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CHAPTER I

INTRODUCTION

Let Fq be the finite field with q elements. An elliptic curve over Fq, whose char-

acteristic is greater than 3, is defined by an equation E : y2 = x3 + ax + b, where

a, b ∈ Fq and 4a3 + 27b2 ̸= 0. The point (x, y) in Fq × Fq on the curve E is called

a rational point. Let E(Fq) denote the set of all rational points together with a

distinguished point at infinity, denoted ∞. There is the addition +, which makes

(E(Fq),+) become an abelian group [?], given as follows:

(a) [Identity] P +∞ = ∞+ P = P for all P ∈ E(Fq).

(b) [Negative] If P = (x, y) ∈ E(Fq), then (x, y) + (x,−y) = ∞. The point

(x,−y) is denoted by −P and is called the negative of P .

(c) [Point addition] Let P = (x1, y1) and Q = (x2, y2) be points in E(Fq) and

P ̸= ±Q. Then P +Q = (x3, y3), where

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2 and y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1.

(d) [Point doubling] Let P = (x1, y1) ∈ E(Fq) and P ̸= −P . Then 2P = (x3, y3),

where

x3 =

(
3x2

1 + a

2y1

)2

− 2x1 and y3 =

(
3x2

1 + a

2y1

)
(x1 − x3)− y1.
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Elliptic curves over finite fields play an important role in many areas of modern

cryptology. Following the work of Lenstra, Jr. [?] on integer factorizations, many

researchers have used this idea to work out primality proving algorithms [?, ?].

Recent work on these topics can be found in [?]. Another application is to construct

the public keys. When using elliptic curves for constructing a public key, it is

sometimes necessary to find elliptic curves with a known number of points and its

group structure over a given finite field. We recall the number of rational points

and the group structure of E(Fq) in the following theorem.

Theorem 1.0.1. [?] Let E be an elliptic curve over Fq. Then:

1. |E(Fq)− (q + 1)| < 2
√
q, and

2. E(Fq) ∼= Zn1 ⊕ Zn2 for some positive integers n1 and n2, and n1 divides

gcd(n2, q − 1).

A permutation polynomial over Fq is a polynomial f whose function on Fq

induced by f is a bijection. It is easy to see that every linear polynomial is a

permutation polynomial. We observe that:

Theorem 1.0.2. Let Fq be a finite field, a ∈ Fq and n ∈ N.

1. If f(x) is a permutation polynomial over Fq, then f(x) + a and f(x+ a) are

also permutation polynomials.

2. A monomial xn is a permutation polynomial over Fq if and only if gcd(n, q−

1) = 1.

2
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Proof. (1) They are just vertical and horizontal translations for a permutation

f(x).

(2) Clearly, f(x) = xn is an endomorphism on F×
q = Fq r {0}. Recall that F×

q

is cyclic, say generated by a. We have thus f is a permutation polynomial ⇔

⟨an⟩ = imf = F×
q ⇔ gcd(n, q − 1) = 1.

Permutation polynomials over finite fields and over the ring of integers modulo

n have been widely studied. There are a lot of applications in combinatorics and

cryptography [?, ?] as well as many open problems. For the extensive studies, we

refer the reader to Lidl and Niederreiter’s book [?] Chapter 7.

In the next chapters, we study the group structure of elliptic curves E : y2 =

f(x), where f(x) is a cubic permutation polynomial. This work extends to an

elliptic curve over a ring of integers modulo n and a ring of Gaussian integers

modulo α ∈ Z[i] in that chapter. In the final chapter, we define a shift-invariant

elliptic curve, inspired by the property of a weak permutation polynomial, and

characterize this type of elliptic curve on the finite fields, the ring of integers

modulo n and a ring of Gaussian integers modulo α. We conclude this research by

giving a remark on elliptic curve cryptography in Section3.3.

3
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CHAPTER II

ELLIPTIC CURVES WITH PERMUTATION

POLYNOMIALS

In this chapter, we study elliptic curves with permutation polynimials over several

structures, namely, finite fields, rings of integers modulo a positive integer n > 1

and rings of Gaussian integers modulo a nonzero nonunit α ∈ Z[i].

2.1 Elliptic Curves with Permutation Polynomials over Fi-

nite Fields

Since aq = a for all a ∈ Fq, as a function, we can work only on permutation

polynomials modulo xq − x, namely polynomials of degree < q. We record a

further result on degree of permutation polynomials in:

Theorem 2.1.1. [?] If f(x) is a permutation polynomial over Fq, then

deg(f(x)t mod (xq − x)) ≤ q − 2

for all t ≤ q − 2 and gcd(t, q) = 1.

The following result characterizes permutation polynomials over finite fields of

characteristic greater than 3.

4



Theorem 2.1.2. Let q be a power of prime p > 3 and f(x) = x3 − ax + b

a cubic polynomial over Fq. Then f is a permutation polynomial if and only if

gcd(3, q − 1) = 1 and a = 0.

Proof. By Theorem 1.0.2 (1), it suffices to consider only when b = 0, i.e. f(x) =

x3 − ax. Assume that a ̸= 0.

Case 1. q ≡ 1 mod 3. Then q − 1 = 3n for some n ∈ N. We have gcd(n, q) = 1

and n < q − 2. Also, deg(f(x)n) = deg(x3 − ax)n = 3n = q − 1 > q − 2.

Case 2. q ≡ 2 mod 3. Then q − 2 = 3n for some n ∈ N, so q + 1 = 3(n + 1).

Thus, gcd(n+ 1, q) = 1 and n+ 1 < q − 2. Observe that

f(x)n+1 = (x3 − ax)n+1

= x3(n+1) − (n+ 1)ax3n+1 + lower terms

≡ −(n+ 1)ax3n+1 + lower terms mod xq − x.

Since x3(n+1) = xq+1 ≡ x2 mod xq − x. From a ̸= 0 and gcd(n + 1, q) = 1, we

conclude that deg(f(x)n+1 mod xq − x) = 3n+ 1 = q − 1 > q − 2.

Hence, both cases contradict Theorem 2.1.1, so f(x) = x3− ax is not a permu-

tation polynomial if a ̸= 0. That is, f(x) = x3 is the only permutation polynomial

of this form. By Theorem 1.0.2, we also have gcd(3, q − 1) = 1.

The converse of this theorem follows directly from Theorem 1.0.2 (1) and (2).

This completes our proof.

Finally, we count the number of points of E(Fq) for the elliptic curve E : y2 =

5
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f(x) = x3 + b, b ∈ Fq, where q is odd greater than 3, and determine its group

structure. Observe that for each x ∈ Fq, if

f(x) =



0, then (x, 0) occurs in E(Fq);

r2, then (x, r) and (x,−r) occur in E(Fq);

c, then there is no rational point in E(Fq),

where c is a non-square. Thus, in terms of χ, the quadratic character of Fq, we

obtain

|E(Fq)| = 1 +
∑
x∈Fq

(1 + χ(f(x))) = 1 + q +
∑
x∈Fq

χ(f(x)).

Since f(x) is a permutation polynomial,
∑

x∈Fq
χ(f(x)) =

∑
x∈Fq

χ(x) = 0. This

implies |E(Fq)| = q + 1.

From Theorem 1.0.1 (2), we know that E(Fq) ∼= Zn1 × Zn2 for some positive

integers n1 and n2, and n1 divides gcd(n2, q− 1). Since n1 divides |E(Fq)| = q+1,

n1 = 1 or 2. Assume that n1 = 2. Then E(Fq) ∼= Z2×Zn2 which contains 3 points

of order two. Since f(x) = x3+b has only one root in Fq, say a, (a, 0) is the unique

double point in E(Fq). This contradiction gives n1 = 1. Hence, E(Fq) ∼= Zn2 .

Therefore, we have shown:

Theorem 2.1.3. Let E : y2 = x3 + b be an elliptic curve with permutation poly-

nomial over Fq. Then E(Fq) is a cyclic group of order q + 1, i.e. E(Fq) ∼= Zq+1.

6
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2.2 Elliptic Curves with Permutation Polynomials over the

Ring of Integers Modulo n

To extend the study, we consider elliptic curves with permutation polynomials

over the ring of integers modulo n, where n > 1 is not prime. We start with the

necessary and sufficient conditions to determine a cubic permutation polynomial

over the ring Zn.

Theorem 2.2.1. Let R1 and R2 be finite commutative rings, f a permutation

polynomial over R1×R2. Then f(R1×{0}) = R1×{0} and f({0}×R2) = {0}×R2.

In other words, f is also a permutation polynomial on the subrings R1 × {0} and

{0} ×R2.

Proof. Let f(x) =
n∑

i=1

(ai, bi)x
i where (ai, bi) ∈ R1 ×R2. Since

f(r, 0) =
n∑

i=1

(ai, bi)(r, 0)
i =

n∑
i=1

(air
i, 0) ∈ R1 × {0}

for all r ∈ R1 and f is an injection, we have f is a bijection on R1 × {0}. The

proof is similar for {0} ×R2.

From the Chinese remainder theorem, Zn
∼= Zp

r1
1

× ... × Zp
rk
k
, where n =∏k

i=1 pi
ri . Using Theorem 2.2.1, we have the following results.

Theorem 2.2.2. For any n =
∏k

i=1 pi
ri, f(x) is a permutation polynomial over

the ring of integers modulo n if and only if f(x) is also a permutation polynomials

over the rings of integers modulo prii for all i.

7
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Hence, it suffices to consider only a permutation polynomial over the rings Zpr

studied in [?].

Theorem 2.2.3. [?] If f(x) = ax3 − bx+ c is a permutation polynomial over Zpr ,

where p > 3 is a prime, then r = 1, p ≡ 2 mod 3 , b = 0 and a ∈ Z×
pr .

This theorem yields an immediate corollary.

Corollary 2.2.4. If there is an elliptic curve with a permutation polynomial over a

ring of integers modulo n, then n is an odd square-free integer whose prime divisor

is congruent to 2 modulo 3.

We then work only the case of an elliptic curve with permutation polynomial

over the ring Zn, that is, n =
∏k

i=1 pi, where pi < pi+1 are odd primes which

are congruent to 2 modulo 3. Let E : y2 = x3 + b be an elliptic curve with

permutation polynomial over Zn. To define a group operation on E(Zn), we apply

the projections πi : P = (x, y) mod n 7→ Ppi = (x, y) mod pi for all i. Using the

Chinese remainder theorem, we know that the homomorphism π = (π1, . . . , πk) :

E(Zn) → E(Zp1)× · · · ×E(Zpk) is a bijection. Thus, an addition + for E(Zn) can

be defined by using the addition on E(Zpi) and the projection map π.

The final theorem gives the group structure of an elliptic curve with permuta-

tion polynomial over Zn. Its proof is evident from the above observation.

Theorem 2.2.5. Let n =
∏k

i=1 pi, where pi < pi+1 are odd primes which are

congruent to 2 modulo 3 and E : y2 = x3 + b be an elliptic curve with permutation

8
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polynomial over Zn. Then

E(Zn) ∼= Zp1+1 × · · · × Zpk+1.

2.3 Elliptic Curves with Permutation Polynomials over the

Ring of Gaussian Integers Modulo α

In this section, we consider elliptic curves with permutation polynomials over the

rings of Gaussian integers modulo a nonzero nonunit α ∈ Z[i]. We start by deter-

mining cubic permutation polynomials over the ring Z[i]/(πn), where π is a prime

in Z[i] and n is a positive integer. Then we apply the Chinese remainder theorem

to find necessary and sufficient conditions for the existence of a permutation poly-

nomial over Z[i]/(α), where α is a nonzero nonunit Gaussian integer. Finally, we

end this section by classiflying elliptic curves with permutation polynomials over

this ring.

Again, from the Chinese remainder theorem, we have Z[i]/(α) ∼= Z[i]/(πr1
1 ) ×

· · · × Z[i]/(πrk
k ), where α =

∏k
j=1 πj

rj and π is a prime in Z[i]. Applying Theorem

2.2.1 leads to the next theorem.

Theorem 2.3.1. For any α =
∏k

j=1 πj
rj where π is a prime in Z[i], f(x) is a

permutation polynomial over the ring of Gaussian integers modulo α if and only if

f(x) is also a permutation polynomial over the rings of Gaussian integers modulo

π
rj
j for all j.

9
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Therefore, it suffices to consider only a permutation polynomials over the ring

Z[i]/(πr). Write N(α) = |α|2 for the norm of α.

Lemma 2.3.2. (Hensel’s lemma on Gaussian integers) Let f(x) be a polynomial

over Z[i], π a prime in Z[i] and n a positive integer. Then the number of the

solutions of

f(x) ≡ 0 mod πn (2.3.1)

corresponding to the solution z of

f(x) ≡ 0 mod πn−1 (2.3.2)

is

(a) none, if f ′(z) ≡ 0 mod π and z is not a solution of (2.3.1);

(b) one, if f ′(z) ̸≡ 0 mod π;

(c) N(π), if f ′(z) ≡ 0 mod π and z is a solution of (2.3.1).

Proof. Let z ∈ Z[i] be a root of (2.3.2) with N(z) < N(πn−1) and s a Gaussian

integer with N(s) < N(π). Then we construct w = z + sπn−1. By considering the

Taylor’s series of f(x) around z, we have

f(w) = f(z + sπn−1) = f(z) + (sπn−1)f ′(z) +
(sπn−1)2

2!
f ′′(z) + . . .

≡ f(z) + (sπn−1)f ′(z) mod πn

10
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since πn divides (sπn−1)k

k!
f (k)(z) where k > 1. Then w is a root of (2.3.1) if and only

if

f(z) ≡ −(sπn−1)f ′(z) mod πn

or

f(z)

πn−1
≡ −sf ′(z) mod π.

We now distinguish two cases.

Case 1 f ′(z) ̸≡ 0 mod π. Then s = f(z)
f ′(z)πn−1 is the unique Gaussian integer with

N(s) < N(π) which makes w = z + sπn−1 a root of (2.3.1).

Case 2 f ′(z) ≡ 0 mod π. Then any Gaussian integer s could make w = z+ sπn−1

a root of (2.3.1), that is, f(x) has distinct N(π) roots in Z[i]/(πn).

Lemma 2.3.3. Let π be a prime in Z[i], n a positive integer and f(x) a polynomial

over Z[i]. Then f(x) permutes the elements of Z[i]/(πn), n > 1, if and only if it

permutes the elements of Z[i]/(π) and f ′(z) ̸≡ 0 mod π for every quadratic integer

z in Z[i].

Proof. Suppose f(x) permutes the elements of Z[i]/(πn), n > 1. That is f(x)

is onto Z[i]/(πn). Thus f(x) is also an onto map over Z[i]/(π). Since Z[i]/(π)

is finite, f(x) must be a permutation polynomial on Z[i]/(π). To consider f ′(a),

a ∈ Z[i]/(π), we can see, by Lemma 2.3.2, that f(x) cannot has exactly one root

in Z[i]/(πn) if f ′(α) ≡ 0 mod π for some α ∈ Z[i]/(π).

Conversely, suppose that z is the root of

f(x) ≡ 0 mod π

11
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satisfying 0 < N(z) < N(π) and f ′(z) ≡ 0 mod π. Then, according to Lemma

2.3.2, f(x) ≡ 0 mod π2 has exactly one root corresponding to z. Repeating the

argument we obtain f(x) ≡ 0 mod πn has exactly one root corresponding to the

solution z of f(x) ≡ 0 mod π for every n > 1. By replacing f(x) with f(x) − α

where α is an arbitary element in Z[i], we have f is a bijection over Z[i]/(πn).

Remark. We follow the ideas of [?] on Z in showing Theorem 2.3.1, Lemmas 2.3.2

and 2.3.3 on the ring of Gaussian integers.

Theorem 2.3.4. If f(x) = ax3−bx+c is a permutation polynomial over Z[i]/(πr),

where π is a prime in Z[i] with N(π) > 3 and r is a positive integer, then r = 1,

N(π) ≡ 2 mod 3, b = 0 and a ∈ (Z[i]/(πr))×.

Proof. If r > 1, by Lemma 2.3.3, f must be a permutation polynomial over Z[i]/(π)

which is a field. By Theorem 1.0.2, b ≡ 0 mod π. Then f ′(0) ≡ 0 mod π which

is contary to Lemma 2.3.3. Therefore r = 1, this means f is a cubic permutation

polynomial over the field Z[i]/(π) which makes b ≡ 0 mod π by Theorem 1.0.2

and a ∈ (Z[i]/(πr))× .

The primes in Z[i] are characterized in the folllowing theorem.

Theorem 2.3.5. [?] Up to multiplication by units, the primes π in Z[i] are of

three types:

(i) π = a + bi or π = b + ai, where N(π) = p = a2 + b2 is a prime in Z and

p ≡ 1 mod 4;

12
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(ii) π = p, where p is a prime in Z and p ≡ 3 mod 4;

(iii) π = 1 + i.

By the above theorem, π is a prime in Z[i] with N(π) > 3 and N(π) ≡ 2

mod 3 if and only if π = a+ bi or b+ ai, where N(π) = p = a2 + b2 is a prime in

Z and p ≡ 1 mod 4. Hence, we have the following corollaries.

Corollary 2.3.6. Let π be a prime in Z[i] with N(π) > 3. Then N(π) ≡ 2 mod 3

if and only if π = a + bi or b + ai, where N(π) = p = a2 + b2 is a prime in Z

congruent to 5 modulo 12.

Proof. If π = p is an odd prime in Z and p ≡ 3 mod 4, then N(π) = p2 ≡ 1

mod 3, so by Theorem 2.3.5, we have π = a+ bi or b+ ai, where N(π) = a2+ b2 =

p ≡ 1 mod 4. Thus, N(π) ≡ 2 mod 3 and N(π) ≡ 1 mod 4, so N(π) ≡ 5

mod 12. The converse is clear.

Corollary 2.3.7. If there is an elliptic curve with a permutation polynomial over

a ring of Gaussian integers modulo α, then α is square-free product of Gaussian

primes whose norms are primes in Z congruent to 5 modulo 12.

Our work mainly concerns the case of elliptic curves with permutation poly-

nomials so the ring we are interested is Z[i]/(α), where α satisfies the condition

of Corrollary 2.3.7. Let E : y2 = x3 + b be an elliptic curve with permutation

polynomial over Z[i]/(α). We can define a group operation on Z[i]/(α) based on

the structure of an elliptic curve over finite fields similar to the definition over Zn
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in the previous section. The next corollary is obtained from combining Theorem

2.1.3 and Corollary 2.3.7.

Corollary 2.3.8. Let α =
∏k

j=1 πj, where πj is a Gaussian prime whose norm is

a prime integer pj congruent to 5 modulo 12 for all j ∈ {1, ..., k} and let E : y2 =

x3 + b be an elliptic curve with permutation polynomial over Z[i]/(α). Then

E(Z[i]/(α)) ∼= E(Z[i]/(π1))× · · · × E(Z[i]/(πk)) ∼= Zp1+1 × · · · × Zpk+1.

14
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CHAPTER III

SHIFT-INVARIANT ELLIPTIC CURVES

3.1 Permutation Polynomials in Two Variables

In this section, we study permutation polynomials in two variables over a finite

ring. Let f(x, y) be a polynomial in two variables with coefficients in a finite ring

R. We say that f is a weak permutation polynomial if for every r in R, the inverse

image of r under f is of cardinality |R|. We begin with a simple form of weak

permutation polynomials over a finite field.

Theorem 3.1.1. Let R be a finite ring. Let g(y) and f(x) be polynomials in

R[x, y]. Then a polynomial in two variables g(y) − f(x) is a weak permutation

polynomial if f(x) or g(y) is a permutation polynomial over R.

Proof. First, notice that for any permutation polynomial p(x), the map ϕ : {(x, y) ∈

R × R | g(y) = p(x)} → R defined by ϕ(x, y) = y is a bijection. This makes

|{(x, y) ∈ R×R | g(y) = p(x)}| = |R|.

Without loss of generality, suppose f(x) is a permutation polynomial. To

show that g(y) − f(x) is weak, we determine the cardinality of {(x, y) ∈ R × R |

g(y) − f(x) = r} for an arbitrary r in R. Since f(x) + r is also a permutation

15



polynomial, we have

∣∣{(x, y) ∈ R×R | g(y)− f(x) = r}
∣∣ = ∣∣{(x, y) ∈ R×R | g(y) = f(x) + r}

∣∣ = |R|,

for all r ∈ R.

Corollary 3.1.2. 1. If E : y2 = f(x) is an elliptic curve with permutation

polynomial over Fq, then y2 − f(x) is a weak permutation polynomial in

Fq[x, y].

2. If E : y2 = f(x) is an elliptic curve with permutation polynomial over Zn,

then y2 − f(x) is a weak permutation polynomial in Zn[x, y].

3. If E : y2 = f(x) is an elliptic curve with permutation polynomial over

Z[i]/(α), then y2 − f(x) is a weak permutation polynomial in Z[i]/(α)[x, y].

3.2 Shift-invariant Elliptic Curves

For any elliptic curve E : y2 = f(x) and a ∈ Fq, we let Ea denote the a-shifted

elliptic curve, y2 = f(x)+ a. The previous corollary shows an interesting property

of elliptic curves with permutation polynomials. Together with Theorem 2.1.3,

we can see that E(Fq) ∼= Ea(Fq) for every a in Fq, this leads us to define a shift-

invariant elliptic curve as an elliptic curve E whose numbers of its rational points

do not change when it is shifted by any constant in Fq. Also, we may define a

shift-invariant elliptic curve on Zn and Z[i]/(α) in the same way.

16

16



Theorem 3.2.1. An elliptic curve E over a finite field Fq whose characteristic is

greater than 3 is a shift-invariant elliptic curve if and only if it is an elliptic curve

with permutation polynomial.

Proof. Let E : y2 = f(x) be a shift-invariant elliptic curve. Then for any a

in Fq, the cardinality of the set of rational points of Ea must be the same, say

K ∈ N∪{0}. For each c ∈ f(Fq), the image of Fq under f , let nc = |f−1(c)|. Note

that
∑

c∈f(Fq)
nc = |Fq| = q.

Assume that 0 ̸∈ f(Fq). Then for any c ∈ f(Fq), χ(c) = 1 or −1. Thus,

K =
∑

c∈f(Fq)

(1 + χ(c)) = 2
∑

c∈f(Fq)
χ(c)=1

nc

must be even. For each a ∈ f(Fq), 0 ∈ f−a(Fq), the image set of f(x) − a. We

then consider rational points of E−a to obtain

K =
∑

c∈f−a(Fq)

(1 + χ(c)) =
∑

c∈f−a(Fq)
χ(c)=0

(1 + χ(c)) +
∑

c∈f−a(Fq)
χ(c)=1

(1 + χ(c))

= na + 2
∑

c∈f−a(Fq)
χ(c)=1

nc

which forces na be even for any arbitrary a in f(Fq). This is contrary to the fact

that
∑

c∈f(Fq)
nc = q is odd. Hence, 0 ∈ f(Fq).

Finally, suppose f is not onto and let b ̸∈ f(Fq). Counting rational points of E−b

gives 0 ̸∈ f−b(Fq). Thus, K = 2
∑

c∈f−b(Fq)
χ(c)=1

nc and when we count rational points

of E−a, we still get K = na+ 2
∑

c∈f−a(Fq)
χ(c)=1

nc for every a in f(Fq). A contradiction
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occurs in the same way because
∑

c∈f(Fq)
nc = q is odd. The opposite direction is

clear.

Next, we study a shift-invariant elliptic curve E : y2 = f(x) on the ring of

integers modulo n. For any r ∈ Zn, the cardinality of the set of rational points

of Er must equal the same constant K. Let Nf (r) = |f−1(r)| and let s(r) be the

number of roots of the equation y2 = r in Zn. We have

K =
∑

r∈f(Zn)

s(r) ·Nf (r) =
∑

(r+a)∈fa(Zn)

s(r + a) ·Nf+a(r + a)

when E is shifted by a constant a ∈ Zn. Moreover,

∑
r∈Zn

s(r) =
∑
r∈Zn

|{y ∈ Zn : y2 = r}| =

∣∣∣∣∣ ∪
r∈Zn

{y ∈ Zn : y2 = r}

∣∣∣∣∣ = |Zn| = n.

Note that for all r ∈ Zn, Nf+a(r+a) = Nf (r) and
∑

r∈f(Zn)
Nf (r) =

∣∣∪
r∈Zn

f−1(r)
∣∣ =

|Zn| = n.

To answer the next question “Is there any shift-invariant elliptic curve in the

ring of integer modulo n?”. By the Chinese remainder theorem, it suffices to work

only with the case n is a prime power. The following theorem gives us the number

of square roots of an element in this type of ring.

Lemma 3.2.2 (Gauss, D.A., art.104 [?]). Let p be an odd prime, n a positive

integer, a a residue modulo pn and s(a) denote the number of square roots of a.

Then

(i) for a = pkt where 0 ≤ k < n and p - t, if a is a quadratic residue, then k is

even and s(a) = 2pk/2, and
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(iii) if a ≡ 0 mod pn, then s(a) = pn−⌈n
2
⌉.

In particular, s(a) is odd if and only if a ≡ 0 mod pn.

The technique used in the proof Theorem 3.2.1 can be extended to prove the

next theorem which describes a shift-invariant elliptic curve over the ring of integers

modulo n.

Theorem 3.2.3. Let n =
∏k

i=1 pi
ni where pi > 3 for all i. Then an elliptic curve

E over a ring of integers modulo n is a shift-invariant elliptic curve if and only if

it is an elliptic curve with permutation polynomial.

Proof. In Zpini , we know from the previous theorem that 0 is the only residue

whose number of square roots is odd. Thus the equation

y⃗2 = (y21, y
2
2, . . . , y

2
k) = (a1, a2, . . . , ak)

in
∏k

i=1 Zpini
∼= Zn has odd roots only when ai = 0 for all i. Suppose on the

contrary that (0, 0, . . . , 0) ̸∈ f(
∏k

i=1 Zpini ). Then

K =
∑

r⃗∈f(
∏k

i=1 Zpi
ni )

s(r⃗) ·Nf (r⃗)

is even. Shifting with −s⃗ gives

Nf (s⃗) = Nf−s⃗
(⃗0) = K −

∑
r⃗∈f−s⃗(

∏k
i=1 Zpi

ni )

r⃗ ̸=(0,0,...,0)

s(r⃗) ·Nf−s⃗
(r⃗)

which are even for all s⃗ ∈
∏k

i=1 Zpini . On the other hand,
∑

s⃗∈f(Zpi
ni )

Nf (s⃗) =∏k
i=1 pi

ni = n is odd. Hence, (0, 0, . . . , 0) is in the image of f . Again, f must be
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onto unless (0, 0, . . . , 0) ̸∈ f−t⃗(
∏k

i=1 Zpini ) for some t⃗ ∈
∏k

i=1 Zpini which leads to a

contradiction in the same way. This completes the proof.

Together with Corollary 2.2.4, we may conclude from Theorem 3.2.3 that:

Corollary 3.2.4. If there is a shift-invariant elliptic curve over a ring of integers

modulo n, then n is an odd composite square-free integer whose prime divisor is

congruent to 2 modulo 3.

We finish our work by giving similar results in the ring of Gaussian integers

modulo α where α is in Z[i]. Again, we start by a lemma involving the number of

square in Z[i]/(πk) where π is a Gaussian prime and k is a positive integer.

Lemma 3.2.5. Let π be a Gaussian prime whose norm is not 2 or 9, n a positive

integer, α a Gaussian integer and s(α) denote the number of square roots of α

modulo πn. Then

(i) for α = πkγ where 0 ≤ k < n and π - γ, if α is a quadratic residue, then k

is even and s(α) = 2N(πk/2), and

(ii) if α ≡ 0 mod πn, then s(α) = N(πn−⌈n
2
⌉).

In particular, s(α) is odd if and only if α ≡ 0 mod πn.

Proof. (i) Assume α = πkγ is a quadratic residue. Then there exists β in Z[i]

such that β2 ≡ α = πkγ mod πn. This means β2 − πkγ = πnδ for some

δ in Z[i], thus β2 = πk(γ + πn−kδ). Since π - (γ + πn−kδ), by the unique
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factorization of Gaussian integers, k must be even. Hence we write k =

2u, u ∈ Z.

Case 1 u = 0. This means π does not divide α, then h(x) = x2 is a homo-

morphism on (Z[i]/(πn))×. Thus, s(α) = | ker(h)| = s(1) = 2.

Case 2 u ̸= 0. Then α = π2uγ and we can see that γ is also a quadratic

residue modulo πn thus we write γ ≡ η2 mod πn for some η ∈ Z[i]. Since

πu | β, we can write β = πuσ for some σ ∈ Z[i]. To count s(α), we first show

that πn−u divides β−ηπu or β+ηπu. Since β2 ≡ α mod πn, β2−α is divided

by πn, that is, πn | (σ2−γ)π2u. Hence πn−u | (σ2−η2)πu = (σ−η)(σ+η)πu.

Since π is a prime which is not a divisor of σ or η , either π | (σ + η) or

π | (σ − η). Consequently, we have πn−u divides either β − ηπu or β + ηπu.

Next, we consider the case πn−u | β− ηπu. We can see that all square root β

of α are of the form ξπn−u + ηπu where ξ ∈ Z[i]. So there are totally N(πu)

different elements of this form in Z[i]/(πn). By considering together with the

choice of η we have s(α) = 2N(πu). It can be proven similary in the case

πn−u | β + ηπu.

(ii) πn divides α. Then all square roots α are divisible by π⌈n
2
⌉. Thus they are

of the form π⌈n
2
⌉δ where N(δ) ≤ N(πn−⌈n

2
⌉). Hence s(α) = N(πn−⌈n

2
⌉), as

required.
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Finally, we can similarly prove Theorem 3.2.3 using the fact that 0 is the only

residue in Z[i]/(πn) whose number of square roots is odd to obtain the final result.

Theorem 3.2.6. Let α =
∏k

i=1 πi
ni where N(πi) > 3 for all i. Then an elliptic

curve E over a ring of Gaussian integers modulo α is a shift-invariant elliptic

curve if and only if it is an elliptic curve with permutation polynomial.

Together with Corollary 2.3.7, we may conclude that:

Corollary 3.2.7. If there is a shift-invariant elliptic curve over a ring of Gaussian

integers modulo α, then α is square-free product of Gaussian primes whose norms

are primes in Z congruent to 5 modulo 12.

3.3 A Remark on an Elliptic Curve Cryptography

An Elliptic Curve Cryptography (ECC) is discovered in 1985 and have been used

widely now as a public key cryptosystem for mobile/wireless environments. It is a

secure cryptosystem with small key sizes, which results in fast computations. Its

security concept is based on the difficulty of “Elliptic Curve Discrete Logarithm

Problem” which is stated as follows:

Elliptic Curve Discrete Logarithm Problem. Given an elliptic curve E over

a finite field Fq, and points P and Q in E(Fq)r∞. Then find an integer n such

that nQ = P , if such an integer exists.
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According to this problem, to construct a secure cryptosystem, it is neces-

sary to find elliptic curves over a given finite field with a large number of points.

Moreover, its group structure must not be too easy, e.g., a multiplication of small

primes. Elliptic curves with permutation polynimials seem to fit for this situa-

tion. Unfortunately, it turns out that there is only one form of this type of elliptic

curves, namely, y2 = x3 + b, where b is a constant, and this form is well studied

and unfamous now.

However, we find in the Section3.2 that there is another advantage of elliptic

curves with permutation polynimials, that is, they are a shift-invariant elliptic

curve so we can generated a new cryptosystem without loss of security level by

changing a constant b. Furthermore, we have proved that the shift-invariant prop-

erty does not occur in any other types of elliptic curves over finite fields, the ring

of integers modulo n and the ring of Guassian integers modulo α.
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