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Notation

The following notation are used frequently throughout this thesis.

R the set of real numbers,

R+ the set of positive real numbers,

Z the set of integers,

Z+
0 the set of non-negative integers,

N the set of natural numbers (positive integers),

Q the set of rational numbers,

Q+ the set of positive rational numbers,

Zn the set of integers modulo a natural number n,

Mn (R) the n× n matrix rings over a ring R,

(a, b) a real open interval,

[a, b] a real close interval,

◦̃ a vague binary operation,

µ◦̃ (a, b, c) a characteristic functions of (a, b, c) corresponding

the vague binary operation ◦̃,

EX a fuzzy equality on X,

min (a, b) or a ∧ b the minimum of a and b,

max (a, b) or a ∨ b the maximum of a and b,

〈G, ◦̃〉 a vague group,

〈H, ◦̃, •̃〉 a vague ring,

〈G, ◦〉 a classical group,

R or 〈H, ◦, •〉 classical rings,〈
V (A : B) , ♥̃, ♠̃

〉
a vague ideal quotient.



CHAPTER I

Introduction and Preliminaries

In 1999, Demirci defined operations of a group to be compatible with a given

fuzzy equality which led to vague algebraic structures :- vague semigroups,

vague groups, vague rings which are related to semigroups, groups and rings,

respectively. Later on, general results of vague algebraic notions have been es-

tablished by Demirci and Sezer.

In 2007, Sezer defined in [7] a vague prime ideal of a vague ring as follows

: a proper vague ideal
〈
P, ⊕̃, �̃

〉
of a vague ring 〈H, ◦̃, •̃〉 is said to be a vague

prime ideal if •̃ is a vague binary operation on HrP . He also provided many

interesting results relating to vague algebraic notions.

In rings, ideals are crucial notion and primary ideals are directly closed to

prime ideals. This inspired us to define a vague primary ideal of a vague ring

which is similar to a primary ideal of a ring. We prove that every vague prime

ideal of a vague ring 〈H, ◦̃, •̃〉 is a vague primary ideal of 〈H, ◦̃, •̃〉. Moreover,

we are interested in studying some properties of vague prime ideals and vague

primary ideals which are parallel to those of prime ideals and primary ideals of

classical rings. Furthermore, we investigate properties of the followings: vague

left ideals, vague right ideals, vague ideals, vague prime left ideals, vague prime

right ideals and vague prime ideals.

In classical sense, Noetherian rings are well known rings which are beneficial

to investigate some properties of vague primary ideals. This led us to define

a vague Noetherian ring in the last chapter. We also define some other vague

ideals such as a vague irreducible ideal, a vague semiprime ideal in order to look
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for some related properties among them. Eventually, we give some sufficient

conditions which vague prime ideals and vague primary ideals are coincide.

In this chapter, we gather some elementary concepts, some properties and

some results on vague semigroups, vague groups and vague rings.

In Chapter 2, we begin with some elementary properties of vague ideals. We

have an inspiration from the classical sense that the sum of ideals of a ring is

also an ideal of R. Next, we give some sufficient conditions of a vague ring

such that its maximal vague ideal is a vague prime ideal. Then we give the

sufficient conditions of the vague ring of matrices to have no any vague prime

ideals. Ultimately, for any vague prime ideal P, I, J of a vague ring 〈H, ◦̃, •̃〉 and

for each a ∈ H, we define (P : a) , (I : a)r and (J : a)l and give some elementary

attributes of them.

In last chapter, because ideals are crucial notion and primary ideals are di-

rectly closed to prime ideals, this inspired us to define a vague primary ideal

of a vague ring which is similar to a primary ideal of a ring. We prove that ev-

ery vague prime ideal of a vague ring is a vague primary ideal . Consequently,

we are interested in studying some properties of vague prime ideals and vague

primary ideals which are parallel to those of prime ideals and primary ideals of

classical rings. Next, we define and give some elementary properties of vague

Noetherian rings and also define some crucial vague ideals such as vague irre-

ducible ideals, vague semiprime ideals to look for some of their related proper-

ties. Eventually, we give some sufficient conditions which vague prime ideals

and vague primary ideals are coincide.

1.1 Fuzzy Sets

In this section, we introduce some concepts and elementary properties of fuzzy

sets that we use in this thesis.
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Definition 1.1.1. [1] Let X be the universe. A fuzzy set is a pair (A, µA) where

A is a subset of X and µA is a map from X to the real closed interval [0, 1] which

is called a membership function of A (or a characteristic function of A).

We may write “A is a fuzzy set” instead of “(A, µA) is a fuzzy set”.

Example 1.1.2. [1] Let X be the universe. Basic examples of fuzzy sets are as

follows:

1. The empty fuzzy set φ with the membership function µφ (x) = 0 for all

x ∈ X.

2. The universal setX is characterised by the memberhip function µX (x) = 1

for all x ∈ X.

3. The fuzzy set A of all reals which are nearly equal to 10. Then, of course,

one shall consider the universe X = R+. One possibility for the member-

ship function of A now is to take it as

µA (x) = max

{
0, 1− (10− x2)

2

}
.

Definition 1.1.3. [1] A crisp setM is a fuzzy set with usual characteristic func-

tion µM = χM as its membership function, i.e., we consider crisp sets as special

cases of fuzzy sets, viz. those ones with 0 and 1 as membership degrees.

Definition 1.1.4. [1] Let A and B be fuzzy sets. Then we call A a fuzzy subset

of B, denoted by A ⊆ B, if µA (x) ≤ µB (x) for all x ∈ A.

The above definition shows that if A is a fuzzy subset of B then A is a classi-

cal subset of B.

We give a definition of fuzzy relation in the following.
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Definition 1.1.5. [1] Let X and Y be nonempty crisp sets. If R is a fuzzy subset

of a fuzzy setX×Y , thenR is called a fuzzy relation fromX to Y where µR (x, y)

is interpreted as the characteristic function of the ordered pair (x, y) in R.

Example 1.1.6. [1] Let ϕ1 = {a1, a2, a3} and ϕ2 = {b1, b2, b3, b4} . Consider R =

{(x, y) |x ∈ ϕ1 and y ∈ ϕ2} as a fuzzy relation from ϕ1 to ϕ2. Next we give an

example of characteristic functions of the ordered pairs (x, y) in R which can be

represented by a matrix with elements in [0, 1] , e.g., by


µR b1 b2 b3 b4

a1 0.8 0.3 0 0

a2 1 0.7 1 0.2

a3 0.6 0.9 1 0.5


evidently, for examples, µR (a1, b2) = 0.3 and µR (a3, b4) = 0.5.

1.2 Vague binary operations and vague semigroups

The notions of Fuzzy equalities, strong fuzzy functions and their fundamental

properties were introduced by Sezer [7]. Our aim in this section is to recall these

notions and some of their elementary properties which will be needed in this

thesis.

The symbols “∧”and “∨”stand for the minimum and the maximum oper-

ations between finitely many real numbers, respectively ; and X, Y, Z always

stand for nonempty crisp sets in this thesis.

Definition 1.2.1. [2] A mapping EX : X × X → [0, 1] is called a fuzzy equality

on X if the following conditions are satisfied :

(E1) EX (x, y) = 1⇔ x = y for all x, y ∈ X,

(E2) EX (x, y) = EX (y, x) for all x, y ∈ X,

(E3) EX (x, y) ∧ EX (y, z) ≤ EX (x, z) for all x, y, z ∈ X.
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One can define a fuzzy equality on X with respect to the equality of the

elements of X . Indeed, the mapping Ec
X : X ×X → [0, 1], defined by

Ec
X (x, y) =

1, if x = y,

0, if x 6= y,

is obviously a fuzzy equality on X .

Definition 1.2.2. [4] Let EX and EY be two fuzzy equalities on X and Y , respec-

tively. Then a fuzzy relation ◦̃ from X to Y , denoted by ◦̃ : X  Y is called a

strong fuzzy function from X to Y with respect to the fuzzy equalities EX and

EY , or a strong fuzzy function from X to Y for short, if the characteristic func-

tion µ◦̃ : X × Y → [0, 1] of ◦̃ satisfies the following two conditions :

(F1) for each x ∈ X , there exists y ∈ Y such that µ◦̃ (x, y) = 1.

(F2) for each x1, x2 ∈ X and y1, y2 ∈ Y ,

µ◦̃ (x1, y1) ∧ µ◦̃ (x2, y2) ∧ EX (x1, x2) ≤ EY (y1, y2) .

Sezer also provided an example of a strong fuzzy function.

Example 1.2.3. [7] Let X = R+ and Y = Z+
0 . Let α, β ∈ [0, 1] be such that α < β

and n ∈ N. Define EX and EY as follows:

EX (x1, x2) =

1, if x1 = x2,

α, if x1 6= x2,

EY (y1, y2) =

1, if y1 = y2,

β, if y1 6= y2.
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Finally, define µ◦̃ : X × Y → [0, 1] by

µ◦̃ (x, y) =


1, if y = 0,

min

{
1

x
,
α

n

}
, if y 6= 0.

Therefore, ◦̃ is a strong fuzzy function from X to Y with respect to the fuzzy

equalities EX and EY .

The concept of a vague binary operation on a set X are defined as follows.

Definition 1.2.4. [3, 4]

A strong fuzzy function ◦̃ : X ×X  X with respect to a fuzzy equality EX×X

on X × X and a fuzzy equality EX on X is called a vague binary operation on

X with respect to EX×X and EX or a vague binary operation on X for short.

(∀ (x1, x2) ∈ X ×X∀x3 ∈ X,µ◦̃ ((x1, x2) , x3) will be denoted by µ◦̃ (x1, x2, x3) for

the sake of simplicity.)

For the construction of vague groups, we first introduce the following well-

known definitions in the classical group theory.

Definition 1.2.5. A nonempty setX together with a binary operation ◦, denoted

by (X, ◦) is a semigroup if the associative property is satisfied :

(S) a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ X.

A semigroup (X, ◦) is a monoid if

(M) there exists an element e ∈ X , called the identity element of X , such that

e ◦ a = a and a ◦ e = a for each a ∈ X.

A monoid (X, ◦) is a group if

(G) for each a ∈ X , there exists an element of X , denoted by a−1 and called the

inverse element of a, such that a−1 ◦ a = e and a ◦ a−1 = e.

A semigroup (X, ◦) is said to be abelian (commutative) if the binary opera-

tion ◦ has the following property :

(A) a ◦ b = b ◦ a for all a, b ∈ X.
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The conditions (S) and (A) can be written in the following equivalent state-

ments, respectively :(
S/
)
∀a, b, c, d,m, q, w ∈ X,

(
b ◦ c = d and a ◦ d = m and a ◦ b = q and

q ◦ c = w
)
⇒ m = w.(

A/
)
∀a, b,m,w ∈ X,

(
a ◦ b = m and b ◦ a = w ⇒ m = w

)
.

The binary operation ◦ can be conceivable as a special vague binary opera-

tion ◦̃ on X with respect to EX×X and EX satisfying the condition µ◦̃ (X ×X) ⊆

{0, 1}. Then for each a, b,m ∈ X , the classical notation a ◦ b = m means that

µ◦̃ (a, b,m) = 1, or equivalently, µ◦̃ (a, b,m) > 0. Therefore, regarding
(
S/
)

and(
A/
)

instead of (S) and (A), respectively, we observe that (S) , (M) , (G) and (A)

can be respectively represented in the following definition.

Definition 1.2.6. [3] Let ◦̃ be a vague binary operation on a nonempty setGwith

respect to a fuzzy equality EG×G on G×G and a fuzzy equality EG on G. Then

1. G together with ◦̃, denoted by 〈G, ◦̃, EG×G, EG〉 or simply 〈G, ◦̃〉, is called a

vague semigroup if the characteristic function µ◦̃ : G × G × G → [0, 1] of ◦̃

fulfills the condition: for all a, b, c, d,m, q, w ∈ G,

µ◦̃ (b, c, d) ∧ µ◦̃ (a, d,m) ∧ µ◦̃ (a, b, q) ∧ µ◦̃ (q, c, w) ≤ EG (m,w) .

2. A vague semigroup 〈G, ◦̃〉 is called a vague monoid if there exists an identity

e◦̃ ∈ G, that is an element e◦̃ ∈ G satisfying the followings: for all a ∈ G,

µ◦̃ (e◦̃, a, a) ∧ µ◦̃ (a, e◦̃, a) = 1.

3. A vague monoid 〈G, ◦̃〉 is called a vague group if for each a ∈ G there exists

an inverse a−1 ∈ G, that is an element a−1 ∈ G satisfying

µ◦̃
(
a−1, a, e◦̃

)
∧ µ◦̃

(
a, a−1, e◦̃

)
= 1.
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4. A vague semigroup 〈G, ◦̃〉 is said to be commutative (abelian) if

µ◦̃ (a, b,m) ∧ µ◦̃ (b, a, w) ≤ EG (m,w) for all a, b,m,w ∈ G.

Next, we introduce concept of vague semigroups and show that for each

classical semigroup 〈S, ◦〉, there exists a non-trivial vague binary operation such

that 〈S, ◦̃〉 is a vague semigroup.

Proposition 1.2.7. Let S be any semigroup. Let c, d ∈ (0, 1) be such that d < c. First,

we define a fuzzy equality Ec
S×S , i.e.,

Ec
S×S [(x1, y1) , (x2, y2)] =

0, if (x1, y1) 6= (x2, y2) ,

1, if (x1, y1) = (x2, y2) ,

for all (x1, y1) , (x2, y2) ∈ S × S.

Next, we define the characteristic function µ◦̃ (x, y, z) with the following properties :

1. ∀x, y ∈ S, ∃!zx,y ∈ S such that µ◦̃ (x, y, zx,y) = 1,

2. ∀x, y ∈ S, ∀z ∈ S r {zx,y}, µ◦̃ (x, y, z) = d.

Finally, for all x, y ∈ S, we define

ES (x, y) =

1, if x = y,

c, if x 6= y.

Then
〈
S, ◦̃, Ec

S×S, ES
〉

is a vague semigroup .

Proof. Evidently, Ec
S×S and ES are fuzzy equalities on S × S and S, respectively.

Next, we are going to prove that ◦̃ is a vague binary operation by showing that

◦̃ is a strong fuzzy function from S × S to S. We separate the proof into two

steps as follows:

1. for all (x, y) ∈ S × S, there exists z ∈ S such that µ◦̃ (x, y, z) = 1,
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2. for all (x1, y1) , (x2, y2) ∈ S × S for all z1, z2 ∈ S,

µ◦̃ (x1, y1, z1) ∧ µ◦̃ (x2, y2, z2) ∧ Ec
S×S [(x1, y1) , (x2, y2)] ≤ ES (z1, z2) .

Notice that the first step is obvious from the given properties of the characteris-

tic function. In the second step, Ec
S×S [(x1, y1) , (x2, y2)] has possible values either

0 or 1. It suffices to show that

• if (x1, y1) 6= (x2, y2) , done.

• if (x1, y1) = (x2, y2) , we just show that

µ◦̃ (x1, y1, z1) ∧ µ◦̃ (x2, y2, z2) ≤ ES (z1, z2) .

Therefore,

if z1 = z2, then ES (z1, z2) = 1,

if z1 6= z2, then µ◦̃ (x1, y1, z1) ∧ µ◦̃ (x2, y2, z2) = d but ES (z1, z2) = c, and

c > d. Thus the result is proved.

Hence, ◦̃ is a strong fuzzy relation so that ◦̃ is a vague binary operation . Fi-

nally, for the same reason as above, we obtain that
〈
S, ◦̃, Ec

S×S, ES
〉

is a vague

semigroup as desired.

1.3 Vague Groups

The notions of vague groups, generalized vague subgroups and their funda-

mental properties were introduced by Sezer [7]. Our purpose of this section is

to recall these notions and some of their elementary properties which will be

needed in this thesis.

For the rest of this thesis, if G is a nonempty set, then the notation 〈G, ◦̃〉

always stands for the vague group 〈G, ◦̃〉 with respect to a fuzzy equality EG×G
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on G×G and a fuzzy equality EG on G.

Proposition 1.3.1. [3] For a given vague group 〈G, ◦̃〉, there exists a unique binary

operation in the classical sense, denoted by ◦, on G such that 〈G, ◦〉 is a group in the

classical sense.

From now on, if ◦̃ is a vague binary operation on a nonempty set X with

respect to a fuzzy equality EX×X and a fuzzy equality EX , then from [4, 5],

µ◦̃ (a, b, c) ≤ EX (a ◦ b, c) for all a, b, c ∈ X. (1.3.2)

The binary operation “◦” in Proposition 1.3.1 is explicitly given by the

equivalence

a ◦ b = c⇔ µ◦̃ (a, b, c) = 1 for all a, b, c ∈ G. (1.3.3)

In the next theorem, we show how a vague binary operation on X is related

to a binary operation mentioned in (1.3.3)

Theorem 1.3.4. Let X be a nonempty set and •̃ be a vague binary operation on X with

respect to the fuzzy equalities EX×X and EX . Then there exists a binary operation • on

X such that

a • b = c if and only if µ•̃ (a, b, c) = 1 for all a, b, c ∈ X.

Proof. Let a, b, c ∈ X. Assume that µ•̃ (a, b, c) = 1. Utilizing (1.3.2) and the fact

that 1 = µ•̃ (a, b, c) ≤ EX (a • b, c), we see that a • b = c. Conversely, assume that

a • b = c. Suppose that µ•̃ (a, b, c) 6= 1. Since •̃ is a vague binary operation on

X , there exists d ∈ X such that c 6= d and µ•̃ (a, b, d) = 1. Therefore a • b = d

contradicts the fact that • is a binary operation.

Hence a • b = c if and only if µ•̃ (a, b, c) = 1 for all a, b, c ∈ X.

The binary operation “◦”, defined by the equivalence (1.3.3), is called the

ordinary description of ◦̃ see [4, 5].
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We show in the following proposition that if •̃ is a vague binary operation

on X with respect to the fuzzy equalities EX×X and EX , then •̃ is commutative

if and only if • is commutative.

Proposition 1.3.5. Let X be a nonempty set and •̃ be a vague binary operation on X

with respect to the fuzzy equalities EX×X and EX . Then

•̃ is commutative if and only if • is commutative.

Proof. Let •̃ be a commutative vague binary operation on X . By Theorem 1.3.4,

we see that

µ•̃ (a, b, a • b) = 1 = µ•̃ (b, a, b • a) for all a, b ∈ X

and apply the commutativity, we observe that

1 = µ•̃ (a, b, a • b) ∧ µ•̃ (b, a, b • a) ≤ EX (a • b, b • a) .

Therefore EX (a • b, b • a) = 1, i.e., a • b = b • a for all a, b ∈ X.

Conversely, suppose that • is a commutative binary operation. Applying

(1.3.2) and the commutativity of •, we see that

µ•̃ (a, b,m) ∧ µ•̃ (b, a, w) ≤ EX (a • b,m) ∧ EX (b • a, w)

= EX (m, a • b) ∧ EX (a • b, w)

≤ EX (m,w)

for all a, b,m,w ∈ X. Hence •̃ is commutative as desired.

For a given fuzzy equality EG on a set G and for a crisp subset A of G, the

restriction of the mapping fromEG toA×A, denoted byEA, is obviously a fuzzy

equality on A.
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Definition 1.3.6. [6] Let 〈G, ◦̃〉 be a vague group and A be a nonempty crisp

subset of G. Let �̃ be a vague binary operation on A such that

µ�̃ (a, b, c) ≤ µ◦̃ (a, b, c) for all a, b, c ∈ A.

If
〈
A, �̃

〉
is itself a vague group with respect to the fuzzy equalities EA×A on

A × A and EA on A, then
〈
A, �̃

〉
is said to be a generalized vague subgroup of

〈G, ◦̃〉, denoted by
〈
A, �̃

〉 v.s.
≤ 〈G, ◦̃〉 .

For a given vague group 〈G, ◦̃〉, because of the uniqueness of the identity and

the inverse of an element of 〈G, ◦̃〉, it can be easily seen that if
〈
A, �̃

〉 v.s.
≤ 〈G, ◦̃〉 ,

then the identity eA of
〈
A, �̃

〉
and the inverse x−1

A of x ∈ Awith respect to
〈
A, �̃

〉
are the identity eG of 〈G, ◦̃〉 and the inverse x−1

G of x ∈ G with respect to 〈G, ◦̃〉,

i.e., eA = eG and x−1
A = x−1

G , respectively.

Example 1.3.7. [7] Let α ∈ [0, 1) be fixed, and set x• =
1

max (x, 1)
∧min (x, 1) for

any x ∈ R+. For x, y, u, v, z ∈ R+, define the fuzzy equalities

ER+ (x, y) =


1, if x = y,

α ∨
(

1

x•
∧ 1

y•

)
, otherwise,

on R+ and

ER+×R+ [(x, y) , (u, v)] =

1, if (x, y) = (u, v) ,

α ∨
[
(x2)

• ∧ (y2)
• ∧ (u2)

• ∧ (v2)
•]
, otherwise,

on R+×R+, and for x, y, u, v, z ∈ Q+, also define the fuzzy equalitiesEQ+ (x, y) =

ER+ (x, y) on Q+ and

EQ+×Q+ [(x, y) , (u, v)] = ER+×R+ [(x, y) , (u, v)]
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on Q+ × Q+. For n ∈ N, we obtain that the fuzzy relations ◦̃ and �̃n on R+ ×

R+ × R+ and Q+ ×Q+ ×Q+, defined by

µ◦̃ (x, y, z) =

1, if z = xy,

α (x• ∧ y• ∧ z•) , otherwise,

and

µ�̃n
(x, y, z) =


1, if z = xy,

α

n
(x• ∧ y• ∧ z•) , otherwise,

are vague binary operations on R+ and Q+, respectively; furthermore, 〈R+, ◦̃〉

and
〈
Q+, �̃n

〉
are vague groups. Due to the definitions of �̃n and ◦̃, we have

µ�̃n
(x, y, z) ≤ µ◦̃ (x, y, z) for each x, y, z ∈ Q+, i.e.,

〈
Q+, �̃n

〉 v.s.
≤ 〈R+, ◦̃〉.

Proposition 1.3.8. [6] Let 〈G, ◦̃〉 be a vague group. If
〈
A, �̃

〉 v.s.
≤ 〈G, ◦̃〉 and 〈B, •̃〉

v.s.

≤〈
A, �̃

〉
, then 〈B, •̃〉

v.s.

≤ 〈G, ◦̃〉 .

We give another equivalent conditions of generalized vague subgroup as

follows:

Proposition 1.3.9. [6] Let 〈G, ◦̃〉 be a vague group, A be a nonempty, crisp subset of G

and let �̃ be a vague binary operation on A. Then

〈
A, �̃

〉 v.s.
≤ 〈G, ◦̃〉 ⇐⇒ 1. µ�̃ (a, b, c) ≤ µ◦̃ (a, b, c) for each a, b, c ∈ A, and

2. x−1 ∈ A for each x ∈ A.

Corollary 1.3.10. [6] Let 〈G, ◦̃〉 be a vague group and �̃ be a vague binary opearation

on G such that µ�̃ (a, b, c) ≤ µ◦̃ (a, b, c) for all a, b, c ∈ G. Moreover, let e◦̃ be the

identity element of G. Then
〈{
e◦̃
}
, ◦̃
〉 v.s.
≤ 〈G, ◦̃〉 and

〈
G, ˜̃�

〉 v.s.

≤ 〈G, ◦̃〉 .

In this thesis, we denote the minimum of {xj}j∈J by
∧
j∈J

xj.
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Corollary 1.3.11. [6] Let 〈G, ◦̃〉 be a vague group and let
〈
Aj, �̃j

〉 v.s.

≤ 〈G, ◦̃〉 for all

j ∈ J . If ?̃ is a vague binary operation on
⋂
j∈J

Aj such that

µ?̃ (x, y, z) ≤
∧
j∈J

µ�̃j
(x, y, z) for all x, y, z ∈

⋂
j∈J

Aj,

then

〈⋂
j∈J

Aj, ?̃

〉
v.s.

≤
〈
Ak, �̃k

〉 v.s.
≤ 〈G, ◦̃〉 for all k ∈ J .

1.4 Vague Rings

In this section, similar fashion to classical algebra, we give the notion of vague

rings and vague subrings which are introduced by Sezer [7]. We also provide

some elementary properties and some examples.

Definition 1.4.1. [7] Let EH×H and EH be fuzzy equalities on H × H and H,

respectively. Let ◦̃ and •̃ be two vague binary operations on H. Then, the 3-

tuple 〈H, ◦̃, •̃〉 is called a vague ring with respect to EH×H and EH, or a vague

ring for short, if the following three conditions are satisfied :

(V R1) 〈H, ◦̃〉 is a commutative vague group,

(V R2) 〈H, •̃〉 is a vague semigroup,

(V R3) 〈H, ◦̃, •̃〉 satisfies the distributive laws, i.e., for each a, b, c, d, t, x, y, z ∈ H,

µ•̃ (x, y, a) ∧ µ•̃ (x, z, b) ∧ µ◦̃ (a, b, c) ∧ µ◦̃ (y, z, d) ∧ µ•̃ (x, d, t) ≤ EH (t, c) ,

µ•̃ (x, z, a) ∧ µ•̃ (y, z, b) ∧ µ◦̃ (a, b, c) ∧ µ◦̃ (x, y, d) ∧ µ•̃ (d, z, t) ≤ EH (t, c) .

(V R4) A vague ring 〈H, ◦̃, •̃〉 is said to be a vague ring with identity if there

exists e•̃ ∈ H such that µ•̃ (x, e•̃, x) ∧ µ•̃ (e•̃, x, x) = 1 for each x ∈ H.

From now on, we write x • y and x ◦ y by xy and x + y, respectively. The

notation 〈H, ◦̃, •̃〉 always stands for a vague ring 〈H, ◦̃, •̃〉 with respect to EH×H
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and EH. If 〈H, ◦̃, •̃〉 is a vague ring, then we write −a the inverse of a with

respect to the vague group 〈H, ◦̃〉 ; additionally, if 〈H, •̃〉 is a vague group, then

we denote a−1 the inverse of a with respect to the vague group 〈H, •̃〉 .

Example 1.4.2. Let 〈H, ◦, •〉 be a ring. For x, y, a, b ∈ H and α, β, γ, ν ∈ R such

that 0 ≤ ν ≤ γ ≤ β ≤ α < 1, define the fuzzy equalities

EH (a, b) =

1, if a = b,

α, otherwise,

onH and

EH×H ((a, b) , (x, y)) =

1, if (a, b) = (x, y) ,

β, otherwise,

onH×H. Next, consider the vague binary operations

◦̃ : H×H H, with µ◦̃ (a, b, c) =

1, if a ◦ b = c,

γ, otherwise,

and

•̃ : H×H H, with µ•̃ (a, b, c) =

1, if a • b = c,

ν, otherwise.

In this case, it is clearly seen that 〈H, ◦̃, •̃〉 is a vague ring from the inequality in

(1.3.2) and the condition (E3).

Proposition 1.4.3. [4] If 〈H, ◦̃, •̃〉 is a vague ring, then 〈H, ◦, •〉 is a ring where ◦ and

• are ordinary descriptions of ◦̃ and •̃, respectively.

Proposition 1.4.4. [7] Let 〈H, ◦̃, •̃〉 be a vague ring and e◦̃ the identity element of the

vague group 〈H, ◦̃〉. Then, the following statements are satisfied for all m,n, x, y ∈ H :

1. µ•̃ (x, e◦̃,m) ∧ µ•̃ (e◦̃, x, n) ≤ EH (m,n) .
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2. µ•̃ (−x,−y,m) ∧ µ•̃ (x, y, n) ≤ EH (m,n) .

3. µ•̃ (−e•̃, x,−x) = 1 = µ•̃ (−e•̃,−e•̃, e•̃) if 〈H, ◦̃, •̃〉 is a vague ring with identity e•̃.

Definition 1.4.5. [7] Let 〈H, ◦̃, •̃〉 be a vague ring and A be a nonempty crisp

subset ofH. Let ⊕̃ and �̃ be two vague binary operations on A such that

µ⊕̃ (a, b, c) ≤ µ◦̃ (a, b, c) and µ�̃ (a, b, c) ≤ µ•̃ (a, b, c) for all a, b, c ∈ A.

If
〈
A, ⊕̃, �̃

〉
is itself a vague ring with respect to EA×A and EA, then

〈
A, ⊕̃, �̃

〉
is

said to be a vague subring of 〈H, ◦̃, •̃〉, denoted by
〈
A, ⊕̃, �̃

〉 v.r.
≤ 〈H, ◦̃, •̃〉 .

The following proposition and corollaries assure that some results of classi-

cal rings also valid for vague rings.

Proposition 1.4.6. Let 〈H, ◦̃, •̃〉 be a vague ring and A be a subset of H. Let ⊕̃ and �̃

be two vague binary operations on A. Then the following equivalence is satisfied :

〈
A, ⊕̃, �̃

〉 v.r.
≤ 〈H, ◦̃, •̃〉 ⇔ 1.

〈
A, ⊕̃

〉 v.s.
≤ 〈H, ◦̃〉 , and

2. µ�̃ (a, b, c) ≤ µ•̃ (a, b, c) for all a, b, c ∈ A.

Next corollary explains that the intersection of vague subrings is also a vague

subring.

Corollary 1.4.7. [7] Let 〈H, ◦̃, •̃〉 be a vague ring and
〈
Aj, ⊕̃j, �̃j

〉 v.r.
≤ 〈H, ◦̃, •̃〉 for all

j ∈ J. Let A =
⋂
j∈J

Aj , and let ⊕̃ and �̃ be two vague binary operations on A such that

µ⊕̃ (a, b, c) ≤
∧
j∈J

µ⊕̃j
(a, b, c) and µ�̃ (a, b, c) ≤

∧
j∈J

µ�̃j
(a, b, c) for all a, b, c ∈ A.

Then
〈
A, ⊕̃, �̃

〉 v.r.
≤ 〈H, ◦̃, •̃〉 .

Corollary 1.4.8. [7] Let 〈H, ◦̃, •̃〉 be a vague ring and e◦̃ be the identity element of
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〈H, ◦̃〉. Let ⊕̃ and �̃ be two vague binary operations onH such that

µ⊕̃ (x, y, z) ≤ µ◦̃ (x, y, z) and µ�̃ (x, y, z) ≤ µ•̃ (x, y, z) for all x, y, z ∈ H.

Then 〈{e◦̃} , ◦̃, •̃〉
v.r.

≤ 〈H, ◦̃, •̃〉 and
〈
H, ⊕̃, �̃

〉 v.r.
≤ 〈H, ◦̃, •̃〉 .

1.5 Vague Ideals

In this section, we give some concepts and some fundamental properties of

vague ideals which are introduced by Sezer [7]. Ultimately, we give some ideas

of vague prime ideals and maximal vague ideals which are also introduced by

the same author.

Definition 1.5.1. [7] Let 〈H, ◦̃, •̃〉 be a vague ring and
〈
A, ⊕̃, �̃

〉 v.r.

≤ 〈H, ◦̃, •̃〉 . If

for all a ∈ A and for all h, t, s ∈ H

µ◦̃ (a, h, t) = 1⇒ t ∈ A and µ◦̃ (h, a, s) = 1⇒ s ∈ A,

then
〈
A, ⊕̃, �̃

〉
is said to be a vague ideal of 〈H, ◦̃, •̃〉, denoted by

〈
A, ⊕̃, �̃

〉 v.i.

≤

〈H, ◦̃, •̃〉 .

It is clear from Definition 1.5.1 that if µ◦̃ (H×H×H) ⊆ {0, 1} , EH = Ec
H,

EH×H = Ec
H×H and

〈
A, ⊕̃, �̃

〉 v.i.

≤ 〈H, ◦̃, •̃〉 , then 〈A,⊕,�〉 is an ideal of 〈H, ◦, •〉 .

Therefore, in this case, a vague ideal
〈
A, ⊕̃, �̃

〉
of 〈H, ◦̃, •̃〉 is nothing but an ideal

of the classical ring 〈H, ◦, •〉 in the classical sense.

Proposition 1.5.2. [7] Let 〈H, ◦̃, •̃〉 be a vague ring. If
〈
A, ⊕̃, �̃

〉 v.i.

≤ 〈H, ◦̃, •̃〉 , then

〈A,⊕,�〉 is an ideal of 〈H, ◦, •〉 .

Proposition 1.5.3. [7] Let 〈H, ◦̃, •̃〉 be a vague ring. Then

〈
{e◦̃} , ◦̃, •̃

〉 v.i.
≤ 〈H, ◦̃, •̃〉 and

〈
H, ⊕̃, �̃

〉 v.i.
≤ 〈H, ◦̃, •̃〉
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where ⊕̃ and �̃ are vague binary operations on H such that µ⊕̃ (a, b, c) ≤ µ◦̃ (a, b, c)

and µ�̃ (a, b, c) ≤ µ•̃ (a, b, c) for all a, b, c ∈ H.

We give another equivalence conditions of vague ideals.

Proposition 1.5.4. [7] Let 〈H, ◦̃, •̃〉 be a vague ring, A be a nonempty crisp subset of

H and ⊕̃, �̃ be two vague binary operations on A. Then

〈
A, ⊕̃, �̃

〉 v.i.
≤ 〈H, ◦̃, •̃〉 ⇐⇒1.

〈
A, ⊕̃

〉 v.s.
≤ 〈H, ◦̃〉 ,

2. µ�̃ (a, b, c) ≤ µ•̃ (a, b, c) for all a, b, c ∈ A,

3. µ•̃ (a, h, t) = 1⇒ t ∈ A for all a ∈ A, h, t ∈ H, and

4. µ•̃ (h, a, s) = 1⇒ s ∈ A for all a ∈ A, h, s ∈ H.

Proposition 1.5.5. [7] Let 〈H, ◦̃, •̃〉 be a vague ring and
〈
Aj, ⊕̃j, �̃j

〉 v.i.

≤ 〈H, ◦̃, •̃〉 for

all j ∈ J. If ⊕̃ and �̃ are vague binary operations on
⋂
j∈J

Aj such that

µ⊕̃ (a, b, c) ≤
∧
j∈J

µ◦̃j (a, b, c) and µ�̃ (a, b, c) ≤
∧
j∈J

µ•̃j (a, b, c) ,

then

〈⋂
j∈J

Aj, ⊕̃, �̃

〉
v.i.

≤ 〈H, ◦̃, •̃〉.

We give a crucial notion in vague structures called “vague prime ideal.”

Definition 1.5.6. [7] Let 〈H, ◦̃, •̃〉 be a vague ring, A be a proper crisp subset of

H and
〈
A, ⊕̃, �̃

〉 v.i

≤ 〈H, ◦̃, •̃〉 . If •̃ is a vague binary operation on H r A, then〈
A, ⊕̃, �̃

〉
is said to be a vague prime ideal of 〈H, ◦̃, •̃〉 .

Proposition 1.5.7. [7] Let 〈H, ◦̃, •̃〉 be a vague ring and
〈
A, ⊕̃, �̃

〉 v.i

≤ 〈H, ◦̃, •̃〉 . Then

the following two statements are equivalent.

1.
〈
A, ⊕̃, �̃

〉
is a vague prime ideal of 〈H, ◦̃, •̃〉 .

2. µ•̃ (x, y, z) < 1 for each z ∈ A and for each x, y ∈ Hr A.
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Next, a relation between vague prime ideals of the vague ring 〈H, ◦̃, •̃〉 and

prime ideals of the ring 〈H, ◦, •〉 is provided.

Proposition 1.5.8. If
〈
A, ⊕̃, �̃

〉
is a vague prime ideal of 〈H, ◦̃, •̃〉, then 〈A,⊕,�〉 is

a prime ideal of 〈H, ◦, •〉.

Proof. Let M and N be any ideals of A such that M * A and N * A. Thus

there exists x ∈ M, and y ∈ N such that x, y ∈ H r A. But µ•̃ (x, y, xy) = 1 by

Proposition 1.5.7, we have xy /∈ A. Since xy ∈ MN , it follows that MN * A.

Hence 〈A,⊕,�〉 is a prime ideal of 〈H, ◦, •〉 as desired.

Definition 1.5.9. [7] Let 〈H, ◦̃, •̃〉 be a vague ring, M be a nonempty proper crisp

subset of H and
〈
M, ⊕̃, �̃

〉 v.i

≤ 〈H, ◦̃, •̃〉 . If there are no vague ideals
〈
N, 	̃, ?̃

〉
such that 〈

M, ⊕̃, �̃
〉

$
〈
N, 	̃, ?̃

〉 v.i
≤ 〈H, ◦̃, •̃〉 ,

then
〈
M, ⊕̃, �̃

〉
is said to be a maximal vague ideal of 〈H, ◦̃, •̃〉.

Note that for a vague ideal
〈
I, ⊕̃, �̃

〉
of a vague ring 〈H, ◦̃, •̃〉 where µ⊕̃ 6= µ◦̃

and µ�̃ 6= µ•̃, we obtain that
〈
I, ⊕̃, �̃

〉
cannot be a maximal vague ideal since

〈
I, ⊕̃, �̃

〉
$ 〈I, ◦̃, •̃〉 ⊆ 〈H, ◦̃, •̃〉 .

Proposition 1.5.10. [7] Let 〈H, ◦̃, •̃〉 be a vague ring. If
〈
M, ⊕̃, �̃

〉
is a maximal vague

ideal of 〈H, ◦̃, •̃〉, then 〈M,⊕,�〉 is a maximal ideal of 〈H, ◦, •〉 .

Proposition 1.5.11. [7] Let 〈H, ◦̃, •̃〉 be a vague ring. Then, maximal vague ideals of

〈H, ◦̃, •̃〉 are 〈M, ◦̃, •̃〉 where M is one of the maximal ideals of 〈H, ◦, •〉.

Finally, we give some examples about vague prime ideals and maximal vague

ideals in the following.

Example 1.5.12. [7] For the following vague binary operations ⊕̃, �̃, ◦̃ and •̃, we

show that
〈
2Z, ⊕̃, �̃

〉
is a vague prime ideal of 〈Z, ◦̃, •̃〉 and

〈
2Z, ⊕̃, �̃

〉
is not a
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maximal vague ideal of 〈Z, ◦̃, •̃〉 . Let G = Z, A = 2Z and α, β, γ ∈ R be such that

0 ≤ γ ≤ β ≤ α < 1. We define

EZ : Z× Z→ [0, 1] , EZ (u, v) =

1, if u = v,

α, otherwise,

E2Z : 2Z× 2Z→ [0, 1] , E2Z (m,n) = EZ (m,n) ,

EZ×Z = Ec
Z×Z, E2Z×2Z = Ec

2Z×2Z,

◦̃ : Z× Z Z, µ◦̃ (x, y, z) =

1, if x+ y = z,

β, otherwise,

and

⊕̃ : 2Z× 2Z 2Z, µ⊕̃ (a, b, c) =

1, if a+ b = c,

γ, otherwise.

We obtain that
〈
2Z, ⊕̃

〉 v.s
≤ 〈Z, ◦̃〉. Moreover, let ν, η ∈ R be such that 0 ≤ ν < η <

1, and we define

•̃ : Z× Z Z, µ•̃ (x, y, z) =

1, if x · y = z,

η, otherwise,

and

�̃ : 2Z× 2Z 2Z, µ�̃ (a, b, c) =

1, if a · b = c,

ν, otherwise.

In this case, it is clearly seen that 〈Z, ◦̃, •̃〉 is a vague ring and �̃ is a vague binary

operation on 2Z. Therefore, by using Proposition 1.5.4, we get
〈
2Z, ⊕̃, �̃

〉 v.i

≤
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〈Z, ◦̃, •̃〉 . On the other hand, since µ�̃ (a, b, c) = ν < 1 for each a, b ∈ Z r 2Z

and for each c ∈ 2Z, it follows from Proposition 1.5.7 that
〈
2Z, ⊕̃, �̃

〉
is a vague

prime ideal of 〈Z, ◦̃, •̃〉 . Furthermore, since

〈
2Z, ⊕̃, �̃

〉
$ 〈2Z, ◦̃, •̃〉

v.i

≤ 〈Z, ◦̃, •̃〉 ,

〈
2Z, ⊕̃, �̃

〉
is not a maximal vague ideal of 〈Z, ◦̃, •̃〉 .

Next, we give a different example of vague prime ideals.

Example 1.5.13. Let p be a prime number. Consider (p)i as an principal ideal of

〈Z, ◦, •〉 containing p. We show that
〈
(p)i , ◦̃, •̃

〉
is a vague prime ideal of 〈Z, ◦̃, •̃〉

where ◦̃ and •̃ are any vague binary operations of which ◦ and • are the ordinary

descriptions, respectively. Suppose not, i.e.,

∃x, y /∈ (p)i ,∃z ∈ (p)i such that µ•̃ (x, y, z) = 1.

Thus xy = z ∈ (p)i . Therefore p|xy, that is p|x or p|y leads to a contradiction.

Hence
〈
(p)i , ◦̃, •̃

〉
is a vague prime ideal of 〈Z, ◦̃, •̃〉.



CHAPTER II

Vague Prime Ideals

In this chapter, some elementary properties of vague ideals are first given. We

have an inspiration from the classical sense that the sum of ideals of a ring is

also an ideal. Next, we give some sufficient conditions of a vague ring that

every maximal vague ideal is a vague prime ideal. Then we give the sufficient

condition of the vague ring of matrices to have no vague prime ideals.

Eventually, for a vague ring 〈H, ◦̃, •̃〉, we set up certain sets induced form a

vague prime ideal, a vague prime right ideal and a vague prime left ideal of

〈H, ◦̃, •̃〉 and also study their properties whether they are vague ideals.

2.1 Vague Ideals, Maximal Vague Ideals, Vague Prime Ideals

and Vague Irreducible Ideals

In this section, first, we give some properties of a vague ideal. Then every max-

imal vague ideal implying a vague prime ideal of a certain vague ring is pro-

vided. Finally, we show that the commutativity of a vague ring in Theroem 2.1.2

is neccessary.

Lemma 2.1.1. Let 〈H, ◦̃, •̃〉 be a vague ring,
〈
A, ⊕̃, �̃

〉
and

〈
B, �̃, �̃

〉
be vague ideals

of 〈H, ◦̃, •̃〉. If ♥̃ and ♠̃ are vague binary operations ofH such that for each a, b, c ∈ H,

µ♥̃ (a, b, c) ≤ µ◦̃ (a, b, c) and µ♠̃ (a, b, c) ≤ µ•̃ (a, b, c) ,

then
〈
A+B, ♥̃, ♠̃

〉
is also a vague ideal of 〈H, ◦̃, •̃〉 where ◦̃, ⊕̃, �̃, ♥̃ and •̃, �̃, �̃, ♠̃
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are any vague binary operations of which + and · are the ordinary descriptions, respec-

tively.

Proof. First, we show that
〈
A+B, ♥̃

〉 v.s.

≤ 〈H, ◦̃〉. Let x ∈ A + B. Thus x = a + b

for some a ∈ A and b ∈ B. Since A and B are vague ideals of 〈H, ◦̃, •̃〉, we obtain

that −a ∈ A and −b ∈ B. Therefore −x = (−a) + (−b) ∈ A+ B. By assumption,

for each a, b, c ∈ A + B, µ♥̃ (a, b, c) ≤ µ◦̃ (a, b, c) . Therefore Proposition 1.3.9

gives
〈
A+B, ♥̃

〉 v.s.

≤ 〈H, ◦̃〉. Similarly, we have µ♠̃ (a, b, c) ≤ µ•̃ (a, b, c) for each

a, b, c ∈ A + B. Finally, let k ∈ A + B and h, t ∈ H be such that µ•̃ (k, h, t) = 1.

Thus t = kh. Since k ∈ A + B, we have k = a + b for some a ∈ A and b ∈

B. Since µ•̃ (a, h, ah) = 1 = µ•̃ (b, h, bh) , we obtain that ah ∈ A and bh ∈ B.

Therefore t = kh = (a+ b)h = ah + bh ∈ A + B. Analogously, we can show

that if µ•̃ (h, k, t) = 1, then t ∈ A + B. Hence by Proposition 1.5.4, we have〈
A+B, ♥̃, ♠̃

〉
is a vague ideal of 〈H, ◦̃, •̃〉 as desired.

Note that for any vague ring 〈H, ◦̃, •̃〉 and x ∈ H, we denote (x)i the smallest

vague ideal of H containing x. If H is also commutative and M is a nonempty

crisp subset ofH, we denote M + (x)i the set

{m+ rx |m ∈M and r ∈ H} .

Since for each a, b, c ∈ H,

µ◦̃ (a, b, c) ≤ µ◦̃ (a, b, c) and µ•̃ (a, b, c) ≤ µ•̃ (a, b, c) ,

by Lemma 2.1.1, if M is a vague ideal of H, then 〈M + (x)i , ◦̃, •̃〉 is also a vague

ideal ofH. In a classical commutative ring R with identity, every maximal ideal

of R is a prime ideal of R. The corrresponding result also holds in a vague ring.

Theorem 2.1.2. Let 〈H, ◦̃, •̃〉 be a commutative vague ring with identity. If 〈M, ◦̃, •̃〉

is a maximal vague ideal of 〈H, ◦̃, •̃〉, then 〈M, ◦̃, •̃〉 is a vague prime ideal of 〈H, ◦̃, •̃〉.
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Proof. Assume that 〈M, ◦̃, •̃〉 is a maximal vague ideal of 〈H, ◦̃, •̃〉 such that

µ•̃ (x, y, z) = 1 for some x, y ∈ HrM and z ∈M , i.e., xy = z ∈M. Consider the

following sequence

〈M, ◦̃, •̃〉 $
〈
M + (x)i , ◦̃, •̃

〉
⊆ 〈H, ◦̃, •̃〉 .

By the maximality of M and Proposition 1.5.7, we have M + (x)i = H in the

classical sense. Therefore, there exist r ∈ H and m ∈ M such that m + rx = 1.

Hence

y = 1y = (m+ rx) y = my + r (xy) ∈M

which is a contradiction. Consequently, 〈M, ◦̃, •̃〉 is a vague prime ideal of

〈H, ◦̃, •̃〉 as desired.

Next example shows that the commutativity of a vague ring in Theroem 2.1.2

is neccessary.

Example 2.1.3. First observe that 〈Mn (Z6) ,+, ·〉 is a non-commutative ring where

+ and · are the usual addition and usual multiplication of matrices. By Proposi-

tion 1.3.5, any vague ring 〈Mn (Z6) , ◦̃, •̃〉 is not commutative where ◦̃ and •̃ are

any vague binary operations of which + and · are the ordinary descriptions, re-

spectively. Since there is a one-to-one correspondence between the ideals of the

ring Mn (Z6) and the ideals of the ring Z6, evidently, {0̄, 3̄} is a maximal ideal of

Z6. Therefore

I =


a b

c d

 | a, b, c, d ∈ {0̄, 3̄}


is a maximal ideal of 〈Mn (Z6) ,+, ·〉 . Thus by Proposition 1.5.11, it follows that

〈I, ◦̃, •̃〉 is a maximal vague ideal of 〈Mn (Z6) , ◦̃, •̃〉. But I is not a vague prime

ideal because

(
1̄ 5̄
2̄ 1̄

)
/∈ I and

(
1̄ 1̄
1̄ 4̄

)
/∈ I but µ•̃

((
1̄ 5̄
2̄ 1̄

)
,
(

1̄ 1̄
1̄ 4̄

)
,
(

0̄ 3̄
3̄ 0̄

))
= 1,
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and
(

0̄ 3̄
3̄ 0̄

)
∈ I. Consequently, 〈I, ◦̃, •̃〉 is a maximal vague ideal of 〈Mn (Z6) , ◦̃, •̃〉

but it is not a vague prime ideal of 〈Mn (Z6) , ◦̃, •̃〉 as desired.

Next, we define and give some elementary properties of a considerable vague

ideal called “vague irreducible ideal” which is related to vague primary ideals

in Chapter 3.

Definition 2.1.4. Let 〈H, ◦̃, •̃〉 be a vague ring. A vague ideal
〈
A, ⊕̃, �̃

〉
of 〈H, ◦̃, •̃〉

is called a vague irreducible ideal if
〈
A, ⊕̃, �̃

〉
=
〈
J, ⊕̃, �̃

〉
∩
〈
K, ⊕̃, �̃

〉
implies

either
〈
A, ⊕̃, �̃

〉
=
〈
J, ⊕̃, �̃

〉
or
〈
A, ⊕̃, �̃

〉
=
〈
K, ⊕̃, �̃

〉
for any vague ideals〈

J, ⊕̃, �̃
〉

and
〈
K, ⊕̃, �̃

〉
of 〈H, ◦̃, •̃〉.

Next lemma provides some properties of a chain of vague ideals.

Lemma 2.1.5. Let
{〈
Ji, ⊕̃, �̃

〉
| i ∈ Ω

}
be a chain of vague ideals of a ring 〈H, ◦̃, •̃〉.

Then
〈⋃

Ji, ⊕̃, �̃
〉

is a vague ideal of 〈H, ◦̃, •̃〉 .

Proof. First, we show that
〈⋃

Ji, ⊕̃
〉 v.s.

≤ 〈H, ◦̃〉. Let x ∈
⋃
Ji. Thus x ∈ Jk for

some k ∈ Ω. Since Jk is a vague ideal of 〈H, ◦̃, •̃〉, we obtain that −x ∈ Jk ⊆⋃
Ji. Evidently, for each a, b, c ∈

⋃
Ji, µ⊕̃ (a, b, c) ≤ µ◦̃ (a, b, c) . Therefore, by

Proposition 1.3.9, we have
〈⋃

Ji, ⊕̃
〉 v.s.
≤ 〈H, ◦̃〉. Similarly, µ�̃ (a, b, c) ≤ µ•̃ (a, b, c)

for each a, b, c ∈
⋃
Ji.

Finally, let a ∈
⋃
Ji and h, t ∈ H be such that µ•̃ (a, h, t) = 1. Then a ∈ Jk for

some k ∈ Ω. Since Jk is a vague ideal of 〈H, ◦̃, •̃〉, t ∈ Jk ⊆
⋃
Ji. Analogously, we

can show that if µ•̃ (h, a, t) = 1, then t ∈
⋃
Ji.

Therefore, by Proposition 1.5.4, we have
〈⋃

Ji, ⊕̃, �̃
〉

is a vague ideal of

〈H, ◦̃, •̃〉 as desired.

Lemma 2.1.6. Let
〈
A, ⊕̃, �̃

〉
be a vague ideal of 〈H, ◦̃, •̃〉. If a /∈

〈
A, ⊕̃, �̃

〉
, then there

exists a vague irreducible ideal containing
〈
A, ⊕̃, �̃

〉
but not containing a.

Proof. Let
{〈
Ji, ⊕̃, �̃

〉
| i ∈ Ω

}
be a chain of vague ideals of 〈H, ◦̃, •̃〉 contain-

ing
〈
A, ⊕̃, �̃

〉
but not containing a. Then, by Lemma 2.1.5,

〈⋃
Ji, ⊕̃, �̃

〉
is a
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vague ideal of 〈H, ◦̃, •̃〉 containing
〈
A, ⊕̃, �̃

〉
but not containing a. Therefore, by

Zorn’s Lemma, the set of all vague ideals of 〈H, ◦̃, •̃〉 containing
〈
A, ⊕̃, �̃

〉
but

not containing a has a maximal element, say
〈
J, ⊕̃, �̃

〉
. Suppose that

〈
J, ⊕̃, �̃

〉
=〈

M, ⊕̃, �̃
〉
∩
〈
N, ⊕̃, �̃

〉
where

〈
M, ⊕̃, �̃

〉
and

〈
N, ⊕̃, �̃

〉
are both vague ideals of

〈H, ◦̃, •̃〉 properly containing J . We see that if

〈
M, ⊕̃, �̃

〉
,
〈
N, ⊕̃, �̃

〉
∈
{〈
Ji, ⊕̃, �̃

〉
| i ∈ Ω

}
,

then they are contrary to the maximality of
〈
J, ⊕̃, �̃

〉
. Since A ⊆ J ⊆ M and

A ⊆ J ⊆ N , we obtain a ∈ M and a ∈ N . Consequently, a ∈ M ∩N = J which

is a contradiction. Hence
〈
J, ⊕̃, �̃

〉
is a vague irreducible ideal of 〈H, ◦̃, •̃〉.

Theorem 2.1.7. A vague ideal
〈
A, ⊕̃, �̃

〉
of 〈H, ◦̃, •̃〉 is the intersection of all vague

irreducible ideals of 〈H, ◦̃, •̃〉 containing
〈
A, ⊕̃, �̃

〉
.

Proof. Let
〈
A, ⊕̃, �̃

〉
be a vague ideal of 〈H, ◦̃, •̃〉 and

{〈
Ji, ⊕̃, �̃

〉
| i ∈ Ω

}
be

the collection of all vague irreducible ideals of 〈H, ◦̃, •̃〉 containing
〈
A, ⊕̃, �̃

〉
.

Obviously, A ⊆
⋂
Ji. For the reverse inclusion, let a /∈ A. By Lemma 2.1.6,

there exists a vague irreducible ideal J of 〈H, ◦̃, •̃〉 containing
〈
A, ⊕̃, �̃

〉
but not

containing a. Thus a /∈
⋂
Ji. Hence

〈
A, ⊕̃, �̃

〉
=
〈⋂

Ji, ⊕̃, �̃
〉
.

Proposition 2.1.8. Every maximal vague ideal of 〈H, ◦̃, •̃〉 is a vague irreducible ideal

of 〈H, ◦̃, •̃〉.

Proof. Let 〈M, ◦̃, •̃〉 be maximal vague ideal of 〈H, ◦̃, •̃〉. Suppose that 〈M, ◦̃, •̃〉 is

not a vague irreducible ideal of 〈H, ◦̃, •̃〉, i.e., 〈M, ◦̃, •̃〉 = 〈A, ◦̃, •̃〉∩〈B, ◦̃, •̃〉where

〈A, ◦̃, •̃〉 and 〈B, ◦̃, •̃〉 are vague ideals of 〈H, ◦̃, •̃〉 properly containing 〈M, ◦̃, •̃〉.

Consider the following sequence

〈M, ◦̃, •̃〉 $ 〈A, ◦̃, •̃〉 ⊆ 〈H, ◦̃, •̃〉 and 〈M, ◦̃, •̃〉 $ 〈B, ◦̃, •̃〉 ⊆ 〈H, ◦̃, •̃〉 .

By the maximality of 〈M, ◦̃, •̃〉 , we have 〈A, ◦̃, •̃〉 = 〈B, ◦̃, •̃〉 = 〈H, ◦̃, •̃〉 . There-
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fore, M = A ∩ B = H so that a contradiction occurs. Hence 〈M, ◦̃, •̃〉 is a vague

irreducible ideal of 〈H, ◦̃, •̃〉.

The converse of Proposition 2.1.8 is not true as we can see from the next

example.

Example 2.1.9. Consider the non-commutative ring 〈Mn (Z12) ,+, ·〉 where +

and · are the usual addition and usual multiplication of matrices. Let 〈Mn (Z12) , ◦̃, •̃〉

be a vague ring where ◦̃ and •̃ are any vague binary operations of which + and

· are the ordinary descriptions, respectively. Since there is a one-to-one corre-

spondence between the ideals of the ring Mn (Z12) and the ideals of the ring Z12,

evidently, Z12 has 6 ideals namely:

{0̄} , {0̄, 6̄} , {0̄, 4̄, 8̄} , {0̄, 3̄, 6̄, 9̄} , {0̄, 2̄, 4̄, 6̄, 8̄, 1̄0} ,Z12.

Consider the vague ideal
〈
Mn ({0̄, 4̄, 8̄}) , ◦̃, •̃

〉
of 〈Mn (Z12) , ◦̃, •̃〉. Write

〈
Mn ({0̄, 4̄, 8̄}) , ◦̃, •̃

〉
= 〈A, ◦̃, •̃〉 ∩ 〈B, ◦̃, •̃〉

for some vague ideals 〈A, ◦̃, •̃〉 and 〈B, ◦̃, •̃〉 of 〈Mn (Z12) , ◦̃, •̃〉 . From the above

observation, clearly, A = Mn

(
{0̄, 4̄, 8̄}

)
or B = Mn

({
0̄, 4̄, 8̄

})
.

Therefore
〈
Mn ({0̄, 4̄, 8̄}) , ◦̃, •̃

〉
is a vague irreducible ideal of 〈Mn (Z12) , ◦̃, •̃〉

but
〈
Mn ({0̄, 4̄, 8̄}) , ◦̃, •̃

〉
is not a maximal vague ideal since

〈
Mn ({0̄, 4̄, 8̄}) , ◦̃, •̃

〉
$ 〈Mn ({0̄, 2̄, 4̄, 6̄, 8̄, 1̄0}) , ◦̃, •̃〉 ⊆ 〈Mn (Z12) , ◦̃, •̃〉 .

Hence
〈
Mn ({0̄, 4̄, 8̄}) , ◦̃, •̃

〉
is a vague irreducible ideal which is not a maximal

vague ideal of 〈Mn (Z12) , ◦̃, •̃〉 as desired.
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2.2 A Vague Ring without Vague Prime Ideals

In this section, we give an example of the vague ring of matrices having none

of vague prime ideals. In the following, we give an example of classical rings

possesses three prime ideals but all of the corresponding vague rings does not

have any vague prime ideals.

Example 2.2.1. Consider the ring 〈Mn (Z6) ,+, ·〉 and the vague ring 〈Mn (Z6) , ◦̃, •̃〉.

Obviously, there are only three proper ideals of the ring 〈Mn (Z6) ,+, ·〉, say

I1 =
{(

0̄ 0̄
0̄ 0̄

)}
, I2 =

{
( a bc d ) | a, b, c, d ∈ {0̄, 3̄}

}
, I3 =

{
( a bc d ) | a, b, c, d ∈ {0̄, 2̄, 4̄}

}
.

Moreover, all of them are prime ideals of 〈Mn (Z6) ,+, ·〉.

Proposition 1.5.8 shows that all possibilities of vague prime ideals of the

vague ring 〈Mn (Z6) , ◦̃, •̃〉 are 〈I1, ◦̃, •̃〉, 〈I2, ◦̃, •̃〉 or 〈I3, ◦̃, •̃〉 .

Note that

µ•̃
((

1̄ 1̄
1̄ 1̄

)
,
(

5̄ 1̄
1̄ 5̄

)
,
(

0̄ 0̄
0̄ 0̄

))
= 1,

but
(

1̄ 1̄
1̄ 1̄

)
,
(

5̄ 1̄
1̄ 5̄

)
/∈ I1∪I2∪I3 and

(
0̄ 0̄
0̄ 0̄

)
∈ I1∩I2∩I3. Therefore 〈I1, ◦̃, •̃〉, 〈I2, ◦̃, •̃〉

and 〈I3, ◦̃, •̃〉 are not vague prime ideals of 〈Mn (Z6) , ◦̃, •̃〉.

Hence the vague ring 〈Mn (Z6) , ◦̃, •̃〉 does not contain any vague prime ideals

no matter what vague binary operations ◦̃ and •̃ are.

In fact, the ring Z6 in Example 2.2.1 can be replaced by any ring with identity.

Theorem 2.2.2. Let R be any ring with identity. Then 〈Mn (R) , ◦̃, •̃〉 is a vague ring

without vague prime ideals where ◦̃ and •̃ are vague binary operations induced by the

usual addition + and the usual multiplication · of matrices, respectively.

Proof. Recall the fact that there is a one - to - one correspondence between the

ideals of the ring Mn (R) and the ideals of the ring R via the map J 7−→ Mn (J)
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where J is an ideal of R and

Mn (J) =
{

[aij] |aij ∈ J for all i, j ∈ {1, 2, . . . , n}
}
.

Let J be a proper ideal of R,

A =



1 1 · · · 1

1 1 · · · 1
...

... . . . ...

1 1 · · · 1

1 1 · · · 1


and B =



1 1 · · · 1

0 0 · · · 0
...

... . . . ...

0 0 · · · 0

−1 −1 · · · −1


.

Then A,B /∈ Mn (J) since 1 /∈ J. Moreover, AB = 0 ∈ J, i.e., µ•̃ (A,B, 0) = 1.

Thus 〈Mn (J) , ◦̃, •̃〉 is not a vague prime ideal of 〈Mn (R) , ◦̃, •̃〉.

This shows that 〈Mn (R) , ◦̃, •̃〉 is a vague ring without vague prime ideals.

From the previous theorem, we conclude that 〈Mn (Zm) , ◦̃, •̃〉 is a vague ring

without vague prime ideals for any m,n ∈ N.

2.3 Vague Prime Right Ideals and Vague Prime Left Ideals

In this section, we define a vague prime right ideal, a vague prime left ideal and

define specific sets induced from a vague prime ideal, a vague prime right ideal

and a vague prime left ideal. We also give some elementary attributes. In order

to define a vague prime right ideal and a vague prime left ideal, we first give

definitions of a vague right ideal and a vague left ideal.

Definition 2.3.1. Let 〈H, ◦̃, •̃〉 be a vague ring and
〈
A, ⊕̃, �̃

〉 v.r.

≤ 〈H, ◦̃.•̃〉 . If for

all a ∈ A and h, t ∈ H, µ◦̃ (a, h, t) = 1⇒ t ∈ A holds, then
〈
A, ⊕̃, �̃

〉
is said to be

a vague right ideal of 〈H, ◦̃, •̃〉, denoted by
〈
A, ⊕̃, �̃

〉 v.r.i.
≤ 〈H, ◦̃, •̃〉 .
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Analogously, if for all a ∈ A and h, s ∈ H, µ◦̃ (h, a, s) = 1⇒ s ∈ A holds, then〈
A, ⊕̃, �̃

〉
is said to be a vague left ideal of 〈H, ◦̃, •̃〉, denoted by

〈
A, ⊕̃, �̃

〉 v.l.i.

≤

〈H, ◦̃, •̃〉 .

Now, we define a vague prime right ideal, a vague prime left ideal and study

their elementary properties .

Definition 2.3.2. Let 〈H, ◦̃, •̃〉 be a vague ring, A be a nonempty proper crisp

subset of H and
〈
A, ⊕̃, �̃

〉 v.r.i

≤ 〈H, ◦̃, •̃〉 . Then
〈
A, ⊕̃, �̃

〉
is said to be a vague

prime right ideal of 〈H, ◦̃, •̃〉 if

µ•̃ (x, y, z) < 1 for each z ∈ A and for each x, y ∈ Hr A.

Definition 2.3.3. Let 〈H, ◦̃, •̃〉 be a vague ring, A be a nonempty proper crisp

subset of H and
〈
A, ⊕̃, �̃

〉 v.l.i

≤ 〈H, ◦̃, •̃〉 . Then
〈
A, ⊕̃, �̃

〉
is said to be a vague

prime left ideal of 〈H, ◦̃, •̃〉 if

µ•̃ (x, y, z) < 1 for each z ∈ A and for each x, y ∈ Hr A.

Definition 2.3.2, Definition 2.3.3 and the analogous proof of Theorem 2.2.2

yields the following proposition.

Proposition 2.3.4. Let R be any ring with identity. Then 〈Mn (R) , ◦̃, •̃〉 is a vague

ring without any vague prime right ideals and vague prime left ideals where ◦̃ and •̃ are

vague binary operations induced by the usual addition + and the usual multiplication ·

of matrices, respectively.

Definition 2.3.5. Let 〈H, ◦̃, •̃〉 be a vague ring, a ∈ H and P , I and J be a vague

prime ideal, a vague prime right ideal and a vague prime left ideal of 〈H, ◦̃, •̃〉,
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respectively. Define

(P : a) =
{
x ∈ H | ∀b ∈ H∀c ∈ H [µ•̃ (a, x, b) = 1⇒ b ∈ P

and µ•̃ (x, a, c) = 1⇒ c ∈ P ]
}
,

(I : a)r =
{
x ∈ H | ∀b ∈ H [µ•̃ (a, x, b) = 1⇒ b ∈ I]

}
,

(J : a)l =
{
x ∈ H | ∀c ∈ H [µ•̃ (x, a, c) = 1⇒ c ∈ J ]

}
.

By observing the above definition, if P is a vague prime ideal, then

(P : a) ⊆ (P : a)r ∩ (P : a)l .

It is easy to see that for a vague prime right ideal I of a vague ring 〈H, ◦̃, •̃〉,

if a ∈ I , then (I : a)r = H, i.e., (I : a)r is not a proper vague ideal of 〈H, ◦̃, •̃〉

so that (I : a)r is not a vague prime right ideal. Similarly, if a ∈ J , where J is

a vague prime left ideal of a vague ring, then (J : a)l is not a vague prime left

ideal.

Let 〈H, ◦̃, •̃〉 be a vague ring. Then 〈H, ◦, •〉 is a ring by Proposition 1.4.3.

From now on, we denote x ◦ y and x • y by x + y and xy, respectively, for any

x, y ∈ H. Moreover, the inverse of x ∈ H under ◦ is written by −x.

Next, we show that (P : a) , (I : a)r and (J : a)l are a vague ideal, a vague

right ideal and a vague left ideal of a vague ring, respectively.

Lemma 2.3.6. Let 〈H, ◦̃, •̃〉 be a vague ring and
〈
P, ⊕̃, �̃

〉
[
〈
I, ⊕̃, �̃

〉
,
〈
J, ⊕̃, �̃

〉
] be a

vague prime ideal [ vague prime right ideal, vague prime left ideal ] of 〈H, ◦̃, •̃〉. Then〈
(P : a) , ⊕̃, �̃

〉
[
〈
(I : a)r , ⊕̃, �̃

〉
,
〈
(J : a)l , ⊕̃, �̃

〉
] is a vague ideal [ vague right ideal,

vague left ideal ] of 〈H, ◦̃, •̃〉 for all a ∈ 〈H, ◦̃, •̃〉.

Proof. Evidently, if a ∈ P , then
〈
(P : a) , ⊕̃, �̃

〉
is a vague ideal. Assume that

a /∈ P. First, we show that
〈
(P : a) , ⊕̃

〉 v.s.

≤ 〈H, ◦̃〉 . Let x ∈ (P : a) and b, c ∈ H.

Assume that µ•̃ (a, x, b) = 1 and µ•̃ (x, a, c) = 1. By Theorem 1.3.4, we have
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b = ax and c = xa. Since x ∈ (P : a), it follows that ax, xa ∈ P . Since〈
P, ⊕̃

〉 v.s.

≤ 〈H, ◦̃〉 , we obtain −ax,−xa ∈ P. Likewise, −x ∈ (P : a), by Theo-

rem 1.3.4 and µ•̃ (a,−x,−ax) = 1 = µ•̃ (−x, a,−xa). By Proposition 1.3.9 we

have
〈
(P : a) , ⊕̃

〉 v.s.
≤ 〈H, ◦̃〉 as desired.

Moreover, let h ∈ H. Since P is a vague ideal, ax, xa ∈ P and µ•̃ (ax, h, axh) =

1 = µ•̃ (h, xa, hxa), it follows that axh, hxa ∈ P. Similarly, we have xh, hx ∈

(P : a) . Hence
〈
(P : a) , ⊕̃, �̃

〉
is a vague ideal by Proposition 1.5.4.

Analogously,
〈
(I : a)r , ⊕̃, �̃

〉
[
〈
(J : a)l , ⊕̃, �̃

〉
] is a vague right [ left ] ideal of

〈H, ◦̃, •̃〉 .

Theorem 2.3.7. Let 〈H, ◦̃, •̃〉 be a vague ring, a ∈ H,
〈
P, ⊕̃, �̃

〉
be a vague prime ideal

of 〈H, ◦̃, •̃〉. Then

〈
(P : a) , ⊕̃, �̃

〉
is a vague prime ideal ⇔ a /∈ P.

Proof. First, observe that if a ∈ P, then (P : a) = H. Therefore
〈
(P : a) , ⊕̃, �̃

〉
is not a vague prime ideal. Conversely, assume that a /∈ P . Suppose that〈
(P : a) , ⊕̃, �̃

〉
is not a vague prime ideal, i.e., there exist x, y /∈ (P : a) and z ∈

(P : a) such that µ•̃ (x, y, z) = 1. Since µ•̃ (a, x, ax) = 1 and µ•̃ (x, a, xa) = 1, we

obtain that ax /∈ P or xa /∈ P. Similarly, ay /∈ P or ya /∈ P. Since µ•̃ (x, y, z) = 1,

it follows that xy = z ∈ (P : a) . Consequently, axy ∈ P since µ•̃ (a, xy, axy) = 1.

We consider the following 4 cases.

1. ax /∈ P and ay /∈ P .

Observe that µ•̃ (ax, y, axy) = 1, ax /∈ P and axy ∈ P. Thus y ∈ P. Since

P is a vague ideal and µ•̃ (a, y, ay) = 1, we have ay ∈ P leading to a

contradiction.

2. ax /∈ P and ya /∈ P .

Similar to case 1, we yield a contradiction.
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3. xa /∈ P and ay /∈ P .

First, we show that ax /∈ P . Suppose not, i.e., ax ∈ P. Since µ•̃ (ax, a, axa) =

1 and P is a vague ideal, axa ∈ P. But since µ•̃ (a, xa, axa) = 1 and xa /∈ P ,

it follows that axa /∈ P, a contradiction. Thus ax /∈ P . Hence another

contradiction occurs so we obtain that ax /∈ P and ay /∈ P.

4. xa /∈ P and ya /∈ P .

Similar to case 3, using the result of Case 2 yields a contradiction.

From the above observations,
〈
(P : a) , ⊕̃, �̃

〉
is a vague prime ideal as desired.

For a vague ring 〈H, ◦̃, •̃〉 and a ∈ H, we show that if
〈
I, ⊕̃, �̃

〉
and

〈
J, ⊕̃, �̃

〉
are vague prime right ideal and a vague prime left ideal ofH, respectively, then

(I : a)r ∩ (J : a)l need not be vague prime ideals.

Example 2.3.8. Consider the vague ring 〈Z, ◦̃, •̃〉. We see that 〈3Z, ◦̃, •̃〉 and

〈5Z, ◦̃, •̃〉 are a vague prime right ideal and a vague prime left ideal of 〈Z, ◦̃, •̃〉,

respectively. Evidently, (3Z : 7) = 3Z while (5Z : 7) = 5Z. Therefore

(3Z : 7) ∩ (5Z : 7) = 3Z ∩ 5Z = 15Z

which is not a vague prime ideal by Theorem 1.5.8.

Theorem 2.3.9. Let 〈H, ◦̃, •̃〉 be a non-commutative vague ring with identity and〈
I, ⊕̃, �̃

〉
be any vague prime right ideal of 〈H, ◦̃, •̃〉. If

Q =
⋂
a∈H

(I : a)r =
⋂

a∈HrI

(I : a)r

=
{
x ∈ H | ∀a ∈ Hr I∀b ∈ H [µ•̃ (a, x, b) = 1⇒ b ∈ I]

}
,

then
〈
Q, ⊕̃, �̃

〉
is a vague ideal of 〈H, ◦̃, •̃〉 contained in I .

In particular, 〈Q, ◦̃, •̃〉 is the largest vague ideal of 〈H, ◦̃, •̃〉 contained in I .
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Proof. First, note that if a ∈ I , then (I : a)r = H. Therefore

⋂
a∈H

(I : a)r =
⋂

a∈HrI

(I : a)r .

By Lemma 2.3.6 and Proposition 1.5.5, we obtain that Q is a vague right ideal of

〈H, ◦̃, •̃〉. Thus, it suffices to show thatQ is a vague left ideal. Let x ∈ Q, a ∈ HrI

and b, y ∈ H. Evidently, ay ∈ H. Assume that µ•̃ (ay, x, b) = 1. By theorem 1.3.4,

we have b = ayx. Since x ∈ Q, it follows that ayx ∈ I. Since a is arbitary, yx ∈ Q.

Therefore, Q is a vague ideal of H as desired. Since e•̃ ∈ H, x ∈ I for all x ∈ Q.

This yields Q ⊆ I . Hence
〈
Q, ⊕̃, �̃

〉
is a vague ideal of 〈H, ◦̃, •̃〉 contained in I as

desired.

For the last assertion, let 〈K, ◦̃, •̃〉 be any vague ideal of 〈H, ◦̃, •̃〉 such that

K ⊆ I . We show that 〈K, ◦̃, •̃〉 ⊆ 〈Q, ◦̃, •̃〉. Let x ∈ K and a ∈ H r I. Since

µ•̃ (a, x, ax) = 1, we obtain ax ∈ K ⊆ I. Consequently, x ∈ Q. Hence 〈Q, ◦̃, •̃〉 is

the largest vague ideal of 〈H, ◦̃, •̃〉 contained in I.

From the previous theorem, the non-commutativity is neccessary because if

〈H, ◦̃, •̃〉 is a commutative vague ring, then
⋂
a∈H (I : a)r = I.

Note that it is not neccessary true that the intersection of vague right ideals

is a vague ideal as seen in Theorem 2.3.9. The following corollary is proved

analogously.

Corollary 2.3.10. Let 〈H, ◦̃, •̃〉 be a non-commutative vague ring with identity and〈
J, ⊕̃, �̃

〉
be any vague prime left ideal of 〈H, ◦̃, •̃〉. If

K =
⋂
a∈H

(J : a)l =
⋂

a∈HrJ

(J : a)l

=
{
x ∈ H | ∀a ∈ Hr J∀b ∈ H [µ•̃ (x, a, b) = 1⇒ b ∈ J ]

}
,

then
〈
K, ⊕̃, �̃

〉
is a vague ideal of 〈H, ◦̃, •̃〉 contained in J .

In particular, 〈K, ◦̃, •̃〉 is the largest vague ideal of 〈H, ◦̃, •̃〉 contained in J .
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Finally, Corollary 2.3.11 is the immediate result of Theorem 2.3.9 and Corol-

lary 2.3.10.

Corollary 2.3.11. Let 〈H, ◦̃, •̃〉 be a non-commutative vague ring with identity and〈
P, ⊕̃, �̃

〉
be any vague prime ideal of 〈H, ◦̃, •̃〉. If

M =
⋂
a∈H

(P : a) =
⋂

a∈HrP

(P : a) ,

then
〈
M, ⊕̃, �̃

〉
is a vague ideal of 〈H, ◦̃, •̃〉 contained in P .

In particular, 〈M, ◦̃, •̃〉 is the largest vague ideal of 〈H, ◦̃, •̃〉 contained in P .

In classical ring, we have a generalization of prime ideal which we called a

primary ideal, similar to vague ring we define a vague primary ideal in the next

chapter.



CHAPTER III

Vague Primary Ideals

In rings, ideals are crucial notion and primary ideals are directly closed to prime

ideals. This inspired us to define a vague primary ideal of a vague ring which

is similar to a primary ideal of a ring. We see that every vague prime ideal of a

vague ring is a vague primary ideal. Consequently, we are interested in study-

ing some properties of vague prime ideals and vague primary ideals which are

parallel to those of prime ideals and primary ideals of classical rings.

In classical sense, Noetherian ring is a well known ring which is beneficial

to investigate some properties of vague primary ideals. This led us to define a

vague Noetherian ring. We also define some crucial vague ideals such as vague

irreducible ideal, vague semiprime ideal in order to explore their related prop-

erties. Eventually, we give some sufficient condition which vague prime ideals

and vague primary ideals are coincide.

3.1 Vague Primary Ideals

In this section, we define a vague primary ideal and a vague irreducible ideal.

We also find out some elementary properties and their relations. In order to

define a vague primary ideal, we need to recall the definition of a primary ideal

of a classical ring as follows.

Definition 3.1.1. Let 〈H, ◦, •〉 be a commutative ring and P be a proper ideal of

H. Then an ideal P ofH is said to be a primary ideal if for each x, y ∈ H,

xy ∈ P ⇒ x ∈ P or yn ∈ P for some n ∈ N.
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In the following, we define a vague primary ideal of a commutative vague

ring 〈H, ◦̃, •̃〉 .

Definition 3.1.2. Let 〈H, ◦̃, •̃〉 be a commutative vague ring, A be a nonempty

proper crisp subset of H and
〈
A, ⊕̃, �̃

〉 v.i

≤ 〈H, ◦̃, •̃〉 . Then
〈
A, ⊕̃, �̃

〉
is said to be

a vague primary ideal of 〈H, ◦̃, •̃〉 if

∀x, y /∈ P ∃n ∈ N ∀z ∈ P,
[
yn /∈ P ⇒ µ•̃ (x, yn, z) < 1

]
.

Proposition 3.1.3. Every vague prime ideal is a vague primary ideal.

Proof. By choosing n = 1, the result holds.

The converse of Proposition 3.1.3 is not true shown in the following example.

Example 3.1.4. Let p be a prime number. Consider (p3)i as a principal ideal of

〈Z, ◦, •〉 containing p3. We show that
〈
(p3)i , ◦̃, •̃

〉
is a vague primary ideal which

is not a vague prime ideal where ◦̃ and •̃ are any vague binary operations of

which ◦ and • are the ordinary descriptions, respectively.

First, observe that p, p2 /∈ (p3)i but

p • p2 = p3 ∈
(
p3
)
i
.

Thus
〈
(p3)i , ◦̃, •̃

〉
is not a prime ideal of 〈Z, ◦, •〉. By Proposition 1.5.8, we have〈

(p3)i , ◦̃, •̃
〉

is not a vague prime ideal of 〈Z, ◦̃, •̃〉 as desired.

Next, suppose that
〈
(p3)i , ◦̃, •̃

〉
is not a vague primary ideal, i.e.,

∃x, y /∈
(
p3
)
i
, ∀n ∈ N,∃z ∈

(
p3
)
i

such that yn /∈
(
p3
)
i

and µ•̃ (x, yn, z) = 1.

Thus xyn = z ∈ (p3)i for all n ∈ N. Therefore, we have xy ∈ (p3)i , i.e., p3|xy.

Consider 3 cases as follows:

1. (p2|x and p|y) or (p2|y and p|x)
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• If (p2|x and p|y), then p3|y3. Thus y3 ∈ (p3)i which is a contradiction.

• If (p2|y and p|x), then p3|y2. Thus y2 ∈ (p3)i which is a contradiction.

2. p3|x or p3|y

• If p3|x, then x ∈ (p3)i which is a contradiction.

• If p3|y, then y ∈ (p3)i which is a contradiction.

Hence
〈
(p3)i , ◦̃, •̃

〉
is a vague primary ideal as desired.

Proposition 3.1.5. If
〈
A, ⊕̃, �̃

〉
is a vague primary ideal of a vague ring 〈H, ◦̃, •̃〉,

then 〈A,⊕,�〉 is a primary ideal of the corresponding ring 〈H, ◦, •〉.

Proof. Let x, y ∈ H be such that x, yn /∈ P for all n ∈ N. But µ•̃ (x, yn, xyn) = 1

for all n ∈ N. Since P is a vague primary ideal, xyn /∈ P for all n ∈ N. Therefore,

xy /∈ P as desired.

Next, we give an example of a vague ideal of a vague ring such that it is not

a vague primary ideal.

Example 3.1.6. Let p and q be distinct prime numbers. Consider (pq)i as a prin-

cipal ideal of the ring 〈Z, ◦, •〉. We show that
〈
(pq)i , ◦̃, •̃

〉
is not a vague primary

ideal of any vague ring 〈Z, ◦̃, •̃〉, i.e.,

∃x, y /∈ (pq)i ,∀n ∈ N,∃z ∈ (pq)i , y
n /∈ (pq)i and µ•̃ (x, yn, z) = 1. (3.1.7)

By choosing x = p and y = q. Evidently, yn = qn /∈ (pq)i for all n ∈ N. Since

n ≥ 1, we have

xyn = pqn = (pq) qn−1 ∈ (pq)i

for all n ∈ N. This shows that xyn ∈ (pq)i and clearly µ•̃ (x, yn, xyn) = 1 for

all n ∈ N. Thus the equation (3.1.7) holds. Hence
〈
(pq)i , ◦̃, •̃

〉
is not a vague

primary ideal of 〈Z, ◦̃, •̃〉 as desired.
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3.2 Vague Semiprime Ideals

In this section, we define a vague semiprime ideal, a vague regular ring and also

study their elementary properties. The main theorem of this section shows that

if 〈H, ◦̃, •̃〉 is a commutative vague regular ring, then every vague primary ideal

of a vague ring 〈H, ◦̃, •̃〉 is a maximal vague ideal.

In order to define a vague semiprime ideal, we need to recall the definition

of a semiprime ideal of a classical ring.

Definition 3.2.1. Let 〈H, ◦, •〉 be a ring and A be a proper ideal of H. Then an

ideal A ofH is said to be a semiprime ideal if for each ideal J ofH,

J2 ⊆ A⇒ J ⊆ A

where J2 =
{ n∑
i=1

xiyi | n ∈ N, xi, yi ∈ J
}
.

Definition 3.2.2. Let 〈H, ◦̃, •̃〉 be a vague ring, A be a nonempty proper crisp

subset of H and
〈
A, ⊕̃, �̃

〉 v.i

≤ 〈H, ◦̃, •̃〉 . Then
〈
A, ⊕̃, �̃

〉
is said to be a vague

semiprime ideal of 〈H, ◦̃, •̃〉 if

µ•̃ (x, x, z) < 1 for each z ∈ A and for each x ∈ HrA.

In a classical ring, every prime ideal is a semiprime ideal. Similar to vague

ring, we obtain the analogous result.

Proposition 3.2.3. Every vague prime ideal is a vague semiprime ideal.

Proof. By choosing y = x in Proposition 1.5.7, the result holds.

Proposition 3.2.4. If
〈
A, ⊕̃, �̃

〉
is a vague semiprime ideal of a vague ring 〈H, ◦̃, •̃〉,

then 〈A,⊕,�〉 is a semiprime ideal of 〈H, ◦, •〉.



40

Proof. Let M be an ideal of A such that M * A . Thus there exists x ∈ M such

that x ∈ HrA. But µ•̃ (x, x, x2) = 1, we conclude that x2 /∈ A because
〈
A, ⊕̃, �̃

〉
is a vague semiprime ideal. Since x2 ∈M2, we have M2 * A. Hence 〈A,⊕,�〉 is

a semiprime ideal of 〈H, ◦, •〉 as desired.

In order to define a vague regular element, we need to recall the definition

of a regular element of a classical ring.

Definition 3.2.5. Let 〈H, ◦, •〉 be a ring. Then an element a ∈ 〈H, ◦, •〉 is said to

be a regular element if a = axa for some x ∈ H.

A ring 〈H, ◦, •〉 is said to be a regular ring if every element in 〈H, ◦, •〉 is a

regular element.

Analogously, we give the definition of a vague regular element as follows:

Definition 3.2.6. Let 〈H, ◦̃, •̃〉 be a vague ring. Then an element a ∈ 〈H, ◦̃, •̃〉 is

said to be a vague regular element if a is a regular element of 〈H, ◦, •〉 where ◦

and • are the ordinary descriptions of ◦̃ and •̃, respectively.

A vague ring 〈H, ◦̃, •̃〉 is said to be a vague regular ring if every element in

〈H, ◦̃, •̃〉 is a vague regular element.

Proposition 3.2.7. If 〈H, ◦̃, •̃〉 is a vague regular ring, then 〈H, ◦, •〉 is a regular ring

where ◦ and • are the ordinary descriptions of ◦̃ and •̃, respectively.

Proof. This follows immediately from Definition 3.2.6.

Theorem 3.2.8. If 〈H, ◦̃, •̃〉 is a commutative vague regular ring, then every vague

ideal
〈
I, ⊕̃, �̃

〉
of 〈H, ◦̃, •̃〉 is a vague semiprime ideal of 〈H, ◦̃, •̃〉.

Proof. Let
〈
I, ⊕̃, �̃

〉
be a vague ideal of a commutative vague regular ring 〈H, ◦̃, •̃〉.

Suppose that
〈
I, ⊕̃, �̃

〉
is not a vague semiprime ideal of 〈H, ◦̃, •̃〉, i.e., there exist

x /∈ I and z ∈ I such that µ�̃ (x, x, z) = 1 = µ•̃ (x, x, z) . Thus x2 = z ∈ I. Since
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〈H, ◦̃, •̃〉 is a commutative vague regular ring, by Proposition 1.3.5 and Propo-

sition 3.2.7, we obtain that 〈H, ◦, •〉 is a commutative regular ring. Therefore

x = xyx = x2y for some y ∈ H. Since I is an ideal of H and x2 ∈ I , we have

x = x2y ∈ Iy ⊆ I which is a contradiction. Hence a vague ideal
〈
I, ⊕̃, �̃

〉
is a

vague semiprime ideal of 〈H, ◦̃, •̃〉 as desired.

Corollary 3.2.9. If 〈H, ◦̃, •̃〉 is a commutative vague regular ring, then every vague

primary ideal of 〈H, ◦̃, •̃〉 is a vague semiprime ideal of 〈H, ◦̃, •̃〉.

To give next lemma, we recall Proposition 1.5.2 that if
〈
I, ⊕̃, �̃

〉 v.i.

≤ 〈H, ◦̃, •̃〉 ,

then 〈I,⊕,�〉 is an ideal of 〈H, ◦, •〉 . In fact ⊕ and � are ◦ and •, respectively.

So that we write 〈I, ◦, •〉 instead of 〈I,⊕,�〉.

Lemma 3.2.10. Let 〈H, ◦̃, •̃〉 be a commutative vague regular ring and
〈
I, ⊕̃, �̃

〉
be a

vague ideal of 〈H, ◦̃, •̃〉. If a /∈ I , then an /∈ I for all n ∈ N.

Proof. Let n ∈ N. First, observe that if n = 1, then we done. Assume that

n > 1. Note that 〈H, ◦, •〉 is a commutative regular ring and 〈I, ◦, •〉 is an ideal

of 〈H, ◦, •〉. Let a /∈ I . From the commutativity and regularity ofH,

a = axa = a2x = a (ax) = (axa) ax = a3x2

for some x ∈ H. By the same process as above, we have a = any for some y ∈ H.

Evidently, if an ∈ I , then a ∈ I since I is an ideal of H which is a contradiction.

Consequently, an /∈ I . The result holds.

Recall that for a vague ideal
〈
I, ⊕̃, �̃

〉
of a vague ring 〈H, ◦̃, •̃〉where µ⊕̃ 6= µ◦̃

and µ�̃ 6= µ•̃, we obtain that
〈
I, ⊕̃, �̃

〉
cannot be a maximal vague ideal since

〈
I, ⊕̃, �̃

〉
$ 〈I, ◦̃, •̃〉 ⊆ 〈H, ◦̃, •̃〉 .

Theorem 3.2.11. Let 〈H, ◦̃, •̃〉 be a commutative vague regular ring. Then every vague

primary ideal 〈P, ◦̃, •̃〉 of a vague ring 〈H, ◦̃, •̃〉 is a maximal vague ideal of 〈H, ◦̃, •̃〉.
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Proof. Let 〈P, ◦̃, •̃〉 be a vague primary ideal of 〈H, ◦̃, •̃〉. Proposition 1.3.5 and

Proposition 3.1.5 provide that 〈H, ◦, •〉 is a commutative regular ring and 〈P, ◦, •〉

is a primary ideal of 〈H, ◦, •〉. Let 〈J, ◦, •〉 be an ideal of 〈H, ◦, •〉 such that

〈P, ◦, •〉 $ 〈J, ◦, •〉 ⊆ 〈H, ◦, •〉 .

Thus there exists p ∈ J such that p /∈ P. Since p ∈ J ⊆ H andH is a regular ring,

p = p2k for some k ∈ H. By the distributive laws, we have

p (1− pk) = 0 ∈ P. (3.2.12)

But p /∈ P and P is an ideal ofH, by Lemma 3.2.10, we have pn /∈ P for all n ∈ N.

Since 〈P, ◦, •〉 is a primary ideal of 〈H, ◦, •〉 and (3.2.12), we obtain that

(1− pk) ∈ P ⊆ J.

Since p ∈ J and J is an ideal of H, this implies that pk ∈ J. Thus 1 = (1− pk) +

pk ∈ J . Hence 〈J, ◦, •〉 = 〈H, ◦, •〉. Therefore, 〈P, ◦̃, •̃〉 is a maximal vague ideal

of 〈H, ◦̃, •̃〉 as desired.

3.3 Related Relations

In this section, we define a new vague structures called a vague ideal quotient

and a vague Notherian ring. The main theorem of this section shows that if

〈H, ◦̃, •̃〉 is a commutative vague Notherian ring with identity and ⊕̃, �̃ are

vague binary operations onH such that for each a, b, c ∈ H,

µ⊕̃ (a, b, c) ≤ µ◦̃ (a, b, c) and µ�̃ (a, b, c) ≤ µ•̃ (a, b, c) ,

then every vague irreducible ideal
〈
I, ⊕̃, �̃

〉
in 〈H, ◦̃, •̃〉 is primary.
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Finally, we summarise related relations of the following vague ideals: maxi-

mal vague ideals, vague irreducible ideals, vague prime ideals, vague primary

ideals and vague semiprime ideals. Therefore, at the end, we obtain that the

condition for vague prime ideals and vague primary ideals to be coincide.

Let
〈
A, ⊕̃, �̃

〉
and

〈
B, �̃, �̃

〉
be vague ideals of a vague ring 〈H, ◦̃, •̃〉. We

define

V (A : B) =
{
h ∈ H | ∀b ∈ B ∀c ∈ H [µ•̃ (h, b, c) = 1⇒ c ∈ A]

}
.

We observe that V (A : B) 6= φ because A ⊆ V (A : B) .

Lemma 3.3.1. Let 〈H, ◦̃, •̃〉 be a vague ring, ♥̃ and ♠̃ be vague binary operations such

that for each a, b, c ∈ H,

µ♥̃ (a, b, c) ≤ µ◦̃ (a, b, c) and µ♠̃ (a, b, c) ≤ µ•̃ (a, b, c) .

Then
〈
V (A : B) , ♥̃, ♠̃

〉
is a vague ideal of 〈H, ◦̃, •̃〉.

Proof. First, we show that
〈
V (A : B) , ♥̃, ♠̃

〉 v.s.

≤ 〈H, ◦̃〉. Let b ∈ B, c ∈ H and

x ∈ V (A : B). Since µ•̃ (x, b, xb) = 1, we have xb ∈ A. Thus −xb ∈ A because〈
A, ⊕̃, �̃

〉
is a vague ideal of 〈H, ◦̃, •̃〉. Now, we have µ•̃ (−x, b,−xb) = 1 and

−xb ∈ A. Thus −x ∈ V (A : B) . Because of the choices of ♥̃, ♠̃ and Proposi-

tion 1.3.9, we have
〈
V (A : B) , ♥̃, ♠̃

〉 v.s.

≤ 〈H, ◦̃〉. Similarly to above, we have

µ♠̃ (a, b, c) ≤ µ•̃ (a, b, c) for each a, b, c ∈ V (A : B) .

Finally, let a ∈ V (A : B), b ∈ B and h, t ∈ H be such that µ•̃ (a, h, t) = 1, i.e.,

ah = t. Since µ•̃ (h, b, tb) = 1 and B is a vague ideal of 〈H, ◦̃, •̃〉, we obtain that

hb ∈ B. For each c ∈ H, assume that µ•̃ (t, b, c) = 1, i.e., c = tb. We show that c ∈

A. Since a ∈ V (A : B) and µ•̃ (a, hb, ahb) = 1, this implies that c = tb = ahb ∈ A

as desired. Analogously, we can show that if µ•̃ (h, a, t) = 1 then t ∈ V (A : B) .

Hence by Proposition 1.5.4, we obtain that
〈
V (A : B) , ♥̃, ♠̃

〉
is a vague ideal of
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〈H, ◦̃, •̃〉 as desired.〈
V (A : B) , ♥̃, ♠̃

〉
in the above lemma is called a vague ideal quotient.

Definition 3.3.2. Let 〈H, ◦̃, •̃〉 be a vague ring. Let
〈
A, ⊕̃, �̃

〉
and

〈
B, �̃, �̃

〉
be

vague ideals of 〈H, ◦̃, •̃〉. We define a vague ideal quotient V (A : B) of A and B

as

V (A : B) =
{
h ∈ H | ∀b ∈ B ∀c ∈ H [µ•̃ (h, b, c) = 1⇒ c ∈ A]

}
.

Definition 3.3.3. Let 〈H, ◦̃, •̃〉 be a vague ring. Then 〈H, ◦̃, •̃〉 is said to be a vague

Notherian ring if every increasing chain of vague ideals

〈
J1, ⊕̃, �̃

〉
⊆
〈
J2, ⊕̃, �̃

〉
⊆ . . .

eventually stops, that is
〈
Jk, ⊕̃, �̃

〉
=
〈
Jk+1, ⊕̃, �̃

〉
= . . . for some k.

Next Lemma shows that if 〈H, ◦̃, •̃〉 is a vague Notherian ring, then 〈H, ◦, •〉

is a Notherian ring.

Lemma 3.3.4. If 〈H, ◦̃, •̃〉 is a vague Notherian ring, then 〈H, ◦, •〉 is a Notherian

ring where ◦̃ and •̃ are any vague binary operations of which ◦ and • are the ordinary

descriptions, respectively.

Proof. Since the assumption of a vague Noetherian ring holds for all vague bi-

nary operations, by choosing

µ◦̃ (a, b, c) =

1, if a ◦ b = c,

0, if a ◦ b 6= c,

and

µ•̃ (a, b, c) =

1, if a • b = c,

0, if a • b 6= c,

the result holds.
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Note that if A and B are nonempty crisp sets, ⊕̃, �̃, ◦̃, •̃ are any vague binary

operations, then
〈
A, ⊕̃, �̃

〉
⊆ 〈B, ◦̃, •̃〉 if and only if

1. A is a crisp subset of B,

2. µ⊕̃ (a, b, c) ≤ µ◦̃ (a, b, c) for all a, b, c ∈ A, and

3. µ�̃ (a, b, c) ≤ µ•̃ (a, b, c) for all a, b, c ∈ A.

Next, we give an example of a vague Noetherian ring.

Example 3.3.5. Consider a vague ring 〈Z, ◦̃, •̃〉 where ◦̃ and •̃ are any vague

binary operations of which the usual addition + and the usual multiplication ·

on Z are the ordinary descriptions, respectively. See that if
〈
I, ⊕̃, �̃

〉
is a vague

ideal of 〈Z, ◦̃, •̃〉, then
〈
I, ⊕̃, �̃

〉
=
〈
(m)i , ⊕̃, �̃

〉
for some m ∈ Z. From the above

note, it is easy to show that

〈
(m)i , ⊕̃, �̃

〉
⊆
〈
(n)i , ⊕̃, �̃

〉
⇔ n|m.

We show that 〈Z, ◦̃, •̃〉 is a vague Noetherian ring. Let

〈
J1, ⊕̃, �̃

〉
⊆ · · · ⊆

〈
Jk−1, ⊕̃, �̃

〉
⊆
〈
Jk, ⊕̃, �̃

〉
⊆
〈
Jk+1, ⊕̃, �̃

〉
⊆ . . .

be an ascending chain of vague ideals of 〈Z, ◦̃, •̃〉. Since for each h ∈ N, Jh =

(nh)i for some nh ∈ Z, we obtain the following ascending chain of vague ideals

〈
(n1)i , ⊕̃, �̃

〉
⊆ · · · ⊆

〈
(nk−1)i , ⊕̃, �̃

〉
⊆
〈
(nk)i , ⊕̃, �̃

〉
⊆
〈
(nk+1)i , ⊕̃, �̃

〉
⊆ . . . .

If the chain did not terminate, n2 would have been a proper divisor of n1 and n3

a proper divisor of n2, etc. In particular,

|n1| > · · · > |nk−1| > |nk| > |nk+1| > . . .
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which is impossible since there can only be finitely many positive integers strictly

less than n1. Consequently, 〈Z, ◦̃, •̃〉 is a vague Noetherian ring.

Lemma 3.3.6. Let 〈H, ◦̃, •̃〉 be a vague ring,
〈
I, ⊕̃, �̃

〉
,
〈
A, ⊕̃, �̃

〉
and

〈
B, ⊕̃, �̃

〉
be

vague ideals of 〈H, ◦̃, •̃〉. If
〈
A, ⊕̃, �̃

〉
⊆
〈
B, ⊕̃, �̃

〉
, then

〈
V (I : B) , ⊕̃, �̃

〉
⊆
〈
V (I : A) , ⊕̃, �̃

〉
.

Proof. Let x ∈
〈
V (I : B) , ⊕̃, �̃

〉
, a ∈ A and c ∈ H be such that µ•̃ (x, a, c) = 1.

Then c = xa. Since µ•̃ (x, a, xa) = 1 and a ∈ A ⊆ B, we obtain that c = xa ∈ I.

Therefore, x ∈
〈
V (I : A) , ⊕̃, �̃

〉
. Hence

〈
V (I : B) , ⊕̃, �̃

〉
⊆
〈
V (I : A) , ⊕̃, �̃

〉
as

desired.

Next theorem and corollary show that every vague ideal in a commutative

vague Notherian ring with identity is decomposition (means that any vague

ideal 〈A, ◦̃, •̃〉 of 〈H, ◦̃, •̃〉 is the intersection of the primary vague ideal of 〈H, ◦̃, •̃〉).

Theorem 3.3.7. Let 〈H, ◦̃, •̃〉 be a commutative vague Notherian ring with identity. If

⊕̃ and �̃ are vague binary operations onH such that for each a, b, c ∈ H,

µ⊕̃ (a, b, c) ≤ µ◦̃ (a, b, c) and µ�̃ (a, b, c) ≤ µ•̃ (a, b, c) ,

then every vague irreducible ideal
〈
I, ⊕̃, �̃

〉
in 〈H, ◦̃, •̃〉 is primary.

Proof. Let
〈
I, ⊕̃, �̃

〉
be a vague irreducible ideal in 〈H, ◦̃, •̃〉. Suppose that

∃x, y /∈ I,∀k ∈ N,∃zk ∈ I , yk /∈ I and µ•̃
(
x, yk, zk

)
= 1,

i.e., xyk ∈ I for all k ∈ N. For each t ∈ N, define Jt = V (I : (yt)i) , the vague

ideal quotient of vague ideal I and (yt)i. For each n ≥ 2, since

· · · ⊆
〈
(yn)i, ⊕̃, �̃

〉
⊆ · · · ⊆

〈
(y2)i, ⊕̃, �̃

〉
⊆
〈
(y)i, ⊕̃, �̃

〉
,
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by Lemma 3.3.6, evidently, we have

〈
J1, ⊕̃, �̃

〉
⊆
〈
J2, ⊕̃, �̃

〉
⊆ · · · ⊆

〈
Jn, ⊕̃, �̃

〉
⊆ · · · .

Since 〈H, ◦̃, •̃〉 is a vague Notherian ring,

〈
J, ⊕̃, �̃

〉
:=
〈
Jn, ⊕̃, �̃

〉
=
〈
Jm, ⊕̃, �̃

〉
for all m ≥ n.

Next, define
〈
K, ⊕̃, �̃

〉
=
〈
I + (yn)i, ⊕̃, �̃

〉
, the sum of ideals I and (yn)i. By

assumption and Lemma 2.1.1, we have
〈
K, ⊕̃, �̃

〉
is a vague ideal of 〈H, ◦̃, •̃〉.

We show that
〈
I, ⊕̃, �̃

〉
=
〈
J ∩K, ⊕̃, �̃

〉
. Obviously,

〈
I, ⊕̃, �̃

〉
⊆
〈
J, ⊕̃, �̃

〉
and〈

I, ⊕̃, �̃
〉
⊆
〈
K, ⊕̃, �̃

〉
. Now, let r ∈

〈
J ∩K, ⊕̃, �̃

〉
. Then r = s + tyn where

s ∈ I and t ∈ H. Since
〈
J, ⊕̃, �̃

〉
:=
〈
Jn, ⊕̃, �̃

〉
=
〈
V (I : (yn)i) , ⊕̃, �̃

〉
, yn ∈

(yn)i, and µ•̃ (r, yn, ryn) = 1 , we obtain that ryn ∈
〈
I, ⊕̃, �̃

〉
. Therefore, ty2n =

ryn − syn ∈ I , i.e., t ∈
〈
V (I : (y2n)i) , ⊕̃, �̃

〉
=
〈
V (I : (yn)i) , ⊕̃, �̃

〉
. This yields

r = s + tyn ∈
〈
I, ⊕̃, �̃

〉
. Therefore

〈
I, ⊕̃, �̃

〉
=
〈
J ∩K, ⊕̃, �̃

〉
. Since

〈
I, ⊕̃, �̃

〉
is a vague irreducible ideal,

〈
I, ⊕̃, �̃

〉
=
〈
J, ⊕̃, �̃

〉
or
〈
I, ⊕̃, �̃

〉
=
〈
K, ⊕̃, �̃

〉
, we

analyze the following two cases :

• If
〈
I, ⊕̃, �̃

〉
=
〈
J, ⊕̃, �̃

〉
=
〈
V (I : (yn)i) , ⊕̃, �̃

〉
. By assumption xyn ∈〈

I, ⊕̃, �̃
〉
, this implies x ∈

〈
V (I : (yn)i) , ⊕̃, �̃

〉
=
〈
I, ⊕̃, �̃

〉
which is a con-

tradiction.

• If
〈
I, ⊕̃, �̃

〉
=
〈
K, ⊕̃, �̃

〉
=
〈
(yn)i + I, ⊕̃, �̃

〉
, then yn ∈

〈
I, ⊕̃, �̃

〉
which is a

contradiction.

Hence
〈
I, ⊕̃, �̃

〉
is a vague primary ideal.

From Lemma 2.1.1, Theorem 2.1.7 and Theorem 3.3.7, we can conclude the

following corollary.

Corollary 3.3.8. Let 〈H, ◦̃, •̃〉 be a commutative vague Notherian ring with identity.
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Then any vague ideal 〈A, ◦̃, •̃〉 of 〈H, ◦̃, •̃〉 is the intersection of all primary vague ideals

of 〈H, ◦̃, •̃〉 .

Theorem 2.1.2, Proposition 3.1.3, Theorem 3.3.7, Proposition 2.1.8 and Theo-

rem 3.2.11 imply the following corollary.

Corollary 3.3.9. If 〈H, ◦̃, •̃〉 be a commutative regular Noethrerian vague ring with

identity, then a maximal vague ideal, a vague irreducible ideal, a vague prime ideal and

a vague primary ideal under vague binary operations ◦̃ and •̃ are coincide.

Note that, in fact, the vague binary operations ◦̃ and •̃ in Corollary 3.3.9 can

be replaced by any vague binary operations ⊕̃ and �̃ on H such that for each

a, b, c ∈ H,

µ⊕̃ (a, b, c) ≤ µ◦̃ (a, b, c) and µ�̃ (a, b, c) ≤ µ•̃ (a, b, c) .

Eventually, we can conclude the related relations of the following vague ide-

als: maximal vague ideals, vague irreducible ideals, vague prime ideals, vague

primary ideals and vague semiprime ideals with vague binary operations ◦̃ and

•̃ in the following diagram.

Maximal Vague Ideals

+ comm vague
ring with 1

(Theorem 2.1.2)

��

(Proposition 2.1.8) // Vague Irreducible Ideals

+ comm vague
Notherian ring with 1

(Theorem 3.3.7)

��
Vague Prime Ideals +commutative

(Proposition 3.1.3)
//

(Proposition 3.2.3)

��

Vague Primary Ideals

+ comm vague
regular ring

(Theorem 3.2.11)PPPPPPPPPPPPPP

hhPPPPPPPPPPPPPP

+ comm vague
regular ring

(Corollary 3.2.9)

w7 w7 w7 w7 w7 w7 w7 w7 w7

ww w7 w7 w7 w7 w7 w7 w7 w7 w7

Vague Semiprime Ideal
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