.2.1.2 Base Layer

Let Base(n) be a distance transform at the base of an object trajectory. Its function is

similar to the cap layer, its main purpose is for catching the rest of trajectories that are far away

from the cap layer. Resulting in variant of the distance be spread out to most areas on the frame

as wide as possible. We also apply a simple blur filter on the trajectory image to spread it out, and

it is denoted as Blur(Traj(T (n))).

Because a user defined trajectory may be out in the nearby area, it should be able to calculate

the distance as shown in Fig. 3.3(bottom). Therefore, the equation can be described as follow

DT (n) = Cap(n) +Base(n) (3.1)

Cap(n) = Draw(Traj(T (n))) (3.2)

Base(n) = Draw(Blur(Traj(T (n)))) (3.3)

3.2.2 Trajectory Similarity Measurement

In this phase, we apply the advantage of distance mapping as our DSCD algorithm to get

the direct distance information. To define a distance function, let DDT (RawTraj) be a direct

distance transform for similarity measurement between trajectories to be searched within the range

of summarizing tunnels, and RawTraj be a trajectory model of a user specified trajectory which

composes of a series of points, where p is the number of point falling within the range, L is

the total number of points, and 0 ≤ p ≤ L. We measure the distance by summing up directly

from the intensity Int of a distance transform at the position of any given points. The similarity

measurement for each tunnel can be represented as follow

DDT (RawTraj) =

L∑

p=0

Int(RawTraj(p), T raj(T (n)) (3.4)

The direct distance transform function can be used to sum up the similarity value for each

tunnel. This process only takes time complexity of O(n) to search one tunnel. We also normalize
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Figure 3.4: (a) A group of similar trajectories. (b) The rest are unmatched.

Figure 3.5: Time space shows multiple tunnels in time-space.

values of the trajectories similarity into 0-1 scale for checking the ratio of similarity, where 0 is

low and 1 is high. Since we need to rank all tunnels for summarizing the relevant tunnels based

on trajectory similarity as shown in Fig. 3.4, a sorting algorithm is applied at this step.

Normally, the DSCD value of each tunnel has been calculated which is computed with

the nearby tunnels and the distances will be increased accumulatively from the first tunnel. The

tunnels are now ready to be summarized. In this case, a tunnel will not be next to each others

because some tunnels might not fall within the acceptable range of high similarity. Therefore, the

DSCD of all filtered tunnels need to be recalculated such that it can be shifted to close to each

other in time space



30

Figure 3.6: Sample frames from a summarized video. (a) DSCD: 2.0, Trajectory: not specified. (b) DSCD:
1.0, Trajectory: specified. (c) DSCD: 2.5, Trajectory: specified. (d) A collection of moving silhouette for
each tunnel.

Figure 3.7: A performance evaluation of a recorder module. The top line shows a time usage per one frame
for object detection and object tracking processes, which vary depend on the amount of new detected object
as seen in the bottom line.
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Figure 3.8: A performance evaluation of a recorder module shows the time usage to process with the
different tasks for each tunnel. The asterisk line shows the time usage of tunnel processing step, which
contains tunnel interpolating and tunnel cleansing. The cross line shows the time usage for extracting
foreground out of each individual tunnel by using DRA. The square line shows the time usage for calculating
the shortest distance for shifting together between tunnels.

Figure 3.9: The graphs show the performance evaluation of player module comparing with the amount
of detected tunnels for each video length. The asterisk line shows the speed of film mapping process to
generate a draft of summarized video. The cross line shows a time usage for finding the trajectory similarity
by using DDT. The speed of both film mapping and trajectory search is depended on the amount of collected
tunnels. In contrast, the speed of JIT renderer is constant since it will process the frames when needed as
shown in triangular line.
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Figure 3.10: The data throughput graph shows the tunnel per minute rate (TPM) was improved after sum-
marized with our framework.

Figure 3.11: The length comparison of each summarized video by using different algorithms. The square
line shows the total frame of original videos. The cross line shows the output length from a fast forwarding
algorithm 2× was cut by half. The triangular line shows the output length form frame skipping algorithm.
And the dot line shows the shortest summarized results from our algorithms.



CHAPTER IV

EXPERIMENTAL RESULT

We propose a video surveillance summarization framework as shown in Fig. 1.2, which

is organized into two major modules for real-time sophisticated browsing for rush exploration

of video monitoring task. Our framework is built to support the video captured from practical

surveillance camera. However, we also show the results that were processed from one of the

most standard sources of video for retrieval evaluation, which is the airport scene from TRECVID

London Gatwick surveillance video as show in Fig. 3.6.

The experiments were implemented on a normal laptop powered by Intel core 2 duo T8100

with the processor speed of 2.1 GHz. The whole framework was build with C# .NET programming

language which is enough to give us a real-time performance of our framework. We prepared

the TRECVID data named LGW 20071101 E1 CAM1.avi by splitting the original video into 25

footages of the first 1 minute of the video to the first 25 minutes of the video. Each video has the

resolution of 320×240 pixels with 25 fps.

The recorder module needs to be performed as a video capturing, object detection, object

tracking, tunnel processing, background subtraction, and recording an extracted object into an

individual file. This mode can run with the real-time performance of about 32 milliseconds per

frame (see Fig. 3.7) or about the speed of more than 30 frames per second, which is enough

for a typical surveillance camera that mostly capture the video with the frame rate of about 15

frames per second for generally web camera, 25 frames per second for PAL system camera, and

30 frames per second for NTSC system camera under an indoor lighting condition.

The player module can be run parallel or on a separate process or even on another com-

puter by accessing the tunnels information through a network. This module runs in real-time by

rendering only necessary frames as described in section 3.1.

The experimental results are summarized in Fig. 3.7 - 3.11. The graph in Fig. 3.7 shows

the overall frame based performance of the recorder module comparing with the amount of new

detected tunnels. We detect the human for every frames by using HOG (Dalal and Triggs, 2005),

which gives us the result of region of interest for each moving human. Then, the tracking process

will handle a task of connecting pieces of each tunnel together. The combination of detection and
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tracking steps, it take time approximately 32 milliseconds per frame, where the speed of detection

depends on the number of occurring tunnels.

The graph in Fig. 3.8 shows the overall tunnel based performance of the recorder module.

The process of generating tunnel will occur once only after the whole tunnel was collected. This

step includes a tunnel processing, a DRA for background subtraction, and a DSCD for objects

collision detection in time-space. A tunnel processing step, which processes a tunnel interpolating

and a tunnel cleansing, takes time about 530 milliseconds per tunnel including I/O as shown in

an asterisk line. DRA for background subtraction, which processes all the hard-working tasks in

section 2.2, takes time about 300 milliseconds per tunnel as shown in a cross line. And the core

process of our summarization is DSCD, which will detect the collision distance between tunnel,

takes time about 20 milliseconds per tunnel as shown in a square line.

For the player module, we summarized the overall performance evaluation into the graph in

Fig. 3.9, which shows the overall speed comparing with the total amount of detected tunnels. The

asterisk line shows the speed of making a draft of video summarization result in a film mapping

process, which increases from 0.1 milliseconds to 2.25 milliseconds due to the number of detected

tunnels. Also, the DDT process was affected by the number of collected tunnels as seen in the

cross line from 0.1 to 1 millisecond, since it needs to find the best trajectory similarity from all

tunnels. However, JIT renderer can render the result constantly about 3.5 millisecond per frame

as show in a triangular line.

The result in Fig. 3.10 is to show the amount of tunnel is increased in a summarization

video. The dot line shows the data throughput of the original video, which has the rate of tunnel

per minute about 5 tpm. Then, the square line shows the tunnel rate in the summarized video

was increased to about 25 tpm, which means we can see the moving object passed the screen

approximately 5 times frequent than the original video.

For the data compression in Fig. 3.11, we shows a comparison on the video length after

summarized with different algorithms. The square line shows the length of the original video from

1 minute or 1,500 frames to 25 minutes or 40,500 frames. Fast forwarding algorithm Petrovic et al.

(2005) is an approach which play the video by skipping consecutive frames equally. For example,

2× fast forwarding means after playing one frame, the next frame will not be played but play next

two frame instead. At this time, we compare with 2× fast forwarding then the cross line shows

the result of the length of s summarized video was cut by half. Frame skipping algorithm Smith
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Table 4.1: The summarization results of each video lengths.

Original Length Tunnel Count Normal TPM Summarize Length Summarize TPM Compression Ratio Time Saved

(in minute) (in minute) (in percentage)

1 4 4.00 0.24 16.57 4.14:1 75.87
2 11 5.50 0.46 24.09 4.38:1 77.17
3 13 4.33 0.48 27.35 6.31:1 84.16
4 17 4.25 0.65 26.23 6.17:1 83.80
5 20 4.00 0.75 26.71 6.68:1 85.03
6 27 4.50 1.02 26.57 5.91:1 83.07
7 35 5.00 1.22 28.72 5.74:1 82.59
8 38 4.75 1.32 28.76 6.05:1 83.48
9 44 4.89 1.56 28.28 5.78:1 82.71
10 49 4.90 1.79 27.44 5.60:1 82.14
11 52 4.73 1.87 27.79 5.88:1 82.99
12 57 4.75 2.19 26.00 5.47:1 81.73
13 62 4.77 2.39 25.98 5.45:1 81.64
14 64 4.57 2.49 25.75 5.63:1 82.25
15 68 4.53 2.56 26.51 5.85:1 82.90
16 69 4.31 2.56 26.90 6.24:1 83.97
17 72 4.24 2.68 26.83 6.33:1 84.21
18 77 4.28 2.80 27.53 6.43:1 84.46
19 87 4.58 3.27 26.59 5.81:1 82.78
20 89 4.45 3.32 26.80 6.02:1 83.39
21 93 4.43 3.53 26.38 5.96:1 83.21
22 101 4.59 3.69 27.37 5.96:1 83.22
23 108 4.70 3.89 27.73 5.91:1 83.07
24 117 4.88 4.46 26.23 5.38:1 81.41
25 125 5.00 4.60 27.18 5.44:1 81.61

(1997) is an approach to play the video by playing only the frames contain the contents such as

moving object, then skipping other frames. The triangular line shows the summarized result of

frame skipping which are shorter than video fast forwarding.

Our result in Fig. 3.11, the dot line shows the shortest summarized output for all videos1.

Table 4.1 shows the compression ratio between original video with our summarized result, which

are around 4:1 to 6:1 and it can save time for reviewing the surveillance video to about 85%.

And also, in table 4.2 shows the summarization results based on the calculation for new detected

tunnel. The overall results are the conclusion that the length of each summarization result is

depended on the amount of new detected such as the lower number of object for each period of

time yields the shorter of summarized result. And at the 16th minutes, the compression ratio of

Max means the algorithm can compress the video in this period of time into zero minute, since

there occurs a time-space left inside the 15th minutes that is enough for a tunnel of 16th minutes

to be shifted into. Our approach can summarize the surveillance video into the shorter duration

without remove any activity objects as we expected. Not only a natural speed of moving objects

were produced from our framework, but also it can increase the number of moving object within

the same period of time.

1We encourage readers to view more video examples in ftp://tppwan1.dyndns.org/Video%20Summarization



36

Table 4.2: The summarization results for new detected objects of each video lengths.

Original Length New Tunnel Normal TPM Summarize Length Summarize TPM Compression Ratio Time Saved

(in minute) (in minute) (in percentage)

1 4 4.00 0.24 16.57 4.14:1 75.87
2 7 5.50 0.22 24.09 4.64:1 78.47
3 2 4.33 0.02 27.35 53.57:1 98.13
4 4 4.25 0.17 26.23 5.79:1 82.73
5 3 4.00 0.10 26.71 9.93:1 89.93
6 8 4.50 0.27 26.57 3.74:1 73.27
7 7 5.00 0.20 28.72 4.93:1 79.73
8 3 4.75 0.10 28.76 9.74:1 89.73
9 6 4.89 0.23 28.28 4.26:1 76.53
10 5 4.90 0.23 27.44 4.35:1 77.00
11 4 4.73 0.09 27.79 11.72:1 91.47
12 4 4.75 0.32 26.00 3.12:1 67.93
13 5 4.77 0.19 25.98 5.14:1 80.53
14 2 4.57 0.10 25.75 10.14:1 90.13
15 4 4.53 0.08 26.51 12.61:1 92.07
16 1 4.31 0.00 26.90 Max 100.00
17 3 4.24 0.12 26.83 8.38:1 88.07
18 5 4.28 0.11 27.53 8.82:1 88.67
19 10 4.58 0.47 26.59 2.11:1 52.60
20 2 4.45 0.05 26.80 20.00:1 95.00
21 4 4.43 0.20 26.38 4.89:1 79.53
22 8 4.59 0.16 27.37 6.07:1 83.53
23 8 4.70 0.20 27.73 4.92:1 79.67
24 8 4.88 0.57 26.23 1.76:1 43.33
25 9 5.00 0.14 27.18 7.25:1 86.20



CHAPTER V

CONCLUSION

We have proposed a novel real-time video surveillance summarization framework intended

for minimizing time usage for rushes exploration of video monitoring task based on shifting of

moving object in time-space. Our framework can produce summarization results without remove

any significant contents, while still keeping the real-time performance. The main advantage and

novelty of our proposed framework is the combination of fast and robust algorithms combined

with an efficient implementation for balancing the workflows. We also introduced DSCD for

fastest collision detection, film map generation for making a draft summarization, JIT renderer

for rendering only necessary frame, DDT for similarity measurement, and DRA for contour based

background subtraction.

Our presented approach is based on a tunneling system, which can help increasing human

ability and efficiency of browsing and analyzing of a surveillance video by reducing time usage

for reviewing the video. The earlier application for our tunneling system is to search the best

match for object trajectory, which is one of an identifier for interesting object. The combination

of these algorithms make our framework to be not only have less computational cost, but also

responding the results by real-time performance.

In this framework, we use HOG with a default human descriptor to detect human. For some

cases of crowded people occurred in the scene, the detection will not be able to detect any human

who is behind the others. So the framework will not be able to include all those human into the

system for making a summarized result.

The presented framework also provides a lot information described each activity tunnel

such as timing, trajectory, contour, etc. So the future release can apply all those information to

help identifying and understanding on each moving object or the overall behaviour and also, this

framework can be applied with other objects such as car, bicycle, etc. Also, trajectory searching

can be processed with other properties such as direction, time, speed, and size of object to help

identify more exact to the interesting object. Another example is the summarized result can be

filtered and show only unusual tunnels, then the analyzing process will be more easy for the human

to judge yielded more speed and gained up accuracy of the real-time security monitoring task.
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APPENDIX A

IMPLEMENTATION

In this chapter, we provide an implementation of depth mapping process for embedding

distance information of each tunnel. Normally, depth map image is an image illustrating the

depth of objects aligned in the z-axis of three dimensional Cartesian coordinate. The video also

be able to explain with 3D coordinate by using time-axis instead of z-axis. The time-axis of a

video is usually counted as frame number, thus our detected object also creates a tunnel depth

in time dimension. That means an endless video from surveillance camera will create endless

amount of detected tunnels which assigned by each specific frame number in time dimension.

A.1 Depth Mapping

Depth map can be represented by using grayscale image, which contains an information of

intensity from minimum to maximum of 0 to 255 by using one byte or 8 bits per pixel. Storing

a tunnel depth information into an image, we need a space more than 256 levels to describe a

time dimension for the whole video. Therefore, separate keeping an absolute starting frame then

embedding only a relative time-depth information of an individual tunnel is the best solution for

taking a use of depth map image as seen in Fig. A.1. However, without modification of a grayscale

image, we can store only 256 slices per tunnel, or only about 10 seconds per tunnel for a video

frame rate at 25 frames per second. To increase an amount of tunnel depth, we store the data on

all effective pixels by doing a trick on a data structure of image.

Figure A.1: This image illustrates the slice id is counted relatively from 0 to the end of tunnels for be able
to store in the gray based depth map image. And storing absolute starting frame separately.
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Figure A.2: This image shows the intensity value for each gray level comparing to the depth map value
after up scaling from a standard gray intensity.

Grayscale image normally has a depth of byte or 8 bits depth. To store more data, we

simply need more bit depth. Although we can use other data type such as int16(16-bit or 2 16

values), int32(32-bit or 232 values), and double(64-bit or 264 values), the OpenCV will not allow

implementing of gray value more than 256. Thus, we still be able to implement a depth mapping

image on a data type of float contained gray values from 0 to 255, which yield a capability of

storing a decimal intensity as seen in Fig. A.2.

In order to store depth information inside an image pixel, we use the fraction part of gray

intensity to keep a slice number of tunnel, which is relative to the starting frame number of tunnel.

Hence, the integer part we use it as a flag for checking the occurrence pixels of tunnel as seen in

Fig A.3. And the value for each slice of tunnel was assigned by the following

Int(S(i)) = Flag + SliceIDi/Precision (A.1)

where Int is a depth function for returning the intensity of the corresponding slice i, Flag

is a number between 0 to 255 to be use as a flagged value in the integer part, SliceID is the slice



44

Figure A.3: Back view tunnels in time-space show the gray value was assigned differently in the decimal
part. As you can see, we set a flag value of integer part to be 100, and the decimal part is depends on the
slice number inside a tunnel.

number on a tunnel, and Precision is the maximum number of slice to be handled. For example,

in Fig. A.3a shows a depth map image of tunnel, which contains 144 slices. The first slice has a

gray intensity of 100.0000 for the first index, and the last slice has a gray intensity of 100.0143

for the 144th index. In the same way, in Fig. A.3b shows a depth map image of tunnel contained

138 slices. The first slice has a gray intensity of 100.0000 for the first index, and the last slice has

a gray intensity of 100.0137 for the 138th index.

A.2 Checking Phase in Action

The major process of DSCD is to calculate the shortest collision distance. In this section,

we will show you how to calculate the collision distance between tunnels.

In figure A.4, we show the depth map image between two consecutive tunnels that was

drawn in the different order. For each checking phase, supposing we are in the middle between

with two tunnels T (n− 1) and T (n). When we look forward to T (n− 1), we should see a back-

side of tunnel in time space as seen in Fig. A.4a1 and a2. In contrast, to look backward to T (n)

we will normally see a front-side of tunnel as seen in Fig. A.4b1 and b2. So, we or the collision

detector located in between two tunnels will know the relative distance from the depth maps of

a back-side of T (n − 1) and a front-side of T (n). Therefore, calculating the shortest collision

distance between two tunnels is to find the minimum distance between a back-side of T (n − 1)

and a front-side of T (n), or we simply say that this process is just subtracting the depth map of

T (n − 1) and T (n) then find the position of the minimum value which is occurred at the flagged
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Figure A.4: This figure shows depth maps while using in a process of DSCD. Row (a), the normal depth
map. Row (b), the normalized depth map for showing the depth to our vision. Column (1), the depth map
looking from a back view of T (n − 1). Column (2), the depth map looking from front view of T (n).
Column (3), The absolute different result of two depth maps. The arrows in (b1) and (b2) show the different
slice order for drawing a depth map of back view tunnel (b1) and front view tunnel (b2)

position as seen in Fig. A.4a3 and b3.
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