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CHAPTER I

INTRODUCTION

The ultimate goal of communication systems is to transmit information from

the information source to the destination without any errors like noise, bandwidth,

attenuation, limitations, inference etc., which are introduced in the channel. One

of the ways of detecting and correcting these errors over a noisy communication

channel is by applying the art of Error Correcting Codes which were investigated

by R. W. Hamming at Bell Laboratories in 1947.

In the early history of the art of Error Correcting Codes, codes were usually

taken over finite fields. In the last two decades, an interest has been shown in linear

codes over rings and the so-called Gray maps that mapped these codes into codes

over finite fields. In an important work [21], Calderbank, Sloane et al. showed

that the Kerdock codes, the Preparata codes and Delsart-Goethals codes can be

obtained through the Gray images of linear codes over Z4 . Later on, algebraic

structures and properties of codes over F2+uF2 , Zpm , Galois rings and generalized

rings in notion of finite chain rings have been established in [17] [14], [18], [28],

[34], [35], and [37]. In particular, successful applications of modular lattices using

codes over a finite chain ring Fp+uFp [4] and constructions of good sequences from

polynomial residue class rings [36] have motivated the study of constacyclic codes

over a special family of finite chain rings of the form Fpm + uFpm + · · ·+ ue−1Fpm

(see, for examples, [3], [6], [15], [16], [23] and [30]).

Cyclic codes, negacyclic codes and constacyclic codes form important classes

of linear codes due to their rich algebraic structure. Classically, polynomial rings
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over finite fields or over finite rings and their ideals are key to determining the

algebraic structures of these codes (e.g., [22], [26] and [27]). In [7], skew (non-

commutative) polynomial rings have been used to describe the structure of linear

codes closed under a skew-cyclic shift, namely, skew-cyclic codes. Later on, in

[10], more properties and good examples of such codes have been established.

Recently, in [8], that approach has been extended to codes over Galois rings.

Motivated by these works, we generalize the concept of skew-constacyclic codes

to over R(pm,e) := Fpm +uFpm +· · ·+ue−1Fpm , the finite chain ring of characteristic

p , nilpotency index e and residue field Fpm . Some algebraic tools and techniques

are developed. The structure and properties of free skew-constacyclic codes with

respect to a unit λ are studied. In particular, when λ2 = 1, the structures of

their Euclidean and Hermitian dual codes are determined. Moreover, necessary

and sufficient conditions for such codes to be Euclidean and Hermitian self-dual

are also given. When the nilpotency index of rings is 2, the structure of all

skew-constacyclic codes is completely determined over R(pm,2) := Fpm + uFpm .

This allows us to express generators of Euclidean and Hermitian dual codes of

skew-cyclic and skew-negacyclic codes in terms of the generators of the original

codes.

Codes over finite rings are linked to codes over finite fields using the Gray maps

defined in different ways. The classical Gray map over Z4 is first generalized to

finite chain rings in [19]. Qian, Zhang and Zhu have characterized the Gray

images of (1 + u)-constacyclic and cyclic codes over the ring R(2,2) = F2 + uF2

in [30] and some constacyclic codes over R(2,3) = F2 + uF2 + u2F2 in [31]. In

[3], Amarra and Nemenzo have generalized the results of [30] over R(pm,2) :=

Fpm + uFpm . In [11], Congellenmis have introduced (1− ue−1)-constacyclic codes

over R(2,e) = F2 + uF2 + · · ·+ ue−1F2 and generalized the results of [30] and [31].
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In this work, we generalize these concepts to the case over R(pm,e) . We focus on

(1 − ue−1)-constacyclic, cyclic and (1 + ue−1)-constacyclic codes over this ring

and characterize the structure of the Gray images of such codes. Finally, we give

descriptions concerning the Gray images of some skew-constacyclic codes.

In Chapter II, some useful definitions and properties concerning finite chain

rings, skew polynomials and standard terminologies used for error correcting codes

are recalled. The definition and some basic properties of a skew-constacyclic code

are introduced over R(pm,e) .

In Chapter III, we determine necessary and sufficient conditions for skew-

constacyclic codes over R(pm,e) to be free. Based on these conditions, the algebraic

structure and some properties of free skew-constacyclic codes over this ring are

established. In many cases, the structure of the Euclidean and Hermitian dual

codes of free skew-constacyclic codes are given. Necessary and sufficient conditions

for such codes to be Euclidean and Hermitian self-dual are determined as well.

In Chapter IV, we restrict our study to the case over R(pm,2) := Fpm+uFpm . We

characterize the structure of all skew-constacyclic codes over this ring. Moreover,

the structures of Euclidean and Hermitian dual codes of skew-cyclic and skew-

negacyclic codes are determined. Based on this characterization, an illustration

skew cyclic codes of length 2 over F3 + uF3 and their duals is also provided

Finally, in Chapter V, the Gray map is introduced for R(pm,e) to link codes over

this ring and its residue field. We prove that the Gray image of an (1 − ue−1)-

constacyclic code over R(pm,e) is a distance-invariant quasi-cyclic code over its

residue field. When the length n of codes is not divisible by p , the Gray images

of a cyclic code and an (1 + ue−1)-constacyclic code are permutatively equivalent

to quasi-cyclic codes over its residue field. Lastly, we give descriptions concerning

the Gray images of some skew-constacyclic codes over this ring.



CHAPTER II

PRELIMINARIES

In this chapter, we recall some useful definitions and properties concerning

finite chain rings, skew polynomials and classical Error Correcting Codes. First,

some algebraic properties of finite chain rings of prime characteristic are cursorily

given in Section 2.1. In Section 2.2, some useful results concerning skew poly-

nomials over such rings are derived. Finally, the standard terminologies used for

error correcting codes are recalled and the definition and some basic properties of

a skew-constacyclic code are established over these rings in Section 2.3.

2.1 Finite Chain Rings

A finite commutative ring with identity 1 6= 0 is called a finite chain ring if

its ideals are linearly ordered by inclusion. It is known that every ideal of a finite

chain ring is principal and its maximal ideal is unique (see [28]). Let R denote

a finite chain ring and γ a generator of its maximal ideal. The the residue field

R/〈γ〉 is isomorphic to Fpm , for some prime number p and positive integer m .

With these notations, the ideals of R form the following chain

R ) 〈γ〉 ) 〈γ2〉 ) · · · ) 〈γe−1〉 ) 〈γe〉 = 〈0〉.

The integer e is called the nilpotency index of R . A finite chain ring R with

nilpotency index e and residue field Fpm has cardinality pme and its characteristic

is a power of p ([17, Proposition 2.2]). Further details concerning finite chain rings

can be found in [5], [12], [13], [28] and [37].
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In this work, we focus on the case where the characteristic of R is prime. In

this case, finite chain rings of the certain prime characteristic, nilpotency index

and residue field are unique up to isomorphism. We denote by Fpm [u] the ring of

polynomials over Fpm in an indeterminate u .

Lemma 2.1.1 ([13, Lemma 1]). Given a prime number p, and positive integers m

and e, Fpm [u]/〈ue〉 is the only finite chain ring of characteristic p with nilpotency

index e and residue field Fpm .

For simplicity, the ideal notation will be dropped and the ring Fpm [u]/〈ue〉 will

be isomorphically expressed as

Fpm + uFpm + · · ·+ ue−1Fpm =

{
e−1∑
i=0

uiai | ai ∈ Fpm
}
, (2.1.1)

where the addition and multiplication are the usual addition and multiplication

of polynomials in Fpm [u] together with the rule ue = 0, and simply denoted

by R(pm,e) . We note that the element u is a generator of the maximal ideal

〈u〉 = uFpm + · · ·+ ue−1Fpm . The ideals of R(pm,e) form the chain

R(pm,e) ) 〈u〉 = uFpm + u2Fpm + · · ·+ ue−1Fpm

) 〈u2〉 = u2Fpm + · · ·+ ue−1Fpm

...

) 〈ue−1〉 = ue−1Fpm

) 〈ue〉 = 〈0〉.

Note that when e = 1, this ring is the finite field Fpm .

Example 2.1.2. We establish here some examples of rings R(pm,e) which play an

important role in later chapters.

i) For p = 2,m = 1 and e = 2, the addition and multiplication tables on the

ring R(2,2) := F2 + uF2 = {0, 1, u, 1 + u} are as follows:
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+ 0 1 u 1 + u

0 0 1 u 1 + u

1 1 0 1 + u u

u u 1 + u 0 1

1 + u 1 + u u 1 0

· 0 1 u 1 + u

0 0 0 0 0

1 0 1 u 1 + u

u 0 u 0 u

1 + u 0 1 + u u 1

Table 2.1: The ring R(2,2)

ii) For p = 3,m = 1 and e = 2,

R(3,2) := F3 + uF3 = {0, 1, 2, u, u2, 1 + u, 1 + u2, 2 + u, 2 + u2}.

In [2], the structure of the automorphism group Aut(R(pm,e)) of R(pm,e) has

been characterized. For θ ∈ Aut(Fpm), β ∈ Fpm and w ∈ R(pm,e) , let

Θθ,β,w : R(pm,e) → R(pm,e)

be the automorphism defined by

Θθ,β,w(
e−1∑
i=0

aiu
i) =

e−1∑
i=0

uiβiwiθ(ai).

Proposition 2.1.3 ([2, Proposition 1]). Aut(R(pm,e)) = {Θθ,β,w | θ ∈ Aut(Fpm),

β ∈ F∗pm and w ∈ 1 + uFpm + · · · + ue−1Fpm}, where F∗pm denotes the group of

units in Fpm .

It is easy to see that the automorphisms Θθ1,β1,w1 and Θθ2,β2,w2 of R(pm,e) are

equal if and only if θ1 = θ2 , β1 = β2 and w1 ≡ w2 mod ue−1 . Then

|Aut(R(pm,e))| = |Aut(Fpm)||F∗pm||1 + uFpm + · · ·+ ue−1Fpm|/|Fpm|

= m(pm − 1)p(e−2)m,

and hence the next corollary follows.
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Corollary 2.1.4. Aut(R(pm,e)) is non-trivial if an only if m ≥ 2 or p is odd or

e ≥ 3.

When e = 2, automorphisms Θθ,β,w and Θθ,β,1 are equal, for all θ ∈ Aut(Fpm),

β ∈ F∗pm and w ∈ 1 +uFpm . For simplicity, we will drop w . Then Aut(R(pm,2)) =

{Θθ,β | θ ∈ Aut(Fpm) and β ∈ F∗pm} .

Example 2.1.5. i) The automorphism group of R(2,2) is trivial.

ii) The ring R(3,2) is the smallest finite chain ring (which is not a field) having

non-trivial automorphism group Aut(R(3,2)) = {Θid,1,Θid,2} , where

Θid,1(a+ ub) = a+ ub and Θid,2(a+ ub) = a+ u2b,

for all a+ ub ∈ R(3,2) .

If Θ is an automorphism of R(pm,e) extended from an automorphism θ of Fpm ,

then we have

θ(r̄) = Θ(r) for all r ∈ R(pm,e),

where ¯: R(pm,e) → Fpm is the canonical reduction modulo u .

2.2 Skew Polynomial Rings over R(pm,e)

In [7], [8], [10] and [28], results concerning skew polynomial rings over finite

fields and over Galois rings have been studied. Applying the ideas in these refer-

ences, the following results over R(pm,e) are given as follows.

Given an automorphism Θ of R(pm,e) , the set R(pm,e)[x; Θ] = {a0 +a1x+ · · ·+

anx
n | ai ∈ R(pm,e) and n ∈ N0} of formal polynomials is a ring under the usual

addition of polynomials and the multiplication is given by the rule xa = Θ(a)x .

The multiplication is extended to all elements in R(pm,e)[x; Θ] by associativity and
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distributivity. The ring R(pm,e)[x; Θ] is called a skew polynomial ring over R(pm,e)

and an element in R(pm,e)[x; Θ] is called a skew polynomial. It is easily seen that

the ring R(pm,e)[x; Θ] is non-commutative unless Θ is the identity automorphism

on R(pm,e) .

In addition, assume that Θ is extended from an automorphism θ of Fpm .

Based on the canonical reduction modulo u , ¯ : R(pm,e) → Fpm , a natural ring

epimorphism extension ¯: R(pm,e)[x; Θ]→ Fpm [x; θ] is defined by

r0 + r1x+ · · ·+ rnx
n 7→ r̄0 + r̄1x+ · · ·+ r̄nx

n.

In other words, for each f(x) ∈ R(pm,e)[x; Θ], f(x) denotes the componentwise

reduction modulo u of f(x). Since every skew polynomial in R(pm,e)[x; Θ] can be

uniquely viewed as
e−1∑
i=0

uifi(x), where fi(x) ∈ Fpm [x; θ] for all 0 ≤ i < e , we have

e−1∑
i=0

fi(x) = f0(x) ∈ Fpm [x; θ] .

The ring R(pm,e)[x; Θ] may not be a unique factorization ring. Moreover, for

a reducible skew polynomial in R(pm,e)[x; Θ], the degrees of its irreducible factors

are not unique up to permutation as the next example shown.

Example 2.2.1. Refer to the automorphism Θid,2 of R(3,2) in Example 2.1.5.

The following are two irreducible factorizations of x6 − 1 in R(3,2)[x; Θid,2]

x6 − 1 = (x+ 1)3(x+ 2)3 = (x2 + ux+ 2)3.

The skew polynomial ring R(pm,e)[x; Θ] is neither left nor right Euclidean.

However, left and right divisions can be defined in the case where the leading

coefficient of the divisor is a unit in R(pm,e) . Let f(x) = a0 +a1x+ · · ·+arx
r and

g(x) = b0 + b1x+ · · ·+ bsx
s be skew polynomials such that bs is a unit in R(pm,e) .

The right division of f(x) by g(x) is defined by reducing literately degree of f(x)

as follows:
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If r < s , then

f(x) = 0g(x) + f(x).

Suppose that r ≥ s . First, note that the degree of

f(x)− arΘr−s(b−1
s )xr−sg(x)

is less than the degree of f(x). Then iterating the above procedure by subtracting

further left multiples of g(x) from the result until the degree is less than the degree

of g(x), we obtain skew polynomials q(x) and r(x) such that

f(x) = q(x)g(x) + r(x) with deg(r(x)) < deg(g(x)) or r(x) = 0.

Obviously, q(x) and r(x) are unique and they are called the right quotient and

right remainder, respectively. The above algorithm is called the right division

algorithm in R(pm,e)[x; Θ].

If r(x) = 0, we say that g(x) is a right divisor of f(x). In this case, denote

by
f(x)

g(x)
the right quotient q(x) of f(x) by g(x). This implies

f(x) =
f(x)

g(x)
g(x). (2.2.1)

Similarly, the left division algorithm in R(pm,e)[x; Θ] can be defined using the

fact that the degree of

f(x)− g(x)Θ−s(arb
−1
s )xr−s

is less than the degree of f(x).

For a skew polynomial f(x) in R(pm,e)[x; Θ], let 〈f(x)〉 denote the left ideal of

R(pm,e)[x; Θ] generated by f(x). Note that 〈f(x)〉 does not need to be two-sided.

A sufficient condition for 〈f(x)〉 to be two-sided is given as follows:

Proposition 2.2.2. If f(x) = xtg(x) where g(x) is central and t ∈ N0 , then

〈f(x)〉 is a principal two-sided ideal in R(pm,e)[x; Θ].
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Proof. Since g(x) is central, for a skew polynomial
n∑
i=0

aix
i in R(pm,e)[x; Θ], we

have

(
n∑
i=0

aix
i

)
(xtg(x)) = xt

n∑
i=0

Θ−t(ai)x
ig(x) = (xtg(x))

n∑
i=0

Θ−t(ai)x
i. Hence,

the result follows.

Corollary 2.2.3. If f(x) is a monic central skew polynomial of degree n, then

the skew polynomials of degree less than n are canonical representatives of the

elements in R(pm,e)[x,Θ]/〈f(x)〉.

Proof. By Proposition 2.2.2, 〈f(x)〉 is a two-sided ideal and hence the quotient

R(pm,e)[x,Θ]/〈f(x)〉 is meaningful. Therefore, the desired result follows from the

right division algorithm.

Proposition 2.2.4. Let n be a positive integer and λ a unit in R(pm,e) . Then

the following statements are equivalent.

a) xn − λ is central in R(pm,e)[x,Θ].

b) 〈xn − λ〉 is two-sided.

c) n is a multiple of the order of Θ and λ is fixed by Θ.

Proof. a)⇒ b) follows directly from Proposition 2.2.2.

Next, we prove b)⇒ c). Assume that 〈xn − λ〉 is two-sided. Let r ∈ R(pm,e) .

Then rxn − rλ = r(xn − λ) = (xn − λ)s = Θn(s)xn − sλ for some s ∈ R(pm,e) .

Comparing the coefficients, we have rλ = sλ . As λ is a unit, it follows that

r = s , and hence rxn − rλ = Θn(r)xn − rλ. Thus, n is a multiple of the order

of Θ. Next, we observe that xn+1 − Θ(λ)x = x(xn − λ) = (xn − λ)(ax + b) =

Θn(a)xn+1 + Θn(b)xn − aλx− bλ , for some a and b in R(pm,e) . Then Θn(a) = 1

and Θn(b) = 0. As Θ is an automorphism, it follows that a = 1 and b = 0, and

hence xn+1 −Θ(λ)x = xn+1 − λx. Therefore, λ is fixed by Θ.
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Finally, we prove c)⇒ a). Assume that n is a multiple of the order of Θ and

λ is fixed by Θ. Then x(xn − λ) = xn+1 − Θ(λ)x = xn+1 − λx = (xn − λ)x and

(xn−λ)t = Θn(t)xn− tλ = txn− tλ = t(xn−λ), for all t ∈ R(pm,e) . Consequently,

xn − λ commutes with any skew polynomial in R(pm,e)[x; Θ].

Proposition 2.2.5. Let h(x), g(x) ∈ R(pm,e)[x; Θ]. If h(x)g(x) is a monic central

skew polynomial, then h(x)g(x) = g(x)h(x). In particular, if g(x) is a right

divisor of a central skew polynomial f(x), then g(x) and the right quotient
f(x)

g(x)

commute, i.e.,

g(x)
f(x)

g(x)
= f(x) =

f(x)

g(x)
g(x). (2.2.2)

Proof. Assume that h(x)g(x) is monic and central. Then the leading coefficient

of g(x) and h(x) are units. Since h(x)g(x) is central, we have

h(x)(h(x)g(x)) = (h(x)g(x))h(x) = h(x)(g(x)h(x)).

Thus, h(x)(h(x)g(x)− g(x)h(x)) = 0. As the leading coefficient of h(x) is a unit,

h(x) is not a zero divisor. Hence, h(x)g(x) = g(x)h(x) as desired.

The later study of dualities of codes requires the map defined in Proposition

2.2.7 which links between R(pm,e)[x; Θ] and its right localization. First, we ensure

that the right localization of R(pm,e)[x; Θ] exists. In the light of Theorem 2 of [33],

necessary and sufficient conditions for R(pm,e)[x; Θ] to have the right localization

are given as follows.

Theorem 2.2.6 ([33]). Let S = {xi | i ∈ N}. Then R(pm,e)[x; Θ] has the right

localization at S if and only if both of the following conditions hold.

i) For all xi ∈ S and a(x) ∈ R(pm,e)[x; Θ], there exist xj ∈ S and b(x) ∈

R(pm,e)[x; Θ] such that a(x)xi = xjb(x).
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ii) Given a(x) ∈ R[x; Θ] and xi ∈ S , if xia(x) = 0, then there exists xj ∈ S

such that a(x)xj = 0.

Condition i) holds because the multiplication rule allows the shifting of powers of

x from left to right by changing the coefficients. Since xi is never a left zero divisor,

a(x) in ii) must be zero and hence ii) follows. Then, by Theorem 2.2.6, the right

localization R(pm,e)[x; Θ]S−1 of R(pm,e)[x; Θ] at S exists. Hence, ax−1 = x−1Θ(a)

where x−1 is the inverse of x in this right localization.

The following map is key to determining the structure of dual codes.

Proposition 2.2.7. Let ϕ : R(pm,e)[x; Θ]→ R(pm,e)[x; Θ]S−1 be defined by

ϕ(
t∑
i=0

aix
i) =

t∑
i=0

x−iai.

Then ϕ is a ring anti-monomorphism.

Proof. Clearly, ϕ is an injection. Let p(x) =
r∑
i=0

aix
i and q(x) =

s∑
i=0

bix
i be skew

polynomials in R(pm,e)[x; Θ]. Then ϕ(p(x) + q(x)) = ϕ(p(x)) + ϕ(q(x)) and

ϕ(p(x)q(x)) = ϕ

(
r+s∑
t=0

(
∑
i+j=t

aiΘ
i(bj))x

t

)

=
r+s∑
t=0

x−t(
∑
i+j=t

aiΘ
i(bj))

=
r+s∑
t=0

∑
i+j=t

x−jx−iaiΘ
i(bj)

=
r+s∑
t=0

∑
i+j=t

x−jbjx
−iai

=
s∑
j=0

x−jbj

r∑
i=0

x−iai = ϕ(q(x))ϕ(p(x)).

Hence, ϕ is a ring anti-monomorphism.
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2.3 Classical Error Correcting Codes and Codes over R(pm,e)

Given a finite set A , a code of length n over A is a nonempty subset C of

An . The Hamming distance dHam(u,v) between u and v in An is defined to be

the number of entries which u and v differ. The minimum Hamming distance of

a code C , denoted by dHam(C), is defined by

dHam(C) = min{dHam(u,v) | u,v ∈ C,u 6= v}.

A code C is said to be t−error-correcting if it is able to correct t or fewer

errors. The minimum Hamming distance of a code plays very important role for

its error-correcting capability.

Theorem 2.3.1. A code C is t-error-correcting if and only if dHam(C) ≥ 2t+ 1.

A rich algebraic structure of codes leads to efficiency encoding and decoding

procedures. In order to study codes with more algebraic structure, A is assumed

to be a finite field or a finite ring. A code C over the finite field (resp., a finite

ring) A is said to be linear if it is a subspace (resp., submodule) of the A-vector

space (resp., module) An . A linear code is said to be free if it is a free A-module.

We note that every linear code over finite field is free. When codes are studied

over finite fields or finite rings, the Hamming weight of a codeword v , denoted

wHam(v), is defined to be the number of nonzero entries of v . The minimum

Hamming weight wHam(C) of a code C is defined by

wHam(C) = min{wHam(u) | u ∈ C r {0}}.

If C is linear, then dHam(C) = wHam(C). Further details concerning Error Cor-

recting Codes can be found in [22], [26] and [27].

In this work, we focus on codes over the ring R(pm,e) . All codes are assumed

to be linear unless otherwise stated. Given an automorphism Θ of R(pm,e) and
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a unit λ in R(pm,e) , a code C is said to be skew-constacyclic, or specifically,

Θ-λ-constacyclic if C is closed under the Θ-λ-constacyclic shift

ρΘ,λ : R(pm,e)
n → R(pm,e)

n

defined by

ρΘ,λ((a0, a1, . . . , an−1)) = (Θ(λan−1),Θ(a0), . . . ,Θ(an−2)). (2.3.1)

In particular, such codes are called skew-cyclic and skew-negacyclic codes when λ

is 1 and −1, respectively. When Θ is the identity automorphism, they become

classical constacyclic, cyclic and negacyclic codes.

Analogous to the case of classical constacyclic codes, a characterization of

Θ-λ-constacyclic codes will be given in terms of left ideals in the quotient ring

R(pm,e)[x; Θ]/〈xn − λ〉 . However, due to Proposition 2.2.4, R(pm,e)[x; Θ]/〈xn − λ〉

is meaningful if and only if 〈xn − λ〉 is two-sided, or equivalently, n is a multiple

of the order of Θ and λ is a unit fixed by Θ.

For this purpose, throughout, we restrict our study to the case where the

length n of codes is a multiple of the order of Θ and λ is a unit in RΘ
(pm,e) , where

RΘ
(pm,e) denotes the subring of R(pm,e) fixed by Θ.

The skew polynomial representation of a code C is defined to be {c0 + c1x +

· · ·+ cn−1x
n−1 | (c0, c1, . . . , cn−1) ∈ C} . For convenience, it will be regarded as C

itself. The next theorem is analogous to that for classical constacyclic codes. The

proof is omitted.

Theorem 2.3.2. A code C of length n over R(pm,e) is Θ-λ-constacyclic if and

only if its skew polynomial representation is a left ideal in R(pm,e)[x; Θ]/〈xn− λ〉.

There are two inner products on R(pm,e)
n in which we are interested. One is
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the Euclidean inner product defined by

〈u,v〉 =
n−1∑
i=0

uivi,

for u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) in R(pm,e)
n . When the order

of Θ is 2, we can also consider the Hermitian inner product which is defined as

〈u,v〉H =
n−1∑
i=0

uiΘ(vi).

Elements u and v are said to be Euclidean orthogonal (resp., Hermitian orthog-

onal) if 〈u,v〉 = 0 (resp., 〈u,v〉H = 0). The Euclidean dual code of a code C of

length n over R(pm,e) is defined to be

C⊥ = {v ∈ R(pm,e)
n | 〈v, c〉 = 0 for all c ∈ C}.

Similarly, the Hermitian dual code of C is defined as

C⊥H = {v ∈ R(pm,e)
n | 〈v, c〉H = 0 for all c ∈ C}.

The code C is said to be Euclidean self-dual (resp., Hermitian self-dual) if C =

C⊥ (resp., C = C⊥H ).



CHAPTER III

FREE SKEW-CONSTACYCLIC CODES OVER R(pm,e)

In this chapter, we account for the algebraic structure and some properties of

free Θ-λ-constacyclic codes of length n over R(pm,e) , where λ is a unit in RΘ
(pm,e)

and the length n of codes is a multiple of the order of Θ. We determine necessary

and sufficient conditions for Θ-λ-constacyclic codes over R(pm,e) to be free. Using

these conditions, we extend results on skew-constacyclic codes over Galois rings

[8, Sections 4–5 and 7] to the case over R(pm,e) .

3.1 Structures of Free Skew-Constacyclic Codes

A characterization of free skew-constacyclic codes over R(pm,e) is provided in

this section. Some properties of free skew-constacyclic codes and necessary and

sufficient conditions for them to be constacyclic are also given.

Proposition 3.1.1. Let C be a non-zero Θ-λ-constacyclic code of length n

over R(pm,e) . Then C is free if and only if C is generated by a monic right

divisor of xn − λ.

Proof. First, assume that C is free of rank s , for some positive integer s . Then

C ∼= R(pm,e)
s as modules. Hence, C̄ := {c̄ | c ∈ C} ∼= Fspm as vector spaces.

Moreover, C̄ is a skew-constacyclic code of length n over Fpm , i.e., C̄ is gen-

erated by a monic right divisor a(x) of xn − 1 in Fpm [x; θ] provided that Θ is

extended from θ [7]. Let g(x) ∈ R(pm,e)[x; θ] be a monic preimage of a(x). Then

deg(g(x)) = deg(a(x)) = n − s . It is obvious that {g(x), xg(x), . . . , xs−1g(x)} is
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linearly independent over R(pm,e) , hence it is a basis for C . Since xsg(x) ∈ C and

g(x), xg(x), . . . , xs−1g(x) form a basis for C , there exist b0, b1, . . . , bs−1 ∈ R(pm,e)

which not all are zero such that

b0g(x) + b1xg(x) + · · ·+ bs−1x
s−1g(x) = −xsg(x).

Thus,

(b0 + b1x+ · · ·+ bs−1x
s−1 + xs)g(x) = 0 in R(pm,e)[x; Θ]/〈xk − λ〉.

Since xn − λ is central, we have

(b0 + b1x+ · · ·+ bs−1x
s−1 + xs)g(x) = (xn − λ)p(x),

for some p(x) ∈ R(pm,e)[x; Θ]. By degree consideration, p(x) is a monic skew

polynomial of degree 0, i.e., p(x) = 1. Consequently, g(x) is a right divisor of

xn − λ in R(pm,e)[x; Θ].

Conversely, assume that C is generated by a monic right divisor g(x) of xn−λ .

Then there exists a monic skew polynomial h(x) such that xn − 1 = h(x)g(x).

Without loss of generality, we assume that deg(h(x)) = k and deg(g(x)) = n−k .

Thus, for all t ≥ k , xtg(x) is a linear combination of g(x), xg(x), . . . , xk−1g(x).

Hence, every element in C (as a left ideal in R(pm,e)[x; Θ]/〈xn − λ〉) is a linear

combination of g(x), xg(x), . . . , xk−1g(x). Let a0, a1, . . . , ak−1 ∈ R(pm,e) be such

that

a0g(x) + a1xg(x) + · · ·+ ak−1x
k−1g(x) = 0 in R(pm,e)[x; θ]/〈xk − λ〉.

Since xn − λ is central, we have

(a0 + a1x+ · · ·+ am−1x
k−1)g(x) = (xn − λ)p(x),

for some p(x) ∈ R(pm,e)[x; Θ]. By degree condition, p(x) is the zero skew poly-

nomial, and hence a0 = a1 = · · · = ak−1 = 0. Therefore, C is free of rank

k = n− deg(g(x)) with a basis {g(x), xg(x), . . . , xk−1g(x)} .
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Given a right divisor g(x) =
∑n−k−1

i=0 gix
i+xn−k of xn−λ , a generator matrix

of the free Θ-λ-constacyclic code C generated by g(x) is given by

G =



g0 . . . gn−k−1 1 0 . . . 0

0 Θ(g0) . . . Θ(gn−k−1) 1 . . . 0

0 . . . . . . . . . Θ2(gn−k−1)
. . . 0

...
. . . . . . . . . . . . . . .

...

0 . . . 0 Θk−1(g0) . . . Θk−1(gn−k−1) 1


.

A parity-check matrix for C is determined in the next proposition.

Proposition 3.1.2. Let C be the free Θ-λ-constacyclic code generated by a monic

right divisor g(x) of xn − λ and h(x) :=
xn − λ
g(x)

. Then the following statements

hold.

i) For c(x) ∈ R[x; Θ], we have c(x) ∈ C if and only if c(x)h(x) = 0 in

R[x; Θ]/〈xn − λ〉.

ii) If h(x) =
∑k−1

i=0 hix
i + xk , then the following matrix

H =



1 Θ(hk−1) . . . Θk(h0) 0 . . . 0

0 1 Θ2(hk−1) . . . Θk+1(h0) . . . 0

0 0 . . . . . . . . .
. . . 0

...
...

. . . . . . . . . . . .
...

0 0 . . . 1 Θn−k(hk−1) . . . Θn−1(h0)


is a parity-check matrix for C .

Proof. Since n is a multiple of the order of Θ and λ ∈ RΘ , xn− λ is central and

it follows from Proposition 2.2.5 that xn − λ = h(x)g(x) = g(x)h(x).

First, we prove i). Assume that c(x) = p(x)g(x) for some p(x) in R[x; Θ].

Then c(x)h(x) = (p(x)g(x))h(x) = p(x)(xn − λ) = 0 in R[x; Θ]/〈xn − λ〉.



19

Conversely, assume that c(x)h(x) = 0 in R[x; Θ]/〈xn − λ〉 . Then there exists

p(x) ∈ R[x; Θ] such that c(x)h(x) = p(x)(xn−λ) = p(x)g(x)h(x). As the leading

coefficient of h(x) is a unit, we then have c(x) = p(x)g(x) ∈ C .

To prove ii), let c(x) = c0 +c1x+ · · ·+cn−1x
n−1 ∈ C and [ sk sk+1 · · · sn−1 ] =

[ c0 c1 · · · cn−1 ]HT . Then, for l ∈ {k, k + 1, . . . , n− 1} ,

sl = cl−k +
k−1∑
j=0

cl−jΘ
l−j(hj)

which equals the coefficient of xl in c(x)h(x).

Since c(x) ∈ C , it follows from i) that c(x)h(x) = 0 in R[x; Θ]/〈xn−λ〉 . Then

there exists q(x) ∈ R[x; Θ] such that q(x)(xn − λ) = c(x)h(x) having degree less

than n+k . Therefore, the coefficients of the monomials xk, xk+1, . . . , xn−1 in this

product must be zero, i.e., [ sk sk+1 · · · sn−1 ] is the zero matrix.

Since the rank of H is n− k , the result follows.

When Θ is the identity automorphism, a Θ-λ-constacyclic code becomes λ-

constacyclic. However, the converse does not need to be true. Here, necessary and

sufficient conditions for a free Θ-λ-constacyclic code generated by a right divisor

of xn − λ to be λ-constacyclic are given.

Proposition 3.1.3. Let g(x) be a monic right divisor of xn − λ in R[x; Θ].

The free Θ-λ-constacyclic code generated by g(x) is λ-constacyclic if and only if

g(x) ∈ RΘ[x; Θ].

Proof. Suppose g(x) =
∑n−k−1

i=0 gix
i + xn−k and C is the free Θ-λ-constacyclic

code generated by g(x).

Assume that C is λ-constacyclic. Then xg(x), g(x)x ∈ C . Since C is linear,

xg(x)− g(x)x ∈ C and hence

(Θ(g0)− g0)x+ (Θ(g1)− g1)x2 + · · ·+ (Θ(gn−k−1)− gn−k−1)xn−k = p(x)g(x),



20

for some p(x) ∈ R[x; Θ] such that deg(p(x)) < k . Thus, deg(p(x)g(x)) < n

which implies that p(x) is constant such that p(x)g0 = 0. Since g(x) is a right

divisor of xn− λ and λ is a unit, g0 is not a zero divisor. Thus, p(x) is zero and

hence gi is fixed by Θ for all i .

Conversely, assume that g(x) ∈ RΘ[x; Θ]. Then gix = xgi for all i =

0, 1, . . . , n− k. Thus, g(x)x = xg(x) ∈ C and the desired result follows.

3.2 Euclidean Dual Codes of Free Skew-Constacyclic Codes

We now study Euclidean dual codes of free Θ-λ-constacyclic codes over R(pm,e) .

In particular, when λ2 = 1, a generator of the Euclidean dual code of a free Θ-λ-

constacyclic code is determined. Furthermore, necessary and sufficient conditions

for such a code to be Euclidean self-dual are given.

Lemma 3.2.1. Let C be a code of length n over R(pm,e) . Then C is Θ-λ-

constacyclic if and only if C⊥ is Θ-λ−1 -constacyclic. In particular, if λ2 = 1,

then C is Θ-λ-constacyclic if and only if C⊥ is Θ-λ-constacyclic.

Proof. We note that, for each unit α in R(pm,e) , α ∈ RΘ if and only if α−1 ∈

RΘ
(pm,e) . Since λ ∈ RΘ

(pm,e) , we have λ−1 ∈ RΘ
(pm,e) . Let u = (u0, u1, . . . , un−1) ∈ C

and v = (v0, v1, . . . , vn−1) ∈ C⊥ . Since

(Θn−1(λu1),Θn−1(λu2), . . . ,Θn−1(λun−1),Θn−1(u0)) = ρn−1
Θ,λ (u) ∈ C,

we have

0 = 〈ρn−1
Θ,λ (u), v〉

= 〈(Θn−1(λu1),Θn−1(λu2), . . . ,Θn−1(λun−1),Θn−1(u0)), (v0, v1, . . . , vn−1)〉

= λ〈(Θn−1(u1),Θn−1(u2), . . . ,Θn−1(un−1),Θn−1(λ−1u0)), (v0, v1, . . . , vn−1)〉

= λ(Θn−1(λ−1u0)vn−1 +
n−1∑
i=1

Θn−1(ui)vi−1).



21

It follows from n is a multiple of the order of Θ and λ−1 is fixed by Θ that

0 = Θ(0) = Θ(λ(Θn−1(λ−1u0)vn−1 +
n−1∑
i=1

Θn−1(ui)vi−1))

= λ(u0Θ(λ−1vn−1) +
n−1∑
i=1

uiΘ(vi−1))

= λ〈ρΘ,λ−1(v), u〉.

Therefore, ρΘ,λ−1(v) ∈ C⊥ .

The converse follows from the fact that (C⊥)⊥ = C .

In addition, assume that λ2 = 1. Then λ = λ−1 and hence the last statement

follows immediately from the main result.

If λ2 = 1, we obtain from the previous lemma that the Euclidean dual C⊥ of

a Θ-λ-constacyclic code C is again Θ-λ-constacyclic. In this case, a generator of

C⊥ is given through the ring anti-monomorphism ϕ defined in Proposition 2.2.7,

where ϕ(
t∑
i=0

aix
i) =

t∑
i=0

x−iai . The next lemma is key to obtaining the main

result.

Lemma 3.2.2. Assume that λ2 = 1. Let a(x) = a0 + a1x + · · · + an−1x
n−1 and

b(x) = b0 +b1x+ · · ·+bn−1x
n−1 be in R(pm,e)[x; Θ]. Then the following statements

are equivalent.

a) The coefficient vector of a(x) is Euclidean orthogonal to the coefficient vector

of xi(xn−1ϕ(b(x))) for all i ∈ {0, 1, . . . , n− 1}.

b) (a0, a1, . . . , an−1) is Euclidean orthogonal to (bn−1,Θ(bn−2), . . . ,Θn−1(b0)) and

all its Θ-λ-constacyclic shifts.

c) a(x)b(x) = 0 in R(pm,e)[x; Θ]/〈xn − λ〉.

Proof. The definition of ϕ gives that a) is equivalent to b). We prove b) is

equivalent to c). Let a(x)b(x) = c0 +c1x+ · · ·+cn−1x
n−1 ∈ R(pm,e)[x; Θ]/〈xn−λ〉 .
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Since λ ∈ RΘ
(pm,e) such that λ2 = 1 and n is a multiple of the order of Θ, it follows

that, for each k ∈ {0, 1, . . . , n− 1} ,

ck =
∑
i+j=k

0≤i≤n−1
0≤j≤n−1

aiΘ
i(bj) +

∑
i+j=k+n
0≤i≤n−1
0≤j≤n−1

λaiΘ
i(bj)

= λ


∑
i+j=k

0≤i≤n−1
0≤j≤n−1

aiΘ
k−j(λbj) +

∑
i+j=k+n
0≤i≤n−1
0≤j≤n−1

aiΘ
n+k−j(bj)


= λ〈(a0, a1, . . . , an−1), (λbk,Θ(λbm−1), . . . ,Θk(λb0),Θk+1(bn−1), . . . ,Θn−1(bk+1))〉

= λ〈(a0, a1, . . . , an−1), (Θ(n−k)+k(λbk),

Θ(n−k+1)+k(λbm−1), . . . ,Θk(λb0),Θ1+k(bn−1), . . . ,Θ(n−k−1)+k(bk+1))〉.

Hence, a(x)b(x) = 0 if and only if ck = 0 for all k ∈ {0, 1, . . . , n − 1} , which is

true if and only if (a0, a1, . . . , an−1) is Euclidean orthogonal to

(bn−1,Θ(bn−2), . . . ,Θn−1(b0))

and all its Θ-λ-constacyclic shifts.

Theorem 3.2.3. Assume that λ2 = 1. Let g(x) be a right divisor of xn − λ

and h(x) :=
xn − λ
g(x)

. Let C be the free Θ-λ-constacyclic code generated by g(x).

Then the following statements hold.

i) The skew polynomial xdeg(h(x))ϕ(h(x)) is a right divisor of xn − λ.

ii) The Euclidean dual C⊥ is a Θ-λ-constacyclic code generated by

xdeg(h(x))ϕ(h(x)).

Proof. First, we prove i). Using the assumptions that n is a multiple of the order
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of Θ and λ ∈ RΘ
(pm,e) , we observe that

(ϕ(g(x))(−λ)xn−deg(h(x)))(xdeg(h(x))ϕ(h(x))) = ϕ(g(x))(−λ)xnϕ(h(x))

= −λxnϕ(g(x))ϕ(h(x))

= −λxnϕ(h(x)g(x)),

(since ϕ is a ring anti-monomorphism)

= −λxnϕ(xn − λ)

= −λxn(x−n − λ)

= xn − λ.

Since ϕ(g(x))(−λ)xn−deg(h(x)) and xdeg(h(x))ϕ(h(x)) belong to R(pm,e)[x; Θ], we

have xdeg(h(x))ϕ(h(x)) is a right divisor of xn − λ in R(pm,e)[x; Θ].

Next, we prove ii). Since g(x)h(x) = xn − λ = 0 in R(pm,e)[x; Θ]/〈xn − λ〉 ,

by Lemma 3.2.2, 〈xdeg(h(x))ϕ(h(x))〉 ⊆ C⊥ . Moreover, xdeg(h(x))ϕ(h(x)) is a right

divisor of xn − λ , by Proposition 3.1.1, we have

|〈xdeg(h(x))ϕ(h(x))〉| = |R(pm,e)|n−deg(h(x)) = |C⊥|.

Therefore, 〈xdeg(h(x))ϕ(h(x))〉 = C⊥ .

We give necessary and sufficient conditions for a free Θ-λ-constacyclic code

to be Euclidean self-dual in the next theorem.

Theorem 3.2.4. Assume that λ2 = 1 and n = 2k is even. Let g(x) =
k−1∑
i=0

gix
i +

xk be a right divisor of xn−λ. Then the free Θ-λ-constacyclic code generated by

g(x) is Euclidean self-dual if and only if(
k−1∑
i=0

gix
i + xk

)(
k−1∑
i=0

Θi−k(g−1
0 gk−i)x

i + xk

)
= xn − λ. (3.2.1)
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Proof. Let C be the Θ-λ-constacyclic code generated by g(x) and let g⊥(x) be

the generator polynomial of the Euclidean dual code C⊥ . Denote by h(x) :=∑k−1
i=0 hix

i + xk the right quotient
xn − λ
g(x)

. It follows from Theorem 3.2.3 that

g⊥(x) = xkϕ(h(x)) = Θk(h0)xk + · · ·+ Θ(hk−1)x+ 1. (3.2.2)

Assume that C is Euclidean self-dual. It is easily seen that g(x) is the unique

monic generator of minimal degree in C . Then g⊥(x) is a scalar multiple of g(x)

of the form

g⊥(x) = Θk(h0)g(x) = Θk(h0)(
k−1∑
i=0

gix
i + xk). (3.2.3)

Comparing the coefficients in (3.2.2) and (3.2.3), we obtain Θk(h0)g0 = 1 and

Θk(h0)gi = Θi(hk−i), for all i = 1, 2, . . . , k − 1. Consequently, h0 = Θ−k(g−1
0 )

and hi = Θi(h0)Θi−k(gk−i) = Θi−k(g−1
0 )Θi−k(gk−i) = Θi−k(g−1

0 gk−i), for all i =

1, 2, . . . , k − 1. and h(x) = Θ−k(g−1
0 ) +

∑k−1
i=1 Θi−k(g−1

0 gk−i)x
i + xk. Therefore,

(3.2.1) holds.

On the other hands, assume that (3.2.1) holds. Then

h(x) = Θ−k(g−1
0 ) +

k−1∑
i=1

Θi−k(g−1
0 gk−i)x

i + xk.

Hence, by Theorem 3.2.3,

g⊥(x) = xkϕ(h(x)) =
k∑
i=1

(g−1
0 gi)x

i + 1 = g−1
0 g(x).

This completes the proof.

Remark 3.2.5. From Theorem 3.2.4, we observe that if there is a Euclidean self-

dual Θ-λ-constacyclic code, then −λ = g0Θ−k(g−1
0 ) = Θk(g0)g−1

0 . Thus, if the

order of Θ divides k and λ 6= −1, then there are no Euclidean self-dual Θ-λ-

constacyclic codes of length 2k . In particular, if Θ is the identity automorphism

and λ 6= −1, then there are no Euclidean self-dual Θ-λ-constacyclic codes of any

length.
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3.3 Hermitian Dual Codes of Free Skew-Constacyclic Codes

Due to the constraint in the definition of the Hermitian inner product, the

Hermitian dual codes of skew-constacyclic codes are studied only when the order

of Θ is 2. Using arguments similar to those in the previous proofs, the following

results concerning the Hermitian duality are obtained.

Lemma 3.3.1. Let C be a code of even length n over R(pm,e) . Assume that the

order of Θ is 2. Then C is Θ-λ-constacyclic if and only if C⊥H is Θ-λ−1 -

constacyclic. In particular, if λ2 = 1, then C is Θ-λ-constacyclic if and only if

C⊥H is Θ-λ-constacyclic.

When λ2 = 1, a generator of the Hermitian dual code of a Θ-λ-constacyclic

code is determined through the ring anti-monomorphism ϕ defined in Proposi-

tion 2.2.7 and a ring automorphism Φ on R(pm,e)[x; Θ] defined by

Φ(
t∑
i=0

aix
i) =

t∑
i=0

Θ(ai)x
i. (3.3.1)

Lemma 3.3.2. Assume that the order of Θ is 2 and λ2 = 1. Let a(x) =

a0 +a1x+ · · ·+an−1x
n−1 and b(x) = b0 + b1x+ · · ·+ bn−1x

n−1 be in R(pm,e)[x; Θ].

Then the following statements are equivalent.

a) The coefficient vector of a(x) is Hermitian orthogonal to the coefficient vector

of xiΦ(xn−1ϕ(b(x))) for all i ∈ {0, 1, . . . , n− 1}.

b) (a0, a1, . . . , an−1) is Hermitian orthogonal to (Θ−1(bn−1), bn−2, . . . ,Θ
n−2(b0))

and all its Θ-λ-constacyclic shifts.

c) a(x)b(x) = 0 in R(pm,e)[x; Θ]/〈xn − λ〉.

Theorem 3.3.3. Assume that the order of Θ is 2 and λ2 = 1. Let g(x) be a

right divisor of xn − λ and h(x) :=
xn − λ
g(x)

. Let C be the Θ-λ-constacyclic code

generated by g(x). Then the following statements hold.
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i) The skew polynomial Φ(xdeg(h(x))ϕ(h(x))) is a right divisor of xn − λ.

ii) The Hermitian dual C⊥H is a Θ-λ-constacyclic code generated by

Φ(xdeg(h(x))ϕ(h(x))).

Proof. From the proof of Theorem 3.2.3, we have

ϕ(g(x))(−λxn−deg(h))xdeg(h)ϕ(h(x)) = xn − λ.

Then

Φ(ϕ(g(x))(−λxn−deg(h)))Φ(xdeg(h(x))ϕ(h(x))) = Φ(xn − λ) = xn − λ.

Hence, Φ(xdeg(h(x))ϕ(h(x))) is a right divisor of xn − λ , which yields i). Since

g(x)h(x) = xn − λ = 0 in R(pm,e)[x; Θ]/〈xn − λ〉 , by Lemma 3.3.2,

〈Φ(xdeg(h(x))ϕ(h(x)))〉 ⊆ C⊥H .

Since φ(xdeg(h(x))ϕ(h(x))) is a right divisor of xn − λ , by Proposition 3.1.1,

|〈φ(xdeg(h(x))ϕ(h(x)))〉| = |R(pm,e)|n−deg(h(x)) = |C⊥H |.

Therefore, 〈φ(xdeg(h(x))ϕ(h(x)))〉 = C⊥H . This proves ii).

Next, we give necessary and sufficient conditions for a free Θ-λ-constacyclic

code to be Hermitian self-dual. Using the definition of the Hermitian inner product

and the arguments similar to those in the proof of Theorem 3.2.4, we have the

following theorem.

Theorem 3.3.4. Assume that the order of Θ is 2, λ2 = 1 and n is even, denoted

by n = 2k . Let g(x) =
k−1∑
i=0

gix
i + xk be a right divisor of xn− λ. Then the Θ-λ-

constacyclic code generated by g(x) is Hermitian self-dual if and only if(
k−1∑
i=0

gix
i + xk

)(
k−1∑
i=0

Θi−k−1(g−1
0 gk−i)x

i + xk

)
= xn − λ.
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Remark 3.3.5. Suppose there is a Hermitian self-dual Θ-λ-constacyclic code.

Then, by Theorem 3.3.4, we have −λ = g0Θ−k−1(g−1
0 ). Since λ is fixed by Θ, it

follows that λ = −Θk+1(g0)g−1
0 . Recall that the order of Θ is 2, so

λ =


−1 if k is odd,

−Θ(g0)g−1
0 if k is even.

Therefore, if k is odd and λ 6= −1, then there are no Hermitian self-dual Θ-λ-

constacyclic codes of length 2k .



CHAPTER IV

SKEW-CONSTACYCLIC CODES OVER R(pm,2)

The class of finite chain rings of the form R(pm,e) has widely been used as

alphabet in certain constacyclic codes (see, for example, [3], [6], [15], [16], [23]

and [30]). In order to avoid a tedious computation, we restrict our study to the

case e = 2 and we use the notation Fpm+uFpm instead of R(pm,2) . We characterize

the structure of all Θ-λ-constacyclic codes over the ring Fpm + uFpm under the

conditions where λ is a unit in Fpm +uFpm fixed by a given automorphism Θ and

the length n of codes is a multiple of the order of Θ. Moreover, the structures

of Euclidean and Hermitian dual codes of skew -cyclic and skew-negacyclic codes

over this ring are determined.

Recall that Fpm + uFpm is a finite chain ring of nilpotency index 2 and char-

acteristic p . Its only maximal ideal is uFpm and its residue field is the sub-

field Fpm of Fpm + uFpm . Every automorphism of Fpm + uFpm is of the form

Θθ,β(a + bu) = θ(a) + βθ(b)u , where θ ∈ Aut(Fpm) and β ∈ F∗pm . For simplicity,

where no confusion arises, the subscripts θ and β will be dropped.

Let f(x) in (Fpm+uFpm)[x; Θ]. Then the multiplication rule allows the shifting

of u and powers of x from the left to the right of f(x) (and vice versa) by changing

the coefficients of f(x). Thus, for Ω ∈ {u, xi | i ∈ N} , we may write

i)
←−−
f(x)

Ω

for the skew polynomial satisfying f(x)Ω = Ω
←−−
f(x)

Ω

, and

ii)
−−→
f(x)

Ω

for the skew polynomial satisfying Ωf(x) =
−−→
f(x)

Ω

Ω.
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4.1 Classification of Skew-Constacyclic Codes

In this section, the classification of Θ-λ-constacyclic codes is given in terms

of generators of left ideals in (Fpm + uFpm)[x; Θ]/〈xn − λ〉 . These generators

are uniquely determined under some conditions. Furthermore, we study their

properties.

Let C be a non-zero left ideal in (Fpm +uFpm)[x; Θ]/〈xn−λ〉 and let A denote

the set of all non-zero skew polynomials of minimal degree in C . Clearly, A is

non-empty. We consider three cases: when there is a monic skew polynomial in

A , when there are no monic skew polynomials in C , and when there are no monic

skew polynomials in A but there is a monic skew polynomial in C .

Theorem 4.1.1. Let C and A be as above. Then:

i) If there exists a monic skew polynomial in A, then it is unique in A. In this

case, C = 〈g(x)〉, where g(x) is the unique such skew polynomial.

ii) If there are no monic skew polynomials in C , then there exists a unique

skew polynomial g(x) = ug1(x) in A with leading coefficient u. In this case,

C = 〈g(x)〉.

iii) If there are no monic skew polynomials in A but there exists a monic skew

polynomial in C , then there exist a unique skew polynomial g(x) = ug1(x)

in A with leading coefficient u and a unique monic skew polynomial f(x) =

f0(x) + uf1(x) of minimal degree in C such that deg(f1(x)) < deg(g1(x)).

In this case, C = 〈g(x), f(x)〉.

Proof. To prove i), assume that g(x) and g′(x) are monic skew polynomials in A .

Then the degree of g(x)−g′(x) is less than the degree of g(x). By the minimality

of deg(g(x)), g(x)− g′(x) = 0. Hence, g(x) is the unique monic skew polynomial

in A .
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Let c(x) ∈ C . Then by the right division algorithm, there exist unique skew

polynomials q(x) and r(x) in (Fpm + uFpm)[x; Θ] such that

c(x) = q(x)g(x) + r(x),

and r(x) = 0 or deg(r(x)) < deg(g(x)). Then

r(x) = c(x)− q(x)g(x) ∈ C.

By the minimality of deg(g(x)), r(x) = 0. Hence, c(x) = q(x)g(x), i.e., C =

〈g(x)〉 .

To prove ii), assume there are no monic skew polynomials in C . Without

loss of generality, let g(x) be a skew polynomial in A with leading coefficient

u . First, we show that g(x) is a right multiple of u . Suppose that g(x) has a

unit coefficient ai for some i < deg(g(x)). Then ug(x) ∈ C is a non-zero skew

polynomial having degree less than deg(g(x)), which contradicts the minimality

of deg(g(x)). Hence, g(x) is a right multiple of u , and we write g(x) = ug1(x),

where g1(x) is a monic skew polynomial in Fpm [x; θ] .

For the uniqueness, suppose that g′(x) is a skew polynomial in A with leading

coefficient u . Then the degree of g(x)− g′(x) is less than the degree of g(x). By

the minimality of deg(g(x)), g(x)−g′(x) = 0. Hence, g(x) = ug1(x) is the unique

skew polynomial in A with leading coefficient u .

Now, we show that C is generated by g(x) = ug1(x). Suppose that there

exists h(x) in C of minimal degree ` which is not a left multiple of g(x) = ug1(x).

Moreover, h(x) can be chosen to have leading coefficient u . Then

k(x) : = h(x)− ux`−deg(g(x))g1(x)

= h(x)−
−−−−−−−→
x`−deg(g(x))

u

ug1(x)

= h(x)−
−−−−−−−→
x`−deg(g(x))

u

g(x) ∈ C.
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If k(x) = 0, then h(x) =
−−−−−−−→
x`−deg(g(x))

u

g(x) which contradicts the assumption.

Suppose k(x) 6= 0. Then the degree of k(x) is less than ` and k(x) is not a left

multiple of g(x) which contradicts the choice of h(x).

Finally, we prove iii). Assume there are no monic skew polynomials in A but

there exists a monic skew polynomial in C . It can be shown as in ii) that there

is a unique skew polynomial g(x) = ug1(x) in A with leading coefficient u .

Let F (x) be a monic skew polynomial of minimal degree in C . We view

F (x) = F0(x) + uF1(x), where F0(x), F1(x) ∈ Fpm [x; θ] . By the right division

algorithm, there exist unique skew polynomials q(x) and r(x) in Fpm [x; θ] such

that

F1(x) = q(x)g1(x) + r(x),

and r(x) = 0 or deg(r(x)) < deg(g1(x)). Thus,

F (x) = F0(x) + uF1(x) = F0(x) + uq(x)g1(x) + ur(x).

We choose f(x) = F (x) − uq(x)g1(x), f0(x) = F0(x) and f1(x) = r(x). Then

f(x) = f0(x) + uf1(x) is a monic skew polynomial of minimal degree in C such

that deg(f1(x)) < deg(g1(x)).

The uniqueness of ug1(x) can be shown as in the proof of ii). Suppose t0(x)+

ut1(x) is a monic skew polynomial of minimal degree in C such that deg(t1(x)) <

deg(g1(x)). Then 〈uf0(x)〉 = uC = 〈ut0(x)〉 . Hence, by the proof of ii), f0(x) =

t0(x). Note that u(f1(x)− t1(x)) = (f0(x) +uf1(x))− (t0(x) +ut1(x)) ∈ C . Then

u(f1(x)− t1(x)) is the zero or deg(f1(x)− t1(x)) ≤ max{deg(f1(x)), deg(t1(x))} .

If the later case occurs, then deg(f1(x) − t1(x)) < deg(g1(x)), which contradicts

the minimality of deg(g1(x)). Hence, f1(x)− t1(x) = 0.

Let B be the set of all non-zero skew polynomials in C with degree less than

deg(f(x)). Then the leading coefficients of all skew polynomials in B are multiple
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of u . Since ug1 ∈ A , we have deg(ug1(x)) < deg(f(x)), and hence ug1(x) ∈ B .

We show that B is contained in the left ideal generated by ug1(x). Suppose

there exists h(x) in B of minimal degree ` < s which is not a left multiple of

g(x) = ug1(x). Moreover, h(x) can be chosen to have leading coefficient u . Thus,

k(x) : = h(x)− ux`−deg(g(x))g1(x)

= h(x)−
−−−−−−−→
x`−deg(g(x))

u

ug1(x)

= h(x)−
−−−−−−−→
x`−deg(g(x))

u

g(x) ∈ C.

If k(x) = 0, then h(x) =
−−−−−−−→
x`−deg(g(x))

u

g(x), which contradicts the assumption.

Suppose k(x) 6= 0. Then the degree of k(x) is less than ` < s . Hence, k(x) ∈ B

and k(x) is not a left multiple of g(x), which contradict the minimality of ` .

Therefore, B is contained in the left ideal generated by g(x) = ug1(x).

To show that C is generated by {g(x) = ug1(x), f(x) = g0(x) + ug1(x)} , let

c(x) ∈ C . Then there exist unique skew polynomials q′(x) and r′(x) in (Fpm +

uFpm)[x; Θ] such that

c(x) = q′(x)f(x) + r′(x),

and r′(x) = 0 or deg(r′(x)) < deg(f(x)). If r′(x) = 0, we are done. Assume

that deg(r′(x)) < deg(f(x)). Then r′(x) ∈ B and so r′(x) = m(x)g(x) for some

m(x) ∈ (Fpm + uFpm)[x; Θ]. Hence,

c(x) = q′(x)f(x) + r′(x) = q′(x)f(x) +m(x)g(x).

Therefore, C is generated by {g(x) = ug1(x), f(x) = f0(x) + uf1(x)} .

Following Theorem 4.1.1, we distinguish three types of the left ideals in (Fpm +

uFpm)[x; Θ]/〈xn − λ〉 . Type LI-1 refers to the zero ideal or a left ideal satisfying

i), type LI-2 refers to a left ideal satisfying ii), and type LI-3 refers to a left ideal

satisfying iii).
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Further properties of left ideals of each type are given in the following propo-

sitions.

Proposition 4.1.2. A left ideal of type LI-1 is principal and generated by a monic

right divisor g(x) of xn − λ in (Fpm + uFpm)[x; Θ]. Moreover, if we view g(x) =

g0(x) + ug1(x), where g0(x), g1(x) ∈ Fpm [x; θ], then deg(g1(x)) < deg(g0(x)) and

g0(x) is a monic right divisor of xn − λ in Fpm [x; θ].

Proof. Let C be a left ideal of type LI-1. If C = {0} , then C = 〈0〉 = 〈xn − λ〉

has the desired properties.

Suppose C is non-zero. We prove that the generator polynomial g(x) in

Theorem 4.1.1 i) satisfies these properties. Recall that g(x) is the unique monic

skew polynomial in A , the set of all non-zero skew polynomials of minimal degree

in C .

First, we show that g(x) is a right divisor of xn−λ in (Fpm +uFpm)[x; Θ]. By

the right division algorithm, there exist unique skew polynomials q(x) and r(x)

in (Fpm + uFpm)[x; Θ] such that

xn − λ = q(x)g(x) + r(x),

and r(x) = 0 or deg(r(x)) < deg(g(x)). Then

r(x) = −q(x)g(x) + (xn − λ) ∈ C.

By the minimality of deg(g(x)), r(x) = 0. Hence, g(x) is a right divisor of xn−λ .

Finally, we write g(x) = g0(x) + ug1(x), where g0(x), g1(x) ∈ Fpm [x; θ] . Since

g(x) is monic, it is clear that g0(x) is monic and deg(g1(x)) < deg(g(x)) =

deg(g0(x)). Since g(x) is a right divisor of xn − λ in (Fpm + uFpm)[x; Θ], there

exists p(x) in (Fpm + uFpm)[x; Θ] such that

xn − λ = p(x)(g0(x) + ug1(x)).
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Reducing modulo u , we have xn − λ = p(x)g0(x) in Fpm [x; θ] . This means g0(x)

is a monic right divisor of xn − λ in Fpm [x; θ] .

Proposition 4.1.3. A left ideal of type LI-2 is principal and generated by g(x) =

ug1(x), where g1(x) is a monic right divisor of xn − λ in Fpm [x; θ] such that

deg(g1(x)) < n.

Proof. Let C be a left ideal of type LI-2. We prove that the generator polynomial

g(x) = ug1(x) in Theorem 4.1.1 ii) satisfies the desired properties. Recall that

g(x) = ug1(x) is the unique skew polynomial with leading coefficient u in A , the

set of all non-zero skew polynomials of minimal degree in C . Clearly, deg(g1(x)) <

n . By the right division algorithm, there exist unique skew polynomials q(x) and

r(x) in Fpm [x; θ] such that

xn − λ = q(x)g1(x) + r(x),

and r(x) = 0 or deg(r(x)) < deg(g1(x)). Since u(xn − λ̄) = u(xn − λ), we have

ur(x) = −uq(x)g1(x) + u(xn − λ̄)

= −
−−→
q(x)

u

ug1(x) + u(xn − λ)

= −
−−→
q(x)

u

g(x) + u(xn − λ) ∈ C.

By the minimality of deg(g(x)), ur(x) = 0. As r(x) ∈ Fpm [x; θ] , r(x) = 0.

Hence, g1(x) is a right divisor of xn − λ in Fpm [x; θ] .

Proposition 4.1.4. A left ideal of type LI-3 is generated by {g(x) = ug1(x), f(x) =

f0(x) + uf1(x)}, where f0(x), f1(x), g1(x) ∈ Fpm [x; θ] satisfy the following prop-

erties:

i) g1(x), f0(x) are monic,

ii) deg(f1(x)) < deg(g1(x))< deg(f0(x)) < n,
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iii) g1(x) is a right divisor of f0(x) in Fpm [x; θ],

iv) f0(x) is a right divisor of xn − λ in Fpm [x; θ].

Moreover, if λ ∈ Fpm , then g1(x) is a right divisor of

←−−−−−−−(
xn − λ
f0(x)

)u
f1(x) in

Fpm [x; θ].

Proof. Let C be a left ideal of type LI-3. We prove that the generator set

{g(x) = ug1(x), f(x) = f0(x) + uf1(x)} in Theorem 4.1.1 iii) satisfies the de-

sired properties. Recall that g(x) = ug1(x) is the unique skew polynomial with

the leading coefficient u in A , the set of all non-zero skew polynomials of minimal

degree in C and f0(x) + uf1(x) is the unique monic skew polynomial of minimal

degree in C such that deg(f1(x)) < deg(g1(x)).

Properties i) and ii) are clear. Using the right division algorithm, we have

f0(x) = q(x)g1(x) + r(x),

for unique q(x), r(x) ∈ Fpm [x; θ] such that r(x) = 0 or deg(r(x)) < deg(g1(x)).

Then

ur(x) = uf0(x)− uq(x)g1(x)

= uf0(x)−
−−→
q(x)

u

ug1(x)

= uf(x)−
−−→
q(x)

u

g(x) ∈ C.

By the minimality of deg(g(x)), ur(x) = 0. As r(x) ∈ Fpm [x; θ], r(x) = 0. Thus,

iii) follows.

Note that uf0(x) is a skew polynomial of minimal degree in 〈uf0(x)〉 . Using

arguments similar to the proof of Proposition 4.1.3, f0(x) is a right divisor of

xn − λ in Fpm [x; θ] . Hence, property iv) is proved.
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Finally, it is straightforward to see that if λ ∈ Fpm , then λ̄ = λ . Thus,

xn − λ
f0(x)

(f0(x) + uf1(x)) =
xn − λ
f0(x)

uf1(x)

= u

←−−−−−−−(
xn − λ
f0(x)

)u
f1(x)

∈ C ∩ u((Fpm + uFpm)[x; Θ]/〈xn − λ〉).

Note that C∩u((Fpm +uFpm)[x; Θ]/〈xn−λ〉) is a left ideal in (Fpm +uFpm)[x; Θ]/

〈xn − λ〉 containing g(x) = ug1(x) as a skew polynomial of minimal degree.

Since C ∩ u((Fpm + uFpm)[x; Θ]/〈xn − λ〉) does not contain any monic element,

by Proposition 4.1.3, it is generated by g(x) = ug1(x). Hence, g1(x) is a right

divisor of

←−−−−−−−(
xn − λ
f0(x)

)u
f1(x).

Example 4.1.5. Figures 4.1 and 4.2, respectively, show the ideal lattices of (F3 +

uF3)[x]/〈x2 − 1〉 and (F3 + uF3)[x; Θid,2]/〈x2 − 1〉 , where Θid,2(a+ bu) = a+ 2bu

for all a, b ∈ F3 . The subscripts 1, 2 and 3 indicate types LI-1, LI-2 and LI-3,

respectively.

〈1〉1

〈u, x+ 1〉3 〈u, x+ 2〉3

〈u〉2

〈x+ 1〉1 〈x+ 2〉1

〈u(x+ 1)〉2 〈u(x+ 2)〉2

〈0〉1

Figure 4.1: The ideal lattice of (F3 + uF3)[x]/〈x2 − 1〉
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〈1〉1

〈u, x+ 1〉3 〈u, x+ 2〉3

〈u〉2

〈x+ 1 + 2u〉1 〈x+ 1 + u〉1 〈x+ 1〉1 〈x+ 2〉1 〈x+ 2 + u〉1 〈x+ 2 + 2u〉1

〈u(x+ 1)〉2 〈u(x+ 2)〉2

〈0〉1

Figure 4.2: The ideal lattice of (F3 + uF3)[x; Θid,2]/〈x2 − 1〉

Note that Figure 4.1 is embedded in Figure 4.2.

4.2 Euclidean Dual Codes of Skew-Cyclic and

Skew-Negacyclic Codes

We study the structures of the Euclidean dual codes of skew-cyclic and skew-

negacyclic codes over Fpm + uFpm . For this purpose, we assume that λ = ±1.

Since λ̄ = λ ∈ Fpm is always fixed by any automorphism, Θ can be arbitrary.

However, the length n of codes is assumed to be a multiple of the order of Θ.

From λ2 = 1, by Lemma 3.2.1, the Euclidean dual codes of skew-cyclic and

skew-negacyclic codes are again skew-cyclic and skew-negacyclic, respectively.

Their generators are given through the unique representation of the original

codes and the ring anti-monomorphism ϕ defined in Proposition 2.2.7, where

ϕ(
t∑
i=0

aix
i) =

t∑
i=0

x−iai .

Theorem 4.2.1. Let λ ∈ {−1, 1}. Then the Euclidean dual code of a left ideal

in (Fpm + uFpm)[x; Θ]/〈xn− λ〉 is also a left ideal in (Fpm + uFpm)[x; Θ]/〈xn− λ〉
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determined as follows:

LI-1⊥. If C = 〈g0(x) + ug1(x)〉, then C⊥ = 〈xn−deg(g0(x))ϕ

(
xn − λ

g0(x) + ug1(x)

)
〉.

LI-2⊥. If C = 〈ug1(x)〉, then C⊥ = 〈u, xn−deg(g1(x))ϕ

(
xn − λ
g1(x)

)
〉.

LI-3⊥. If C = 〈ug1(x), f0(x) + uf1(x)〉, then there exists m(x) ∈ Fpm [x; θ] such

that m(x)g1(x) =

←−−−−−−−(
xn − λ
f0(x)

)u
f1(x) and

C⊥ = 〈xn−deg(f0(x))ϕ

(
xn − λ
f0(x)

u

)
, xn−deg(g1(x))ϕ

(
xn − λ
g1(x)

− um(x)

)
〉.

For LI-1⊥ , the Euclidean dual code of type LI-1 code is determined in The-

orem 3.2.3 and it is shown to be type LI-1. Moreover, (C⊥)⊥ = C implies that

C is type LI-1 if and only if C⊥ is type LI-1. However, this is not the case for

types LI-2 and LI-3 (see Example 4.3.2).

In LI-2⊥ and LI-3⊥ , f0(x), g1(x) are right divisors of xn − λ in Fpm [x; θ] .

Since xn − λ is central, it follows from (2.2.2) that

f0(x)
xn − λ
f0(x)

= xn − λ =
xn − λ
f0(x)

f0(x), (4.2.1)

g1(x)
xn − λ
g1(x)

= xn − λ =
xn − λ
g1(x)

g1(x). (4.2.2)

These two facts and the centrality of xn−λ will be frequently used in the following

proofs.

Proof of LI-2⊥ . Let D := 〈u, xn−deg(g1(x))ϕ

(
xn − λ
g1(x)

)
〉 . Clearly, u ∈ C⊥ . It fol-

lows from (4.2.2) that (ug1(x))
xn − λ
g1(x)

= u(xn−λ) = 0 in (Fpm+uFpm)[x; Θ]/〈xn−

λ〉. Hence, D ⊆ C⊥ is concluded via Lemma 3.2.2.

For the other direction, we note that C⊥ is of either type LI-2 or LI-3. If

C⊥ = 〈us1(x)〉 is of type LI-2, then C⊥ ⊆ 〈u〉 ⊆ D . Suppose that C⊥ :=

〈us1(x), t0(x) + ut1(x)〉 is of type LI-3. Clearly, us1(x), ut1(x) ∈ 〈u〉 ⊆ D .
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Since ug1(x) ∈ C and t0(x) + ut1(x) ∈ C⊥ , it follows from Lemma 3.2.2 that

0 = (ug1(x))ϕ−1(x− deg(t0(x))(t0(x) + ut1(x)))

= ug1(x)ϕ−1(x− deg(t0(x))t0(x))

in (Fpm + uFpm)[x; Θ]/〈xn − λ〉 . Thus, g1(x)ϕ−1(x− deg(t0(x))t0(x)) = 0. Hence,

in (Fpm + uFpm)[x; Θ],

g1(x)ϕ−1(x− deg(t0(x))t0(x)) = l1(x)(xn − λ) = (xn − λ)l1(x), (4.2.3)

for some l1(x) ∈ Fpm [x; θ]. Note that

deg(t0(x)) = deg(l1(x)) + n− deg(g1(x)). (4.2.4)

With the notation in (4.2.2), left cancellation of (4.2.3) by g1(x) gives

xn − λ
g1(x)

l1(x) = ϕ−1(x− deg(t0(x))t0(x)),

and hence, by (4.2.4),

t0(x) = xdeg(t0(x))ϕ

(
xn − λ
g1(x)

l1(x)

)
= xdeg(l1(x))+n−deg(g1(x))ϕ(l1(x))ϕ

(
xn − λ
g1(x)

)
= xdeg(l1(x))

−−−−−→
ϕ(l1(x))

xn−deg(g1(x))

xn−deg(g1(x))ϕ

(
xn − λ
g1(x)

)
∈ D.

Consequently, t0(x) + ut1(x) ∈ D and C⊥ ⊆ D , as desired. �

Proof of LI-3⊥ . Since λ ∈ Fpm , it follows from Proposition 4.1.4 that g1(x) is a

right divisor of

←−−−−−−−(
xn − λ
f0(x)

)u
f1(x). Then there exists m(x) ∈ Fpm [x; θ] such that

m(x)g1(x) =

←−−−−−−−(
xn − λ
f0(x)

)u
f1(x). (4.2.5)

Let D := 〈xn−deg(f0(x))ϕ

(
xn − λ
f0(x)

u

)
, xn−deg(g1(x))ϕ

(
xn − λ
g1(x)

− um(x)

)
〉. It fol-

lows from (4.2.5) that

um(x)g1(x) = u

←−−−−−−−(
xn − λ
f0(x)

)u
f1(x) =

xn − λ
f0(x)

uf1(x). (4.2.6)
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Multiplying on the left of (4.2.6) by f0(x), we have

f0(x)um(x)g1(x) = f0(x)
xn − λ
f0(x)

uf1(x)

= (xn − λ)uf1(x) (using (4.2.1))

= uf1(x)(xn − λ)

= uf1(x)
xn − λ
g1(x)

g1(x) (using (4.2.2)).

Hence,

f0(x)um(x) = uf1(x)
xn − λ
g1(x)

, (4.2.7)

and

deg(m(x)) = n+ deg(f1(x))− deg(f0(x))− deg(g1(x)). (4.2.8)

Now, we observe the followings:

a) Since u2 = 0, we have

ug1(x)
xn − λ
f0(x)

u = 0. (4.2.9)

b) Using u2 = 0 and (4.2.2), we conclude that

ug1(x)

(
xn − λ
g1(x)

− um(x)

)
= ug1(x)

xn − λ
g1(x)

= u(xn − λ). (4.2.10)

c) It follows from u2 = 0 and (4.2.1) that

(f0(x) + uf1(x))(
xn − λ
f0(x)

u) = f0(x)
xn − λ
f0(x)

u = (xn − λ)u = u(xn − λ).

(4.2.11)

d) Since g1(x) is a right divisor of f0(x), by (2.2.1) and (4.2.2), we have

f0(x)
xn − λ
g1(x)

=

(
f0(x)

g1(x)
g1(x)

)
xn − λ
g1(x)

=
f0(x)

g1(x)

(
g1(x)

xn − λ
g1(x)

)
=
f0(x)

g1(x)
(xn − λ). (4.2.12)
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The next equation follows from u2 = 0, (4.2.7) and (4.2.12)

(f0(x) + uf1(x))

(
xn − λ
g1(x)

− um(x)

)
= f0(x)

xn − λ
g1(x)

+ uf1(x)
xn − λ
g1(x)

− f0(x)um(x)

=
f0(x)

g1(x)
(xn − λ). (4.2.13)

Equations (4.2.9)-(4.2.11) and (4.2.13) equal 0 in (Fpm + uFpm)[x; Θ]/〈xn − λ〉.

Thus, D ⊆ C⊥ by Lemma 3.2.2.

For the reverse inclusion, we note that C⊥ is of type LI-2 or LI-3. First,

suppose that C⊥ := 〈us1(x)〉 is of type LI-2. Since f0(x) + uf1(x) ∈ C and

us1(x) ∈ C⊥ , the Euclidean orthogonality and Lemma 3.2.2 imply that

(f0(x) + uf1(x))ϕ−1(x− deg(s1)us1(x)) = 0

in (Fpm + uFpm)[x; Θ]/〈xn − λ〉 . Hence, in (Fpm + uFpm)[x; Θ],

f0(x)ϕ−1(x− deg(s1(x))us1(x)) = ul(x)(xn − λ) = (xn − λ)ul(x), (4.2.14)

for some l(x) ∈ Fpm [x; θ] . Moreover, deg(s1(x)) = n + deg(l(x))− deg(f0(x)). It

follows from (4.2.1) and (4.2.14) that

ϕ−1(x−(n+deg(l(x))−deg(f0(x)))us1(x)) = ϕ−1(x− deg(s1(x))us1(x)) =
xn − λ
f0(x)

ul(x).

Since ϕ is a ring anti-monomorphism, we conclude that

x−(n+deg(l(x))−deg(f0(x)))us1(x) = ϕ

(
xn − λ
f0(x)

ul(x)

)
= ϕ(l(x))ϕ

(
xn − λ
f0(x)

u

)
.

Consequently,

us1(x) = xn+deg(l(x))−deg(f0(x))ϕ(l(x))ϕ

(
xn − λ
f0(x)

u

)
= xdeg(l(x))

−−−−→
ϕ(l(x))

xn−deg(f0(x))

xn−deg(f0(x))ϕ

(
xn − λ
f0(x)

u

)
∈ D.
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Next, suppose that C⊥ := 〈us1(x), t0(x) + ut1(x)〉 is of type LI-3. Using

arguments similar to those above, f0(x) + uf1(x) ∈ C and us1(x) ∈ C⊥ imply

us1(x) ∈ D.

Since ug1(x) ∈ C and t0(x) + ut1(x) ∈ C⊥ , it follows from Lemma 3.2.2 that

0 = ug1(x)ϕ−1(x−deg(t0(x))(t0(x) + ut1(x))) = ug1(x)ϕ−1(x− deg(t0(x))t0(x)),

in (Fpm +uFpm)[x; Θ]/〈xn−λ〉 . Thus, g1(x)ϕ−1(x− deg(t0(x))t0(x)) = 0, and hence,

in (Fpm + uFpm)[x; Θ],

g1(x)ϕ−1(x− deg(t0(x))t0(x)) = l1(x)(xn − λ) = (xn − λ)l1(x), (4.2.15)

for some l1(x) ∈ Fpm [x; θ]. Note that

deg(t0(x)) = n+ deg(l1(x))− deg(g1(x)). (4.2.16)

In the notation of (4.2.2), the left cancellation of (4.2.15) by g1(x) implies

ϕ−1(x− deg(t0(x))t0(x)) =
xn − λ
g1(x)

l1(x), (4.2.17)

and hence

t0(x) = xdeg(t0(x))ϕ

(
xn − λ
g1(x)

l1(x)

)
= xdeg(t0(x))ϕ(l1(x))ϕ

(
xn − λ
g1(x)

)
. (4.2.18)
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By Lemma 3.2.2, in (Fpm + uFpm)[x; Θ]/〈xn − λ〉 ,

0 = (f0(x) + uf1(x))ϕ−1(x− deg(t0(x))(t0(x) + ut1(x)))

= f0(x)ϕ−1(x− deg(t0(x))t0(x)) + f0(x)ϕ−1(x−deg(t0(x))ut1(x))

+ uf1(x)ϕ−1(x− deg(t0(x))t0(x))

= f0(x)
xn − λ
g1(x)

l1(x) + f0(x)ϕ−1(x− deg(t0(x))ut1(x)) + uf1(x)
xn − λ
g1(x)

l1(x)

(using (4.2.17))

=
f0(x)

g1(x)
(xn − λ)l1(x) + f0(x)ϕ−1(x−deg(t0(x))ut1(x)) + f0(x)um(x)l1(x)

(using (2.2.1), (4.2.2) and (4.2.7))

=
f0(x)

g1(x)
l1(x)(xn − λ) + f0(x)

(
ϕ−1(x−deg(t0(x))ut1(x)) + um(x)l1(x)

)
= f0(x)(ϕ−1(x− deg(t0(x))ut1(x)) + um(x)l1(x)).

Then there exists l2(x) ∈ Fpm [x; θ] such that, in (Fpm + uFpm)[x; Θ],

f0(x)(ϕ−1(x− deg(t0(x))ut1(x)) + um(x)l1(x)) = ul2(x)(xn − λ)

= (xn − λ)ul2(x). (4.2.19)

Using (4.2.8), (4.2.16) and the fact deg(f0(x)) > deg(f1(x)), we conclude that

deg(m(x)l1(x)) ≤ deg(m(x)) + deg(l1(x)) < deg(t0(x)). (4.2.20)

Thus, from (4.2.19) and (4.2.20),

deg(t0(x)) = n+ deg(l2(x))− deg(f0(x)). (4.2.21)

The left cancellation of (4.2.19) by f0(x) implies

ϕ−1(x− deg(t0(x))ut1(x)) + um(x)l1(x) =
xn − λ
f0(x)

ul2(x).

Hence, ϕ−1(x− deg(t0(x))ut1(x)) =
xn − λ
f0(x)

ul2(x)− um(x)l1(x), i.e.,

ut1(x) = xdeg(t0(x))ϕ

(
xn − λ
f0(x)

ul2(x)− um(x)l1(x)

)
. (4.2.22)
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Therefore,

t0(x) + ut1(x) = xdeg(t0(x))ϕ(l1(x))ϕ

(
xn − λ
g1(x)

)
+ xdeg(t0(x))ϕ

(
xn − λ
f0(x)

ul2(x)− um(x)l1(x)

)
(using (4.2.18) and (4.2.22))

= xdeg(t0(x))ϕ(l1(x))ϕ

(
xn − λ
g1(x)

)
− xdeg(t0(x))ϕ(l1(x))ϕ(um(x))

+ xdeg(t0(x))ϕ

(
xn − λ
f0(x)

ul2(x)

)
= xn+deg(l1(x))−deg(g1(x))ϕ(l1(x))ϕ

(
xn − λ
g1(x)

− um(x)

)
+ xn+deg(l2(x))−deg(f0(x))ϕ(l2(x))ϕ(

xn − λ
f0(x)

u)

(using (4.2.16) and (4.2.21))

= xdeg(l1(x))
−−−−−→
ϕ(l1(x))

xn−deg(g1(x))

xn−deg(g1(x))ϕ

(
xn − λ
g1(x)

− um(x)

)
+ xdeg(l2(x))

−−−−−→
ϕ(l2(x))

xn−deg(f0(x))

xn−deg(f0(x))ϕ(
xn − λ
f0(x)

u) ∈ D,

and we have C⊥ ⊆ D as desired. �

4.3 Hermitian Dual Codes of Skew-Cyclic and

Skew-Negacyclic Codes

We assume that the order of Θ is 2 and determine the structure of the Hermi-

tian dual codes of skew-cyclic and skew-negacyclic codes in terms of their unique

representative generators, the ring anti-monomorphism ϕ defined in Proposi-

tion 2.2.7 and the ring automorphism Φ defined in (3.3.1). Using Lemma 3.3.2 and

arguments similar to those in the previous subsection, the next theorem follows.

Theorem 4.3.1. Let λ ∈ {1,−1} and let Θ be an automorphism of order 2.

Then the Hermitian dual code of a left ideal in (Fpm + uFpm)[x; Θ]/〈xn − λ〉 is

again a left ideal in (Fpm + uFpm)[x; Θ]/〈xn − λ〉 determined as follows:
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LI-1⊥H . If C = 〈g0(x)+ug1(x)〉, then C⊥H = 〈Φ(xn−deg(g0(x))ϕ

(
xn − λ

g0(x) + ug1(x)

)
)〉.

LI-2⊥H . If C = 〈ug1(x)〉, then C⊥H = 〈u,Φ(xn−deg(g1(x))ϕ

(
xn − λ
g1(x)

)
)〉.

LI-3⊥H . If C = 〈ug1(x), f0(x) + uf1(x)〉, then there exists m(x) ∈ Fpm [x; θ] such

that m(x)g1(x) =

←−−−−−−−(
xn − λ
f0(x)

)u
f1(x) and

C⊥H = 〈Φ(xn−deg(f0(x))ϕ

(
xn − λ
f0(x)

u

)
),Φ(xn−deg(g1(x))ϕ

(
xn − λ
g1(x)

− um(x)

)
)〉.

Example 4.3.2. Table 4.1 shows the Euclidean and Hermitian dual codes of

the left ideals in (F3 + uF3)[x; Θid,2]/〈x2 − 1〉 classified in Example 4.1.5. The

dual codes are obtained via Theorems 4.2.1 and 4.3.1 and rewritten to satisfy the

representation in Proposition 4.1.1. The subscripts 1, 2 and 3 indicate types

LI-1, LI-2 and LI-3, respectively.
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C C⊥ C⊥H

〈0〉1 〈1〉1 〈1〉1

〈u(x+ 1)〉2 〈u, x+ 2〉3 〈u, x+ 2〉3

〈u(x+ 2)〉2 〈u, x+ 1〉3 〈u, x+ 1〉3

〈u〉2 〈u〉2 〈u〉2

〈x+ 1 + 2u〉1 〈x+ 2 + 2u〉1 〈x+ 2 + u〉1

〈x+ 1 + u〉1 〈x+ 2 + u〉1 〈x+ 2 + 2u〉1

〈x+ 1〉1 〈x+ 2〉1 〈x+ 2〉1

〈x+ 2〉1 〈x+ 1〉1 〈x+ 1〉1

〈x+ 2 + u〉1 〈x+ 1 + u〉1 〈x+ 1 + 2u〉1

〈x+ 2 + 2u〉1 〈x+ 1 + 2u〉1 〈x+ 1 + u〉1

〈u, x+ 1〉3 〈u(x+ 2)〉2 〈u(x+ 2)〉2

〈u, x+ 2〉3 〈u(x+ 1)〉2 〈u(x+ 1)〉2

〈1〉1 〈0〉1 〈0〉1

Table 4.1: The left ideals in (F3 + uF3)[x; Θid,2]/〈x2− 1〉 and their Euclidean and

Hermitian dual codes



CHAPTER V

GRAY IMAGES OF CODES OVER R(pm,e)

The discovery of good nonlinear codes from linear codes over Z4 , via the Gray

map [21], motivated the study of the Gray images of codes over rings in general.

Analogs of the Gray map have also been defined for codes over other finite chain

rings [19] linked these codes to codes over finite fields. Qian, Zhang and Zhu

characterized the Gray images of (1 + u)-constacyclic and cyclic codes over the

ring R(2,2) = F2 + uF2 in [30] and investigated some constacyclic codes over

R(2,3) = F2 + uF2 + u2F2 in [31]. Congellenmis [11] have introduced (1 − ue−1)-

constacyclic codes over R(2,e) = F2 +uF2 + · · ·+ue−1F2 and generalized the results

of [30] and [31].

Motivated by these works, we generalize these concepts to the finite chain ring

R(pm,e) = Fpm + uFpm + · · · + ue−1Fpm . We study (1 − ue−1)-constacyclic, cyclic

and (1 + ue−1)-constacyclic codes over this ring and characterize the structures

of the Gray images of such codes. Moreover, we give descriptions concerning the

Gray images of some skew-constacyclic codes over R(pm,e) .

First, we recall some necessary definitions and introduce some useful notations.

In (2.1.1), an element r ∈ R(pm,e) is uniquely written as

r = a0 + ua1 + · · ·+ ue−1ae−1,

where ai ∈ Fpm . Hence, an element r ∈ R(pm,e)
n can be viewed as

r = a0(r) + ua1(r) + · · ·+ ue−1ae−1(r),
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where ai(r) = (ri,0, ri,1, . . . , ri,n−1) is a vector in Fnpm , for every 0 ≤ i ≤ e− 1, or

r = (r0, r1, . . . , rn−1), (5.1)

where ri = r0,i + ur1,i + · · ·+ ue−1re−1,i ∈ R(pm,e) , for every 0 ≤ i ≤ n− 1.

Let ρ, ρ1−ue−1 , ρ1+ue−1 : R(pm,e)
n → R(pm,e)

n be defined by

ρ((r0, r1, . . . , rn−1)) = (rn−1, r0, . . . , rn−2),

ρ1−ue−1((r0, r1, . . . , rn−1)) = ((1− ue−1)rn−1, r0, . . . , rn−2)

and

ρ1+ue−1((r0, r1, . . . , rn−1)) = ((1 + ue−1)rn−1, r0, . . . , rn−2).

In the light of (2.3.1), a code C of length n over R(pm,e) satisfying ρ(C) = C is

a cyclic code, while C satisfying ρ1−ue−1(C) = C and ρ1+ue−1(C) = C are called

(1− ue−1)-constacyclic and (1 + ue−1)-constacyclic codes, respectively.

Let σ⊗p
m(e−1)−1

: Fp
m(e−1)n
pm → Fp

m(e−1)n
pm be defined by

(a(0) | a(1) | · · · | a(pm(e−1)−1−1)) 7→ (ϕ(a(0)) | ϕ(a(1)) | · · · | ϕ(a(pm(e−1)−1−1))),

where a(i) ∈ Fpnpm , | a vector concatenation and ϕ : Fpnpm → Fpnpm denotes the cyclic

shift on Fpnpm :

ϕ((c0, c1, . . . , cpn−1)) = (cpn−1, c0, . . . , cpn−2).

A code C̃ of length pm(e−1)n over Fpm satisfying σ⊗p
m(e−1)−1

(C̃) = C̃ is called

a quasi-cyclic code of index pm(e−1)−1 . In general, for an automorphism θ ∈

Aut(Fpm) and a permutation δ on {0, 1, . . . , pm(e−1)n − 1} , C̃ is called a θ -δ -

invariant code, a generalization of a permutation invariant code [24], if it is in-

variant under a composition of the permutation δ on the coordinates and the map

defined by taking θ coordinatewise.

Codes C̃1 and C̃2 are said to be permutatively equivalent if C̃2 can be obtained

from permuting the coordinates of C̃1 .
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5.1 Homogeneous Weights and Gray Maps

A homogeneous distance has firstly been introduced for arbitrary finite chain

ring in [19]. In light of this, the homogeneous distance on R(pm,e)
n can be defined

in terms of the weight function whom(r) as follows:

whom(r) =
n−1∑
i=0

whom(ri)

for all r = (r0, r1, . . . , rn−1) ∈ R(pm,e)
n , where

whom(r) =



pm(e−2)(pm − 1) if r ∈ R(pm,e) r ue−1R(pm,e),

pm(e−1) if r ∈ ue−1R(pm,e) r {0},

0 otherwise.

The homogeneous distance dhom(r, s) between vectors r, s in R(pm,e)
n is defined

to be whom(r − s). The minimum homogeneous distance dhom(C) of a code C

over R(pm,e) is defined by

dhom(C) := min{dhom(r, s) | r 6= s ∈ C}.

When the code C is linear, dhom(C) is the minimum homogeneous weight of

non-zero elements in C .

Example 5.1.1. In R(3,2) = F3 + uF3 ,

whom(r) =



2 if r ∈ {1, 1 + u, 1 + 2u, 2, 2 + u, 2 + 2u},

3 if r ∈ {u, 2u},

0 if r = 0.

Let

C = {(0, 0, 0, 0), (2, 1 + u, 2 + u, 1), (1 + 2u, 2, 1 + u, 2 + u),

(2 + 2u, 1 + 2u, 2, 1 + u), (1, 2 + 2u, 1 + 2u, 2), (2 + u, 1, 2 + 2u, 1 + 2u),

(1 + u, 2 + u, 1, 2 + 2u), (2u, u, 2u, u), (u, 2u, u, 2u)}.
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Then C is a linear (1− u)-constacyclic code of length 4 over R(3,2) . Every non-

zero element in C has Hamming weight 4, and hence dHam(C) = 4. The elements

(2, 1 + u, 2 + u, 1), (1 + 2u, 2, 1 + u, 2 + u), (2 + 2u, 1 + 2u, 2, 1 + u), (1, 2 + 2u, 1 +

2u, 2), (2+u, 1, 2+2u, 1+2u) and (1+u, 2+u, 1, 2+2u) have homogeneous weight

8 and (2u, u, 2u, u) and (u, 2u, u, 2u) have homogeneous weight 12. Therefore,

dhom(C) = 8.

In order to define the Gray map for R(pm,e) , an element ε ∈ Zpm is viewed

uniquely as the p-adic representation

ε = ξ0(ε) + ξ1(ε)p+ · · ·+ ξm−1(ε)pm−1,

where ξi(ε) ∈ {0, 1, . . . , p − 1} , for every 0 ≤ i ≤ m − 1. Let α be a primitive

element of Fpm . For each ε ∈ Zpm , the element αε ∈ Fpm corresponding to ε is

given by

αε := ξ0(ε) + ξ1(ε)α + · · ·+ ξm−1(ε)αm−1.

Similarly, an element ω ∈ Zpm(e−1) is viewed uniquely as the pm -adic representa-

tion

ω = ξ0(ω) + ξ1(ω)pm + · · ·+ ξe−2(ω)pm(e−2),

where ξi(ω) ∈ {0, 1, . . . , pm − 1} , for every 0 ≤ i ≤ e− 2.

We define the Gray map Φ : R(pm,e)
n → Fp

m(e−1)n
pm by

Φ(r) = (b0, b1, . . . , bpm(e−1)−1),

for all r = a0(r) + ua1(r) + · · ·+ ue−1ae−1(r) ∈ R(pm,e)
n, where

bωpm+ε = αεa0(r) +
e−2∑
l=1

αξl−1(ω)al(r) + ae−1(r), (5.1.1)

for all 0 ≤ ω ≤ pm(e−2) − 1 and 0 ≤ ε ≤ pm − 1.
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Theorem 5.1.2. The Gray map Φ is an Fpm -linear isometry from (R(pm,e)
n, dhom)

to (Fp
m(e−1)n
pm , dHam), where dHam denotes the Hamming distance on Fp

m(e−1)n
pm .

Proof. The linearity is clear. It suffices to show that, for all r 6= s ∈ R(pm,e) ,

whom(r − s) = wHam(Φ(r)− Φ(s)),

where wHam denotes the Hamming weight. We observe that

Φ(ue−1r) = (a0(r), a0(r), . . . , a0(r)) (5.1.2)

Φ(r + ue−1s) = Φ(r) + Φ(ue−1s). (5.1.3)

For the case r − s ∈ ue−1R(pm,e) r {0} . That is r − s = ue−1t for some

t ∈ R(pm,e) . It follows from (5.1.3) that Φ(r) − Φ(s) = Φ(r − s) = Φ(ue−1t).

Hence, by (5.1.2), wHam(Φ(r)−Φ(s)) = wHam(Φ(ue−1t)) = pm(e−1) = whom(r−s).

Next, assume that r − s ∈ R(pm,e) r ue−1R(pm,e) . Write r = s + ujt , where

0 ≤ j ≤ e − 2 and t ∈ R(pm,e) r uR(pm,e) . To compute wHam(Φ(r) − Φ(s)), we

count the number of 0 ≤ ω ≤ pm(e−1) − 1 and 0 ≤ ε ≤ pm − 1 such that

0 = αε (a0(r)− a0(s)) +
e−2∑
l=1

αξl−1(ω) (al(r)− al(s)) + (ae−1(r)− ae−1(s))

= αεa0(ujt) +
e−2∑
l=1

αξl−1(ω)al(u
jt) + ae−1(ujt). (5.1.4)

It follows from aj(u
jt) 6= 0 that aj(r)−aj(s) 6= 0. Consequently, equation (5.1.4)

is a linear equation in the e− 1 variables αε and αξl(ω) (0 ≤ l ≤ e− 3). So, the

number of distinct pairs (ω, ε) corresponding to solutions is pm(e−2) . Hence, we

have wHam(Φ(r)−Φ(s)) = pm(e−1)−pm(e−2) = pm(e−2)(pm−1) = whom(r−s).

Example 5.1.3. Let

C = {(0, 0, 0, 0), (2, 1 + u, 2 + u, 1), (1 + 2u, 2, 1 + u, 2 + u),

(2 + 2u, 1 + 2u, 2, 1 + u), (1, 2 + 2u, 1 + 2u, 2), (2 + u, 1, 2 + 2u, 1 + 2u),

(1 + u, 2 + u, 1, 2 + 2u), (2u, u, 2u, u), (u, 2u, u, 2u)}
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be a code as in Example 5.1.1. Then

Φ(C) = {(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2),

(2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2), (2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0),

(0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1), (1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1),

(1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0), (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1),

(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2)}.

Hence, dhom(C) = 8 = dHam(Φ(C)).

In order to establish the onward results, an element r ∈ R(pm,e)
n is viewed as in

(5.1), i.e., r = (r0, r1, . . . , rn−1), where ri = r0,i + ur1,i + · · ·+ ue−1re−1,i ∈ R(pm,e)

for every 0 ≤ i ≤ n − 1. Corresponding to this representation of r , Φ(r) is

written as

Φ(r) = (b0, b1, . . . , bpm(e−1)n−1),

where

b(ωpm+ε)n+j = αεr0,j +
e−2∑
l=1

αξl−1(ω)rl,j + re−1,j, (5.1.5)

for all 0 ≤ ω ≤ pm(e−2) − 1, 0 ≤ ε ≤ pm − 1 and 0 ≤ j ≤ n− 1.

It follows from equations (5.1.1) and (5.1.5) that for each 0 ≤ ω ≤ pm(e−2)− 1

and 0 ≤ ε ≤ pm − 1, bωpm+ε = (b(ωpm+ε)n, b(ωpm+ε)n+1, . . . , b(ωpm+ε)n+n−1) .

5.2 Gray Images of (1− ue−1)-Constacyclic Codes

A characterization of the Gray images of (1 − ue−1)-constacyclic codes over

R(pm,e) is given through the next theorem.

Theorem 5.2.1. Φ ◦ ρ1−ue−1 = σ⊗p
m(e−1)−1 ◦ Φ.
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Proof. Observe that

ρ1−ue−1(r) = ( r0,n−1 + ua1,n−1 + · · ·+ ue−1(re−1,n−1 − r0,n−1),

r0,0 + ua1,0 + · · ·+ ue−1re−1,0, . . . ,

r0,n−2 + ur1,n−2 + · · ·+ ue−1re−1,n−2).

Let (d0, d1, . . . , dpm(e−1)n−1) = Φ ◦ ρ1−ue−1(r). Then for each 0 ≤ ω ≤ pm(e−2) − 1,

0 ≤ ε ≤ pm − 1 and 0 ≤ j ≤ n− 1,

d(ωpm+ε)n+j =


αεr0,j−1 +

e−2∑
l=1

αξl−1(ω)rl,j−1 + re−1,j−1 if j 6= 0,

(αε − 1)r0,n−1 +
e−2∑
l=1

αξl−1(ω)rl,n−1 + re−1,n−1 if j = 0,

=



αεr0,j−1 +
e−2∑
l=1

αξl−1(ω)rl,j−1 + re−1,j−1 if j 6= 0,

(
m−1∑
i=0

ξi(ε)α
i − 1)r0,n−1 +

e−2∑
l=1

αξl−1(ω)rl,n−1

+ re−1,n−1 if j = 0 and ξ0(ε) 6= 0,

(
m−1∑
i=0

ξi(ε)α
i + p− 1)r0,n−1 +

e−2∑
l=1

αξl−1(ω)rl,n−1

+ re−1,n−1 if j = 0 and ξ0(ε) = 0.

For the other direction, by equation (5.1.5), we have

Φ(r) = (b0, b1, . . . , bpm(e−1)n−1),

where b(ωpm+ε)n+j = αεr0,j +
e−2∑
l=1

αξl−1(ω)rl,j + re−1,j, for all 0 ≤ ω ≤ pm(e−2) − 1,

0 ≤ ε ≤ pm − 1 and 0 ≤ j ≤ n− 1.

Let (c0, c1, . . . , cpm(e−1)n−1) = σ⊗p
m(e−1)−1 ◦ Φ(r). Then for each 0 ≤ ω ≤
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pm(e−2) − 1, 0 ≤ ε ≤ pm − 1 and 0 ≤ j ≤ n− 1,

c(ωpm+ε)n+j =



αεr0,j−1 +
e−2∑
l=1

αξl−1(ω)rl,j−1 + re−1,j−1 if j 6= 0,

(
m−1∑
i=0

ξi(ε)α
i − 1)r0,n−1 +

e−2∑
l=1

αξl−1(ω)rl,n−1

+ re−1,n−1 if j = 0 and ξ0(ε) 6= 0,

(
m−1∑
i=0

ξi(ε)α
i + p− 1)r0,n−1 +

e−2∑
l=1

αξl−1(ω)rl,n−1

+ re−1,n−1 if j = 0 and ξ0(ε) = 0.

Hence, the result follows.

Theorem 5.2.2. Let C be a linear code of length n over R(pm,e) . Then C is a

(1 − ue−1)-constacyclic code if and only if Φ(C) is a quasi-cyclic code of index

pm(e−1)−1 and length pm(e−1)n over Fpm . In this case, Φ(C) is a distance invariant

quasi-cyclic code.

Proof. The necessary part follows from Theorem 5.2.1, that is

σ⊗p
m(e−1)−1 ◦ Φ(C) = Φ ◦ ρ1−ue−1(C) = Φ(C).

For the sufficient part, assume that Φ(C) is quasi-cyclic. Then

Φ(C) = σ⊗p
m(e−1)−1 ◦ Φ(C) = Φ ◦ ρ1−ue−1(C).

The injectivity of Φ implies ρ1−ue−1(C) = C , that is C is (1−ue−1)-constacyclic.

In addition, Φ(C) is distant invariant by Theorem 5.1.2.

Example 5.2.3. From Example 5.1.3, it is easy to see that the code C is a

(1 − u)-constacyclic code over R(3,2) with dhom(C) = 8. Hence, its Gray image

Φ(C) is a quasi-cyclic code of index 1, i.e., it is a cyclic code over F3 with

dHam(Φ(C)) = 8 = dhom(C).
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5.3 Gray Images of Cyclic and (1+ue−1)-Constacyclic Codes

Throughout this section, we assume that p does not divide the length n of

codes. Then gcd(n, p) = 1, and hence there exists n′ ∈ {0, 1, . . . , p−1} such that

nn′ ≡ 1(mod p). Let β = 1 +n′ue−1 . Then βj = (1 +n′ue−1)j = 1 + jn′ue−1 ∈ R ,

for all j ∈ Z . In particular, βn = 1 + ue−1 and β−n = 1− ue−1 .

Let µ : R(pm,e)
n → R(pm,e)

n be defined by

(r0, r1, . . . , rn−1) 7→ (r0, βr1, . . . , β
n−1rn−1). (5.3.1)

Then both µ and µ2 = µ ◦ µ are R(pm,e) -module automorphisms on R(pm,e)
n .

Proposition 5.3.1. Let C be a non-empty subset of R(pm,e)
n . Then C is a linear

cyclic code if and only if µ(C) is a linear (1− ue−1)-constacyclic code.

Proof. Assume that C is a linear cyclic code. Let (r0, βr1, . . . , β
n−1rn−1) ∈ µ(C).

Since µ is injective, (r0, r1, . . . , rn−1) ∈ C . By the linearity and cyclicity of C ,

we have β−1(rn−1, r0, r1, . . . , rn−1) ∈ C . Thus,

ρ1−ue−1((r0, βr1, . . . , β
n−1rn−1))

= ((1− ue−1)βn−1rn−1, r0, βr1, . . . , β
n−2rn−2)

= (β−nβn−1rn−1, r0, βr1, . . . , β
n−2rn−2)

= ((β−1rn−1), β(β−1r0), β2(β−1r1), . . . , βn−1(β−1rn−1))

= µ((β−1rn−1, β
−1r0, β

−1r1, . . . , β
−1rn−1))

= µ(β−1(rn−1, r0, r1, . . . , rn−1)) ∈ µ(C)

since β−1(rn−1, r0, r1, . . . , rn−1) ∈ C . Hence, µ(C) is (1 − ue−1)-constacyclic as

desired.

For the other direction, assume that µ(C) is a linear (1 − ue−1)-constacyclic

code. Let (r0, r1, . . . , rn−1) ∈ C . Then (r0, βr1, . . . , β
n−1rn−1) ∈ µ(C). By linear-
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ity and (1− ue−1)-constacyclicity of µ(C), we have

β((1− ue−1)βn−1rn−1, r0, βr1, . . . , β
n−2rn−2) ∈ µ(C).

Since µ is bijective, we have

ρ((r0, r1, . . . , rn−1)) = (rn−1, r0, r1, . . . , rn−2)

= µ−1((rn−1, βr0, β
2r1, . . . , β

n−1rn−2))

= µ−1((β−nβnrn−1, βr0, β
2r1, . . . , β

n−1rn−2))

= µ−1(β((1− ue−1)βn−1rn−1, r0, βr1, . . . , β
n−2rn−2)) ∈ C

since β((1− ue−1)rn−1, r0, βr1, . . . , β
n−2rn−2) ∈ µ(C). Therefore, C is cyclic.

Proposition 5.3.2. Let C be a non-empty subset of R(pm,e)
n . Then C is a linear

(1+ue−1)-constacyclic code if and only if µ2(C) is a linear (1−ue−1)-constacyclic

code.

Proof. Assume that C is a linear (1 + ue−1)-constacyclic code. To prove that

µ2(C) is (1 − ue−1)-constacyclic, let (r0, β
2r1, . . . , β

2(n−1)rn−1) ∈ µ2(C). Then

(r0, r1, . . . , rn−1) ∈ C . From the linearity and (1 + ue−1)-constacyclicity of C , it

follows that β−2((1 + ue−1)rn−1, r0, r1, . . . , rn−1) ∈ C . Thus,

ρ1−ue−1((r0, β
2r1, . . . , β

2(n−1)rn−1))

= ((1− ue−1)β2(n−1)rn−1, r0, β
2r1, . . . , β

2(n−2)rn−2)

= (β−nβ2(n−1)rn−1, r0, β
2r1, . . . , β

2(n−2)rn−2)

= (βn(β−2rn−1), β2(β−2r0), β4(β−2r1), . . . , β2(n−1)(β−2rn−1))

= µ2((β−2βnrn−1, β
−2r0, β

−2r1, . . . , β
−2rn−1))

= µ2(β−2((1 + ue−1)rn−1, r0, r1, . . . , rn−1)) ∈ µ2(C)

since β−2((1 + ue−1)rn−1, r0, r1, . . . , rn−1) ∈ C . Therefore, µ2(C) is a (1− ue−1)-

constacyclic code.



57

Conversely, assume that µ2(C) is a linear (1 − ue−1)-constacyclic code. Let

(r0, r1, . . . , rn−1) ∈ C . Then (r0, β
2r1, . . . , β

2(n−1)rn−1) ∈ µ2(C). By linearity and

(1− ue−1)-constacyclicity of µ2(C), we have

β2((1− ue−1)rn−1, r0, β
2r1, . . . , β

2(n−2)rn−2) ∈ µ2(C).

Since µ2 is bijective, we have

ρ1+ue−1((r0, r1, . . . , rn−1))

= ((1 + ue−1)rn−1, r0, r1, . . . , rn−2)

= µ−2(((1 + ue−1)rn−1, β
2r0, β

4r1, . . . , β
2(n−1)rn−2))

= µ−2((β−nβ2nrn−1, β
2r0, β

4r1, . . . , β
2(n−1)rn−2))

= µ−2(β2((1− ue−1)β2(n−1)rn−1, r0, β
2r1, . . . , β

2(n−2)rn−2)) ∈ C

since β2((1−ue−1)β2(n−1)rn−1, r0, β
2r1, . . . , β

2(n−2)rn−2) ∈ µ2(C). Therefore, C is

a (1 + ue−1)-constacyclic code.

The Nechaev permutation in [32] is extended to be the permutation τ on

{0, 1, . . . , pn− 1} defined by

τ(sn+ j) = (s+ jn′)pn+ j,

where 0 ≤ s ≤ p− 1, 0 ≤ j ≤ n− 1, and (s+ jn′)p is the least residue of s+ jn′

modulo p . The permutation τ induces π : Fpnpm → Fpnpm as follows:

π((c0, c1, . . . , cpn−1)) = (cτ(0), cτ(1), . . . , cτ(pn−1)).

The map π is then extended to π⊗p
m(e−1)−1

: Fp
m(e−1)n
pm → Fp

m(e−1)n
pm by

(a(0) | a(1) | · · · | a(pm(e−1)−1−1)) 7→ (π(a(0)) | π(a(1)) | · · · | π(a(pm(e−1)−1−1))),

where a(i) ∈ Fpnpm , | is a vector concatenation.
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Proposition 5.3.3. Φ ◦ µ = π⊗p
m(e−1)−1 ◦ Φ.

Proof. First, we have µ(r) = (r0, βr1, . . . , β
n−1rn−1). Since βj = 1 + jn′ue−1 ∈ R(pm,e) ,

βjrj = (r0,j + ur1,j + · · ·+ ue−1(jn′r0,j + re,j)).

Let (d0, d1, . . . , dpm(e−1)−1) = Φ(µ(r)). Then

d(ωpm+ε)n+j = αεr0,j +
e−2∑
l=1

αξl−1(ω)rl,j + (jn′r0,j + re−1,j)

= (αε + jn′)r0,j +
e−2∑
l=1

αξl−1(ω)rl,j + re−1,j

=
(
(ξ0(ε) + ξ1(ε)α + · · ·+ ξm−1(ε)αm−1) + jn′

)
r0,j

+
e−2∑
l=1

αξl−1(ω)rl,j + re−1,j

= α(ξ0(ε)+jn′)p+ξ1(ε)p+···+ξm−1(ε)pm−1r0,j +
e−2∑
l=1

αξl−1(ω)rl,j + re−1,j

= b(ωpm+((ξ0(ε)+jn′)p+ξ1(ε)p+···+ξm−1(ε)pm−1))n+j.

On the other hand, we have Φ(r) = (b0, b1, . . . , bpm(e−1)n−1), where

b(ωpm+ε)n+j = αεr0,j +
e−2∑
l=1

αξl−1(ω)rl,j + re−1,j,

for all 0 ≤ ω ≤ pm(e−2) − 1, 0 ≤ ε ≤ pm − 1 and 0 ≤ j ≤ n − 1. Let

(c0, c1, . . . , cpm(e−1)n−1) = π⊗p
m(e−1)−1

(Φ(r)). Then

c(ωpm+ε)n+j = c(ωpm+(ξ0(ε)+ξ1(ε)p+···+ξm−1(ε)pm−1))n+j

= c(ωpm+(ξ1(ε)p+···+ξm−1(ε)pm−1))n+ξ0(ε)n+j

= b(ωpm+(ξ1(ε)p+···+ξm−1(ε)pm−1))n+(ξ0(ε)+jn′)pn+j

= b(ωpm+((ξ0(ε)+jn′)p+ξ1(ε)p+···+ξm−1(ε)pm−1))n+j.

This completes the proof.
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Next corollary follows immediately from Propositions 5.3.1, 5.3.3 and Theo-

rem 5.2.1.

Corollary 5.3.4. The Gray image of a linear cyclic code of length n over R(pm,e)

is permutatively equivalent to a quasi-cyclic code of index pm(e−1)−1 and length

pm(e−1)n over Fpm .

Finally, we establish the structure of the Gray image of a linear (1 + ue−1)-

constacyclic code.

Proposition 5.3.5. Φ ◦ µ2 = π⊗p
m(e−1)−1 ◦ π⊗pm(e−1)−1 ◦ Φ.

Proof. Observe that µ2(r) = (r0, β
2r1, . . . , β

2(n−1)rn−1). Since β2j = 1+2jn′ue−1 ,

β2jrj = (r0,j + ur1,j + · · ·+ ue−1(2jn′r0,j + re,j)).

Let (s0, s1, . . . , spm(e−1)−1) = Φ(µ2(r)). Then

s(ωpm+ε)n+j = αεr0,j +
e−2∑
l=1

αξl−1(ω)rl,j + (2jn′r0,j + re−1,j)

= (αε + 2jn′)r0,j +
e−2∑
l=1

αξl−1(ω)rl,j + re−1,j

=
(
(ξ0(ε) + ξ1(ε)α + · · ·+ ξm−1(ε)αm−1) + 2jn′

)
r0,j

+
e−2∑
l=1

αξl−1(ω)rl,j + re−1,j

= α(ξ0(ε)+2jn′)p+ξ1(ε)p+···+ξm−1(ε)pm−1r0,j +
e−2∑
l=1

αξl−1(ω)rl,j + re−1,j

= b(ωpm+((ξ0(ε)+2jn′)p+ξ1(ε)p+···+ξm−1(ε)pm−1))n+j.

For the other direction, let Φ(r) = (b0, b1, . . . , bpm(e−1)n−1). Then we conclude

from the proof of Proposition 5.3.3 that

π⊗p
m(e−1)−1

(Φ(r)) = (c0, c1, . . . , cpm(e−1)n−1),
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where

c(ωpm+ε)n+j = b(ωpm+((ξ0(ε)+jn′)p+ξ1(ε)p+···+ξm−1(ε)pm−1))n+j.

Hence,

π⊗p
m(e−1)−1

(π⊗p
m(e−1)−1

(Φ(r))) = (d0, d1, . . . , dpm(e−1)n−1),

where

d(ωpm+ε)n+j = d(ωpm+(ξ0(ε)+ξ1(ε)p+···+ξm−1(ε)pm−1))n+j

= d(ωpm+(ξ1(ε)p+···+ξm−1(ε)pm−1))n+ξ0(ε)n+j

= c(ωpm+(ξ1(ε)p+···+ξm−1(ε)pm−1))n+(ξ0(ε)+jn′)pn+j

= c(ωpm+((ξ0(ε)+jn′)p+ξ1(ε)p+···+ξm−1(ε)pm−1))n+j

= b(ωpm+(ξ1(ε)p+···+ξm−1(ε)pm−1))n+(ξ0(ε)+2jn′)pn+j

= b(ωpm+((ξ0(ε)+2jn′)p+ξ1(ε)p+···+ξm−1(ε)pm−1))n+j.

The desired result follows.

A delineation of the Gray image of a linear (1 + ue−1)-constacyclic code is

given as a consequence of Propositions 5.3.2 and 5.3.5 and Theorem 5.2.1.

Corollary 5.3.6. The Gray image of a linear (1 + ue−1)-constacyclic code of

length n over R(pm,e) is permutatively equivalent to a quasicyclic code of index

pm(e−1)−1 and length pm(e−1)n over Fpm .

Remark 5.3.7. Form the previous classification of (1−ue−1)-constacyclic, cyclic

and (1 + ue−1)-constacyclic codes, we conclude some algebraic relations among

those spaces:

R(pm,e)
n µ−→ R(pm,e)

n µ−→ R(pm,e)
n

ρ1−ue−1

−→ R(pm,e)
n

↓Φ � ↓Φ � ↓Φ � ↓Φ

Fp
m(e−1)n
pm

π⊗pm(e−1)−1

−→ Fp
m(e−1)n
pm

π⊗pm(e−1)−1

−→ Fp
m(e−1)n
pm

σ⊗pm(e−1)−1

−→ Fp
m(e−1)n
pm

.
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For an arbitrary n , it follows from Theorem 5.2.1 that the third diagram com-

mutes. As a consequence of Theorem 5.2.1 and Propositions 5.3.3 and 5.3.5, all

diagrams commute whenever gcd(n, p) = 1.

5.4 Gray Images of Some Skew-Constacyclic Codes

In this section, we give general descriptions of results in Sections 5.2 and 5.3

using the prefix “skew”in a particular case where an automorphism Θ of R(pm,e)

is defined by

Θ((a0 + ua1 + · · ·+ ue−1ae−1)) = (θ(a0) + uθ(a1) + · · ·+ ue−1θ(ae−1)),

where θ is an automorphism of Fpm , i.e., Θ is Θθ,1,1 in Proposition 2.1.3. It is

clear that ord(Θ) = ord(θ) and Θ fixes 1, 1− ue−1 and 1 + ue−1 .

Let n be a multiple of the order of Θ. We aim to determine the Gray image of

Θ-(1−ue−1)-constacyclic, Θ-(1+ue−1)-constacyclic and Θ-cyclic codes of length

n over R(pm,e) . First, we observe that

ρΘ,1−ue−1(r) = (θ(r0,n−1) + uθ(r1,n−1) + · · ·+ ue−1(θ(re−1,n−1)− θ(r0,n−1)),

θ(r0,0) + uθ(r1,0) + · · ·+ ue−1θ(re−1,0), . . . ,

θ(r0,n−2) + uθ(r1,n−2) + · · ·+ ue−1θ(re−1,n−2)).
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Hence, Φ ◦ ρΘ,1−ue−1(r) = (d0, d1, . . . , dpm(e−1)n−1), where

d(ωpm+ε)n+j =


αεθ(r0,j−1) +

e−2∑
l=1

αξl−1(ω)θ(rl,j−1) + θ(re−1,j−1) if j 6= 0,

(αε − 1)θ(r0,n−1) +
e−2∑
l=1

αξl−1(ω)θ(rl,n−1) + θ(re−1,n−1) if j = 0,

=



αεθ(r0,j−1) +
e−2∑
l=1

αξl−1(ω)θ(rl,j−1) + θ(re−1,j−1) if j 6= 0,

(
m−1∑
i=0

ξi(ε)α
i − 1)θ(r0,n−1) +

e−2∑
l=1

αξl−1(ω)θ(rl,n−1)

+ θ(re−1,n−1) if j = 0 and ξ0(ε) 6= 0,

(
m−1∑
i=0

ξi(ε)α
i + p− 1)θ(r0,n−1) +

e−2∑
l=1

αξl−1(ω)θ(rl,n−1)

+ θ(re−1,n−1) if j = 0 and ξ0(ε) = 0,

(5.4.1)

for all 0 ≤ ω ≤ pm(e−2) − 1, 0 ≤ ε ≤ pm − 1 and 0 ≤ j ≤ n− 1.

From the proof of Theorem 5.2.1, we have

σ⊗p
m(e−1)−1 ◦ Φ(r) = (c0, c1, . . . , cpm(e−1)n−1), where

c(ωpm+ε)n+j =



αεr0,j−1 +
e−2∑
l=1

αξl−1(ω)rl,j−1 + re−1,j−1 if j 6= 0,

(
m−1∑
i=0

ξi(ε)α
i − 1)r0,n−1 +

e−2∑
l=1

αξl−1(ω)rl,n−1

+ re−1,n−1 if j = 0 and ξ0(ε) 6= 0,

(
m−1∑
i=0

ξi(ε)α
i + p− 1)r0,n−1 +

e−2∑
l=1

αξl−1(ω)rl,n−1

+ re−1,n−1 if j = 0 and ξ0(ε) = 0,

for all 0 ≤ ω ≤ pm(e−2) − 1, 0 ≤ ε ≤ pm − 1 and 0 ≤ j ≤ n− 1.

Let ν be a permutation on {0, 1, . . . , pm(e−1)n− 1} defined by

ν((ωpm + ε)n+ j) = ($pm + ε)n+ j
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if θ(αε) = αε and θ(αξl($)) = αξl(ω) , for all 1 ≤ l ≤ e− 2. The linear transforma-

tion Tν : Fp
m(e−1)n
pm → Fp

m(e−1)n
pm induced by ν is given by

Tν((a0, a1, . . . , apm(e−1)n−1)) = (aν(0), aν(1), . . . , aν(pm(e−1)n−1)).

Then Tν ◦ σ⊗p
m(e−1)−1 ◦ Φ(r) = (f0, f1, . . . , fpm(e−1)n−1), where

f(ωpm+ε)n+j =



θ−1(αε)r0,j−1 +
e−2∑
l=1

θ−1(αξl−1(ω))rl,j−1 + re−1,j−1 if j 6= 0,

θ−1(
m−1∑
i=0

ξi(ε)α
i − 1)r0,n−1 +

e−2∑
l=1

θ−1(αξl−1(ω))rl,n−1

+ re−1,n−1 if j = 0 and ξ0(ε) 6= 0,

θ−1(
m−1∑
i=0

ξi(ε)α
i + p− 1)r0,n−1 +

e−2∑
l=1

θ−1(αξl−1(ω))rl,n−1

+ re−1,n−1 if j = 0 and ξ0(ε) = 0,

(5.4.2)

for all 0 ≤ ω ≤ pm(e−2) − 1, 0 ≤ ε ≤ pm − 1 and 0 ≤ j ≤ n− 1.

It follows from (5.4.1) and the result after applying θ on both sides of (5.4.2)

that Tν ◦ σ⊗p
m(e−1)−1 ◦ Φ = Φ ◦ ρΘ,1−ue−1 .

Let νσ be the permutation on {0, 1, . . . , pm(e−1)n−1} induced by Tν◦σ⊗p
m(e−1)−1

.

Hence, the next theorem follows.

Theorem 5.4.1. Let C be a linear code of length n over R(pm,e) . Then C is a

Θ-(1 − ue−1)-constacyclic code if and only if Φ(C) is a θ -νσ -invariant code of

length pm(e−1)n over Fpm .

Next, we assume that gcd(n, p) = 1 and n′ ∈ {1, 2, . . . , p − 1} such that

nn′ ≡ 1( mod p). Note that β = 1 + n′ue−1 is fixed by Θ. Using µ defined in

(5.3.1) and arguments similar to those in Propositions 5.3.1 and 5.3.2, we conclude

the the following results.
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Proposition 5.4.2. Let C be a non-empty subset of R(pm,e)
n . Then C is a linear

Θ-cyclic code if and only if µ(C) is a linear Θ-(1− ue−1)-constacyclic code.

Corollary 5.4.3. The Gray image of a linear Θ-cyclic code of length n over

R(pm,e) is permutatively equivalent to a θ -νσ -invariant code of length pm(e−1)n

over Fpm .

Proposition 5.4.4. Let C be a non-empty subset of R(pm,e)
n . Then C is a linear

Θ-(1 + ue−1)-constacyclic code if and only if µ2(C) is a linear Θ-(1 − ue−1)-

constacyclic code.

Corollary 5.4.5. The Gray image of a linear Θ-(1 + ue−1)-constacyclic code

of length n over R(pm,e) is permutatively equivalent to a θ -νσ -invariant code of

length pm(e−1)n over Fpm .
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