CHAPTER V

DECOMPOSITION THEORY OF SKEW RATIO SEMIRINGS AND SKEW RINGS

Necessary and sufficient conditions that groups and rings are decomposable are well-known. In this chapter, we study necessary and sufficient conditions that skew ratio semirings and skew rings are decomposable.

Notation Let (D,+,*) be a skew ratio semiring with 1 as its multiplicative identity and n ϵ **Z**⁺. Denote 1 + 1 + ... + 1 n times by n. Clearly nx = xn and $n^{-1}x = xn^{-1}$ for all $x \in D$.

Definition 5.1. Let (D,+,·) be a skew ratio semiring and E a multiplicative normal subgroup of D. Then E is said to be a P-set of D iff there exists an α ϵ D such that

- (i) $\alpha x = x\alpha$ for all $x \in E$,
- (ii) $(x + y)\alpha \in E$ for all $x,y \in E$

and (iii) $(x + y)\alpha + z = x + (y + z)\alpha$ for all $x,y,z \in E$. α is called a good element of the P-set E.

Example 5.2.

1) Let D be a skew ratio semiring. Then D and $\{1\}$ are P-sets of D with good elements 1 and 2^{-1} , respectively. D and $\{1\}$ are called the trivial P-sets of D.

2) Let $(C,+,\cdot)$ and $(D,+,\cdot)$ be skew ratio semirings. Define $(x,y) \oplus (z,w) = (x+z,y+w)$ and $(x,y) \oplus (z,w) = (x\cdot z,y\cdot w)$ for all $(x,y),(z,w) \in C \times D$. Then $(C \times D,\oplus,0)$ is a skew ratio semiring. Let $E = C \times \{1\}$ and $F = \{1\} \times D$. Then E and F and P-sets of $C \times D$ with good elements $(1,2^{-1})$ and $(2^{-1},1)$, respectively.

Theorem 5.3. Let D be a skew ratio semiring and E a P-set of D. Then a good element of E is unique.

2a + 2 = 2 + 2a, so	
a + 1	= 1 + a (1)
Let $x = y = 1$ and $z = a$ in (*). We	e get that
4a	$= 2 + a + a^2$ (2)
Let $x = y = 1$ and $z = b$ in (*). We	e get that
2a + 2b	= 2 + a + ba (3)
Let $x = z = 1$ and $y = b$ in (*). We	e get that
a + ba + 2	= 2 + ba + a (4)
Let $y = z = 1$ and $x = b$ in (*). We	e get that
ba + a + 2	= 2b + 2a (5)
Similarly for b we get that	

 $= 2 + b + b^2$

```
2b + 2a = 2 + b + ab.
                                                       ..... (8)
              b + ab + 2 = 2 + ab + b.
                                                       ..... (9)
              ab + b + 2 = 2a + 2b.
                                                       ..... (10)
 Thus
                 2a + 2b = 2 + ba + a
                                                     (from (3), (6))
                          = ba + a + 2
                                                     (from (4), (6))
                          = 2b + 2a.
                                                         (from (5))
 Hence
               a+b=b+a.
                                                      ..... (11)
 Therefore
              2b(2a + 1) = (4b)a + 2b
                         = 2a + ba + b^{2}a + 2b
                                                         (from (7))
                         = 2a + b(a + ba + 2)
                         = 2a + b(2b + 2a)
                                                    (from (6), (5))
                         = (2a + 2b) + b^2 + bab
                                                     (from (8))
                         = 2 + b + ab + b^2 + bab
                                                  (from (11),(8))
                         = 2 + b + (ba + b^2) + b^2a
                                                      (ab = ba)
                         = (2 + b + b^2) + ba + b^2a
                                                   (from (11))
                         = 4b + ba + b^2a
                                                       (from (7))
                         = b(2 + 2 + a + ba)
                         = b(2 + 2a + 2b)
                                                   (from (3))
                        = 2b(1 + a + b).
Thus 2a + 1 = 1 + a + b. Similarly, 2b + 1 = 1 + b + a. Hence
                2a + 1 = 2b + 1.
                                                        .... (12)
              16(a + 1) = 4(4a) + 16
                         = 8 + 4a + 4a^2 + 16
                                                       (from (2))
                         = 8 + (4a^2 + 4a + 1) + 15
                                                      (from (1))
                         = 8 + (4b^2 + 4b + 1) + 15
                                                      (from (12))
                         = 8 + 4b + 4b^2 + 16
                                                     (from (6))
                                                        (from (7))
                         = 4(4b) + 16
                       = 16(b + 1).
```

Hence a=b which implies that $\alpha=\beta$ and thus the good element of E is unique.

Theorem 5.4. Let D be a skew ratio semiring and E a P-set of D with good element α . Then the following are equivalent:

- (1) (E,+) is a subsemigroup of (D,+).
- (2) $\alpha = 1$.
- (3) a E E.

Proof. (1) implies (2). Assume that (1) holds. Then 1 is the good element of E. By the uniqueness, α = 1.

Clearly (2) implies (3).

(3) implies (1). Assume that (3) holds. Let x,y ϵ E. Then $(x+y)\alpha$ ϵ E which implies that $x+y=(x+y)\alpha\alpha^{-1}$ ϵ E. Thus (1) holds.

Example 5.5. Give \mathbb{Q}^+ with the usual addition and multiplication. Give \mathbb{R}^+ with the usual multiplication and define $x + y = \min \{x,y\}$ for all $x,y \in \mathbb{R}^+$. Let $D = \mathbb{Q}^+ \times \mathbb{R}^+$ with addition and multiplication defined by (x,y) + (z,w) = (x + z,y + w) and $(x,y) \cdot (z,w) = (xz,yw)$ for all $(x,y),(z,w) \in \mathbb{Q}^+ \times \mathbb{R}^+$. Let $E = \{(x,1) | x \in \mathbb{Q}^+\}$. Then E is a P-set with good element $\alpha = (1,1)$. Here $(1,1) + (1,1) = (2,1) \neq (1,1)$ so the three conditions above do not imply that 1 + 1 = 1. However, 1 + 1 = 1 implies

the three conditions above as the following theorem shows.

Theorem 5.6. Let D be a skew ratio semiring with 1 + 1 = 1 and E a P-set of D with good element α . Then the following hold :

- (1) (E,+) is a subsemigroup of (D,+).
- (2) $\alpha = 1$.
- (3) αεΕ.

Proof. Since $(1 + 1)\alpha \in E$, $\alpha \in E$, so (3) holds. By Theorem 5.4, (1) and (2) hold.

Definition 5.7. A skew ratio semiring D is said to be decomposable iff there exist skew ratio semirings D_1, D_2 such that $|D_1| > 1, |D_2| > 1$ and $D = D_1 \times D_2$.

Example 5.8. (C \times D, \oplus , \oplus) in Example 5.2(2) is a decomposable skew ratio semiring.

Theorem 5.9. Let (D,+,·) be a skew ratio semiring. Then D is decomposable iff there exist nontrivial P-sets E,F of D with good elements α and β , respectively, such that

- 1) $E \cap F = \{1\},$
- 2) D = EF

and 3) ef + gh = $(e + g)\alpha(f + h)\beta$ for all e,g ϵ E,f,h ϵ F.

<u>Proof.</u> Assume that there exist nontrivial P-sets E,F of D with good elements α and β , respectively, such that 1) - 3) hold. Define $x \oplus y = (x + y)\alpha$ for all x,y ϵ E. To show that (E, θ, \cdot) is

a skew ratio semiring. We must show that θ is associative and distributes over θ . Let x,y,z ϵ E. Then

$$(x \oplus y) \oplus z = ((x \oplus y) + z)\alpha$$

$$= ((x + y)\alpha + z)\alpha$$

$$= (x + (y + z)\alpha)\alpha$$

$$= (x + (y \oplus z))\alpha$$

$$= x \oplus (y \oplus z).$$

Hence θ is associative. Since $x(y \theta z) = x(y + z)\alpha = (xy + xz)\alpha = xy \theta xz$ and $(y \theta z)x = (y + z)\alpha x = (y + z)x\alpha = (yx + zx)\alpha = yx \theta zx$, distributes over θ . Hence (E,θ,\cdot) is a skew ratio semiring of order greater than 1. Similarly, defining a θ b = $(a + b)\beta$ for all a,b ϵ F we get that (F,θ,\cdot) is a skew ratio semiring of order greater than 1. On $E \times F$ define $(x,a) \theta (y,b) = (x \theta y,a \theta b)$ and $(x,a) \cdot (y,b) = (xy,ab)$ for all $(x,a),(y,b) \epsilon E \times F$. Then $(E \times F,\theta,\cdot)$ is a skew ratio semiring.

Define $i : E \times F \to D$ by i(e,f) = ef for all $(e,f) \in E \times F$.

To show that i is a surjection, let $d \in D$. By 2), there exist $e \in E$, $f \in F$ such that d = ef = i(e,f). To show that i is an injection, let $(e,f),(g,h) \in E \times F$ be such that i(e,f) = i(g,h). Then ef = gh, so $g^{-1}e = hf^{-1}\epsilon E \cap F = \{1\}$ which implies that e = g and f = h. Hence i is a bijection. To show that i is a homomorphism, let $(e,f),(g,h) \in E \times F$. Since i((e,f)(g,h)) = i(eg,fh) = egfh, by Proposition 1.63, egfh = efgh, so i((e,f)(g,h)) = i(e,f)i(g,h). Since $i((e,f) \oplus (g,h)) = i(e \oplus g,f \oplus h) = (e \oplus g)(f \oplus h) = (e + g)\alpha(f + h)\beta$ and i(e,f) + i(g,h) = ef + gh, by 3) $i((e,f) \oplus (g,h)) = i(e,f) + i(g,h)$. Thus i is a homomorphism. Hence $D = E \times F$.

Conversely, assume that D is decomposable. Then there exist skew ratio semirings $\mathrm{D}_1, \mathrm{D}_2$ of orders greater than 1 and an isomorphism

 $i: D_1 \times D_2 \rightarrow D$. Let $E = i(D_1 \times \{1\})$ and $F = i(\{1\} \times D_2)$. Since $D_1 \times \{1\}$ and {1} \times D₂ are multiplicative normal subgroups of D₁ \times D₂, E and F are multiplicative normal subgroups of D. Let $\alpha = i(1,2^{-1})$. Then $\alpha \in D$. Let x = i(a,1), y = i(b,1) and $z = i(c,1) \in E$. Then $\alpha x = i(1,2^{-1})i(a,1)$ $= i(a,2^{-1})$ $= i(a,1)i(1,2^{-1})$ = $x\alpha$, $(x + y)\alpha = (i(a,1) + i(b,1))i(1,2^{-1})$ = $i(a + b,2)i(1,2^{-1})$ = $i(a + b, 1) \epsilon E$ $(x + y)\alpha + z = (i(a,1) + i(b,1))i(1,2^{-1}) + i(c,1)$ = i(a + b,1) + i(c,1)= i(a + b + c,2)= i(a,1) + i(b + c,1)= $i(a,1) + (i(b,1) + i(c,1))i(1,2^{-1})$ $= x + (y + z)\alpha.$

Hence E is a nontrivial P-set of D. Similarly, F is a nontrivial P-set of D with good element $\beta = i(2^{-1},1)$.

Clearly E \cap F = {i(1,1)} and EF \subseteq D. Let d \in D. Then there exist e \in D₁ and f \in D₂ such that d = i(e,f). Since i(e,1) \in E, i(1,f) \in F and i(e,f) = i(e,1)i(1,f), d \in EF, so D \subseteq EF. Thus D = EF. Let x = i(e,1),y = i(g,1) \in E and a = i(1,f),b = i(1,h) \in F. Then xa + yb = i(e,1)i(1,f) + i(g,1)i(1,h) = i(e,f) + i(g,h) = i(e+g,f+h) = i(e+g,f+h) = i(e+g,1)i(1,f+h) = [i(e,1)+i(g,1)]i(1,2^{-1})[i(1,f)+i(1,h)]i(2^{-1},1)

= $(x + y)\alpha(a + b)\beta$.

Hence we have the theorem.

Remark 5.10. Setting e = f = g = h = 1 in 3) we get that $\alpha\beta = 2^{-1}$.

Definition 5.11. Let R be a skew ring and I \subseteq R. Then I is said to be an ideal of R iff

- 1) I is an additive normal subgroup of R
- and 2) ri E I and ir E I for all i E I, r E R.

Example 5.12.

- 1) Let R be a skew ring. Then R and {0} are ideals of R. R and {0} are called the trivial ideals of R.
- 2) Let $(R,+,\cdot)$ and $(T,+,\cdot)$ be skew rings. Define $(x,y) \oplus (z,w) = (x+z,y+w)$ and $(x,y) \oplus (z,w) = (x\cdot z,y\cdot w)$ for all $(x,y),(z,w) \in R \times T$. Then $(R \times T,\oplus,\Theta)$ is a skew ring. Let $I = R \times \{0\}$ and $J = \{0\} \times T$. Then I and J are ideals of I and I are ideals of I.

<u>Definition 5.13</u>. A skew ring R is said to be <u>decomposable</u> iff there exist skew rings R_1, R_2 such that $|R_1| > 1, |R_2| > 1$ and $R \stackrel{\sim}{=} R_1 \times R_2$.

Example 5.14. $(R \times T, \theta, 0)$ in Example 5.12(2) is a decomposable skew ring.

Theorem 5.15. Let R be a skew ring. Then R is decomposable iff there exist nontrivial ideals I,J of R such that

- 1) $I \cap J = \{0\}$
- and 2) R = I + J.

Proof. Assume that there exist nontrivial ideals I,J of R such that 1) and 2) hold. Clearly I and J are skew rings of orders greater than 1. On I × J define (i,j) + (p,q) = (i + p,j + q) and (i,j) · (p,q) = (i · p,j · q) for all (i,j),(p,q) ε I × J. Then (I × J,+,·) is a skew ring. Define $f: I \times J \to R$ by f(i,j) = i + j for all (i,j) ε I × J. To show that f is a surjection, let r ε R. By 2), there exist i ε I,j ε J such that r = i + j = f(i,j). To show that f is an injection, let (i,j),(p,q) ε I × J be such that f(i,j) = f(p,q). Then i + j = p + q, so $-p + i = q - j \varepsilon$ I \cap J = $\{0\}$ which implies that i = p and j = q. Therefore f is a bijection. Claim that i = ji = 0 for all i ε I,j ε J. To prove this, let i ε I and $j \varepsilon$ J. Since I and J are ideals, i = 1 in i = 1

Now f((i,j) + (p,q)) = f(i+p,j+q) = i+p+j+q. By Proposition 1.63, i+p+j+q=i+j+p+q. Hence f((i,j) + (p,q)) = f(i,j) + f(p,q). Thus f is a homomorphism. Hence $R \stackrel{\sim}{=} I \times J$.

Conversely, assume that R is decomposable. Then there exist skew rings R_1 , R_2 of orders greater than 1 and an isomorphism $f: R_1 \times R_2 \to R$. Let $I = f(R_1 \times \{0\})$ and $J = f(\{0\} \times R_2)$. Clearly I and J are additive subgroups of R. Let $i = f(x,0) \in I$ and $r = f(y,z) \in R$.

Then

$$r + i - r = f(y,z) + f(x,0) - f(y,z)$$

$$= f(y + x - y,z + 0 - z)$$

$$= f(y + x - y,0) \in I,$$

$$ir = f(x,0)f(y,z)$$

$$= f(xy,0) \in I$$
and
$$ri = f(y,z)f(x,0)$$

$$= f(yx,0) \in I.$$

Thus I is a nontrivial ideal of R. Similarly, J is a nontrivial ideal of R. Clearly I \cap J = {f(0,0)} and I + J \subseteq R. Let r \in R. Then there exist i \in R₁ and j \in R₂ such that r = f(i,j). Since f(i,0) \in I, f(0,j) \in J and f(i,j) = f(i,0) + f(0,j), r \in I + J. So R \subseteq I + J. Thus R = I × J. Hence we have the theorem.

ิ ศูนยวิทยทรีพยากร จหาลงกรณ์มหาวิทยาลัย